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Abstract: This paper investigates the topological structure of the set of the positive solutions of the one-
dimensional quasilinear indefinite Neumann problem

u' '
- —— = Aa(X)f(u) in (0, 1),
( V1 +u'? )

u'0)=0, u'(1)=o0,

where A € R is a parameter, a € L*°(0, 1) changes sign, and f € C!(R) is positive in (0, +o0). The attention
is focused on the case f(0) = 0 and f'(0) = 1, where we can prove, likely for the first time in the literature,
a bifurcation result for this problem in the space of bounded variation functions. Namely, the existence of
global connected components of the set of the positive solutions, emanating from the line of the trivial solu-
tions at the two principal eigenvalues of the linearized problem around 0, is established. The solutions in
these components are regular, as long as they are small, while they may develop jump singularities at the
nodes of the weight function a, as they become larger, thus showing the possible coexistence along the same
component of regular and singular solutions.
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1 Introduction

In this paper we study the topological structure of the set of the positive bounded variation solutions of the
quasilinear Neumann problem

u' '
- —— ] =Aa()fw) in(0,1),
( V1 +u? )

u'0)=0, u'(1)=0,

(1.1)

*Corresponding author: Julian Lopez-Gomez, Departamento de Analisis Matematico y Matematica Aplicada, Instituto de
Matematica Interdisciplinar (IMI), Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain,

e-mail: julian@mat.ucm.es

Pierpaolo Omari, Sezione di Matematica e Informatica, Dipartimento di Matematica e Geoscienze, Universita degli Studi di
Trieste, Via A. Valerio 12/1, 34127 Trieste, Italy, e-mail: omari@units.it. https://orcid.org/0000-0002-3601-7627



438 —— |.L6pez-Gémez and P. Omari, Global Components of Positive Bounded Variation Solutions DE GRUYTER

where A € Risaparameter, a € L®(0, 1) changes sign, f € C}(RR) satisfies f(s) s > Oforall s # Oand f'(0) = 1.
Problem (1.1) is a particular version of

=g(x,u) inQ,

_div<L>
V1 + |Vul? (1.2)

__ywv =0 on 0Q
VI+ |Vul? '
where Q is a bounded regular domain in RY, with outward pointing normal v, and g: Q x R —» R and
o : 0Q — R are given functions. This model plays a central role in the mathematical analysis of a number of
geometrical and physical issues, such as prescribed mean curvature problems for cartesian surfaces in the
Euclidean space [10, 25, 29-32, 37, 53, 54], capillarity phenomena for incompressible fluids [20, 27, 28,
34, 35], and reaction-diffusion processes where the flux features saturation at high regimes [16, 36, 52].
Although there is a large amount of literature devoted to the existence of positive solutions for semi-
linear elliptic problems with indefinite nonlinearities [1-3, 8, 9, 33, 41, 45], no results were available for
problem (1.2), even in the one-dimensional case (1.1), before [42-44], where we began the analysis of the
effects of spatial heterogeneities in the simplest prototype problem (1.1). Even if part of our discussion in this
paper has been influenced by some results in the context of semilinear equations, it must be stressed that the
specific structure of the mean curvature operator,

u div( vu )
g e
V1 + |Vu|?

makes the analysis in this paper much more delicate and sophisticated, as problem (1.1) may determine
spatial patterns which exhibit sharp transitions between adjacent profiles, up to the formation of disconti-
nuities [11, 12, 15, 16, 21-24, 36, 38, 48, 50]. This special feature explains why the existence intervals of
regular positive solutions of [18, 19, 47] are smaller than those given in the former references when dealing
with bounded variation solutions. It is a well-agreed fact that the space of bounded variation functions is the
most appropriate setting for discussing these topics. The precise notion of bounded variation solution of (1.1)
used in this paper has been basically introduced in [5, 6] and, for the sake of completeness, will be briefly
revisited in Section 2.

In [44] we discussed the existence and the multiplicity of positive bounded variation solutions of (1.1)
under various representative configurations of the behavior at zero and at infinity of the function f. The solu-
tions of [44] can be singular, for as they may exhibit jump discontinuities at the nodal points of the weight
function a, while they are regular, at least of class C!, on each open interval where the weight function a has
a constant sign. Instead, in [42, 43] we investigated the existence and the non-existence of positive regular
solutions. Some of the most intriguing findings of [42-44] can be synthesized by saying that the solutions
of (1.1) obtained in [44] are regular as long as they are small, in a sense to be precised later, whereas they
develop singularities as they become sufficiently large. This is in complete agreement with the peculiar struc-
ture of the mean curvature operator, which combines the regularizing features of the 2-laplacian, when Vu
is sufficiently small, with the severe sharpening effects of the 1-laplacian, when Vu becomes larger.

A natural question arising at the light of these novelties is the problem of ascertaining whether or not
these regular and singular solutions can be obtained, simultaneously, by establishing the existence of con-
nected components of bounded variation solutions bifurcating from (A, u) = (A, 0), which stem regular from
(A, 0) and develop singularities as their sizes increase; thus establishing the coexistence along the same
component of both regular and singular solutions, as synoptically illustrated by the two bifurcation dia-
grams in Figure 1. Although this phenomenology has been already documented by the special example
of [43, Section 8], by means of a rather sophisticated phase plane analysis, solving this problem in our general
setting still was a challenge.

The main aim of this work is establishing the existence of two connected components, (‘38 and (‘3/{0, of the
closure of the set of positive bounded variation solutions of problem (1.1),

8> ={(A,u) € [0, +00) x BV(0, 1) : u > 0 is a solution of (1.1)} u {(0, 0), (Ao, 0)},
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Figure 1: Global bifurcation diagrams emanating from the positive principal eigenvalue A, according to the nature of the
potential jos f(t) dt of f: superlinear at infinity (on the left), or sublinear at infinity (on the right).

emanating from the line {(A, 0) : A € R} of the trivial solutions, at the two principal eigenvalues A = 0 and
A = Ag of the linearization of (1.1) at u = 0,

{ — u” = Aa(x)u in (O, 1)9 (1 3)

u'(0)=u'(1) =0.
Precisely, our main global bifurcation theorem can be stated as follows.

Theorem 1.1. Assume that f € C*(R) satisfies f(s)s > O for all s + 0, f'(0) = 1, and, for some constants k > 0

and p > 2, If'(s)| < x(Is|P=2 + 1) for all s € R. Moreover, suppose that a satisfies jol a(x) dx < 0 and there

is z € (0, 1) such that a(x) > 0 a.e. in (0, z) and a(x) < 0 a.e. in (z, 1). Then there exist two subsets of 8,

Co and C; , such that

« Cgand (‘ZZO are maximal in 8> with respect to the inclusion, are connected with respect to the topology of
the strict convergence in BV(0, 1),* and are unbounded in R x LP (0, 1),

+ (0,0) € C;and (Ao, 0) € €>0,

« {(0,r):r€[0,+00)} C €],

« if(,uecju Gjo and u # 0, then essinf u > 0,

« if(A,0) e CuU 6;0 forsome A > 0, then A = Ag,

« either€jn C;O =0, 0r (Ao, 0) € Cf and (0, 0) € 6;0 and, in such case, C; = Gjo,

o thereexists aneighborhood U of (0, 0) inR x LP (0, 1) such that (‘38 N U consists of regular solutions of (1.1),

o thereexists aneighborhood V of (Ag, 0) in RxLP (0, 1) such that (?;0 NV consists of regular solutions of (1.1).

Theorem 1.1 appears to be the first global bifurcation result for a quasilinear elliptic problem driven by
the mean curvature operator in the setting of bounded variation functions. The absence in the existing lit-
erature of any previous result in this direction might be attributable to the fact that mean curvature prob-
lems are fraught with a number of serious technical difficulties which do not arise when dealing with other
non-degenerate quasilinear problems. As a consequence, our proof of Theorem 1.1 is extremely delicate,
even though problem (1.1) is one-dimensional. The main technical difficulties coming from the eventual
lack of regularity of the solutions of (1.1) as they grow, which does not allow us to work neither in spaces
of differentiable functions, nor in Sobolev spaces. Instead, this lack of regularity forces us to work in the
frame of the Lebesgue spaces L?, where the cone of positive functions has empty interior and most of the
global path-following techniques in bifurcation theory fail. Thus, to get most of the conclusions of Theo-
rem 1.1, a number of highly nontrivial technical issues must be previously overcome. Among them count

1 See [4, Definition 3.14].
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the reformulation of (1.1) as a suitable fixed point equation, the proof of the differentiability of the associ-
ated underlying operator, the search for the most appropriate global bifurcation setting, as well as solving
the tricky problem of the preservation of the positivity of the solutions along both components, for as in the
LP context a positive solution, a priori, could be approximated by changing sign solutions. Naturally, none
of these rather pathological situations can arise when dealing with classical regular problems, like those
considered in [40].

The structure of this paper is organized as follows. Section 2 introduces the three notions of solutions,
with increasing generality, that we are going to use in this work: strong, weak, and of bounded variation.
Then it discusses their reciprocal relations, providing some useful variational characterizations. The con-
tents of Section 2 are slightly inspired by [6]. Naturally, once reformulated (1.1) as a variational inequality
in the space of bounded variation functions, one might be tempted to invoke to the available bifurcation
results for variational inequalities as described, e.g., in [39]. However, since in our opinion no apparent
advantage seems to come from this alternative approach, in this paper we have preferred to adopt a differ-
ent, more classical, treatment of this problem based on the fact that it can be equivalently written as a fixed
point equation for a completely continuous operator, where one can apply the abstract unilateral theorems
of [40, Chapter 6].

Section 3 is devoted to the study of the regularity of the bounded variation solutions of (1.1). It begins
by characterizing the existence of the strong solutions of the problem

u' !
| — ] =h(x) in(0,1),
<V1+u’2>

u'0)=0, u'(Q)=0,

(1.4)

where h € L1(0, 1) is given. As a by-product, any bounded variation solution of (1.4) must be strong if
[hllz: < 1. Then Section 3 analyzes the fine regularity properties of the bounded variation solutions of (1.4),
by establishing that the only singularities that they can exhibit are jumps, which, necessarily, must be located
at the interior points where h changes sign. Thus, when the set of nodal points of h is discrete, the presence
of a Cantor part in the distributional derivative of the bounded variation solutions of (1.4) is ruled out. In
other words, the solutions are special functions of bounded variation, as defined in [4, Chapter 4].

In Section 4 we introduce the auxiliary problem

{%) +k(u) = h(x) in (0, 1),
V1+u!

u'(0)=0, u'(Q)=0,

(1.5)

where k : R — R is a function of class C, strictly increasing and odd, which satisfies

K'(s) 1

Isl>+oo [S[P2

k'(0) =1, ,
for some p > 2 and h € L9(0, 1), with g = 1%' Under these circumstances, we can establish that the asso-
ciated solution operator P : L9(0, 1) — LP(0, 1), which maps h onto the unique bounded variation solution
u = Ph of (1.5), is completely continuous and Fréchet differentiable at h = 0. In addition, we show that the
derivative at O of P is given by the linear operator P, : L9(0, 1) — LP(0, 1) which sends any function h onto
the unique solution u = P1h € W24(0, 1) of the linear problem

—u"+u=hx 1in(0,1),
u')=0, u'(1)=0.

The proof of the differentiability of P at O is far from being obvious and strongly relies on the previous
regularity results delivered in Section 2.
Having all these conclusions in hand, in the subsequent Section 5 one can reformulate problem (1.1) as
an abstract operator equation
N@A,u) =0,
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in the space L?(0, 1), provided that there are constants x > 0 and p > 2 such that
If'(s)] < k(Is|P~2 +1) foralls € R.
Precisely, the operator N : R x L?(0, 1) — LP(0, 1) is defined by
N, u) = P(k(u) + Aaf(u)) — u,
with k as above. Thus, it is a compact perturbation of the identity. Moreover, it can be expressed in the form
NA, u) = LA)u + R(A, u),

where £(A) = P1((1 + Aa)J) — J, with J the identity map, is the Fréchet derivative D, N(A, 0) of N(A, u), with

respect to u, at u = 0, and
—":R(A’ Wiy =0 uniformlyinde]
[ T 71

for any compact subinterval J of IR. Hence, it is not difficult to verify that we are within the functional setting
suited for applying the abstract unilateral bifurcation theorem [40, Theorem 6.4.3], at both principal eigen-
values, 0 and Ay, of the weighted eigenvalue problem (1.3). By [40, Theorem 6.4.3] there exist two connected
components of the set of the solutions of (1.1) emanating from 0 and Ay, respectively. The remainder of the
proof is then basically devoted to prove that each of these components contains an unbounded subcompo-
nent, consisting of positive solutions, which are regular near the bifurcation points. This is achieved through
an elegant topological argument combined with some sophisticated, very delicate, convergence results for
sequences of bounded variation solutions of (1.1), where the special nodal structure of the function a plays
a crucial role.

We conclude Section 5 by providing, under an additional regularity condition on f, some further informa-
tion about the fine structure of the components of positive solutions near their respective bifurcation points
from (A, 0).

Finally, Section 6 ends the paper with a short list of open questions and conjectures.

2 Notions of Solution

Throughout this section we consider the boundary value problem

{%) “hGow) in(0,1),
V1+4+u

u'0)=0, u'(1)=o0,

(2.1)

where h : (0, 1) x R — R satisfies the Carathéodory conditions:

e h(-,s)ismeasurable forall s € R,

e h(x,-) € CO(R;R) fora.e. x € (0, 1),

« foreachr > O there exists h, € L1(0, 1) such that |h(x, s)| < h,(x) fora.e. x € (0, 1) and all s € (-7, r).
We also set

Y(s) = % forall s € R. (2.2)

Definition 2.1 (Strong Solution). A strong solution of problem (2.1) is a function u € W2:(0, 1) which satis-
fies the differential equation in (2.1) a.e. in (0, 1) and the Neumann boundary conditions.

Remark 2.1. Any strong solution u clearly satisfies the differential equation
—u" = h(x,u)(1 + u’z)% a.e.in (0, 1). (2.3)

Moreover, integrating in (0, 1) the differential equation in (2.1), we find for any strong solution of (2.1)

1
J h(x, u)dx = 0. (2.4)
0
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Definition 2.2 (Weak Solution). A weak solution of problem (2.1) is a function u € W'1(0, 1) such that

1
ul¢l B
j i J h(x, W dx (2.5)

0
forall ¢ € WH1(0, 1).

Remark 2.2. By making the choice ¢ = 1 as test function, it follows that (2.4) also holds for every weak
solution u of (2.1). For these solutions, we infer from (2.2) and (2.5) that

1

1
J Y dx = J h(x, u)¢ dx
0

0

for all ¢ € WH1(0, 1). Thus it follows that (u’) € W'1(0, 1) and
~@W@') =h(-,u) ae.in(0,1). (2.6)
Hence, we have

Yu'(x) =- j h(t,u)dt in(0,1)
0

and therefore, taking into account (2.4), ¥(u'(0)) = P(u’(1)) = 0, which, in turn, implies
u'(0)=u'(1)=0. (2.7)

In particular, since ¥(u') € C°[0, 1], we see that u’ : [0, 1] — [-00, +00] is continuous. Actually, the condi-
tion Y (u') € WH1(0, 1) implies that u’ € W'1(0, 1) ifand onlyif [|i)(u')|leo < 1. Therefore, as the derivative u'
of a weak solution u might develop singularities, we conclude that, in general, a weak solution is not nec-
essarily a strong solution. Nevertheless, it is clear that if a weak solution u of (1.1) lies in C1[0, 1], then it is
strong. Of course, the converse is always true: any strong solution is a weak one.

The next variational characterization of the weak solutions of (2.1) can be easily derived by using the con-
vexity of the length integral.

Lemma 2.1. Assume that h : (0, 1) x R — R satisfies the Carathéodory conditions. A function u € W-1(0, 1)
is a weak solution of (2.1) if and only if it satisfies the variational inequality

1 1 1
J 1+v’2dx2J 1+u’2dx+Jh(x,u)(v—u)dx
0 0

forallv e WH1(0, 1), or, equivalently, it is a global minimizer in W1(0, 1) of the associated convex functional

1 1
Ju(v) = J 1+v'?dx - I h(x, u)vdx.
0 0

The next notion of solution is more sophisticated. It basically goes back to [6, 7] and it has extensively been
used and discussed later (see, e.g., [44, 46, 48-51]).

Definition 2.3 (Bounded Variation Solution). A bounded variation solution of problem (2.1) is a function
u € BV(0, 1) such that

1 1 1
DuDg? Dus

—d D3¢ = | h(x, d 2.8

!\/1+(Du“)2 X+J |Dus| ¢ J () dx (2.8)

for all ¢ € BV(0, 1) such that |D¢?3| is absolutely continuous with respect to |Du®|.
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Remark 2.3. By taking ¢ = 1 as test function, it follows that (2.4) also holds for every bounded variation
solution u of (2.1).

In Definition 2.3, as well as throughout the rest of this paper, the following notations are used for every

v € BV(0, 1) (we refer to, e.g., [4, 17] for any required additional details):

o Dv = Dv%x + Dv® is the Lebesgue—Nikodym decomposition of the Radon measure Dv in its absolutely
continuous part Dv®dx, with density function Dv¥, and its singular part Dv®, with respect to the Lebesgue
measure dx in R.

o |Dv|, |Dv?| and |Dv®| stand for the absolute variations of the measures Dv, Dv® and Dv°, respectively;
thus, the Lebesgue—Nikodym decomposition of |[Dv| is given by

|Dv| = |Dv|®dx + |Dv|® = |Dv¥|dx + |DV®|.

. @}jl and D"Sl denote the density functions of Dv and Dv®, respectively, with respect to their absolute
variations |Dv| and |Dv?|.
« Dv® = DV + Dv° stands for the decomposition of the singular part Dv® of Dv in its jump part DV’ and its
Cantor part Dv°.
The identities
Dv =Dv@dx + Dv®, Dv° =DV + Dv¢

induce the decompositions
v=v?¥+vi=vi4+ vV 4 vE,

with . .
vi(x)=v(0)+ | Dv®, Vvix)= | DV,
| |
ve(x) = JDVC, Vvi(x) = JDVS =v(x) + v (x)
0

for a.e. x € (0, 1). Throughout this paper, for any given v € BV(0, 1), we set

1 1 1
J\/1+|Dv|2 :J\/1+|Dv"|2 dx+J|Dvs|, (2.9)
0

0 0
or, equivalently,

1

1
J \1+|Dv|?2 = sup«“(vwl' + W)t wi, wa € Cp(0, 1), [[w? + Willeo < 1]».
0

0

Remark 2.4. It is natural to interpret J'Ol V1 + |Dv|? as the length of the graph of the bounded variation func-
tion v. From its definition we immediately conclude the lower semicontinuity of the length functional with
respect to the L-convergence in the space BV(0, 1) (see, e.g., [25]).

The next result, complementing Lemma 2.1, is a direct consequence of [6].

Lemma 2.2. Assume that h : (0, 1) x R — R satisfies the Carathéodory conditions. A function u € BV(0, 1) is
a bounded variation solution of (2.1) if and only if it satisfies the variational inequality

1

1
j V1+IDvP? > J V1 +IDup? +

0 0

h(x, u)(v —u) dx (2.10)

C—r

forallv € BV(0, 1), or, equivalently, it is a global minimizer in BV(0, 1) of the associated convex functional

1 1
Ju(v) = J \1+|Dv|? - j h(x, u)vdx.
0 0
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The next result is a simple, but useful, consequence of Definitions 2.2 and 2.3.

Lemma 2.3. Assumethath : (0, 1) x R — Rsatisfies the Carathéodory conditions. Suppose that u is a bounded
variation solution of (2.1). Then the function v = u® € W%1(0, 1) is a weak solution of

_(V_> “hG,u) in(0,1),

Visv? (2.11)
vV'(0)=0, V(1)=0.
In particular, (v') € WH1(0, 1) and it satisfies
~ W) =h(-,u) ae.in(0,1), Vv'(0)=Vv'(1)=0. (2.12)

Moreover, u is a weak solution of (2.1) if and only if it is a bounded variation solution of (2.1) satisfying Du® = 0.

Proof. Recall that a function w ¢ W51(0, 1) if and only if w € BV(0, 1) and satisfies DSw = 0. Therefore, let u
be a bounded variation solution of problem (2.1) and set v = u® € W1(0, 1). Particularizing (2.8) at any

¢ € WH1(0, 1) yields
1

J V/(l),
———dx = J h(x, u)¢ dx.
o V1+ v'? o

Hence, v is a weak solution of (2.11). The fact that p(v') € W'1(0, 1), as well as (2.12) holds, follows from
the arguments given in Remark 2.2. This shows in particular that, if Du® = 0, then u = u“ is a weak solution
of (2.1). The converse implication follows by noting again that, if u is a weak solution, then Du® = 0. Hence,
all test functions ¢ € BV(0, 1) must satisfy D’¢ = 0, i.e., they belong to W'1(0, 1), and thus (2.5) holds. [

Definition 2.4 (Positive Solution). A strong, or weak, or bounded variation, solution of problem (2.1) is
respectively said to be non-negative if essinf u > 0, positive if essinfu > 0 and esssupu > 0, and strictly
positive if essinf u > 0.

Throughout the rest of this paper, for any function u € L(0, 1), we write u > 0 if essinfu > 0, u > 0 if
essinfu > 0andesssupu > 0,and u » Oifessinfu > 0.

3 Regularity of the Bounded Variation Solutions

This section analyzes the regularity of the bounded variation solutions of the problem

u' !
{—2_—_) = in(o,1),
( V1 + u’2>

u'0)=0, u'(1)=o0,

(3.1)

where h € L1(0, 1). The next result establishes some necessary conditions for the existence of a bounded
variation solution of (3.1). Hereafter, by a Caccioppoli subset B of (0, 1) it is meant a Borel set B such that
X8 € BV(0, 1), where yp stands for the characteristic function of B.

Lemma 3.1. Assume h € L1(0, 1). Suppose that problem (3.1) has a bounded variation solution u. Then, for
every Caccioppoli set B < (0, 1),

1
jh)(B dx
0

1
< J |Dxsl (3.2)
0

holds; in particular,

hdx=0.

O
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Proof. Let u be a bounded variation solution of (2.1). Then, for every ¢ € BV(0, 1) such that |D¢?| is abso-
lutely continuous with respect to |Du?|,

1 1 1
Du®Dg® Du’
—dx+J D3 =Jh dx. 3.3
J V1 + (Du4)? ) [Dus| ¢ ; ¢ (3.3)
Choosing ¢ = 1 yields
1
j h=o.
0

To establish (3.2), let B ¢ (0, 1) be a Caccioppoli set. Set v = u + yg € BV(0, 1) and substitute it in (2.10). We
find that

1 1 1 1
J_rjh)(des J \/1+ |[D(u + xp)|2 - J \/1+ |Du|? < J |Dxsl,
0 0 0 0

where the last inequality easily follows from (2.9). Indeed, we have

1 1 1
j \1+1D(u +xp)I? = J V1 +[Due £ D32 + J DU + Dy
0 0

1 1 1

0

< I \1+ |Du4|? + I |Du’| + I IDx3!
0 0 0
jl 1

0

1+ |Dul? +j|DxB|,
0

which ends the proof. O
The next result complements Lemma 3.1 in a special case of interest.

Lemma 3.2. Assume h € L1(0, 1). Letu € WH1(0, 1) be a weak solution of (3.1), which is not a strong solution
of (3.1). Then there exists an interval B = (0, z) such that

1
Jh)(B dx
0

1
- 1=j|DxB|.
0

Proof. Asu' ¢ W-1(0, 1), Remark 2.2 implies that |[(u')|« = 1 and, as (u’) € C°[0, 1], there exists z € (0, 1)
such that [(u’(2))| = 1. Therefore, integrating the differential equation —(¥(u"))’ = hin B = (0, z) yields

z 1 1
I hdx = J hyp dx = —pu'(2)) + Y'(0)) = - U'(2)) = +1 = + J |Dxsl,
0 0 0

which ends the proof. O

Thanks to Lemmas 3.1 and 3.2, the next result is very natural: it characterizes the existence of strong solutions
for (3.1).

Proposition 3.3. Assume h € L1(0, 1). Then problem (3.1) has a strong solution if and only if
(h1) there exists a constant k € (0, 1) such that

<k | |Dysl

1
J hxp dx
0

O e,

for every Caccioppoli set B < (0, 1).
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Proof. The proof is divided into three steps:

Step 1: If problem (3.1) has a strong solution, then (h;) holds. Let u be a strong solution of (3.1). Take
a Caccioppoliset B < (0, 1) and multiply the equation in (3.1) by yg. Using [5, Theorem 1.9 and Corollary 1.6],
we get

1 1 1
thde - J'¢(uUDxB sn¢<u5ua)j|DxBL
0 0 0

The conclusion follows by setting k = [ (u')]leo < 1.

Step 2: If (h1) holds, then (3.1) has a bounded variation solution. Set

1
W = {weBV(O, 1):dex=0]».
0

By the Poincaré inequality (see, e.g., [4, Remark 3.50]), W is a Banach space if we endow it with the norm
1
Wy = [ 1wl
0

According to Lemma 2.2, the bounded variation solutions of (3.1) are the global minimizers in BV(0, 1) of
the convex functional J : BV(0, 1) — R defined by

1 1
J(v) = j 1+ |Dv|? - J hv dx.
0 0

It is a classical fact (see, e.g., [25]) that J is lower semicontinuous with respect to the L!-convergence
in BV(0, 1). Let denote by Jvy its restriction to W. We claim that, for every w € W,

1
Jww) > (1 -x) J |Dw]|. (3.4)
0

To prove (3.4), we proceed as follows. Fix w € W and, for each t € R, consider the super-level set
Ei={x€(0,1): wx) > t};

E; is a Caccioppoli set for a.e. t € (0, 1) (see, e.g., [4, Theorem 3.40]). Then the representation formula

+00

w(x) = J g (x) dt (3.5)

-0

holds for a.e. x € (0, 1), where @g, € BV(0, 1) is the function defined by

XE, (%) ift >0,
g (X) = .
Xft(X) -1= _X(O,l)\Et(X) ift <0.

The proof of (3.5) is elementary. Obviously, for every x € (0, 1), we have

+00 +00 0
J Qg (x)dt = J Qg (x) dt + J Qg (x) dt
—00 0 -0
+00 0
= J XE(0) dt ~ J X,1\E, (X) dt. (3.6)

0 -0
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Suppose w(x) > 0. Then we get

+00 w(x) 0
J Xe(x)dt = J dt = w(x), I X0,1)\E (x)dt = 0.
0 0 —00

Similarly, when w(x) < 0, we find

+00 0 0
j XE (x)dt =0, J Xo,1\E (X) dt = J dt = -w(x).
0 —00 w(x)
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Thus, in any circumstances, substituting these identities into (3.6), identity (3.5) holds. Similarly, the follow-

ing co-area formula holds:
+00

IDw(x)] = j Dog,| dt

(see, e.g., [4, Theorem 3.40]). Hence, by the Fubini theorem, it follows from (3.5) that

1 1 +oc0
jhwdx= Jh J g, (x) dtdx
0 0 -o0o
0 +00
__ J < J hdx)dt+ J (Jhdx)dt.
-00 " (0,1)\E; 0 E

So, by (h1) and (3.7), we obtain

1 0
jhwdxsx( J
0 00

[Dx0,1)\E | dt +

O-_‘é‘

1
J |DXE, | dt)
0

1
[DE,| dx dt) = KJ |Dw]|.
0

Therefore, we infer
1 1 1 1
J(w) = J 1+ |Dw|? - j hwdx > J |Dw| - KJ [Dw| = (1 - k) 1 |Dw],
0 0 0 0 0

(3.7)

which provides us with (3.4). This condition entails that Jyy is bounded from below and coercive. Since Jy
is lower semicontinuous with respect to the L!-convergence in W, Jyy has a global minimizer u € W. As, for
every v € BV(Q), we have J(v) = Jyw(w), where w = v — fol vdx € W, we can conclude that u is a minimizer

of Jin BV(0, 1). Therefore, it is a bounded variation solution of (3.1).

Step 3: If condition (k) holds, then any bounded variation solution of (3.1) is a strong solution. Let u be
a bounded variation solution of (3.1), consider the decomposition u = u? + u® and take ¢ = u® as a test

function in (2.8). Then, proceeding exactly as in Step 1, we find

1 1 DS 1 1
j |D3u| = J |DSZIDSu = Jhus dx < KJ |D3ul,
0 0 0 0

which implies that DSu = 0. Thus, we have u € W1(0, 1) and, by Lemma 2.3, it is a weak solution of (3.1).

For each z € (0, 1), integrating (2.6) in B = (0, z), and using (2.7) and (h), we obtain
1 1

JhXde SKJ|DXB| =x<1.
0 0

' (2) = I J(t/)(u’))’ dx
0

This entails [|(u')] < 1 and hence, by Remark 2.2, it is clear that u is a strong solution of (3.1). This ends

the proof.

O
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The next result provides us with a very simple sufficient condition for (h;).
Lemma 3.4. Assume h € L'(0, 1). Suppose that h satisfies fol hdx = 0and ||| < 1. Then (h1) holds.

Proof. Let us set x = |h]l; < 1. Take any Caccioppoli set B < (0, 1). In case B = (0, 1), up to a set of measure
zero, we have Jol |Dyg| = 0 and hence

1 1
Jhdx =O=KJ|D)(B|.
0 0

Otherw1se from [4, Proposition 3.52], we infer that either Jo |[Dxgl| = 2, or, up to a set of measure zero,
=[a, b] < [0,1],witha=0o0rb = 1. In case Io |[DxB| =2, we get

1

<K< KJ|D)(B|.
0

1
Jh)(B dx
0

In case eithera=0and b < 1,ora > 0and b = 1, we find Jol [Dyg| = 1 and hence

1 1 1
Jhdx = jh)(gdx < JIhIdx: K=KJ|D)(B|.
B 0 0 0
Therefore, the inequality in (h;) is anyhow satisfied. O

The following simple regularity result holds.

Corollary 3.5. Assume that h € L1(0, 1). Suppose that ||h||; < 1. Then any bounded variation solution of (3.1)
is a strong solution.

Proof. Let u be a bounded variation solution of (3.1). From (3.3), taking ¢ = 1, we infer fol h dx = 0. Hence,
by Lemma 3.4, h satisfies (h1). Step 3 in the proof of Proposition 3.3 yields the conclusion. O

We can go further in the study of the regularity properties of the bounded variation solutions of (3.1), by estab-
lishing that the only singularities that they can exhibit are jumps at the interior points where h changes sign.

Proposition 3.6. Assume h € L'(0, 1). Let u be a bounded variation solution of (3.1).
(@) Let (a, B) c (0, 1) be an interval such that h(x) > 0 a.e. in (a, B) (respectively, h(x) < 0 a.e. in (a, B)). Then
u is concave (respectively, convex) in (a, B), and its restriction to («, B) satisfies

uy( eWZI(a B)nwWhia,p)

loc

and

u' !
~ —— ) =h(x) ae.in(a,p).
<‘V1+u’2> * l b

Moreover, u € w2 [0 B) and u'(0) = 0 if a = 0, while u ¢ w2 1(oz, 1]andu'(1) = 0if B = 1.

loc loc

(b) Let (a, B), (B, y) be any pair of adjacent subintervals of (0, 1) such that h(x) > 0 a.e. in (a, B) and h(x) <0
a.e. in (B, y) (respectively, h(x) < 0 a.e. in (a, B) and h(x) = 0 a.e. in (B, y)). Then either u € W, loc (a y), or

u(B)>uB*) and u'(B)=-co0=u'(B")

(respectively, u(f™) < u(f*) and u'(B~) = +oo = u'(B)), where u'(B~) and u'(B*) are the left and the right
Dini derivatives of u at 3, respectively.

Proof. Let u be a bounded variation solution of (3.1) and consider the decomposition
u=u+u +uc.

First, we prove part (a). Let (a, B) be an interval such that h(x) > 0 a.e. in (a, B). The proof is divided into
three steps.
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Step 1: u%q,p € W, loc Ya, B) and it is concave in (a, B). Setv =u? e W1(0, 1). By Lemma 2.3, we already
know that p(v') € W1(0, 1) and
- =h ae.in(0,1). (3.8)

As h(x) > 0 a.e. in (a, B), it follows that (v') is decreasing in (a, B). Since, in addition, ¥ (v') is continuous
and v' € L1(0, 1), we must have
W' (x)| <1 forallx e (a, ). (3.9)

This implies that
= !lfl(ll)(V' @) € Wige (@, B)

and it is decreasing in (a, f), i.e., V|q,p) € W, (a B) and it is concave on (a, B).

loc

Step 2: l@pB) = 0. Assume that there exists a jump point z € (a, f8) of u. Set
¢$(x) =H(z-x) in (0, 1),

where H stands for the Heaviside function. Clearly, we have

D¢ = D¢® = -6,

where §, is the Dirac measure concentrated at z. Since |D¢°| = §, is absolutely continuous with respect
to |Du’| and its unique atom is z, it follows from (3.3) that

z 1 1 1 1

Du’ s Du’ Du’ Du’
Jhdx - Jhd)dx _ J D D9 = —j D 82 = -J D (282 =~ @)
0 0 0 0 0

On the other hand, by the polar decomposition of measures (see, e.g., [4, Corollary 1.29]), we have

Du s|(x)e{ 1,1} forallx € (0,1).

Thus, we see that foz hdx € {-1, 1}. Hence, integrating (3.8) in (0, z) yields
z
P @) = [ hdxe 1,1,
0

which contradicts (3.9). Therefore, we conclude that 1/ = 0 on (a, f).

Step 3: uq,p = 0. From the two previous steps, we already know that u = u® + u€ in (a, ). In particular,
u can be extended by continuity onto [a, ]. Let us prove that u is concave in [a, §]. On the contrary, assume
that there exists an interval [y, 6] < [a, B] such that

6 .
u(x) < u(y)+ M(X y) in(y, 6).
Let us define v € BV(0, 1) by setting

{u(yn UMD (x ) in [y, 8],
v(x) =
u(x) elsewhere.

It is clear that
1 1
J 1+ |Dv|? < I \/1 + |Du|?
0 0

and, since v(x) > u(x) in (y, ),

1 1
thdx>Jhudx
0
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Thus, we get
1 1 1 1
I 1+|Dv|2—thdx<J 1+|Du|2—J-hudx,
0 0 0 0

which contradicts the fact that u is a global minimizer of the functional

1 1
() = j 1+ |Dv|? - J hv dx.
0 0

Therefore, u being concave in (a, B), it is locally Lipschitz in (a, ) and hence, u®q gy = 0. As we have just
proved that u = u? in (a, f), the conclusions follow from Step 1 and Lemma 2.3.

Next we prove part (b). Let (a, B), (B, y) be a pair of adjacent subintervals of (0, 1) such that h(x) > 0 a.e.
in (a, ) and h(x) < O a.e.in (B8, y). Set v = u® ¢ W1(0, 1). As v is concave in (a, ) and convex in (8, y), two
possibilities may occur: either (v/(B)) € (-1, 1), or (v'(B)) = —1. In the former case, by the proof of part (a),
we have that

[p()(x)| <1 forallx e (a,y)

and hence v|(q,y) € leocl (a, y). In the latter case, either u is continuous at 8, or § is a jump point. Let us show

that u(B~) > u(B*). Indeed, like in Step 2, we set ¢p(x) = H(S — x) in (0, 1), where H is the Heaviside function.
We have that D¢ = -6, where §p is the Dirac measure concentrated at . Thus, it follows from (3.3) that

1 B
Du’ Du’
() - _J s 6) 8 - J h dx.

On the other hand, integrating (3.8) in (0, 8), we find

B
L=y = [ hax.
0

Therefore, we conclude that %(B) = —1 and thus both
u(B7) zu(B*) and u'(B7)=-co=u'(B"),
which ends the proof. O

Hence we get the following result; hereafter by SBV(0, 1) we mean the space of all special functions of
bounded variation, that is, of all bounded variation functions with vanishing Cantor part, as discussed
in [4, Chapter 4].

Corollary 3.7. Assume h € L'(0, 1) and
(hy) there exists a decomposition

k
[0,1] = U[ai,ﬁi], witha; < Bi = @tix1 < Piyq fori=1,..., k-1,
-1

such that either

(-1Dh(x) >0 ae.in (aj, Bi) fori=1,...,k,
or

(-1)'h(x) <0 ae.in(a;,B;) fori=1,...,k.

Let u be a bounded variation solution of (3.1). Then u € SBV(0, 1), i.e., u is a special function of bounded
variation, whose jumps may occur at the points a;, withi € {2, ..., k}, at most. In addition, all conclusions of
Proposition 3.6 hold on each interval, as well as on each pair of adjacent intervals of the decomposition.

The following uniqueness/non-uniqueness result can be of interest.
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Lemma 3.8. Problem (3.1) has at most one weak solution u such that
1
Judx=0. (3.10)
0

Moreover, if u is a bounded variation solution with u® # 0, then u® + tu’ is a bounded variation solution of (3.1)

foranyt e [0, 1].

Proof. Suppose jol hdx = 0 and uq, u, are weak solutions of (3.1) such that
1 1
Juldx:Juzdx:O. (3.11)
0 0

As, for every ¢ € WH1(0, 1),

1 1 1
j YLl () (x) dx = j h(0)$(x) dx = j Y 0)e' (x) dx,
0 0 0

we have Y(u}) = P(u)) a.e.in (0, 1) and hence u = u} a.e.in (0, 1). So, uy = u, + C for some constant C and,
due to (3.11), C = 0, which implies u; = u, and shows the uniqueness of the weak solution.
By Lemma 2.2, the bounded variation solutions of (3.1) are the global minimizers in BV(0, 1) of the

convex functional . .
30 = [ 141Dvi2 - [ hoov dx.
0 0

If u =u® +u’, us # 0, is a global minimizer, by Lemma 2.3, u? must be another global minimizer. Thus, by
convexity, we find that for every t € [0, 1] and v € BV(0, 1),

IJ(tu + (1 = Hu?) < tIJ(u) + (1 - HIW) < tIW) + (1 = HI(v) = I(v).
Therefore, tu+(1-t)u® = u® + tu’ provides us with a bounded variation solution of (3.1) forall t € [0, 1]. O

Remark 3.1. Itis easy to exhibit functions h with jol hdx = 0, like, e.g., h(x) = 3 sign(x - 3), for which prob-
lem (3.1) admits two, and therefore infinitely many, bounded variation solutions, which can all be taken to
satisfy (3.10) as well.

4 Fixed Point Reformulation

We start introducing the following assumption (the functions satisfying such conditions will be used in the
sequel to define a class of suitable auxiliary problems):
(k1) k: R — R is a function of class C!, strictly increasing and odd, which satisfies k'(0) = 1 and, for

somep > 2,
K'(s)
= 4.1
Is|—+o0 |S|P~2 (4.1)
The following conclusions are elementary.

Lemma 4.1. Assume (k1). Then there exist constants u, v > O such that, for all s € R,
1K' (s)| < u(IsP~2 + 1), (4.2)
lk(s)| < u(IslP~! + 1), (4.3)
vls| < k(s) sign(s), (4.4)
vs? < K(s) < u(lsl? + 1), (4.5)

where K(s) = IOS k(t) dt is the potential of k.
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Proof. By (4.1), for every u > 1 there exists sg > 0 such that
IK'(s)| < plslP~2 if|s| > so
and hence, forall s € R,

|K'(s)] < p|s|P~2 + max |K'(s)].
Isl<so

Thus, possibly taking a larger u, we conclude that estimate (4.2) holds true for all s € RR.
Next, pick s > 0. Integrating (4.2) and using k(0) = 0 yield

__H _H
1s ysgk(s)sp_ls + US.

p —_
Hence, as the function k is odd, we get, forall s € R,
|k(s)] <51 LIS+ plsl.

Since p > 2, possibly taking a taking a larger u, we conclude that also estimate (4.3) holds true for all s € R.
As k'(0) = 1, for every v € (0, 1) there exists so > 0 such that

K'(s)=v if|s| <so.
Integrating this inequality and using k(0) = 0, we obtain
k(s)>vs if0O<s<sp

and hence, as k is odd,
k(s) sign(s) > v|s| if]s| < sq.

On the other hand, by (4.1), there exists s; > 1 such that
K(s)>vIsP2>v ifls| > s,
because p > 2. Integrating this inequality yields
k(s) >vs+k(s1) —vsy ifs>sq.
As k(s1) > 0, we can reduce v > 0 in such a way that
k(s)zvs ifs>s;

and hence, as k is odd,
k(s) sign(s) > v|s| if|s| > s;.

Since k is increasing, possibly further reducing v > 0, we conclude that estimate (4.4) holds true forall s € R.
The lower estimate in (4.5) follows from (4.4) by integration. Whereas, the upper estimate can be
obtained arguing as done for deriving (4.3) from (4.2). O

Next we introduce the following auxiliary problem.

Proposition 4.2. Fixp > 2,setq = , and assume (k). Then, for each h € L4(0, 1), the problem

L
-1

k(u)=h in (0, 1),
( oL ) +k(u) = h(x) in(0,1) 4.6)
u'(0)

0, u'(1)=
has a unique bounded variation solution.

Proof. Let us endow BV(0, 1) with the norm

1
IWilsy = IV + j DV,
0
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and consider the functional J : BV(0, 1) — R defined by
1 1 1
) = J 1+|Dv|? + JK(V) - J hv dx.
0 0 0

The proof will be divided into three steps.

Step 1: J is lower semicontinuous with respect to the L?-convergence in BV(0, 1). Indeed, take a sequence
(Vvn)n in BV(0, 1) and v € BV(0, 1) such that

lim v,=v inLP(0,1).
n—.+o0o

Owing to the upper estimate in (4.5), we infer from [26, Theorem 2.8] that
1 1
lim J(K(vn) —hvy)dx = J(K(v) - hv) dx.
n—+0o
0 0

Moreover, by Remark 2.4, we have

1 1
1}11133&4 V1 +1Dval? j V1 + D2,
0 0

Thus, we get
liminf J(v,) > J(v),
n—+oo

which ends the proof of Step 1.

Step 2: J is coercive and bounded from below in BV(0, 1). By the upper estimate in (4.5), there are constants
C1, C2 > O such that, for every v € BV(0, 1),
1
Iv) = I IDVI + c1lvIty — IRlglvily - c2. (4.7)
0
On the other hand, there exists a constant c3 > 0 such that

cilsl? = lhllglsl = ¢2 > c1ls| —c3 foralls e R

and thus .

Jw) = J [Dv| + c1[vllp = ¢3 = min{1, c1}|vilpy - ¢3.
0
Therefore, J is coercive and bounded from below in BV(0, 1).

Step 3: Problem (4.6) has a unique bounded variation solution. From Steps 1 and 2 we conclude that J has
a global minimizer u € BV(0, 1), which is a bounded variation solution of (4.6). In order to prove it is unique,
suppose that uy, u, are bounded variation solutions of (4.6). From (2.10) we get

1 1

1
J V1 + 1Duy 2 - J V1 + 1Dusf? > j(h — ku2))(us - ) dx
0

0 0
and
1 1 1
J V1 + 1Dy - J V1 + 1Dy 2 2 J(h — k(un)(uz - uy) dx.
0 0 0

Summing up we obtain
1

0> [(ktun) - ko)) (us - uy) d.
0
The strict monotonicity of the function k yields u; = u,. O
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Subsequently, we denote by P : L9(0, 1) — LP(0, 1), withp > 2 and g = p%l, the operator sending any func-
tion h € L9(0, 1) onto the unique bounded variation solution u = Ph of (4.6). Note that P(0) = 0

Proposition 4.3. Fix p > 2, set q = 37, and assume (kq). Then the operator P : L9(0, 1) — LP(0, 1) is com-
pletely continuous.

Proof. This proof is divided into two steps.

Step 1: P is compact. Let (h,), be a bounded sequence in L9(0, 1) and, for every n > 1, set u, = Ph,. Since
Uy is the global minimizer of the functional 7, : BV(0, 1) — R defined by

1

1 1
In(v) = J 1+|Dv|? + (! K() - J h,vdx,

we have that J,(un) < 9,(0) = 1. Thus, it follows from (4.7) that

P
[Dun| + cillunlly = Ihnllgliunlpy — c2 < d(un) < 1.

O

Therefore, the boundedness in L9(0, 1) of (hy,), implies the boundedness in BV(0, 1) of (uy),. The compact
embedding of BV(0, 1) into LP(0, 1) yields the conclusion.

Step 2: Pis continuous. Let (hy), be a sequence converging in L7(0, 1) tosome h € L9(0, 1) and set u, = Phy,.
Pick any subsequence (hy, )i of (hy)n. The boundedness of (hy), in L7(0, 1) and the compactness of P yield the
existence of a further subsequence (h,,kj )j of (hp, )k such that (unkj )j convergesin LP(0, 1) tosome u € LP(0, 1).
As in the previous step, the following estimate holds:

1
J |Dunk].| + Cl"“n;(]. ||5 - "hnk]. "q"unk]. lp—c2 < g(unkj) <1
0

and it implies that (unk}, )j is bounded in BV(O, 1). Thus, by [4, Theorem 3.23], u € BV(0, 1). Moreover, as J is
lower semicontinuous with respect to the LP-convergence in BV(0, 1), we find

1
Ju) = J 1+ |Dul? +
0

1
< 1}514-10I<l>fj A1+ IDunk 12 + llm IK(unk,) —jEinoo j hnk}_unk]_ dx

0

1
= 1}2}5};( J \1+ IDunk]_ |2 + JK(unk)_) - J hnkjunk]_ dx).
0 0

0

1
K(u) - I hu dx
0

© —

Therefore, since, by construction, u, " provides us with the global minimizer in BV(0, 1) of the functional g, i
it becomes apparent that, for every v € BV(0, 1),

1
() < liminf< J 1+|Dv|?+
j—+00

1 1
= J A1+ |Dv|2 + JK(V)
0 0

Consequently, u is the unique bounded variation solution of (4.6), that is, u = P(h). Since u does not depend
on the sequence (unk]_ )j> we conclude that the whole sequence (uy), converges to u in L?(0, 1). This ends
the proof. O

K(v) - J hnk},V dx)

0

hvdx = J(v).

ot—_ﬁH © e,
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Fix p, g > 1 and denote by P, : L(0, 1) — LP(0, 1) the linear operator which sends any function h onto the
unique solution u = P1h € W?4(0, 1) of the linear problem

-u"+u=h(x) in(0,1),
u'(0)=0, u'(1)=0.
The compact imbedding of W?-9(0, 1) into L? (0, 1) implies that P is a compact linear operator.

Proposition 4.4. Fixp > 2,setq = p%l, and assume (k). Then the operator P : L4(0, 1) — LP(0, 1) is Fréchet
differentiable at 0, with derivative P'(0) = P1.

Proof. We aim to show that, for any sequence (hy),, with h, — 0in L9(0, 1),

||h,,||;11(fP(h,,) —P(0) = P1(hp)) - 0 inLP(0,1)asn — +oo.

Since P(0) = 0, this amounts to prove that, for any sequence (vy), in L9(0, 1), with |[v,lly = 1, and for any
sequence (s,), in (0, +00), with s, — 0, there holds

S P(spvn) = P1(vy) — 0 inLP(0,1) asn — +oo. (4.8)

It suffices to establish that, for all subsequences (v, )k of (v4)n and (sp, )k of (Sn)n, we can find further subse-
quences (V”k; )j of (Vi )k and (snkj )j of (Sn, )k such that

s;klj P(Sny;Vny) = P1(Vn,) > 0 inLP(0,1) asj— +co. (4.9)

Let (v, )k be a subsequence of (v), and let (s, )k be a subsequence of (s,)n. Since (vy, )i is bounded
in L9(0, 1), there exist a subsequence (vnkj )j of (vn )k and v € L9(0, 1) such that Vi, =V weakly in L9(0, 1).
Let (snk]_ )j be the corresponding subsequence of (sy, ). In there sequel, for convenience, we simply write v;
for Vi, and s; for Sny,

By the continuity of P, we have that P;(v;) — P1(v) weakly in L?(0, 1). Moreover, since P; is compact
and (v;); is bounded in L9(0, 1), (P1(v})); is relatively compact in L?(0, 1). Thus, along some subsequence,
relabeled by j, we have that P1(v;) — win L?(0, 1) for some w € L?(0, 1). Necessarily, by the uniqueness of
the limit, w = P1(v) and hence

P1(vj)) - P1(v) inLP(0,1) asj— +oo.
Consequently, (4.9) reduces to establishing
s].‘lfP(s,-vj) — P1(v) inLP(0,1) asj— +oo. (4.10)

Setting, forallj > 1,
uj = 55 P(sj)),

itis clear that sju; = P(s;v;) € BV(0, 1) is the unique bounded variation solution of

u' '
_<—) +k(u) =sjv; in(0,1),

\/1+u’2 (4.11)
u'(0)=0, u'(1)=0.
Since sjvj — 01in L9(0, 1), the continuity of P implies that
sjuj = P(sjvj) > 0 inLP(0,1) asj — +oo.
According to estimate (4.3), it follows from [26, Theorem 2.3] that
k(sjuj) >0 inL9(0,1) asj— +co
and hence
sjvj — k(sjuj;) > 0 inL%(0,1) asj — +oo. (4.12)

Therefore, as g > 1, Corollary 3.5 implies that s;u; is a strong solution of (4.11) for all large j.
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Next, we show that (u;); is bounded in W-1(0, 1). Fix any x € (0, 1]. Integrating over (0, x) the equation
in (4.11) yields

(s () = ——— =

(sjvj — k(sjuj)) dx, (4.13)
1+ sjzulf(x)

—sjuj(x) £
|

the function i being defined in (2.2). Thus, as ¥ is odd and increasing, we get from (4.12)
l/)(IISju}Iloo) = Ill/J(Sju})Iloo < lIsjvj - k(sjuj)lli — 0 asj — +oo
and hence
Isjuillco — 0 asj — +oo. (4.14)
Multiplying the differential equation in (4.11) by s;u; and integrating in (0, 1), we find

Lo 02 1 1
J — 7 dx+ J k(sju;j)sju; dx = J s7vjuj dx. (4.15)
0

2
o V1+s7u 0
We want to estimate the three terms in (4.15). As the function g (&) = £2(1 + £2)"2 is convex if |£] < V2, thanks
to (4.14), the Jensen inequality applies, for all large j, and yields

211,712 1 2,12
S}' ”u]‘"l <J’ 5}' llj

21,712 2,12
w/1+s].||uj||1 o ﬂ1+sjuj

Condition (4.4) implies in particular that, forallj > 1,

dx. (4.16)

1
jk(s,-u,-)s]-uj dx > 0. (4.17)
0
By the Holder inequality, we have
1
s?vju; dx < sTlvjllglujlly = s7lull (4.18)
Vil ax < silvjligliujlip = S; iUjlip, .
0

because, by construction, ||vjll; = 1. Thus, substituting (4.16), (4.17) and (4.18) in (4.15) and dividing by s].z,
we conclude that, for all large j,
13
— = <yjlp. (4.19)
1+ s].2 ||u]’. 2

Since by (4.14)
Isjujli = 0 asj— +oo,

from (4.19) we infer, for all large j,
luflis < V2lujllp. (4.20)

Let us set, for everyj > 1,

1
r,-:Ju,-dx and wj=u;-rj.
0

From (4.20), using the Poincaré-Wirtinger inequality (see, e.g., [13, page 233])
Iwillp < ||W,(||1 = ||u]f||1, (4.21)
we obtain, for all large j,

IjI < V2wl + 7)) < V23Iwjlla + Irj]) = V21l +Irj1).
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Hence, for any given € € (0, 1), there is ¢, > 0 such that
||u]'.||1 <elrjl+c, forallj>1. (4.22)

Therefore, for proving that (u;); is bounded in W-1(0, 1), thanks to the Poincaré inequality (4.21), we only
need to show that the sequence (rj); is bounded. The proof of this fact proceeds by contradiction. Thus,
suppose that some subsequence of (r;);, still labeled by j, satisfies

lim r; = +oo0; (4.23)

j—o+00
the argument is similar in case
lim r; = —oo.

j—+00

Then, by (4.22), we have, for all large j,
uj(x) =rj + wj(x) = 1j = [Wjlleo = 1j - ||W]{||1 =r1j- ||u]’.||1 > (1-9)r;
and hence, it follows from (4.23) that

lim uj(x) = +oo uniformly in [0, 1].
j—+00

Integrating in [0, 1] the differential equation in (4.11) yields
1 1
1=vjllg > Jv,- dx = J(sjuj)‘lk(sjuj)uj dx.
0 0
Thus, owing to estimate (4.4), we find that
1
12vJu,~dx—>+oo asj — +oo,
0

which is a contradiction. Therefore, we conclude that (u;); is bounded in W*-1(0, 1), as claimed above.
From [4, Proposition 3.13, Theorem 3.23], we infer the existence of u € BV(0, 1) such that, possibly
passing to a subsequence, u; — u in L1(0, 1) and u}f — Du weakly* in the sense of measures, i.e.,

1 1
lim jqbu; dx = I ¢Du forall ¢ e CO[0, 1] with $(0) = p(1) = 0. (4.24)
0

j—+o00
0

Dividing identity (4.13) by s; yields

X

— = J’ (s].’lk(s,-u,-) - Vj) dx
1 +5; u].(x) 0

u;i(x)

forall x € [0, 1] and j > 1. Since sjllujllco — 0 asj — +oo, the conditions k(0) = 0 and k' (0) = 1 imply that
(sjuj(x)) " 'k(sjuj(x)) —» 1 uniformlyin [0,1] asj — +oo (4.25)

and hence
1

1
J |(sjllujllo) M k(sju;)| dx < J |(sju;) " k(sjuj)| dx < 2
0 0
for all large j. This estimate, together with the fact that |vj|l4 = 1, finally yields the existence of a constant
C > 0 such that

lu; ()| < C\/l + s]-zu]f(x)2
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for all x € [0, 1] and all large j. As s; — 0, we can conclude that (u]f)j is bounded in L*°(0, 1). Therefore,
possibly passing to a further subsequence, still denoted by (u;);, there exists z € L*°(0, 1) such that u]f -z
weakly* in L*°(0, 1), i.e.,

1 1
lim I pul dx = J ¢zdx forallg ¢ L1(0, 1).
j—+00

0 0

According to (4.24), this implies that Du = z dx and thus u € W1*(0, 1).
Pick any ¢ € W'1(0, 1) and observe that

¢I

1+s5u

= - ¢' inL'(0,1) asj— +co. (4.26)
2.1

i Uj

Note that, according to the weak formulation of (4.10), we have that

1 , 1
J M{L dx = J(—S._lk(Sjuj) + V)¢ dx.
0 ! 1+ S]-zl,l]{2 0 !

Thus, letting j — +oo in this identity and using the boundedness of (u]’. )j in L*(0, 1), we infer from (4.25)
and (4.26) that

1
Ju'(,b' dx = J( u+v)gdx.
0

In other words, u is the unique solution of

—-u" +u=v() in(0,1),
u'(0)=0, u'(1)=

or, equivalently, u = P1(v). Finally, the compact embedding of W1(0, 1) into LP(0, 1) allows us to conclude
that, possibly along some subsequence,

uj = s;'P(sjvj) —» P1(v) inLP(0,1) asj— +co.
Therefore, (4.10), and hence (4.8), is proven and the proof completed. O

Hereafter, we suppose that
(h3) h:(0,1)xR — Ris a Carathéodory function, having a Caratheodory partial derivative ah (0, 1)xR —> R,
r+1

such that there exist constants r > 1, a > 0 and a function b € L~1 T (0, 1), for which h(-,0) e L+ (0, 1)
and

‘a (x, s)l <als|"t+b(x) fora.e. x e (0,1)andeverys € R. (4.27)

Remark 4.1. Integrating (4.27) and using assumption (h3), we see that h satisfies, for a.e. x € (0, 1) and
every s € R,
a
|h(x, s)| < 7|SI’ +[b(X)lls| + [h(x, 0)].

As the Young inequality implies that

1 r-1 r
IbOOlls| < 7|S|r + T|b(X)|H,

we conclude that

[h(x, s)I =

| " + —Ib(x)lr 1 +|h(x,0)| fora.e.x € (0,1)andeverys € R,
where =2 |b|r T+ |h(- ,0)| € L*(O 1).
Set p = r + 1 and let k be a function satisfying (k1). Let 8 denote the operator defined by
S(u) = k(u) + h(-,u)
for u € LP(0, 1). Then the following result holds (see, e.g., [26, Chapter 2]).
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Proposition 4.5. Assume (k1) and (h3). Then the operator 8§ maps L?(0, 1) into L9(0, 1), with q = 1%’ is con-
tinuous, and maps bounded sets into bounded sets. Moreover, it is continuously Fréchet differentiable, with
derivative

8. LP(0,1) — L(LP(0, 1), L9(0, 1))
defined by

S'w)[v] = k' (wv + g—:(-, u)v forallu,v e LP(0, 1).

By Propositions 4.3 and 4.5, the operator
M=PS:LP,1) — LP(0,1)

is well defined. Moreover, by construction, the fixed points of M are precisely the bounded variation solutions
of (2.1). Combining Propositions 4.3 and 4.5 yields the following result.

Proposition 4.6. Assume (k1) and (h3). Then the operator M : L? — LP is completely continuous and Fréchet
differentiable at 0, with derivative M'(0) = P18'(0), that is,

M'(0)[v] = CP1<V + %(-,O)v) forallv e LP(0, 1).

For our purposes in the next section, it should be noted that, assuming
(a1) a € L*°(0, 1) satisfies jol adx < 0and a(x) > 0 a.e. on a set of positive measure,
the eigenvalue problem

{ —u" = Aa(x)u in (0, 1), (4.28)

u'(0) =u'(1) =0,
has a discrete spectrum X, with exactly two principal eigenvalues: A = 0, with principal eigenfunction 1, and

A = Ap > 0, with principal eigenfunction ¢¢ > 0, normalized so that |[¢oll, = 1, for some p > 1. A proof of
these statements is given in [14]) (see also [43, Section 2]).

5 Global Bifurcation

In this section we analyze the topological structure of the set of the positive solutions of (1.1). A pair (A, u) is
said to be a positive (resp. strictly positive) solution of (1.1) if u is a positive (resp. strictly positive) solution
of (1.1) for some A > 0. Of course, in each of these cases, u can be either a strong, or a weak, or a bounded
variation solution of (1.1); accordingly, (A, u) is also referred to as a strong, or a weak, or a bounded variation
solution of (1.1).

Throughout this section, we assume that
(f1) f e CY(R) satisfies f(0) = 0, f'(0) = 1, f(s)s > O for s # 0, and, for some constants p > 2 and k > 0,

If'(s)| < k(P2 +1) foralls e R.

The Functional Setting

Assume (f;) and set r = p — 1 > 1. Let k be any function satisfying (k) for such p, and consider the operator
N:RxLP(0,1) — LP(0, 1) given by

N, u) = P(k(u) + Aaf(u)) - u,
where P is defined in Section 4. Thus, (A, u) is a bounded variation solution of (1.1) if and only if

N, u) = 0. (5.1)



460 —— ). Lépez-Gomez and P. Omari, Global Components of Positive Bounded Variation Solutions DE GRUYTER

Setting h = Aaf and using the notations introduced in the last part of Section 4, we have
N=M-J=P8-17.

Here and in the sequel J stands for the identity operator in the space under consideration. From Propo-
sitions 4.3, 4.4 and 4.6 it becomes apparent that J+ N = M is completely continuous and that it can be
expressed in the form

NA, u) = LA)u + RA, u), (5.2)

where
L(A) = D,NA,0) =P1((1 +Aa)]) -7, (5.3)

because k'(0) = f'(0) = 1. Here, D,N(A, 0) stands for the Fréchet derivative of N(A, u), with respect to u,
at u = 0. Of course,
RA, ) =NA,-) - LA) (5.4)

is a family of compact operators, continuously depending on A, such that

IRA, wllp

=0 uniformlyinA € J, (5.5)
lul,—0  flullp

for any compact subinterval J of R. Since £(A) is a compact perturbation of the identity, it is a Fredholm
operator of index zero.

Hereafter, for any given linear operator T, we denote by N[T] the null space of T, and by R[T] the range
of T. The partial differentiation a%’ with respect to A, will be simply indicated by . The next result provides us
with some fundamental properties of £(A) at Ay, the positive principal eigenvalue of the weighted eigenvalue
problem (4.28).

Proposition 5.1. Under assumption (ay), the following properties hold:
(@) N[£(A0)] = span[gpo],

(b) N[£(A0)] ® R[£(Ao)] = LP(O, 1),

(c) L£'(Ao)(N[£(A0)]) ® R[L(Ao)] = LP(0, 1).

Proof. Part (a) follows from the fact that £(A)¢ = 0 if and only if
P1((1 + Aoa)p) = o,

that is, ¢ satisfies (4.28) for A = Ao. Since £(Ao) is a Fredholm operator of index zero, it follows from part (a)
that
codimR[L(Ag)] = 1. (5.6)

Hence, in order to prove part (b) it suffices to show that @o ¢ R[L(Ao)]. On the contrary, assume that
@o € R[L(Ap)]. Then there is u € LP(0, 1) such that

u- fpl((l +/10a)u) = @o,

i.e.,
?1((1 + Aoa)u) =Uu-@o.

This equation is equivalent to the problem

—(u—@o)" + (u- o) =u+Apau in (0, 1),
u'(0)=u'(1) =0,

that is, by rearranging terms,

—u" - Apau =-@{ +@o in(0, 1),
u'(0) =u'(1) = 0.
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Multiplying the differential equation by ¢q, integrating by parts and taking into account (4.28) with A = Ao,
we find

1 1 1
0= J(—u” - Adpau)po dx = J(—tpg’ +0)po dx = j ((p6)* + po*) dx > 0.
0 0 0

This contradiction ends the proof of part (b).
Similarly, by (5.6), in order to prove part (c), it suffices to show that

£'(A0)po ¢ R[L(Ao)].
Suppose, on the contrary, that £'(A0)(¢o) € R[£(Ap)]. Then, differentiating (5.3) with respect to A yields
L'(Ao) = P1(ad)
and hence, there exists u € LP(0, 1) such that
LAo)u = P1((1 +Apa)u) — u = 1oL (Ao)po = P1(Aoago)

and thus
P1(u + Adpau — Apago) = u.
Therefore, u satisfies
-u" - Apau = -Apapo in (0, 1),
u'(0) =u'(1) = 0.

Multiplying the differential equation by ¢( and integrating by patrts, it follows from (4.28) that

1 1 1 1
0= J(—u” ~ Noau)po dx = — j Aoag? dx = J oo = - j(go('))z dx <0,
0 0 0 0
which is impossible. This completes the proof of part (c). O

Similarly, the next result holds.

Proposition 5.2. Under assumption (a1), the following properties hold:
(@) N[£(0)] = span[1],

(b) N[£(0)]® R[£(0)] = LP(0, 1),

(c) L'(0)(NIL(0)]) ® R[L(0)] = LP(0, 1).

Proof. By (5.3), we see that £(0)¢ = 0ifand onlyif P;(¢p) = ¢, that s, ¢ satisfies (4.28) for A = 0. Hence, ¢ is
a constant, thus proving part (a). Moreover, since £(0) is a Fredholm operator of index zero, we have that

codim R[£(0)] = 1. (5.7)

In order to prove part (b), it suffices to show that 1 ¢ R[£(0)]. On the contrary, assume that there exists
u € L?(0, 1) such that £(0)u = 1. Then, by (5.3), we have P;(u) = u + 1, i.e.,

~-u+1)"+w+1)=u in(0,1)
u'(0)=u'(1)=0.

Rearranging terms we get
-u"”"+1=0 in(0,1)
u'(0)=u'(1) =0,

which is impossible, as

1
O=Ju"=1.
0

This ends the proof of part (b).
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Due to (5.7), to prove part (c) we just show that
£'(0)1 = P1(a) ¢ R[L(0)].
On the contrary, assume that £(0)u = P (a) for some u € L?(0, 1). By (5.3), we get
P1(u) —u = P1(a),
that is, P1 (u — a) = u. Hence we obtain

-u""=-a in(0,1)
u'(0)=u'(1) =0,

which is impossible, as

This concludes the proof. O

Preliminary Properties of the Solution Set

Conditions (a;) and (f;) are always assumed in this subsection. We start introducing a few definitions.

Definition 5.1 (Nontrivial Solution). We say that (A, u) € R x L?(0, 1) is a nontrivial solution of (5.1) if either
u# 0,oru=0andA € X, where X denotes the spectrum of (4.28).

Then we set

8

{(A,u) e Rx LP(0, 1) : (A, u) is a nontrivial solution of (5.1)}
= {(A, u) € Rx (LP(0,1) \ {0}) : N(A, u) = 0} U{(A,0) : A € }

and
8 ={(A,u) eS8 :A1>0, u>0}ui(0,0), (Ao, 0)}, (5.8)

where 0 and Ao are the two principal eigenvalues of (4.28). We endow § and 8> with the topology of
R x LP(0, 1). Since (A, u) € R x LP(0, 1) is a solution of equation (5.1) if and only if (A, u) € R x BV(0, 1)
is a bounded variation solution of problem (1.1), 8§ and 8~ are also subsets of BV(0, 1) and, in particular,
of L*°(0, 1).

Definition 5.2 (Connected Component). By a connected component of the set § (respectively, of $>), we mean
a closed and connected subset of § (respectively, of §>) that is maximal for the inclusion.

We want to show that the solutions of (5.1) can bifurcate in R x LP(0, 1) from the line of trivial solutions
R x {0} only at (7[, 0), with Aex. Hence, the bifurcation points of the bounded variation solutions of (1.1)
are precisely the bifurcation points of the strong solutions of (1.1). This basically follows from Corollary 3.5,
which shows that the bounded variation solutions that are small in L1(0, 1), are actually strong solutions.
Since X is a closed subset of R, this eventually implies that both 8§ and 8> are closed in R x LP(0, 1).

Lemma 5.3. Assume (ay) and (f1). Then any sequence (A, uy)), in 8, with uy, # 0 for all n > 1, for which there
exists A € R such that
lim (Ap, up) = (A,0) inRxLP(0, 1),

n—+oo

satisfies

Aexr and lim 2" -4 incllo,1],

n—=+oo ”un”p

where  is an eigenfunction of (4.28) associated with A.
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Proof. Let us set, foreveryn > 1,
Un

Nl

Since (vy)y is bounded, for any subsequence of (v,), we can find a further subsequence, still labeled by n,
which converges weakly in L? (0, 1) to some v € LP(0, 1). From (5.1)-(5.5) and the compactness of P, divid-
ing by llunllp, we find

Vn

R(An, un)

— P1(v+Aav) inLP(0,1) asn — +oo
lunllp

Vn = P1vy + Apavy) +

and hence
v=2Pi(v+ ;\av),

with |lv]l, = 1. Thus, AeZandv= ¢ is an eigenfunction of (4.28) associated with A
On the other hand, as u, is, for every n > 1, a bounded variation solution of (1.1) such that

Anaf(uy) — 0 inLP(0,1) asn — +oo,
Corollary 3.5 implies that uj, is a strong solution of (1.1), for sufficiently large n. Thus, integrating the differ-
ential equation of (1.1) in (0, z) yields

- Pl (2) = Ay J af(uy)dx — 0 asn — +oo, (5.9)
0

where 1) is the function defined in (2.2). Since

~P(up(2)) = 1Pup)llcos

we find, from (5.9) and (2.2), that ||u},]l.o — 0 and hence |uyllct — 0, as n — +oo. Let us set

@ ifs +#0,
gs)=q s
(o) ifs=o0.

Since f'(0) = 1, from (2.3) we obtain that
fluy)

"un"p

-Vl = Ana (1+ (u;)z)% = Anag(un)va(1 + (u;)z)% —Aav inIP(0,1) asn — +co.

In particular, (v,), is bounded in W2:P(0, 1). As any subsequence of (v,), contains a further subsequence
converging in C'[0, 1] to v, the proof is completed. O
The following conclusions are immediate consequences of Lemma 5.3.
Corollary 5.4. Assume (a1) and (f1). Then any sequence ((An, uy))y in 8, with u, # 0 for alln > 1, such that
lim (A, un) = (Ao, 0) inRx LP(0, 1)
n—+oo
satisfies

Un =@o or lim Un =—po inC0,1],

1
n=+oo [[uplp n=+co |[up s

where Ay and @ are, respectively, the principal positive eigenvalue and the associated positive normalized
eigenfunction of (4.28).

Corollary 5.5. Assume (a1) and (f1). Then any sequence ((An, Uuy))y in 8, with u, + 0 for all n > 1, such that
lim (A, un) =(0,0) inRxLP(0,1)
n—+oo

satisfies
Un
=1 or

m =
n—=+o0 "un"p

=-1 incCo0,1].

lim ———
n=+0o |[up| L»
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Corollary 5.6. Assume (a1) and (f1). Then any sequence ((An, Uun))n in 8> such that uy, + 0, foralln > 1, and
lim (A, un) = (A,0) inRxLP(0, 1),
n—-+oo

satisfies that either
A=A and lim " -, incl[0,1],

n—+00 |upllp N

or

A=0 and lim " -1 incCl0,1].

n—+00 "un"p

Taking into account that X is a closed subset of R, from these results we can prove that § and 8> are closed
subsets of R x L?(0, 1).

Proposition 5.7. Assume that (a;) and (f1) hold. Then both § and 8" are closed and locally compact subsets
of R x LP(0, 1).

Proof. By Lemma 5.3 the solutions of (5.1) can bifurcate in R x L?(0, 1) from the trivial line R x {0} only
at (7[, 0), with Aes. Since, by the continuity of N, the set of solutions of (5.1) is closed R x L?(0, 1), we
conclude that 8 is closed in R x LP(0, 1).

Similarly, by Corollary 5.6, the solutions of (5.1), with u > 0, can bifurcate in R x L?(0, 1) from the trivial
line R x {0} only at (0, 0), or at (Ao, 0). Since the set of the solutions of (5.1), with u > 0, is closed R x L?(0, 1),
we conclude that 8” is closed in R x LP(0, 1).

The local compactness of § and 8 follows from the complete continuity of J + . O

We conclude this subsection with some technical results, which might have their own interest. First, we
establish the following convergence-in-length result.

Lemma 5.8. Assume (a1) and (f1). Then any sequence ((An, uy)), in 8, converging to (A, u) € §inR x LP(0, 1),

satisfies
1 1

lim J V1 + [Dul? = J V1 + Duf?. (5.10)
n—+o0o
0 0

Proof. From (2.10) we have that, for every n > 1,

1 1 1
j 1+ 1Dugl? < j \1+1Dvi2 - JAnaf(un)(v— ) dx
0 0 0

for all v € BV(0, 1). Thus, taking v = u and letting n — +00, as the sequence (f(uy,)), is bounded in L9(0, 1),
we infer that
1
lim sup j \/1 + |Duy|? <

n—+oo

1
\/1 + |Du|? - nl—i>1:+rloo j Anaf(un)(u — uy) dx
0

1+ |Dul?.

Ot . Ot .

On the other hand, the lower semicontinuity of the length functional with respect to the L!-convergence
in BV(0, 1) yields

1 1
1rilrg+igofj' 1+ 1Duyl? > j V1 +Dul.
0 0
Therefore, (5.10) holds. O

From Lemma 5.8 and [6, Fact 3.1] we infer the next strict convergence result, which is a pivotal technical tool
for proving our main bifurcation theorem. For a discussion of the notion of strict convergence in BV(0, 1), the
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reader is referred to [4, p. 125]. Here, we just recall that the topology of the strict convergence is induced by

the metric
1 1
| pul - [ 1pv
0 0

and that BV(0, 1), endowed with this metric, is continuously embedded into L?(0, 1) for all p € [1, co].

du,v) = lu-vp + forallu,v € BV(0, 1),

Corollary 5.9. Assume that (a1) and (f1) hold. Then any sequence ((A,, un)), in 8, converging to (A, u) € 8
in R x LP(0, 1), satisfies

lim u,=u inL'(0,1),
n—+oo

1

1
lim j |Duy| = JIDuI,
n—+oo
0 0

(5.11)

i.e., (un)n converges strictly to u in BV(0, 1).

Remark 5.1. Proposition (5.7) and Corollary 5.9 imply, in particular, that both § and 8> are closed and locally
compact subsets of R x BV(0, 1), when BV(0, 1) is endowed with the topology of the strict convergence.

Finally, the following simple fact holds true.
Lemma 5.10. Let (uy), be a sequence in L*°(0, 1) which converges tou € L*°(0, 1) a.e. in [0, 1]. Then we have

lim sup (essinf u,) < essinf u,

n—+oo (5.12)
lim inf (ess sup u,) > esssup u.
n—+o0o

Proof. We will prove the first inequality. Assume, by contradiction, that there exists k € R such that

lim sup (essinf uy,) > k > essinf u. (5.13)
n—+oo

Let E be a set of positive measure such that u(x) < k in E and let (uy,); be a subsequence of (i), such that

lim (essinf uy,,) = lim sup (essinf u,).
j—+o00 ! n—+oo

Lastly, let F be a set of measure zero such that, for every x € [0, 1] \ F,

uni(x) > essinf Un;,

dim up (x) = ux).
]j—+00

Pick x € E \ F. By the definition of E, we have u(x) < k. Thus, by the definition of F, we get

limsup (essinfuy,) = lim (essinfup) < lim wup(x) = u(x) <k,
n—+oo j—+00 j—o+oo

which contradicts (5.13) and ends the proof of the first estimate of (5.12). As the second one can be proven

similarly, we omit the technical details of its proof. O

The Bifurcation Theorems

In order to state the main global bifurcation result of this paper, we assume that, besides (a;), the weight

function a also satisfies

(ay) thereisz € (0, 1) such that either a(x) > O a.e.in (0, z) and a(x) < O a.e.in (z, 1), or a(x) < O a.e.in (0, 2)
and a(x) > 0a.e.in (z, 1).

Thanks to assumption (a;) the one-signed bounded variation solutions of (1.1) enjoy the special properties

listed in the next result.
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Proposition 5.11. Assume (f;) and suppose that a € L*(0, 1) satisfies a(x) > 0 a.e. in (0, z) and a(x) < 0 a.e.
in (z, 1). Let (A, u) be a bounded variation solution of (1.1) with either u > 0, or u < 0. Then one of the following
three alternatives holds:

e« A =0and then u is constant.

e Au>0andthenu > 0ifA >0, or u < 0if A < 0; moreover, regardless its sign, the function u is decreas-
ing in [0, 1], concave in [0, z), convex in (z, 1], and either u € W»1(0, 1), oru € W120c1 [0,2)n WL1(0, 2),
ueWhliz, 11n Whi(z, 1), u'(z7) = —co = u'(z*).

e Au<Oandthenu > 0ifA<0,oru < 0if A > 0; moreover, regardless its sign, the function u is increas-
ing in [0, 1], convex in [0, z), concave in (z, 1], and either u € W*1(0, 1), oru € leocl [0,2) n WL1(0, 2),
ueWhlz, 11n Whi(z, 1), u'(z") = +oo = u'(z").

In all cases, u satisfies

u'(x) ' '
_<m) = Aa(x)f(u(x)) a.e.in(0,1),

u'(0)=u'(1) = 0.

(5.14)

If, in addition, we assume (a1) and
(f>) fisincreasinginR,
then the third alternative cannot occur.

Proof. Let us suppose that Au > 0. Condition (f;) yields Af(u) > 0. Hence, setting h = Aaf(u), Proposition 3.6
and Corollary 3.7 imply that u is concave in [0, z), convex in (z, 1], and, moreover, either u € W%1(0, 1), or
ue leo’cl [0,2) n WL1(0,2),u € le(;cl(z, 11n Wh(z,1),u(z") > u(z*),and u'(z”) = —co = u'(z*). Inany case
u satisfies (5.14). In particular, we have that u is decreasing in [0, 1].

Similarly, we show that if Au < 0, then u is increasing in [0, 1], convex in [0, z), and concave in (z, 1].
In addition, either u € W21(0,1), oru € W;;1[0,2) n WH(0,2), u € Wil (z, 11 n Whi(z, 1), u(z") < u(z*),
u'(z7) = +oo = u'(z*), and anyhow u satisfies (5.14).

Next, let us suppose that A > 0 and u > 0. we want to show that u > 0. Assume, by contradiction, that
u>0 and essinfu=0.
Since u is decreasing in [0, 1] and continuous in [0, z) U (z, 1], we see that
0 =essinfu = minu = u(1).

As, in addition, u’(1) = 0, the uniqueness of solution for the Cauchy problem

’ !
—(%) = AaGofa),
+u

u(l)=0, u'(1)=o0,

guaranteed by (f1), entails that either u = 0 in [0, 1], if u is continuous in [0, 1], or u = 0 in (z, 1], if u is
discontinuous at z. The first case cannot occur, because we are assuming that u > 0. Thus, u is discontinuous
at z and vanishes on (z, 1], which is impossible, because u’(z*) = —co. Therefore, we conclude that u > 0.

Similarly, we can prove thatif A < 0 and u < 0, then u <« 0, orif A >0and u <0, thenu « 0, orif A <0
and u > 0, then u > 0.

Finally, let us further suppose that (a;) and (f>) hold. We want to show that if (A, u) is a bounded variation
solution of (1.1), with u > 0, then A > 0. Suppose, by contradiction, that A < 0. We know that u is increasing
in [0, 1] and u > 0. From the differential equation in (5.14), using (f1), we get

Aa() - _( u' (x) )' 1
VI+ W (x)2) flux)

1 U’(X) ! 1 i u’(x) ‘
o .e. 0,1).
(f(u(x)) 1+ W (x)? ) + (f(u(x))) BRI a.e.in (0, 1)
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Integrating in (0, z) and in (z, 1), respectively, using the condition u’(0) = u'(1)=0and u'(z7) = u’(z*) = +oo,
and summing up, we find that
1

)ljadx:— 1 + 1 +J( L ), u'(x)
) flu(z))  flu(z?)) fwx)/ 1+ W'(x)?

0

1

_ flu(z?)) - fluz")) _Jf’(u(X)) W)’ L,
flu(z7)f(u(z*)) fPu) i+ @02

0

because u(z~) < u(z*) and (f>) holds. Therefore, as A < 0 and, by (ay),
1
J adx <0,
0

we get a contradiction.

Similarly, we show that if (A, u) is a bounded variation solution of (1.1), with u < 0, then A < 0.

This allows us to conclude that, for one-signed bounded variation solutions (A, u) of (1.1), the alternative
A =0 or Au > 0 must holds. O

The following symmetric counterpart of Proposition 5.11 holds.

Proposition 5.12. Assume (f1) and suppose that a € L (0, 1) satisfies a(x) < 0 a.e. in (0, z) and a(x) > 0 a.e.
in(z, 1). Let (A, u) be a bounded variation solution of (1.1), with either u > 0, or u < 0. Then the following three
alternatives hold:

e A =0and then u is constant.

e Au>0andthenu > 0ifA >0, or u <« 0if A < 0; moreover, regardless its sign, the function u is increas-
ing in [0, 1], convex in [0, z), concave in (z, 1], and either u € W>1(0, 1), oru € leo’cl[O,z) nwbho, z),
ueWrlz, 11n Whi(z, 1), and u'(z") = +co = u'(z*).

e Au<Oandthenu > 0ifA <0, oru < 0ifA>0; moreover, regardless its sign, the function u is decreas-
ing in [0, 1], concave in [0, z), convex in (z, 1], and either u € W>1(0, 1), or u € Wf(;(}[o,z) nWh0, 2),
ue leo’cl(z, 1] nwWhl(z, 1), and u'(z7) = —co0 = u'(z*).

In all cases, u satisfies (5.14). If, in addition, we assume (a1) and (f>), then the third alternative cannot occur.

Remark 5.2. Proposition 5.11 implies that if (A, u) € 8~ and u # 0, then u > 0.

Our main global bifurcation result establishes the existence of two unbounded connected components €
and 6‘;0 of the set 8" of the positive solutions of (1.1), as defined in (5.8), bifurcating from (A, 0) at A = 0 and
A = Ap, respectively.

Theorem 5.13. Assume (f1), (a1) and (a,). Then there exist two connected components C; and 6;0 of 8” such

that:

« Cgand 6;0 are unbounded in R x LP(0, 1),

« G and GZO are closed and connected subsets of BV(0, 1), endowed with the topology of the strict conver-
gence,

« (0,0) € C;and (Ao, 0) € G>O,

« {(0,r):r>=0}cCy,

o if(A, u)e(iguejo andu # 0, thenu > 0,

« if(4,0)€Cju (?;0 forsome A > 0, then A = Ag,

« eitherCjn (‘3;0 =0, 0r (Ao, 0) € C; and (0, 0) € (‘3;0 and, in such case, C; = Gio,

o there exists a neighborhood U of (0, 0) in R x LP(0, 1) such that Gg N U consists of strong solutions of (1.1),

o there exists a neighborhood V of (Ag, 0) in Rx LP(0, 1) such that Gio NV consists of strong solutions of (1.1).

Proof. We suppose here that the first alternative holds in (a-), that is, we assume that there is z € (0, 1) such
that a(x) > O a.e.in (0, z) and a(x) < 0 a.e. in (z, 1). The argument in the other case follows similar patterns.
The proof is divided into two parts.
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Part 1. Bifurcation from (Ag, 0): Existence and properties of (‘3;0. We are going to apply the unilateral global
bifurcation theorem [40, Theorem 6.4.3] to equation (5.1) in L?(0, 1), with p > 2. Following [40, Chapter 6],
we introduce the closed subspace

1
Y = {y e LP(0,1): jy(podx = 0},
0
and, for every € > 0 and 1 € (0, 1), we consider the open wedges

eq(o) = {(/L u) e RxLP(0,1): |A-Aol <&, | upodx > nllullp},

C———p O ——

Q¢ (Ao) = {(/L u) e RxLP(0,1): [A-Aol <&, | upodx < —nllullp}-
Thanks to Proposition 5.1, we infer from [40, Lemma 6.4.1] that, for every € > 0 and 7 € (0, 1), there exists
a neighborhood V of (Ao, 0) in R x LP(0, 1) such that

8N M\ {(Ao, 0)} € Q; ,(A0) U Qg (Ao).
Due to (ay) and (f), by possibly reducing the size of V, we can also suppose that
lAaf(u)l1 <1 forall(A,u) e SnVW.

Thus, by Corollary 3.5, 8§ n V consists of strong solutions of (1.1).

Let us fix € > 0, 1 € (0, 1). By Proposition 5.1 and [40, Theorem 5.6.2], all the assumptions of [40, Theo-
rem 6.4.3] hold true with reference to Aq. Thus, there is a connected component €, of 8 \ (Qz,,(A0) N V), with
(Ao, 0) € Cy,, such that one of the following non-excluding options holds:

(A1) @, is unbounded in R x L?(0, 1),
(A2) there exists A € £\ {1} such that (4, 0) € Chos
(A3) there exists (A, y) € Gy, N (R x (Y\{0})), i.e.,y # 0 and Jol y@o dx = 0.

If Gy, N ((-0c0, 0) x LP(0, 1)) # 0, then by connectedness there exists u € LP(0, 1) such that (0, u) € Cy,.
Since u must be constant and C,, is a maximal connected subset of § \ (Qz,y (Ao) N V), €), contains the vertical
line {(0, r) : r € R} and hence €y, N ([0, +o0) x LP(0, 1)) is unbounded. Accordingly, if we set

€3, = €1, N ([0, +00) x LP(0, 1)),

we see that, in any case, GIO is a maximal connected subset of § N ([0, +0o) x L?(0, 1)), satisfying either (A1),
or (A2), or (A3).
Let us also observe that, by Corollary 5.4, possibly shortening V, we have that

u>0 forall(A,u)e (G:{O N\ {(Ao, 0)};

however, we cannot guarantee that G/’{O does not contain any negative, or sign-changing, solution. The remain-
der of the proof of this part is devoted to showing that an unbounded component (i’;o of GXO, constituted by
positive solutions, actually exists.

Let us define 6;0 as the component of 8~ such that (Ag, 0) € (3;0. Proposition 5.11 and the subsequent
Remark 5.2 guarantee that u > 0 forall (A, u) € 6;0 with u # 0. We know that

G;O = (i’j{o inV, (5.15)
since u > 0 for all (A, u) € G/’{O N V with u # 0. Moreover, by construction, we have (3;0 C Gj{o. Actually, the
following result holds.

Claim. The set (i’jo is unbounded in R x LP(0, 1).

To prove this claim, we distinguish two cases, according to either (0, 0) € €>0, or (0,0) ¢ GXO.
In case (0, 0) € G>0, 620 is unbounded in R x L?(0, 1), because, being a component, it must contain the
whole vertical half-line {(0, r) : r € [0, +00)}.



DE GRUYTER J. Lopez-Gémez and P. Omari, Global Components of Positive Bounded Variation Solutions =— 469

In case (0, 0) ¢ €; , we will show that
e; =¢;. (5.16)

Consequently, as the component (3/{0 = Gio cannot satisfy alternatives (A2) and (A3) above, (‘Zjo must sat-
isfy (A1), i.e., it is unbounded in R x LP(0, 1).

In order to prove (5.16), we suppose on the contrary that GXO is a proper subset of G;{O. Being compo-
nents, G;{O is connected and Gio is closed; hence, there exist a sequence ((A,, uy)), in Gj{o \ G;O and a solution
(Aw, Uy) € (‘3;0 such that

nEIPoo(A”’ up) = Ay, upy) inRxLP(0,1).

As (Ay, uy) € 87, the definition of 8~ implies that one of the following three cases occurs:

o either (A, uy) = (0, 0),

e or(Ay, uy) = (Ao, 0),

e oru>0.

The first case, (Ay, Uy) = (0, 0), is immediately ruled out because we are supposing (0, 0) ¢ GZO. The second
case, (Ay, uy) = (Ao, 0), cannot occur, because otherwise

(An, Un) € (6/{0 \ (‘Z;O) NV foralllarge n,

which is impossible by (5.15).

Thus, u, > 0 must hold, and actually, due to Proposition 5.11, u, > 0. If in a neighborhood of (A, uy)
the component 6}0 consisted of solutions of the form (A, v) with v > 0, (3;0 would not be maximal for the
inclusion in 8~ and hence, could not be a component. Therefore, without loss of generality, we can assume
that, for every n > 1, either u, < 0, or u, changes sign.

On the other hand, since we have u, — u, in L?(0, 1), there is a subsequence, relabeled by n, such that
Un(x) — uy(x) a.e.in [0, 1]. If there existed a subsequence of ((Ay, un))n, still labeled by n, such that u, <0
for all n, it would necessarily follow that u < 0. Therefore, since u > 0, u, must change sign for all large n.
Thus, by Corollary 5.9 and Lemma 5.10, possibly along some subsequence, we find that (5.11) and (5.12)
hold. As u > 0, we also have, by Proposition 5.11, that u is decreasing. Hence, we find

1 1
esssupu —essinfu = J |[Du| = lim J |[Duy| > lim inf (ess sup u, — essinf u,)
n—+oo n—+oo
0 0

> lim inf (ess sup uy) — lim sup (essinf u,) > lim inf (ess sup u,)
n—-+0o Nn—+00 n—-+00

> esssup u,

which is impossible because essinf u > 0. This contradiction shows that G;{O = GXO. The proof of our claim is
therefore complete.

Therefore, we have proved that, in all circumstances, GZO is a connected component of 87, unbounded
inR x LP(0, 1), as claimed by Theorem 5.13. Actually, a slightly stronger conclusion holds: C;O is a connected
subset of BV(0, 1), endowed with the topology of the strict convergence. Indeed, otherwise we could partition
GXO into two disjoint subsets, closed in R x BV(0, 1) with respect to the topology of the strict convergence.
Since, by Corollary 5.9, these sets should be closed in R x LP(0, 1) as well, a contradiction would follow.

Part 2. Bifurcation from (0, 0): Existence and properties of ;. The proof of Part 1 can be adapted, with
some simplifications, to construct C;. Therefore we will omit some details of such a construction, not to
be repetitive. Indeed, in this case we can define Gg as the component of 8> such that (0, 0) € 68. Since 8
contains the vertical half-line {(0, r) : r € [0, +00)}, we see that (38 is unbounded in R x L?(0, 1). Next, Propo-
sition 5.11 and Remark 5.2 guarantee that if (A, u) € Gg and u # 0, then u > 0. Further, Lemma 5.3 implies
that if (4, 0) € € for some A > 0, then A = Ay, because A, is the only positive eigenvalue of (4.28) with posi-
tive eigenfunctions. Finally, Corollary 3.5 shows that there exists a neighborhood U of (0, 0) in R x LP(0, 1)
such that GS N U consists of strong solutions. Exactly as in Part 1, we also see that (‘3;0 is a connected subset
of BV(0, 1), endowed with the topology of the strict convergence.
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Finally, the maximality and the connectedness of both €; and GXO yield the following alternative: either
Co N 8;0 =0, or (Ag, 0) € €5 and (0, 0) € 6;0 and, in such case, C; = (‘EZO. This ends the proof. O

We conclude this section remarking that, under an additional regularity condition on f, some further informa-
tion can be obtained about the fine structure of the connected components C; and G;{O near their respective
bifurcation points from the trivial line. More precisely, the next result follows easily by combining Corol-
lary 3.5 with Theorem 5.13 and the analysis already done in [43, Section 4]. As they can be easily reproduced,
the technical details of its proof are omitted here.

Theorem 5.14. Assume (aq), (f1), and
(f3) thereare ¢ =2 andn > O such that f € C¢(-n, ).
Then there exists a neighborhood U of (0, 0) in R x LP(0, 1) such that if (A, u) € U is a bounded variation solu-
tion of (1.1), then either u = 0, or A = 0 and u = r for some r € R\ {0}. In particular, there is ro > O such that
Cg N U consist of {(0, 1) : r € [0, 19)}.

Furthermore, there exist a neighborhood V of (Ao, 0) in R x LP(0, 1), € > 0 and two maps of class C¢1,

A:(-€,8) >R, z:(-€¢) — Z,
where

1
7Z- {z € C'[0,1]: 7'(0) = 2/(1) = 0, JZ(po dx = o}
0

is endowed with the topology of R x C'[0, 1], such that

e A(0) = Ag and z(0) = 0,

o (A(s), s(@o + z(s))) is a strong solution of (1.1) for all s € (¢, ),

o if(A, u) € Vis a bounded variation solution of (1.1), then either u = 0, or A = A(s) and u = s(¢@o + z(s)) for
some s € (—&, €); in particular, Gjo N V is precisely the curve (A(s), s(go + z(s))) with s € [0, €).

Finally, the bifurcation at Ag is transcritical if f" (0) # 0; in particular, the bifurcation of positive solutions is

supercritical if f"'(0) < 0 and subcritical if f''(0) > 0. Suppose, further, that € > 3 in (f3). Then a subcritical

pitchfork bifurcation occurs at Aq if f' (0) = 0.

6 Conclusions, Conjectures and Open Questions

In this paper the topological structure of the set of positive solutions of the one-dimensional quasilinear
indefinite Neumann problem (1.1) has been analyzed in the special case when f(0) = 0 and f’(0) = 1. For
the first time in the literature, a unilateral bifurcation theorem in the space of bounded variation functions
has been established for an elliptic problem driven by the mean curvature operator. According to it, there
exist two global connected components of the set of positive solutions emanating from the line of the trivial
solutions at the two principal eigenvalues of the linearized problem around 0.

As already predicted by the analysis carried out in [43, Section 8], the solutions on these components
are regular as long as they are sufficiently small, while they may develop jump singularities at the nodes of
the weight function, a, as they become sufficiently large. Thus, we have established, in the general setting of
this paper, the existence of components consisting, simultaneously, of regular and singular solutions, which
might be a breakthrough in “global bifurcation theory” as applied to study more general quasilinear equa-
tions and systems. However, a number of important questions still remain open that fall outside the general
scope of this paper, but deserve some further effort to gain insight into the problem of ascertaining the fine
structure of the bounded variation solutions of (1.1). A very relevant one consists in clarifying the hidden rela-
tionships between the regular and the singular solutions of (1.1), with special attention towards the problem
of understanding the precise mechanisms generating the formation of jump singularities along the A-paths
of regular solutions. We have a strong heuristic evidence that the local regularity of the weight function a at
its nodes should play a significant role to describe the transition from regular to singular solutions, i.e., in
explaining the underlying formation of singularities on the small regular solutions.
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Nevertheless, in some particular, but pivotal, examples we already know that the global bifurcation
diagram of bounded variation solutions looks like shows Figure 1. Namely, when the associated potential
E(s) = jg f(t) dt of f is superlinear at infinity, then the component of positive bounded variation solutions Gio
bifurcating from (A, 0) at A = Ay looses the a priori bounds in C'[0, 1] at some A* > 0, where the solutions
become singular and fill in a subcontinuum consisting of singular bounded variation solutions bifurcating
from infinity at A = 0. Instead, when the potential F is sublinear at infinity, then the component Cjo remains
separated away from the vertical line R x {0} and looses the a priori bounds in C1[0, 1] at some A,. > 0, where
it links another unbounded subcontinuum of singular bounded variation solutions whose A-projection con-
tains (A*, +00). We conjecture that, actually, these are the only admissible global bifurcation diagrams under
the assumptions of Theorem 5.13, at least, topologically, in the sense that the underlying global bifurcation
diagrams should be homeomorphic to those shown by Figure 1, though the number of solutions of (1.1) for
a fixed value of A on the component Cjo might be arbitrarily large according, e.g., to the number of interior
nodes and the relative size of the weight a on each of the nodal subintervals.

For simplicity, here we have restricted ourselves to deal with the simplest situation when the function a
possesses a single interior node z, and thus the positive solutions of (1.1) are monotone. As our proof of The-
orem 5.13 relies, on a pivotal basis, on this special feature, getting a proof of this theorem in the general case
when a has an intricate nodal behavior might be a real challenge plenty of technical difficulties. Neverthe-
less, in spite of these technical troubles, we still conjecture the validity of Theorem 5.13, at least, under the
assumptions imposed to the weight a in Corollary 3.7. The validity of Theorem 5.13 in more general settings
remains therefore an open problem here.

A further challenge, of a rather different vein, consists in describing the precise asymptotic profile of the
bounded variation solutions of (1.1) asA — 0, or A — +c0, according to the behavior of the associated poten-
tial F at infinity. In some particular cases of interest, we already know that the derivatives of the solutions
of (1.1) approximate, asymptotically, the profile of the solution of the problem

v ! .
(vl:) =b in (0,1,

v(0)=0, v(1)=0,

where -
ax
- i 0’ bl
joz a(t) dt n(0,2)
b(x) =
-a(x) .
—fl 0 dt in (z, 1),

and z is the unique interior node of the function a. This feature should be relevant to establish in various
cases the non-existence of positive regular solutions of (1.1); however this analysis, being outside the scope
of this paper, is postponed here and will be carried out elsewhere.
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