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Abstract: This paper investigates the topological structure of the set of the positive solutions of the one-

dimensional quasilinear indefinite Neumann problem

{{{
{{{
{

−(
u󸀠

√
1 + u󸀠2
)
󸀠

= λa(x)f(u) in (0, 1),

u󸀠(0) = 0, u󸀠(1) = 0,

where λ ∈ ℝ is a parameter, a ∈ L∞(0, 1) changes sign, and f ∈ C1(ℝ) is positive in (0, +∞). The attention
is focused on the case f(0) = 0 and f 󸀠(0) = 1, where we can prove, likely for the first time in the literature,

a bifurcation result for this problem in the space of bounded variation functions. Namely, the existence of

global connected components of the set of the positive solutions, emanating from the line of the trivial solu-

tions at the two principal eigenvalues of the linearized problem around 0, is established. The solutions in

these components are regular, as long as they are small, while they may develop jump singularities at the

nodes of the weight function a, as they become larger, thus showing the possible coexistence along the same

component of regular and singular solutions.

Keywords: Quasilinear Elliptic Equation, Prescribed Curvature Equation, Indefinite Problem, Neumann
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1 Introduction
In this paper we study the topological structure of the set of the positive bounded variation solutions of the

quasilinear Neumann problem

{{{
{{{
{

−(
u󸀠

√
1 + u󸀠2
)
󸀠

= λa(x)f(u) in (0, 1),

u󸀠(0) = 0, u󸀠(1) = 0,
(1.1)
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where λ ∈ ℝ is a parameter, a ∈ L∞(0, 1) changes sign, f ∈ C1(ℝ) satisfies f(s) s > 0 for all s ̸= 0 and f 󸀠(0) = 1.
Problem (1.1) is a particular version of

{{{{
{{{{
{

− div(
∇u

√1 + |∇u|2
) = g(x, u) in Ω,

−
∇u ⋅ ν
√1 + |∇u|2

= σ on ∂Ω,
(1.2)

where Ω is a bounded regular domain in ℝN , with outward pointing normal ν, and g : Ω × ℝ → ℝ and

σ : ∂Ω → ℝ are given functions. This model plays a central role in the mathematical analysis of a number of

geometrical and physical issues, such as prescribed mean curvature problems for cartesian surfaces in the

Euclidean space [10, 25, 29–32, 37, 53, 54], capillarity phenomena for incompressible fluids [20, 27, 28,

34, 35], and reaction-diffusion processes where the flux features saturation at high regimes [16, 36, 52].

Although there is a large amount of literature devoted to the existence of positive solutions for semi-

linear elliptic problems with indefinite nonlinearities [1–3, 8, 9, 33, 41, 45], no results were available for

problem (1.2), even in the one-dimensional case (1.1), before [42–44], where we began the analysis of the

effects of spatial heterogeneities in the simplest prototype problem (1.1). Even if part of our discussion in this

paper has been influenced by some results in the context of semilinear equations, it must be stressed that the

specific structure of the mean curvature operator,

u 󳨃→ −div( ∇u
√1 + |∇u|2

),

makes the analysis in this paper much more delicate and sophisticated, as problem (1.1) may determine

spatial patterns which exhibit sharp transitions between adjacent profiles, up to the formation of disconti-

nuities [11, 12, 15, 16, 21–24, 36, 38, 48, 50]. This special feature explains why the existence intervals of

regular positive solutions of [18, 19, 47] are smaller than those given in the former references when dealing

with bounded variation solutions. It is a well-agreed fact that the space of bounded variation functions is the

most appropriate setting for discussing these topics. The precise notion of bounded variation solution of (1.1)

used in this paper has been basically introduced in [5, 6] and, for the sake of completeness, will be briefly

revisited in Section 2.

In [44] we discussed the existence and the multiplicity of positive bounded variation solutions of (1.1)

under various representative configurations of the behavior at zero and at infinity of the function f . The solu-
tions of [44] can be singular, for as they may exhibit jump discontinuities at the nodal points of the weight

function a, while they are regular, at least of class C1, on each open interval where the weight function a has
a constant sign. Instead, in [42, 43] we investigated the existence and the non-existence of positive regular

solutions. Some of the most intriguing findings of [42–44] can be synthesized by saying that the solutions

of (1.1) obtained in [44] are regular as long as they are small, in a sense to be precised later, whereas they

develop singularities as they become sufficiently large. This is in complete agreement with the peculiar struc-

ture of the mean curvature operator, which combines the regularizing features of the 2-laplacian, when ∇u
is sufficiently small, with the severe sharpening effects of the 1-laplacian, when ∇u becomes larger.

A natural question arising at the light of these novelties is the problem of ascertaining whether or not

these regular and singular solutions can be obtained, simultaneously, by establishing the existence of con-

nected components of bounded variation solutions bifurcating from (λ, u) = (λ, 0), which stem regular from

(λ, 0) and develop singularities as their sizes increase; thus establishing the coexistence along the same

component of both regular and singular solutions, as synoptically illustrated by the two bifurcation dia-

grams in Figure 1. Although this phenomenology has been already documented by the special example

of [43, Section8], bymeans of a rather sophisticatedphase plane analysis, solving this problem inour general

setting still was a challenge.

The main aim of this work is establishing the existence of two connected components, C>
0

and C+λ
0

, of the

closure of the set of positive bounded variation solutions of problem (1.1),

S> = {(λ, u) ∈ [0, +∞) × BV(0, 1) : u > 0 is a solution of (1.1)} ∪ {(0, 0), (λ
0
, 0)},
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Figure 1: Global bifurcation diagrams emanating from the positive principal eigenvalue λ0, according to the nature of the
potential ∫s0 f(t) dt of f : superlinear at infinity (on the left), or sublinear at infinity (on the right).

emanating from the line {(λ, 0) : λ ∈ ℝ} of the trivial solutions, at the two principal eigenvalues λ = 0 and

λ = λ
0
of the linearization of (1.1) at u = 0,

{
− u󸀠󸀠 = λa(x)u in (0, 1),

u󸀠(0) = u󸀠(1) = 0.
(1.3)

Precisely, our main global bifurcation theorem can be stated as follows.

Theorem 1.1. Assume that f ∈ C1(ℝ) satisfies f(s)s > 0 for all s ̸= 0, f 󸀠(0) = 1, and, for some constants κ > 0
and p > 2, |f 󸀠(s)| ≤ κ (|s|p−2 + 1) for all s ∈ ℝ. Moreover, suppose that a satisfies ∫1

0

a(x) dx < 0 and there
is z ∈ (0, 1) such that a(x) > 0 a.e. in (0, z) and a(x) < 0 a.e. in (z, 1). Then there exist two subsets of S>,
C>
0

and C>λ
0

, such that
∙ C>

0

and C>λ
0

are maximal in S> with respect to the inclusion, are connected with respect to the topology of
the strict convergence in BV(0, 1),¹ and are unbounded inℝ × Lp(0, 1),

∙ (0, 0) ∈ C>
0

and (λ
0
, 0) ∈ C>λ

0

,
∙ {(0, r) : r ∈ [0, +∞)} ⊆ C>

0

,
∙ if (λ, u) ∈ C>

0

∪ C>λ
0

and u ̸= 0, then ess inf u > 0,
∙ if (λ, 0) ∈ C>

0

∪ C>λ
0

for some λ > 0, then λ = λ
0
,

∙ either C>
0

∩ C>λ
0

= 0, or (λ
0
, 0) ∈ C+

0

and (0, 0) ∈ C>λ
0

and, in such case, C>
0

= C>λ
0

,
∙ there exists a neighborhood U of (0, 0) inℝ × Lp(0, 1) such thatC>

0

∩ U consists of regular solutions of (1.1),
∙ there exists a neighborhood V of (λ

0
, 0) inℝ×Lp(0, 1) such thatC>λ

0

∩V consists of regular solutions of (1.1).

Theorem 1.1 appears to be the first global bifurcation result for a quasilinear elliptic problem driven by

the mean curvature operator in the setting of bounded variation functions. The absence in the existing lit-

erature of any previous result in this direction might be attributable to the fact that mean curvature prob-

lems are fraught with a number of serious technical difficulties which do not arise when dealing with other

non-degenerate quasilinear problems. As a consequence, our proof of Theorem 1.1 is extremely delicate,

even though problem (1.1) is one-dimensional. The main technical difficulties coming from the eventual

lack of regularity of the solutions of (1.1) as they grow, which does not allow us to work neither in spaces

of differentiable functions, nor in Sobolev spaces. Instead, this lack of regularity forces us to work in the

frame of the Lebesgue spaces Lp, where the cone of positive functions has empty interior and most of the

global path-following techniques in bifurcation theory fail. Thus, to get most of the conclusions of Theo-

rem 1.1, a number of highly nontrivial technical issues must be previously overcome. Among them count

1 See [4, Definition 3.14].
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the reformulation of (1.1) as a suitable fixed point equation, the proof of the differentiability of the associ-

ated underlying operator, the search for the most appropriate global bifurcation setting, as well as solving

the tricky problem of the preservation of the positivity of the solutions along both components, for as in the

Lp context a positive solution, a priori, could be approximated by changing sign solutions. Naturally, none

of these rather pathological situations can arise when dealing with classical regular problems, like those

considered in [40].

The structure of this paper is organized as follows. Section 2 introduces the three notions of solutions,

with increasing generality, that we are going to use in this work: strong, weak, and of bounded variation.

Then it discusses their reciprocal relations, providing some useful variational characterizations. The con-

tents of Section 2 are slightly inspired by [6]. Naturally, once reformulated (1.1) as a variational inequality

in the space of bounded variation functions, one might be tempted to invoke to the available bifurcation

results for variational inequalities as described, e.g., in [39]. However, since in our opinion no apparent

advantage seems to come from this alternative approach, in this paper we have preferred to adopt a differ-

ent, more classical, treatment of this problem based on the fact that it can be equivalently written as a fixed

point equation for a completely continuous operator, where one can apply the abstract unilateral theorems

of [40, Chapter 6].

Section 3 is devoted to the study of the regularity of the bounded variation solutions of (1.1). It begins

by characterizing the existence of the strong solutions of the problem

{{{
{{{
{

−(
u󸀠

√
1 + u󸀠2
)
󸀠

= h(x) in (0, 1),

u󸀠(0) = 0, u󸀠(1) = 0,
(1.4)

where h ∈ L1(0, 1) is given. As a by-product, any bounded variation solution of (1.4) must be strong if

‖h‖L1 < 1. Then Section 3 analyzes the fine regularity properties of the bounded variation solutions of (1.4),
by establishing that the only singularities that they can exhibit are jumps,which, necessarily,must be located

at the interior points where h changes sign. Thus, when the set of nodal points of h is discrete, the presence
of a Cantor part in the distributional derivative of the bounded variation solutions of (1.4) is ruled out. In

other words, the solutions are special functions of bounded variation, as defined in [4, Chapter 4].

In Section 4 we introduce the auxiliary problem

{{{
{{{
{

−(
u󸀠

√
1 + u󸀠2
)
󸀠

+ k(u) = h(x) in (0, 1),

u󸀠(0) = 0, u󸀠(1) = 0,
(1.5)

where k : ℝ → ℝ is a function of class C1, strictly increasing and odd, which satisfies

k󸀠(0) = 1, lim

|s|→+∞

k󸀠(s)
|s|p−2
= 1,

for some p ≥ 2 and h ∈ Lq(0, 1), with q = p
p−1 . Under these circumstances, we can establish that the asso-

ciated solution operator P : Lq(0, 1) → Lp(0, 1), which maps h onto the unique bounded variation solution
u = Ph of (1.5), is completely continuous and Fréchet differentiable at h = 0. In addition, we show that the

derivative at 0 of P is given by the linear operator P
1
: Lq(0, 1) → Lp(0, 1) which sends any function h onto

the unique solution u = P
1
h ∈ W2,q(0, 1) of the linear problem

{
− u󸀠󸀠 + u = h(x) in (0, 1),

u󸀠(0) = 0, u󸀠(1) = 0.

The proof of the differentiability of P at 0 is far from being obvious and strongly relies on the previous

regularity results delivered in Section 2.

Having all these conclusions in hand, in the subsequent Section 5 one can reformulate problem (1.1) as

an abstract operator equation

N(λ, u) = 0,
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in the space Lp(0, 1), provided that there are constants κ > 0 and p > 2 such that

|f 󸀠(s)| ≤ κ(|s|p−2 + 1) for all s ∈ ℝ.

Precisely, the operatorN : ℝ × Lp(0, 1) → Lp(0, 1) is defined by

N(λ, u) = P(k(u) + λaf(u)) − u,

with k as above. Thus, it is a compact perturbation of the identity. Moreover, it can be expressed in the form

N(λ, u) = L(λ)u + R(λ, u),

where L(λ) = P
1
((1 + λa)I) − I, with I the identity map, is the Fréchet derivative DuN(λ, 0) of N(λ, u), with

respect to u, at u = 0, and

lim

‖u‖p→0

‖R(λ, u)‖p
‖u‖p

= 0 uniformly in λ ∈ J

for any compact subinterval J ofℝ. Hence, it is not difficult to verify that we are within the functional setting

suited for applying the abstract unilateral bifurcation theorem [40, Theorem 6.4.3], at both principal eigen-

values, 0 and λ
0
, of the weighted eigenvalue problem (1.3). By [40, Theorem 6.4.3] there exist two connected

components of the set of the solutions of (1.1) emanating from 0 and λ
0
, respectively. The remainder of the

proof is then basically devoted to prove that each of these components contains an unbounded subcompo-

nent, consisting of positive solutions, which are regular near the bifurcation points. This is achieved through

an elegant topological argument combined with some sophisticated, very delicate, convergence results for

sequences of bounded variation solutions of (1.1), where the special nodal structure of the function a plays
a crucial role.

We conclude Section 5 by providing, under an additional regularity condition on f , some further informa-

tion about the fine structure of the components of positive solutions near their respective bifurcation points

from (λ, 0).
Finally, Section 6 ends the paper with a short list of open questions and conjectures.

2 Notions of Solution
Throughout this section we consider the boundary value problem

{{{
{{{
{

−(
u󸀠

√
1 + u󸀠2
)
󸀠

= h(x, u) in (0, 1),

u󸀠(0) = 0, u󸀠(1) = 0,
(2.1)

where h : (0, 1) × ℝ → ℝ satisfies the Carathéodory conditions:
∙ h( ⋅ , s) is measurable for all s ∈ ℝ,
∙ h(x, ⋅ ) ∈ C0(ℝ;ℝ) for a.e. x ∈ (0, 1),
∙ for each r > 0 there exists hr ∈ L1(0, 1) such that |h(x, s)| ≤ hr(x) for a.e. x ∈ (0, 1) and all s ∈ (−r, r).
We also set

ψ(s) = s
√
1 + s2

for all s ∈ ℝ. (2.2)

Definition 2.1 (Strong Solution). A strong solution of problem (2.1) is a function u ∈ W2,1(0, 1)which satis-
fies the differential equation in (2.1) a.e. in (0, 1) and the Neumann boundary conditions.

Remark 2.1. Any strong solution u clearly satisfies the differential equation

− u󸀠󸀠 = h(x, u)(1 + u󸀠2)
3

2

a.e. in (0, 1). (2.3)

Moreover, integrating in (0, 1) the differential equation in (2.1), we find for any strong solution of (2.1)
1

∫
0

h(x, u) dx = 0. (2.4)
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Definition 2.2 (Weak Solution). A weak solution of problem (2.1) is a function u ∈ W1,1(0, 1) such that

1

∫
0

u󸀠ϕ󸀠

√
1 + u󸀠2

dx =
1

∫
0

h(x, u)ϕ dx (2.5)

for all ϕ ∈ W1,1(0, 1).

Remark 2.2. By making the choice ϕ = 1 as test function, it follows that (2.4) also holds for every weak

solution u of (2.1). For these solutions, we infer from (2.2) and (2.5) that

1

∫
0

ψ(u󸀠)ϕ󸀠 dx =
1

∫
0

h(x, u)ϕ dx

for all ϕ ∈ W1,1(0, 1). Thus it follows that ψ(u󸀠) ∈ W1,1(0, 1) and

− (ψ(u󸀠))󸀠 = h( ⋅ , u) a.e. in (0, 1). (2.6)

Hence, we have

ψ(u󸀠(x)) = −
x

∫
0

h(t, u) dt in (0, 1)

and therefore, taking into account (2.4), ψ(u󸀠(0)) = ψ(u󸀠(1)) = 0, which, in turn, implies

u󸀠(0) = u󸀠(1) = 0. (2.7)

In particular, since ψ(u󸀠) ∈ C0[0, 1], we see that u󸀠 : [0, 1] → [−∞, +∞] is continuous. Actually, the condi-
tionψ(u󸀠) ∈ W1,1(0, 1) implies that u󸀠 ∈ W1,1(0, 1) if and only if ‖ψ(u󸀠)‖∞ < 1. Therefore, as the derivative u󸀠

of a weak solution u might develop singularities, we conclude that, in general, a weak solution is not nec-

essarily a strong solution. Nevertheless, it is clear that if a weak solution u of (1.1) lies in C1[0, 1], then it is
strong. Of course, the converse is always true: any strong solution is a weak one.

The next variational characterization of the weak solutions of (2.1) can be easily derived by using the con-

vexity of the length integral.

Lemma 2.1. Assume that h : (0, 1) × ℝ → ℝ satisfies the Carathéodory conditions. A function u ∈ W1,1(0, 1)
is a weak solution of (2.1) if and only if it satisfies the variational inequality

1

∫
0

√
1 + v󸀠2 dx ≥

1

∫
0

√
1 + u󸀠2 dx +

1

∫
0

h(x, u)(v − u) dx

for all v ∈ W1,1(0, 1), or, equivalently, it is a global minimizer in W1,1(0, 1) of the associated convex functional

Iu(v) =
1

∫
0

√
1 + v󸀠2 dx −

1

∫
0

h(x, u)v dx.

The next notion of solution is more sophisticated. It basically goes back to [6, 7] and it has extensively been

used and discussed later (see, e.g., [44, 46, 48–51]).

Definition 2.3 (Bounded Variation Solution). A bounded variation solution of problem (2.1) is a function

u ∈ BV(0, 1) such that
1

∫
0

DuaDϕa

√1 + (Dua)2
dx +

1

∫
0

Dus

|Dus|
Dsϕ =

1

∫
0

h(x, u)ϕ dx (2.8)

for all ϕ ∈ BV(0, 1) such that |Dϕs| is absolutely continuous with respect to |Dus|.
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Remark 2.3. By taking ϕ = 1 as test function, it follows that (2.4) also holds for every bounded variation

solution u of (2.1).

In Definition 2.3, as well as throughout the rest of this paper, the following notations are used for every

v ∈ BV(0, 1) (we refer to, e.g., [4, 17] for any required additional details):
∙ Dv = Dvadx + Dvs is the Lebesgue–Nikodym decomposition of the Radon measure Dv in its absolutely

continuous partDvadx, with density functionDva, and its singular partDvs, with respect to the Lebesgue
measure dx inℝ.

∙ |Dv|, |Dva| and |Dvs| stand for the absolute variations of the measures Dv, Dva and Dvs, respectively;
thus, the Lebesgue–Nikodym decomposition of |Dv| is given by

|Dv| = |Dv|adx + |Dv|s = |Dva|dx + |Dvs|.

∙ Dv
|Dv| and

Dvs
|Dvs | denote the density functions of Dv and Dv

s
, respectively, with respect to their absolute

variations |Dv| and |Dvs|.
∙ Dvs = Dvj + Dvc stands for the decomposition of the singular part Dvs of Dv in its jump part Dvj and its

Cantor part Dvc.
The identities

Dv = Dvadx + Dvs , Dvs = Dvj + Dvc

induce the decompositions

v = va + vs = va + vj + vc ,

with

va(x) = v(0) +
x

∫
0

Dva , vj(x) =
x

∫
0

Dvj ,

vc(x) =
x

∫
0

Dvc , vs(x) =
x

∫
0

Dvs = vj(x) + vc(x)

for a.e. x ∈ (0, 1). Throughout this paper, for any given v ∈ BV(0, 1), we set
1

∫
0

√
1 + |Dv|2 =

1

∫
0

√
1 + |Dva|2 dx +

1

∫
0

|Dvs|, (2.9)

or, equivalently,

1

∫
0

√
1 + |Dv|2 = sup{

1

∫
0

(vw
1

󸀠 + w
2
) : w

1
, w

2
∈ C1

0

(0, 1), ‖w2

1

+ w2

2

‖∞ ≤ 1}.

Remark 2.4. It is natural to interpret ∫1
0

√1 + |Dv|2 as the length of the graph of the bounded variation func-
tion v. From its definition we immediately conclude the lower semicontinuity of the length functional with

respect to the L1-convergence in the space BV(0, 1) (see, e.g., [25]).

The next result, complementing Lemma 2.1, is a direct consequence of [6].

Lemma 2.2. Assume that h : (0, 1) × ℝ → ℝ satisfies the Carathéodory conditions. A function u ∈ BV(0, 1) is
a bounded variation solution of (2.1) if and only if it satisfies the variational inequality

1

∫
0

√
1 + |Dv|2 ≥

1

∫
0

√
1 + |Du|2 +

1

∫
0

h(x, u)(v − u) dx (2.10)

for all v ∈ BV(0, 1), or, equivalently, it is a global minimizer in BV(0, 1) of the associated convex functional

Iu(v) =
1

∫
0

√
1 + |Dv|2 −

1

∫
0

h(x, u)v dx.
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The next result is a simple, but useful, consequence of Definitions 2.2 and 2.3.

Lemma 2.3. Assume that h : (0, 1) × ℝ → ℝ satisfies theCarathéodory conditions. Suppose that u is a bounded
variation solution of (2.1). Then the function v = ua ∈ W1,1(0, 1) is a weak solution of

{{{
{{{
{

−(
v󸀠

√
1 + v󸀠2
)
󸀠

= h(x, u) in (0, 1),

v󸀠(0) = 0, v󸀠(1) = 0.
(2.11)

In particular, ψ(v󸀠) ∈ W1,1(0, 1) and it satisfies

− (ψ(v󸀠))󸀠 = h( ⋅ , u) a.e. in (0, 1), v󸀠(0) = v󸀠(1) = 0. (2.12)

Moreover, u is aweak solution of (2.1) if and only if it is a bounded variation solution of (2.1) satisfying Dus = 0.

Proof. Recall that a function w ∈ W1,1(0, 1) if and only if w ∈ BV(0, 1) and satisfies Dsw = 0. Therefore, let u
be a bounded variation solution of problem (2.1) and set v = ua ∈ W1,1(0, 1). Particularizing (2.8) at any

ϕ ∈ W1,1(0, 1) yields
1

∫
0

v󸀠ϕ󸀠

√
1 + v󸀠2

dx =
1

∫
0

h(x, u)ϕ dx.

Hence, v is a weak solution of (2.11). The fact that ψ(v󸀠) ∈ W1,1(0, 1), as well as (2.12) holds, follows from
the arguments given in Remark 2.2. This shows in particular that, if Dus = 0, then u = ua is a weak solution
of (2.1). The converse implication follows by noting again that, if u is a weak solution, then Dus = 0. Hence,
all test functions ϕ ∈ BV(0, 1)must satisfy Dsϕ = 0, i.e., they belong toW1,1(0, 1), and thus (2.5) holds.

Definition 2.4 (Positive Solution). A strong, or weak, or bounded variation, solution of problem (2.1) is

respectively said to be non-negative if ess inf u ≥ 0, positive if ess inf u ≥ 0 and ess sup u > 0, and strictly

positive if ess inf u > 0.

Throughout the rest of this paper, for any function u ∈ L1(0, 1), we write u ≥ 0 if ess inf u ≥ 0, u > 0 if

ess inf u ≥ 0 and ess sup u > 0, and u ≫ 0 if ess inf u > 0.

3 Regularity of the Bounded Variation Solutions
This section analyzes the regularity of the bounded variation solutions of the problem

{{{
{{{
{

−(
u󸀠

√
1 + u󸀠2
)
󸀠

= h(x) in (0, 1),

u󸀠(0) = 0, u󸀠(1) = 0,
(3.1)

where h ∈ L1(0, 1). The next result establishes some necessary conditions for the existence of a bounded

variation solution of (3.1). Hereafter, by a Caccioppoli subset B of (0, 1) it is meant a Borel set B such that

χB ∈ BV(0, 1), where χB stands for the characteristic function of B.

Lemma 3.1. Assume h ∈ L1(0, 1). Suppose that problem (3.1) has a bounded variation solution u. Then, for
every Caccioppoli set B ⊆ (0, 1),

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

∫
0

hχB dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

1

∫
0

|DχB| (3.2)

holds; in particular,
1

∫
0

h dx = 0.
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Proof. Let u be a bounded variation solution of (2.1). Then, for every ϕ ∈ BV(0, 1) such that |Dϕs| is abso-
lutely continuous with respect to |Dus|,

1

∫
0

DuaDϕa

√1 + (Dua)2
dx +

1

∫
0

Dus

|Dus|
Dsϕ =

1

∫
0

hϕ dx. (3.3)

Choosing ϕ = 1 yields
1

∫
0

h = 0.

To establish (3.2), let B ⊆ (0, 1) be a Caccioppoli set. Set v = u ± χB ∈ BV(0, 1) and substitute it in (2.10). We

find that

±
1

∫
0

hχB dx ≤
1

∫
0

√1 + |D(u ± χB)|2 −
1

∫
0

√
1 + |Du|2 ≤

1

∫
0

|DχB|,

where the last inequality easily follows from (2.9). Indeed, we have

1

∫
0

√1 + |D(u ± χB)|2 =
1

∫
0

√1 + |Dua ± DχaB|2 +
1

∫
0

|Dus ± DχsB|

≤
1

∫
0

√
1 + |Dua|2 +

1

∫
0

|Dus| +
1

∫
0

|DχsB|

=
1

∫
0

√
1 + |Du|2 +

1

∫
0

|DχB|,

which ends the proof.

The next result complements Lemma 3.1 in a special case of interest.

Lemma 3.2. Assume h ∈ L1(0, 1). Let u ∈ W1,1(0, 1) be a weak solution of (3.1), which is not a strong solution
of (3.1). Then there exists an interval B = (0, z) such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

∫
0

hχB dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 1 =

1

∫
0

|DχB|.

Proof. As u󸀠 ∉W1,1(0, 1), Remark 2.2 implies that ‖ψ(u󸀠)‖∞ = 1 and, asψ(u󸀠) ∈ C0[0, 1], there exists z ∈ (0, 1)
such that |ψ(u󸀠(z))| = 1. Therefore, integrating the differential equation −(ψ(u󸀠))󸀠 = h in B = (0, z) yields

z

∫
0

h dx =
1

∫
0

hχB dx = −ψ(u󸀠(z)) + ψ(u󸀠(0)) = −ψ(u󸀠(z)) = ±1 = ±
1

∫
0

|DχB|,

which ends the proof.

Thanks toLemmas3.1 and3.2, thenext result is verynatural: it characterizes the existenceof strong solutions

for (3.1).

Proposition 3.3. Assume h ∈ L1(0, 1). Then problem (3.1) has a strong solution if and only if
(h

1
) there exists a constant κ ∈ (0, 1) such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

∫
0

hχB dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ κ

1

∫
0

|DχB|

for every Caccioppoli set B ⊆ (0, 1).
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Proof. The proof is divided into three steps:

Step 1: If problem (3.1) has a strong solution, then (h
1
) holds. Let u be a strong solution of (3.1). Take

aCaccioppoli set B ⊆ (0, 1) andmultiply the equation in (3.1) by χB. Using [5, Theorem1.9 andCorollary 1.6],

we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

∫
0

hχB dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

∫
0

ψ(u󸀠)DχB
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ‖ψ(u󸀠)‖∞

1

∫
0

|DχB|.

The conclusion follows by setting κ = ‖ψ(u󸀠)‖∞ < 1.

Step 2: If (h
1
) holds, then (3.1) has a bounded variation solution. Set

W = {w ∈ BV(0, 1) :
1

∫
0

w dx = 0}.

By the Poincaré inequality (see, e.g., [4, Remark 3.50]),W is a Banach space if we endow it with the norm

‖w‖W =
1

∫
0

|Dw|.

According to Lemma 2.2, the bounded variation solutions of (3.1) are the global minimizers in BV(0, 1) of
the convex functional I : BV(0, 1) → ℝ defined by

I(v) =
1

∫
0

√
1 + |Dv|2 −

1

∫
0

hv dx.

It is a classical fact (see, e.g., [25]) that I is lower semicontinuous with respect to the L1-convergence
in BV(0, 1). Let denote by IW its restriction toW. We claim that, for every w ∈W,

IW(w) ≥ (1 − κ)
1

∫
0

|Dw|. (3.4)

To prove (3.4), we proceed as follows. Fix w ∈W and, for each t ∈ ℝ, consider the super-level set

Et = {x ∈ (0, 1) : w(x) > t};

Et is a Caccioppoli set for a.e. t ∈ (0, 1) (see, e.g., [4, Theorem 3.40]). Then the representation formula

w(x) =
+∞

∫
−∞

φEt (x) dt (3.5)

holds for a.e. x ∈ (0, 1), where φEt ∈ BV(0, 1) is the function defined by

φEt (x) =
{
{
{

χEt (x) if t > 0,
χEt (x) − 1 = −χ(0,1)\Et (x) if t ≤ 0.

The proof of (3.5) is elementary. Obviously, for every x ∈ (0, 1), we have

+∞

∫
−∞

φEt (x) dt =
+∞

∫
0

φEt (x) dt +
0

∫
−∞

φEt (x) dt

=
+∞

∫
0

χEt (x) dt −
0

∫
−∞

χ(0,1)\Et (x) dt. (3.6)



J. López-Gómez and P. Omari, Global Components of Positive Bounded Variation Solutions | 447

Suppose w(x) ≥ 0. Then we get
+∞

∫
0

χEt (x) dt =
w(x)

∫
0

dt = w(x),
0

∫
−∞

χ(0,1)\Et (x) dt = 0.

Similarly, when w(x) ≤ 0, we find
+∞

∫
0

χEt (x) dt = 0,
0

∫
−∞

χ(0,1)\Et (x) dt =
0

∫
w(x)

dt = −w(x).

Thus, in any circumstances, substituting these identities into (3.6), identity (3.5) holds. Similarly, the follow-

ing co-area formula holds:

|Dw(x)| =
+∞

∫
−∞

|DφEt | dt (3.7)

(see, e.g., [4, Theorem 3.40]). Hence, by the Fubini theorem, it follows from (3.5) that

1

∫
0

hw dx =
1

∫
0

h
+∞

∫
−∞

φEt (x) dt dx

= −
0

∫
−∞

( ∫
(0,1)\Et

h dx)dt +
+∞

∫
0

(∫
Et

h dx)dt.

So, by (h
1
) and (3.7), we obtain

1

∫
0

hw dx ≤ κ(
0

∫
−∞

1

∫
0

|Dχ(0,1)\Et | dt +
+∞

∫
0

1

∫
0

|DχEt | dt)

= κ(
+∞

∫
−∞

1

∫
0

|DφEt | dx dt) = κ
1

∫
0

|Dw|.

Therefore, we infer

I(w) =
1

∫
0

√
1 + |Dw|2 −

1

∫
0

hw dx ≥
1

∫
0

|Dw| − κ
1

∫
0

|Dw| = (1 − κ)
1

∫
0

|Dw|,

which provides us with (3.4). This condition entails that IW is bounded from below and coercive. Since IW

is lower semicontinuous with respect to the L1-convergence inW, IW has a global minimizer u ∈W. As, for

every v ∈ BV(Ω), we have I(v) = IW(w), where w = v − ∫
1

0

v dx ∈W, we can conclude that u is a minimizer

of I in BV(0, 1). Therefore, it is a bounded variation solution of (3.1).

Step 3: If condition (h
1
) holds, then any bounded variation solution of (3.1) is a strong solution. Let u be

a bounded variation solution of (3.1), consider the decomposition u = ua + us and take ϕ = us as a test

function in (2.8). Then, proceeding exactly as in Step 1, we find

1

∫
0

|Dsu| =
1

∫
0

Dsu
|Dsu|

Dsu =
1

∫
0

hus dx ≤ κ
1

∫
0

|Dsu|,

which implies that Dsu = 0. Thus, we have u ∈ W1,1(0, 1) and, by Lemma 2.3, it is a weak solution of (3.1).

For each z ∈ (0, 1), integrating (2.6) in B = (0, z), and using (2.7) and (h
1
), we obtain

|ψ(u󸀠(z))| =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

z

∫
0

(ψ(u󸀠))󸀠 dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

∫
0

hχB dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ κ

1

∫
0

|DχB| = κ < 1.

This entails ‖ψ(u󸀠)‖∞ < 1 and hence, by Remark 2.2, it is clear that u is a strong solution of (3.1). This ends
the proof.
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The next result provides us with a very simple sufficient condition for (h
1
).

Lemma 3.4. Assume h ∈ L1(0, 1). Suppose that h satisfies ∫1
0

h dx = 0 and ‖h‖
1
< 1. Then (h

1
) holds.

Proof. Let us set κ = ‖h‖
1
< 1. Take any Caccioppoli set B ⊆ (0, 1). In case B = (0, 1), up to a set of measure

zero, we have ∫1
0

|DχB| = 0 and hence

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

∫
0

h dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0 = κ

1

∫
0

|DχB|.

Otherwise, from [4, Proposition 3.52], we infer that either ∫1
0

|DχB| ≥ 2, or, up to a set of measure zero,

B = [a, b] ⊆ [0, 1], with a = 0 or b = 1. In case ∫1
0

|DχB| ≥ 2, we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

∫
0

hχB dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ κ ≤ κ

1

∫
0

|DχB|.

In case either a = 0 and b < 1, or a > 0 and b = 1, we find ∫1
0

|DχB| = 1 and hence

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
B

h dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

∫
0

hχB dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

1

∫
0

|h| dx = κ = κ
1

∫
0

|DχB|.

Therefore, the inequality in (h
1
) is anyhow satisfied.

The following simple regularity result holds.

Corollary 3.5. Assume that h ∈ L1(0, 1). Suppose that ‖h‖
1
< 1. Then any bounded variation solution of (3.1)

is a strong solution.

Proof. Let u be a bounded variation solution of (3.1). From (3.3), taking ϕ = 1, we infer ∫1
0

h dx = 0. Hence,
by Lemma 3.4, h satisfies (h

1
). Step 3 in the proof of Proposition 3.3 yields the conclusion.

Wecango further in the studyof the regularity properties of theboundedvariation solutions of (3.1), by estab-

lishing that the only singularities that they can exhibit are jumps at the interior points where h changes sign.

Proposition 3.6. Assume h ∈ L1(0, 1). Let u be a bounded variation solution of (3.1).
(a) Let (α, β) ⊂ (0, 1) be an interval such that h(x) ≥ 0 a.e. in (α, β) (respectively, h(x) ≤ 0 a.e. in (α, β)). Then

u is concave (respectively, convex) in (α, β), and its restriction to (α, β) satisfies

u|(α,β) ∈ W2,1

loc

(α, β) ∩W1,1(α, β)

and

−(
u󸀠

√
1 + u󸀠2
)
󸀠

= h(x) a.e. in (α, β).

Moreover, u ∈ W2,1

loc

[0, β) and u󸀠(0) = 0 if α = 0, while u ∈ W2,1

loc

(α, 1] and u󸀠(1) = 0 if β = 1.
(b) Let (α, β), (β, γ) be any pair of adjacent subintervals of (0, 1) such that h(x) ≥ 0 a.e. in (α, β) and h(x) ≤ 0

a.e. in (β, γ) (respectively, h(x) ≤ 0 a.e. in (α, β) and h(x) ≥ 0 a.e. in (β, γ)). Then either u ∈ W2,1

loc

(α, γ), or

u(β−) ≥ u(β+) and u󸀠(β−) = −∞ = u󸀠(β+)

(respectively, u(β−) ≤ u(β+) and u󸀠(β−) = +∞ = u󸀠(β+)), where u󸀠(β−) and u󸀠(β+) are the left and the right
Dini derivatives of u at β, respectively.

Proof. Let u be a bounded variation solution of (3.1) and consider the decomposition

u = ua + uj + uc .

First, we prove part (a). Let (α, β) be an interval such that h(x) ≥ 0 a.e. in (α, β). The proof is divided into

three steps.
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Step 1: ua |(α,β) ∈ W2,1

loc

(α, β) and it is concave in (α, β). Set v = ua ∈ W1,1(0, 1). By Lemma 2.3, we already

know that ψ(v󸀠) ∈ W1,1(0, 1) and
− (ψ(v󸀠))󸀠 = h a.e. in (0, 1). (3.8)

As h(x) ≥ 0 a.e. in (α, β), it follows that ψ(v󸀠) is decreasing in (α, β). Since, in addition, ψ(v󸀠) is continuous
and v󸀠 ∈ L1(0, 1), we must have

|ψ(v󸀠(x))| < 1 for all x ∈ (α, β). (3.9)

This implies that

v󸀠|(α,β) = ψ
−1(ψ(v󸀠)|(α,β)) ∈ W1,1

loc

(α, β)

and it is decreasing in (α, β), i.e., v|(α,β) ∈ W2,1

loc

(α, β) and it is concave on (α, β).

Step 2: uj |(α,β) = 0. Assume that there exists a jump point z ∈ (α, β) of u. Set

ϕ(x) = H(z − x) in (0, 1),

where H stands for the Heaviside function. Clearly, we have

Dϕ = Dϕs = −δz ,

where δz is the Dirac measure concentrated at z. Since |Dϕs| = δz is absolutely continuous with respect

to |Dus| and its unique atom is z, it follows from (3.3) that

z

∫
0

h dx =
1

∫
0

hϕ dx =
1

∫
0

Dus

|Dus|
Dϕs = −

1

∫
0

Dus

|Dus|
δz = −

1

∫
0

Dus

|Dus|
(z) δz = −

Dus

|Dus|
(z).

On the other hand, by the polar decomposition of measures (see, e.g., [4, Corollary 1.29]), we have

Dus

|Dus|
(x) ∈ {−1, 1} for all x ∈ (0, 1).

Thus, we see that ∫z
0

h dx ∈ {−1, 1}. Hence, integrating (3.8) in (0, z) yields

−ψ(v󸀠(z)) =
z

∫
0

h dx ∈ {−1, 1},

which contradicts (3.9). Therefore, we conclude that uj = 0 on (α, β).

Step 3: uc |(α,β) = 0. From the two previous steps, we already know that u = ua + uc in (α, β). In particular,

u can be extended by continuity onto [α, β]. Let us prove that u is concave in [α, β]. On the contrary, assume

that there exists an interval [γ, δ] ⊆ [α, β] such that

u(x) < u(γ) + u(δ) − u(γ)
δ − γ

(x − γ) in (γ, δ).

Let us define v ∈ BV(0, 1) by setting

v(x) =
{
{
{

u(γ) + u(δ)−u(γ)δ−γ (x − γ) in [γ, δ],
u(x) elsewhere.

It is clear that

1

∫
0

√
1 + |Dv|2 <

1

∫
0

√
1 + |Du|2

and, since v(x) > u(x) in (γ, δ),
1

∫
0

hv dx ≥
1

∫
0

hu dx.
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Thus, we get

1

∫
0

√
1 + |Dv|2 −

1

∫
0

hv dx <
1

∫
0

√
1 + |Du|2 −

1

∫
0

hu dx,

which contradicts the fact that u is a global minimizer of the functional

I(v) =
1

∫
0

√
1 + |Dv|2 −

1

∫
0

hv dx.

Therefore, u being concave in (α, β), it is locally Lipschitz in (α, β) and hence, uc |(α,β) = 0. As we have just
proved that u = ua in (α, β), the conclusions follow from Step 1 and Lemma 2.3.

Next we prove part (b). Let (α, β), (β, γ) be a pair of adjacent subintervals of (0, 1) such that h(x) ≥ 0 a.e.
in (α, β) and h(x) ≤ 0 a.e. in (β, γ). Set v = ua ∈ W1,1(0, 1). As v is concave in (α, β) and convex in (β, γ), two
possibilitiesmay occur: eitherψ(v󸀠(β)) ∈ (−1, 1), orψ(v󸀠(β)) = −1. In the former case, by the proof of part (a),

we have that

|ψ(v󸀠)(x)| < 1 for all x ∈ (α, γ)

and hence v|(α,γ) ∈ W2,1

loc

(α, γ). In the latter case, either u is continuous at β, or β is a jump point. Let us show

that u(β−) ≥ u(β+). Indeed, like in Step 2, we set ϕ(x) = H(β − x) in (0, 1), where H is the Heaviside function.

We have that Dϕ = −δβ, where δβ is the Dirac measure concentrated at β. Thus, it follows from (3.3) that

−
Dus

|Dus|
(β) = −

1

∫
0

Dus

|Dus|
(β) δβ =

β

∫
0

h dx.

On the other hand, integrating (3.8) in (0, β), we find

1 = −ψ(v󸀠(β)) =
β

∫
0

h dx.

Therefore, we conclude that

Dus
|Dus | (β) = −1 and thus both

u(β−) ≥ u(β+) and u󸀠(β−) = −∞ = u󸀠(β+),

which ends the proof.

Hence we get the following result; hereafter by SBV(0, 1) we mean the space of all special functions of

bounded variation, that is, of all bounded variation functions with vanishing Cantor part, as discussed

in [4, Chapter 4].

Corollary 3.7. Assume h ∈ L1(0, 1) and
(h

2
) there exists a decomposition

[0, 1] =
k
⋃
i=1
[αi , βi], with αi < βi = αi+1 < βi+1 for i = 1, . . . , k − 1,

such that either
(−1)ih(x) ≥ 0 a.e. in (αi , βi) for i = 1, . . . , k,

or
(−1)ih(x) ≤ 0 a.e. in (αi , βi) for i = 1, . . . , k.

Let u be a bounded variation solution of (3.1). Then u ∈ SBV(0, 1), i.e., u is a special function of bounded
variation, whose jumps may occur at the points αi, with i ∈ {2, . . . , k}, at most. In addition, all conclusions of
Proposition 3.6 hold on each interval, as well as on each pair of adjacent intervals of the decomposition.

The following uniqueness/non-uniqueness result can be of interest.
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Lemma 3.8. Problem (3.1) has at most one weak solution u such that
1

∫
0

u dx = 0. (3.10)

Moreover, if u is a bounded variation solution with us ̸= 0, then ua + tus is a bounded variation solution of (3.1)
for any t ∈ [0, 1].

Proof. Suppose ∫1
0

h dx = 0 and u
1
, u

2
are weak solutions of (3.1) such that

1

∫
0

u
1
dx =

1

∫
0

u
2
dx = 0. (3.11)

As, for every ϕ ∈ W1,1(0, 1),

1

∫
0

ψ(u󸀠
1

(x))ϕ󸀠(x) dx =
1

∫
0

h(x)ϕ(x) dx =
1

∫
0

ψ(u󸀠
2

(x))ϕ󸀠(x) dx,

we have ψ(u󸀠
1

) = ψ(u󸀠
2

) a.e. in (0, 1) and hence u󸀠
1

= u󸀠
2

a.e. in (0, 1). So, u
1
= u

2
+ C for some constant C and,

due to (3.11), C = 0, which implies u
1
= u

2
and shows the uniqueness of the weak solution.

By Lemma 2.2, the bounded variation solutions of (3.1) are the global minimizers in BV(0, 1) of the
convex functional

I(v) =
1

∫
0

√
1 + |Dv|2 −

1

∫
0

h(x)v dx.

If u = ua + us, us ̸= 0, is a global minimizer, by Lemma 2.3, ua must be another global minimizer. Thus, by

convexity, we find that for every t ∈ [0, 1] and v ∈ BV(0, 1),

I(tu + (1 − t)ua) ≤ tI(u) + (1 − t)I(ua) ≤ tI(v) + (1 − t)I(v) = I(v).

Therefore, tu+(1− t)ua = ua + tus provides us with a bounded variation solution of (3.1) for all t ∈ [0, 1].

Remark 3.1. It is easy to exhibit functions h with ∫1
0

h dx = 0, like, e.g., h(x) = 1

2

sign(x − 1

2

), for which prob-
lem (3.1) admits two, and therefore infinitely many, bounded variation solutions, which can all be taken to

satisfy (3.10) as well.

4 Fixed Point Reformulation
We start introducing the following assumption (the functions satisfying such conditions will be used in the

sequel to define a class of suitable auxiliary problems):

(k
1
) k : ℝ → ℝ is a function of class C1, strictly increasing and odd, which satisfies k󸀠(0) = 1 and, for

some p ≥ 2,

lim

|s|→+∞

k󸀠(s)
|s|p−2
= 1. (4.1)

The following conclusions are elementary.

Lemma 4.1. Assume (k
1
). Then there exist constants μ, ν > 0 such that, for all s ∈ ℝ,

|k󸀠(s)| ≤ μ(|s|p−2 + 1), (4.2)

|k(s)| ≤ μ(|s|p−1 + 1), (4.3)

ν|s| ≤ k(s) sign(s), (4.4)

νs2 ≤ K(s) ≤ μ(|s|p + 1), (4.5)

where K(s) = ∫s
0

k(t) dt is the potential of k.
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Proof. By (4.1), for every μ > 1 there exists s
0
> 0 such that

|k󸀠(s)| ≤ μ|s|p−2 if |s| ≥ s
0

and hence, for all s ∈ ℝ,
|k󸀠(s)| ≤ μ|s|p−2 +max

|s|≤s
0

|k󸀠(s)|.

Thus, possibly taking a larger μ, we conclude that estimate (4.2) holds true for all s ∈ ℝ.
Next, pick s > 0. Integrating (4.2) and using k(0) = 0 yield

−
μ

p − 1
sp−1 − μs ≤ k(s) ≤ μ

p − 1
sp−1 + μs.

Hence, as the function k is odd, we get, for all s ∈ ℝ,

|k(s)| ≤ μ
p − 1
|s|p−1 + μ|s|.

Since p ≥ 2, possibly taking a taking a larger μ, we conclude that also estimate (4.3) holds true for all s ∈ ℝ.
As k󸀠(0) = 1, for every ν ∈ (0, 1) there exists s

0
> 0 such that

k󸀠(s) ≥ ν if |s| ≤ s
0
.

Integrating this inequality and using k(0) = 0, we obtain

k(s) ≥ νs if 0 < s ≤ s
0

and hence, as k is odd,
k(s) sign(s) ≥ ν|s| if |s| ≤ s

0
.

On the other hand, by (4.1), there exists s
1
≥ 1 such that

k󸀠(s) ≥ ν|s|p−2 ≥ ν if |s| ≥ s
1
,

because p ≥ 2. Integrating this inequality yields

k(s) ≥ νs + k(s
1
) − νs

1
if s ≥ s

1
.

As k(s
1
) > 0, we can reduce ν > 0 in such a way that

k(s) ≥ νs if s ≥ s
1

and hence, as k is odd,
k(s) sign(s) ≥ ν|s| if |s| ≥ s

1
.

Since k is increasing, possibly further reducing ν > 0, we conclude that estimate (4.4) holds true for all s ∈ ℝ.
The lower estimate in (4.5) follows from (4.4) by integration. Whereas, the upper estimate can be

obtained arguing as done for deriving (4.3) from (4.2).

Next we introduce the following auxiliary problem.

Proposition 4.2. Fix p ≥ 2, set q = p
p−1 , and assume (k1). Then, for each h ∈ L

q(0, 1), the problem

{{{
{{{
{

−(
u󸀠

√
1 + u󸀠2
)
󸀠

+ k(u) = h(x) in (0, 1),

u󸀠(0) = 0, u󸀠(1) = 0,
(4.6)

has a unique bounded variation solution.

Proof. Let us endow BV(0, 1) with the norm

‖v‖
BV
= ‖v‖p +

1

∫
0

|Dv|,
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and consider the functional J : BV(0, 1) → ℝ defined by

J(v) =
1

∫
0

√
1 + |Dv|2 +

1

∫
0

K(v) −
1

∫
0

hv dx.

The proof will be divided into three steps.

Step 1: J is lower semicontinuous with respect to the Lp-convergence in BV(0, 1). Indeed, take a sequence

(vn)n in BV(0, 1) and v ∈ BV(0, 1) such that

lim

n→+∞
vn = v in Lp(0, 1).

Owing to the upper estimate in (4.5), we infer from [26, Theorem 2.8] that

lim

n→+∞

1

∫
0

(K(vn) − hvn) dx =
1

∫
0

(K(v) − hv) dx.

Moreover, by Remark 2.4, we have

lim inf

n→+∞

1

∫
0

√
1 + |Dvn|2 ≥

1

∫
0

√
1 + |Dv|2.

Thus, we get

lim inf

n→+∞
J(vn) ≥ J(v),

which ends the proof of Step 1.

Step 2: J is coercive and bounded from below in BV(0, 1). By the upper estimate in (4.5), there are constants

c
1
, c

2
> 0 such that, for every v ∈ BV(0, 1),

J(v) ≥
1

∫
0

|Dv| + c
1
‖v‖pp − ‖h‖q‖v‖p − c2. (4.7)

On the other hand, there exists a constant c
3
> 0 such that

c
1
|s|p − ‖h‖q|s| − c2 ≥ c1|s| − c3 for all s ∈ ℝ

and thus

J(v) ≥
1

∫
0

|Dv| + c
1
‖v‖p − c3 ≥ min{1, c

1
}‖v‖

BV
− c

3
.

Therefore, J is coercive and bounded from below in BV(0, 1).

Step 3: Problem (4.6) has a unique bounded variation solution. From Steps 1 and 2 we conclude that J has

a global minimizer u ∈ BV(0, 1), which is a bounded variation solution of (4.6). In order to prove it is unique,
suppose that u

1
, u

2
are bounded variation solutions of (4.6). From (2.10) we get

1

∫
0

√
1 + |Du

1
|2 −

1

∫
0

√
1 + |Du

2
|2 ≥

1

∫
0

(h − k(u
2
))(u

1
− u

2
) dx

and

1

∫
0

√
1 + |Du

2
|2 −

1

∫
0

√
1 + |Du

1
|2 ≥

1

∫
0

(h − k(u
1
))(u

2
− u

1
) dx.

Summing up we obtain

0 ≥
1

∫
0

(k(u
1
) − k(u

2
))(u

1
− u

2
) dx.

The strict monotonicity of the function k yields u
1
= u

2
.
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Subsequently, we denote by P : Lq(0, 1) → Lp(0, 1), with p ≥ 2 and q = p
p−1 , the operator sending any func-

tion h ∈ Lq(0, 1) onto the unique bounded variation solution u = Ph of (4.6). Note that P(0) = 0.

Proposition 4.3. Fix p ≥ 2, set q = p
p−1 , and assume (k

1
). Then the operator P : Lq(0, 1) → Lp(0, 1) is com-

pletely continuous.

Proof. This proof is divided into two steps.

Step 1: P is compact. Let (hn)n be a bounded sequence in Lq(0, 1) and, for every n ≥ 1, set un = Phn. Since
un is the global minimizer of the functional Jn : BV(0, 1) → ℝ defined by

Jn(v) =
1

∫
0

√
1 + |Dv|2 +

1

∫
0

K(v) −
1

∫
0

hnv dx,

we have that Jn(un) ≤ Jn(0) = 1. Thus, it follows from (4.7) that

1

∫
0

|Dun| + c1‖un‖
p
p − ‖hn‖q‖un‖p − c2 ≤ J(un) ≤ 1.

Therefore, the boundedness in Lq(0, 1) of (hn)n implies the boundedness in BV(0, 1) of (un)n. The compact

embedding of BV(0, 1) into Lp(0, 1) yields the conclusion.

Step 2:P is continuous. Let (hn)n be a sequence converging in Lq(0, 1) to some h ∈ Lq(0, 1) and set un = Phn.
Pick any subsequence (hnk )k of (hn)n. Theboundedness of (hn)n in Lq(0, 1) and the compactness ofP yield the

existence of a further subsequence (hnkj )j of (hnk )k such that (unkj )j converges in L
p(0, 1) to some u ∈ Lp(0, 1).

As in the previous step, the following estimate holds:

1

∫
0

|Dunkj | + c1‖unkj ‖
p
p − ‖hnkj ‖q‖unkj ‖p − c2 ≤ J(unkj ) ≤ 1

and it implies that (unkj )j is bounded in BV(0, 1). Thus, by [4, Theorem 3.23], u ∈ BV(0, 1). Moreover, as J is
lower semicontinuous with respect to the Lp-convergence in BV(0, 1), we find

J(u) =
1

∫
0

√
1 + |Du|2 +

1

∫
0

K(u) −
1

∫
0

hu dx

≤ lim inf

j→+∞

1

∫
0

√1 + |Dunkj |
2 + lim

j→+∞

1

∫
0

K(unkj ) − lim

j→+∞

1

∫
0

hnkj unkj dx

= lim inf

j→+∞
(

1

∫
0

√1 + |Dunkj |
2 +

1

∫
0

K(unkj ) −
1

∫
0

hnkj unkj dx).

Therefore, since, by construction, unkj provides uswith the globalminimizer in BV(0, 1) of the functional Jnkj ,
it becomes apparent that, for every v ∈ BV(0, 1),

J(u) ≤ lim inf

j→+∞
(

1

∫
0

√
1 + |Dv|2 +

1

∫
0

K(v) −
1

∫
0

hnkj v dx)

=
1

∫
0

√
1 + |Dv|2 +

1

∫
0

K(v) −
1

∫
0

hv dx = J(v).

Consequently, u is the unique bounded variation solution of (4.6), that is, u = P(h). Since u does not depend
on the sequence (unkj )j, we conclude that the whole sequence (un)n converges to u in Lp(0, 1). This ends
the proof.
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Fix p, q ≥ 1 and denote by P
1
: Lq(0, 1) → Lp(0, 1) the linear operator which sends any function h onto the

unique solution u = P
1
h ∈ W2,q(0, 1) of the linear problem

{
{
{

−u󸀠󸀠 + u = h(x) in (0, 1),

u󸀠(0) = 0, u󸀠(1) = 0.

The compact imbedding ofW2,q(0, 1) into Lp(0, 1) implies that P
1
is a compact linear operator.

Proposition 4.4. Fix p ≥ 2, set q = p
p−1 , and assume (k1). Then the operator P : Lq(0, 1) → Lp(0, 1) is Fréchet

differentiable at 0, with derivative P󸀠(0) = P
1
.

Proof. We aim to show that, for any sequence (hn)n, with hn → 0 in Lq(0, 1),

‖hn‖−1q (P(hn) − P(0) − P1
(hn)) → 0 in Lp(0, 1) as n → +∞.

Since P(0) = 0, this amounts to prove that, for any sequence (vn)n in Lq(0, 1), with ‖vn‖q = 1, and for any

sequence (sn)n in (0, +∞), with sn → 0, there holds

s−1n P(snvn) − P1
(vn) → 0 in Lp(0, 1) as n → +∞. (4.8)

It suffices to establish that, for all subsequences (vnk )k of (vn)n and (snk )k of (sn)n, we can find further subse-
quences (vnkj )j of (vnk )k and (snkj )j of (snk )k such that

s−1nkjP(snkj vnkj ) − P1
(vnkj ) → 0 in Lp(0, 1) as j → +∞. (4.9)

Let (vnk )k be a subsequence of (vn)n and let (snk )k be a subsequence of (sn)n. Since (vnk )k is bounded
in Lq(0, 1), there exist a subsequence (vnkj )j of (vnk )k and v ∈ L

q(0, 1) such that vnkj → v weakly in Lq(0, 1).
Let (snkj )j be the corresponding subsequence of (snk )k. In there sequel, for convenience, we simply write vj
for vnkj and sj for snkj .

By the continuity of P
1
, we have that P

1
(vj) → P

1
(v) weakly in Lp(0, 1). Moreover, since P

1
is compact

and (vj)j is bounded in Lq(0, 1), (P
1
(vj))j is relatively compact in Lp(0, 1). Thus, along some subsequence,

relabeled by j, we have that P
1
(vj) → w in Lp(0, 1) for some w ∈ Lp(0, 1). Necessarily, by the uniqueness of

the limit, w = P
1
(v) and hence

P
1
(vj) → P

1
(v) in Lp(0, 1) as j → +∞.

Consequently, (4.9) reduces to establishing

s−1j P(sjvj) → P
1
(v) in Lp(0, 1) as j → +∞. (4.10)

Setting, for all j ≥ 1,
uj = s−1j P(sjvj),

it is clear that sjuj = P(sjvj) ∈ BV(0, 1) is the unique bounded variation solution of

{{{
{{{
{

−(
u󸀠

√
1 + u󸀠2
)
󸀠

+ k(u) = sjvj in (0, 1),

u󸀠(0) = 0, u󸀠(1) = 0.
(4.11)

Since sjvj → 0 in Lq(0, 1), the continuity of P implies that

sjuj = P(sjvj) → 0 in Lp(0, 1) as j → +∞.

According to estimate (4.3), it follows from [26, Theorem 2.3] that

k(sjuj) → 0 in Lq(0, 1) as j → +∞

and hence

sjvj − k(sjuj) → 0 in Lq(0, 1) as j → +∞. (4.12)

Therefore, as q > 1, Corollary 3.5 implies that sjuj is a strong solution of (4.11) for all large j.



456 | J. López-Gómez and P. Omari, Global Components of Positive Bounded Variation Solutions

Next, we show that (uj)j is bounded inW1,1(0, 1). Fix any x ∈ (0, 1]. Integrating over (0, x) the equation
in (4.11) yields

−ψ(sju󸀠j (x)) =
−sju󸀠j (x)

√1 + s2j u
󸀠
j (x)

2

=
x

∫
0

(sjvj − k(sjuj)) dx, (4.13)

the function ψ being defined in (2.2). Thus, as ψ is odd and increasing, we get from (4.12)

ψ(‖sju󸀠j‖∞) = ‖ψ(sju
󸀠
j )‖∞ ≤ ‖sjvj − k(sjuj)‖1 → 0 as j → +∞

and hence

‖sju󸀠j‖∞ → 0 as j → +∞. (4.14)

Multiplying the differential equation in (4.11) by sjuj and integrating in (0, 1), we find

1

∫
0

s2j u
󸀠
j
2

√1 + s2j u
󸀠
j
2

dx +
1

∫
0

k(sjuj)sjuj dx =
1

∫
0

s2j vjuj dx. (4.15)

Wewant to estimate the three terms in (4.15). As the function q(ξ) = ξ2(1 + ξ2)− 12 is convex if |ξ| < √2, thanks
to (4.14), the Jensen inequality applies, for all large j, and yields

s2j ‖u
󸀠
j‖
2

1

√1 + s2j ‖u
󸀠
j‖
2

1

≤
1

∫
0

s2j u
󸀠
j
2

√1 + s2j u
󸀠
j
2

dx. (4.16)

Condition (4.4) implies in particular that, for all j ≥ 1,

1

∫
0

k(sjuj)sjuj dx ≥ 0. (4.17)

By the Hölder inequality, we have

1

∫
0

s2j vjuj dx ≤ s
2

j ‖vj‖q‖uj‖p = s
2

j ‖uj‖p , (4.18)

because, by construction, ‖vj‖q = 1. Thus, substituting (4.16), (4.17) and (4.18) in (4.15) and dividing by s2j ,
we conclude that, for all large j,

‖u󸀠j‖
2

1

√1 + s2j ‖u
󸀠
j‖
2

1

≤ ‖uj‖p . (4.19)

Since by (4.14)

‖sju󸀠j‖1 → 0 as j → +∞,

from (4.19) we infer, for all large j,
‖u󸀠j‖

2

1

≤ √2‖uj‖p . (4.20)

Let us set, for every j ≥ 1,

rj =
1

∫
0

uj dx and wj = uj − rj .

From (4.20), using the Poincaré–Wirtinger inequality (see, e.g., [13, page 233])

‖wj‖p ≤ ‖w󸀠j‖1 = ‖u
󸀠
j‖1, (4.21)

we obtain, for all large j,

‖u󸀠j‖
2

1

≤ √2(‖wj‖1 + |rj|) ≤ √2(‖w󸀠j‖1 + |rj|) = √2(‖u
󸀠
j‖1 + |rj|).
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Hence, for any given ε ∈ (0, 1), there is cε > 0 such that

‖u󸀠j‖1 ≤ ε|rj| + cε for all j ≥ 1. (4.22)

Therefore, for proving that (uj)j is bounded in W1,1(0, 1), thanks to the Poincaré inequality (4.21), we only
need to show that the sequence (rj)j is bounded. The proof of this fact proceeds by contradiction. Thus,

suppose that some subsequence of (rj)j, still labeled by j, satisfies

lim

j→+∞
rj = +∞; (4.23)

the argument is similar in case

lim

j→+∞
rj = −∞.

Then, by (4.22), we have, for all large j,

uj(x) = rj + wj(x) ≥ rj − ‖wj‖∞ ≥ rj − ‖w󸀠j‖1 = rj − ‖u
󸀠
j‖1 ≥ (1 − ε)rj

and hence, it follows from (4.23) that

lim

j→+∞
uj(x) = +∞ uniformly in [0, 1].

Integrating in [0, 1] the differential equation in (4.11) yields

1 = ‖vj‖q ≥
1

∫
0

vj dx =
1

∫
0

(sjuj)−1k(sjuj)uj dx.

Thus, owing to estimate (4.4), we find that

1 ≥ ν
1

∫
0

uj dx → +∞ as j → +∞,

which is a contradiction. Therefore, we conclude that (uj)j is bounded inW1,1(0, 1), as claimed above.

From [4, Proposition 3.13, Theorem 3.23], we infer the existence of u ∈ BV(0, 1) such that, possibly

passing to a subsequence, uj → u in L1(0, 1) and u󸀠j → Du weakly* in the sense of measures, i.e.,

lim

j→+∞

1

∫
0

ϕ u󸀠j dx =
1

∫
0

ϕ Du for all ϕ ∈ C0[0, 1] with ϕ(0) = ϕ(1) = 0. (4.24)

Dividing identity (4.13) by sj yields

u󸀠j (x)

√1 + s2j u
󸀠
j (x)

2

=
x

∫
0

(s−1j k(sjuj) − vj) dx

for all x ∈ [0, 1] and j ≥ 1. Since sj‖uj‖∞ → 0 as j → +∞, the conditions k(0) = 0 and k󸀠(0) = 1 imply that

(sjuj(x))−1k(sjuj(x)) → 1 uniformly in [0, 1] as j → +∞ (4.25)

and hence

1

∫
0

󵄨󵄨󵄨󵄨(sj‖uj‖∞)
−1k(sjuj)󵄨󵄨󵄨󵄨 dx ≤

1

∫
0

󵄨󵄨󵄨󵄨(sjuj)
−1k(sjuj)󵄨󵄨󵄨󵄨 dx ≤ 2

for all large j. This estimate, together with the fact that ‖vj‖q = 1, finally yields the existence of a constant
C > 0 such that

|u󸀠j (x)| ≤ C√1 + s
2

j u
󸀠
j (x)

2
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for all x ∈ [0, 1] and all large j. As sj → 0, we can conclude that (u󸀠j )j is bounded in L∞(0, 1). Therefore,
possibly passing to a further subsequence, still denoted by (uj)j, there exists z ∈ L∞(0, 1) such that u󸀠j → z
weakly* in L∞(0, 1), i.e.,

lim

j→+∞

1

∫
0

ϕu󸀠j dx =
1

∫
0

ϕz dx for all ϕ ∈ L1(0, 1).

According to (4.24), this implies that Du = z dx and thus u ∈ W1,∞(0, 1).
Pick any ϕ ∈ W1,1(0, 1) and observe that

ϕ󸀠

√1 + s2j u
󸀠
j
2

→ ϕ󸀠 in L1(0, 1) as j → +∞. (4.26)

Note that, according to the weak formulation of (4.10), we have that

1

∫
0

u󸀠j
ϕ󸀠

√1 + s2j u
󸀠
j
2

dx =
1

∫
0

(−s−1j k(sjuj) + vj)ϕ dx.

Thus, letting j → +∞ in this identity and using the boundedness of (u󸀠j )j in L
∞(0, 1), we infer from (4.25)

and (4.26) that

1

∫
0

u󸀠ϕ󸀠 dx =
1

∫
0

(−u + v)ϕ dx.

In other words, u is the unique solution of

{
{
{

−u󸀠󸀠 + u = v(x) in (0, 1),

u󸀠(0) = 0, u󸀠(1) = 0,

or, equivalently, u = P
1
(v). Finally, the compact embedding ofW1,1(0, 1) into Lp(0, 1) allows us to conclude

that, possibly along some subsequence,

uj = s−1j P(sjvj) → P
1
(v) in Lp(0, 1) as j → +∞.

Therefore, (4.10), and hence (4.8), is proven and the proof completed.

Hereafter, we suppose that

(h
3
) h : (0, 1)×ℝ→ℝ is a Carathéodory function, having a Carathéodory partial derivative ∂h

∂s : (0, 1)×ℝ→ℝ,
such that there exist constants r > 1, a > 0 and a function b ∈ L r+1

r−1 (0, 1), for which h( ⋅ , 0) ∈ L r+1
r (0, 1)

and 󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∂h
∂s
(x, s)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ a|s|r−1 + b(x) for a.e. x ∈ (0, 1) and every s ∈ ℝ. (4.27)

Remark 4.1. Integrating (4.27) and using assumption (h
3
), we see that h satisfies, for a.e. x ∈ (0, 1) and

every s ∈ ℝ,
|h(x, s)| ≤ a

r
|s|r + |b(x)||s| + |h(x, 0)|.

As the Young inequality implies that

|b(x)||s| ≤ 1
r
|s|r + r − 1

r
|b(x)|

r
r−1
,

we conclude that

|h(x, s)| ≤ a + 1
r
|s|r + r − 1

r
|b(x)|

r
r−1 + |h(x, 0)| for a.e. x ∈ (0, 1) and every s ∈ ℝ,

where

r−1
r |b|

r
r−1 + |h( ⋅ , 0)| ∈ L r+1

r (0, 1).

Set p = r + 1 and let k be a function satisfying (k
1
). Let S denote the operator defined by

S(u) = k(u) + h( ⋅ , u)

for u ∈ Lp(0, 1). Then the following result holds (see, e.g., [26, Chapter 2]).
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Proposition 4.5. Assume (k
1
) and (h

3
). Then the operator S maps Lp(0, 1) into Lq(0, 1), with q = p

p−1 , is con-
tinuous, and maps bounded sets into bounded sets. Moreover, it is continuously Fréchet differentiable, with
derivative

S󸀠 : Lp(0, 1) → L(Lp(0, 1), Lq(0, 1))

defined by

S󸀠(u)[v] = k󸀠(u)v + ∂h
∂s
( ⋅ , u)v for all u, v ∈ Lp(0, 1).

By Propositions 4.3 and 4.5, the operator

M = PS : Lp(0, 1) → Lp(0, 1)

is well defined.Moreover, by construction, the fixed points ofM are precisely the bounded variation solutions

of (2.1). Combining Propositions 4.3 and 4.5 yields the following result.

Proposition 4.6. Assume (k
1
) and (h

3
). Then the operatorM : Lp → Lp is completely continuous and Fréchet

differentiable at 0, with derivativeM󸀠(0) = P
1
S󸀠(0), that is,

M󸀠(0)[v] = P
1
(v + ∂h∂s

( ⋅ , 0)v) for all v ∈ Lp(0, 1).

For our purposes in the next section, it should be noted that, assuming

(a
1
) a ∈ L∞(0, 1) satisfies ∫1

0

a dx < 0 and a(x) > 0 a.e. on a set of positive measure,

the eigenvalue problem

{
−u󸀠󸀠 = λa(x)u in (0, 1),

u󸀠(0) = u󸀠(1) = 0,
(4.28)

has a discrete spectrum Σ, with exactly two principal eigenvalues: λ = 0, with principal eigenfunction 1, and
λ = λ

0
> 0, with principal eigenfunction φ

0
≫ 0, normalized so that ‖φ

0
‖p = 1, for some p ≥ 1. A proof of

these statements is given in [14]) (see also [43, Section 2]).

5 Global Bifurcation
In this section we analyze the topological structure of the set of the positive solutions of (1.1). A pair (λ, u) is
said to be a positive (resp. strictly positive) solution of (1.1) if u is a positive (resp. strictly positive) solution
of (1.1) for some λ > 0. Of course, in each of these cases, u can be either a strong, or a weak, or a bounded

variation solution of (1.1); accordingly, (λ, u) is also referred to as a strong, or a weak, or a bounded variation
solution of (1.1).

Throughout this section, we assume that

(f
1
) f ∈ C1(ℝ) satisfies f(0) = 0, f 󸀠(0) = 1, f(s)s > 0 for s ̸= 0, and, for some constants p > 2 and κ > 0,

|f 󸀠(s)| ≤ κ(|s|p−2 + 1) for all s ∈ ℝ.

The Functional Setting

Assume (f
1
) and set r = p − 1 > 1. Let k be any function satisfying (k

1
) for such p, and consider the operator

N : ℝ × Lp(0, 1) → Lp(0, 1) given by

N(λ, u) = P(k(u) + λaf(u)) − u,

where P is defined in Section 4. Thus, (λ, u) is a bounded variation solution of (1.1) if and only if

N(λ, u) = 0. (5.1)
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Setting h = λaf and using the notations introduced in the last part of Section 4, we have

N =M − I = PS − I.

Here and in the sequel I stands for the identity operator in the space under consideration. From Propo-

sitions 4.3, 4.4 and 4.6 it becomes apparent that I +N =M is completely continuous and that it can be

expressed in the form

N(λ, u) = L(λ)u + R(λ, u), (5.2)

where

L(λ) = DuN(λ, 0) = P1
((1 + λa)I) − I, (5.3)

because k󸀠(0) = f 󸀠(0) = 1. Here, DuN(λ, 0) stands for the Fréchet derivative of N(λ, u), with respect to u,
at u = 0. Of course,

R(λ, ⋅ ) = N(λ, ⋅ ) − L(λ) (5.4)

is a family of compact operators, continuously depending on λ, such that

lim

‖u‖p→0

‖R(λ, u)‖p
‖u‖p

= 0 uniformly in λ ∈ J, (5.5)

for any compact subinterval J of ℝ. Since L(λ) is a compact perturbation of the identity, it is a Fredholm

operator of index zero.

Hereafter, for any given linear operator T, we denote by N[T] the null space of T, and by R[T] the range
of T. The partial differentiation ∂

∂λ , with respect to λ, will be simply indicated by

󸀠
. The next result provides us

with some fundamental properties ofL(λ) at λ
0
, the positive principal eigenvalue of the weighted eigenvalue

problem (4.28).

Proposition 5.1. Under assumption (a
1
), the following properties hold:

(a) N[L(λ
0
)] = span[φ

0
],

(b) N[L(λ
0
)] ⊕ R[L(λ

0
)] = Lp(0, 1),

(c) L󸀠(λ
0
)(N[L(λ

0
)]) ⊕ R[L(λ

0
)] = Lp(0, 1).

Proof. Part (a) follows from the fact that L(λ
0
)φ = 0 if and only if

P
1
((1 + λ

0
a)φ) = φ,

that is, φ satisfies (4.28) for λ = λ
0
. Since L(λ

0
) is a Fredholm operator of index zero, it follows from part (a)

that

codim R[L(λ
0
)] = 1. (5.6)

Hence, in order to prove part (b) it suffices to show that φ
0
∉ R[L(λ

0
)]. On the contrary, assume that

φ
0
∈ R[L(λ

0
)]. Then there is u ∈ Lp(0, 1) such that

u − P
1
((1 + λ

0
a)u) = φ

0
,

i.e.,

P
1
((1 + λ

0
a)u) = u − φ

0
.

This equation is equivalent to the problem

{
{
{

−(u − φ
0
)󸀠󸀠 + (u − φ

0
) = u + λ

0
au in (0, 1),

u󸀠(0) = u󸀠(1) = 0,

that is, by rearranging terms,

{
{
{

−u󸀠󸀠 − λ
0
au = −φ󸀠󸀠

0

+ φ
0

in (0, 1),

u󸀠(0) = u󸀠(1) = 0.
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Multiplying the differential equation by φ
0
, integrating by parts and taking into account (4.28) with λ = λ

0
,

we find

0 =
1

∫
0

(−u󸀠󸀠 − λ
0
au)φ

0
dx =

1

∫
0

(−φ󸀠󸀠
0

+ φ
0
)φ

0
dx =

1

∫
0

((φ󸀠
0

)2 + φ
0

2) dx > 0.

This contradiction ends the proof of part (b).

Similarly, by (5.6), in order to prove part (c), it suffices to show that

L󸀠(λ
0
)φ

0
∉ R[L(λ

0
)].

Suppose, on the contrary, that L󸀠(λ
0
)(φ

0
) ∈ R[L(λ

0
)]. Then, differentiating (5.3) with respect to λ yields

L󸀠(λ
0
) = P

1
(aI)

and hence, there exists u ∈ Lp(0, 1) such that

L(λ
0
)u = P

1
((1 + λ

0
a)u) − u = λ

0
L󸀠(λ

0
)φ

0
= P

1
(λ

0
aφ

0
)

and thus

P
1
(u + λ

0
au − λ

0
aφ

0
) = u.

Therefore, u satisfies
{
{
{

−u󸀠󸀠 − λ
0
au = −λ

0
aφ

0
in (0, 1),

u󸀠(0) = u󸀠(1) = 0.

Multiplying the differential equation by φ
0
and integrating by parts, it follows from (4.28) that

0 =
1

∫
0

(−u󸀠󸀠 − λ
0
au)φ

0
dx = −

1

∫
0

λ
0
aφ2

0

dx =
1

∫
0

φ󸀠󸀠
0

φ
0
= −

1

∫
0

(φ󸀠
0

)2 dx < 0,

which is impossible. This completes the proof of part (c).

Similarly, the next result holds.

Proposition 5.2. Under assumption (a
1
), the following properties hold:

(a) N[L(0)] = span[1],
(b) N[L(0)] ⊕ R[L(0)] = Lp(0, 1),
(c) L󸀠(0)(N[L(0)]) ⊕ R[L(0)] = Lp(0, 1).

Proof. By (5.3), we see thatL(0)φ = 0 if and only ifP
1
(φ) = φ, that is, φ satisfies (4.28) for λ = 0. Hence, φ is

a constant, thus proving part (a). Moreover, since L(0) is a Fredholm operator of index zero, we have that

codim R[L(0)] = 1. (5.7)

In order to prove part (b), it suffices to show that 1 ∉ R[L(0)]. On the contrary, assume that there exists

u ∈ Lp(0, 1) such that L(0)u = 1. Then, by (5.3), we have P
1
(u) = u + 1, i.e.,

{
{
{

−(u + 1)󸀠󸀠 + (u + 1) = u in (0, 1)

u󸀠(0) = u󸀠(1) = 0.

Rearranging terms we get

{
{
{

−u󸀠󸀠 + 1 = 0 in (0, 1)

u󸀠(0) = u󸀠(1) = 0,

which is impossible, as

0 =
1

∫
0

u󸀠󸀠 = 1.

This ends the proof of part (b).
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Due to (5.7), to prove part (c) we just show that

L󸀠(0)1 = P
1
(a) ∉ R[L(0)].

On the contrary, assume that L(0)u = P
1
(a) for some u ∈ Lp(0, 1). By (5.3), we get

P
1
(u) − u = P

1
(a),

that is, P
1
(u − a) = u. Hence we obtain

{
{
{

−u󸀠󸀠 = −a in (0, 1)

u󸀠(0) = u󸀠(1) = 0,

which is impossible, as

0 =
1

∫
0

u󸀠󸀠 =
1

∫
0

a < 0.

This concludes the proof.

Preliminary Properties of the Solution Set

Conditions (a
1
) and (f

1
) are always assumed in this subsection. We start introducing a few definitions.

Definition 5.1 (Nontrivial Solution). We say that (λ, u) ∈ ℝ × Lp(0, 1) is a nontrivial solution of (5.1) if either
u ̸= 0, or u = 0 and λ ∈ Σ, where Σ denotes the spectrum of (4.28).

Then we set

S = {(λ, u) ∈ ℝ × Lp(0, 1) : (λ, u) is a nontrivial solution of (5.1)}
= {(λ, u) ∈ ℝ × (Lp(0, 1) \ {0}) : N(λ, u) = 0} ∪ {(λ, 0) : λ ∈ Σ}

and

S> = {(λ, u) ∈ S : λ ≥ 0, u > 0} ∪ {(0, 0), (λ
0
, 0)}, (5.8)

where 0 and λ
0
are the two principal eigenvalues of (4.28). We endow S and S> with the topology of

ℝ × Lp(0, 1). Since (λ, u) ∈ ℝ × Lp(0, 1) is a solution of equation (5.1) if and only if (λ, u) ∈ ℝ × BV(0, 1)
is a bounded variation solution of problem (1.1), S and S> are also subsets of BV(0, 1) and, in particular,

of L∞(0, 1).

Definition 5.2 (Connected Component). By a connected component of the set S (respectively, of S>), wemean

a closed and connected subset of S (respectively, of S>) that is maximal for the inclusion.

We want to show that the solutions of (5.1) can bifurcate in ℝ × Lp(0, 1) from the line of trivial solutions

ℝ × {0} only at (λ̂, 0), with λ̂ ∈ Σ. Hence, the bifurcation points of the bounded variation solutions of (1.1)

are precisely the bifurcation points of the strong solutions of (1.1). This basically follows from Corollary 3.5,

which shows that the bounded variation solutions that are small in L1(0, 1), are actually strong solutions.
Since Σ is a closed subset ofℝ, this eventually implies that both S and S> are closed inℝ × Lp(0, 1).

Lemma 5.3. Assume (a
1
) and (f

1
). Then any sequence ((λn , un))n in S, with un ̸= 0 for all n ≥ 1, for which there

exists λ̂ ∈ ℝ such that
lim

n→+∞
(λn , un) = (λ̂, 0) inℝ × Lp(0, 1),

satisfies
λ̂ ∈ Σ and lim

n→+∞
un
‖un‖p
= φ̂ in C1[0, 1],

where φ̂ is an eigenfunction of (4.28) associated with λ̂.
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Proof. Let us set, for every n ≥ 1,
vn =

un
‖un‖p

.

Since (vn)n is bounded, for any subsequence of (vn)n we can find a further subsequence, still labeled by n,
which converges weakly in Lp(0, 1) to some v ∈ Lp(0, 1). From (5.1)–(5.5) and the compactness of P

1
, divid-

ing by ‖un‖p, we find

vn = P1
(vn + λnavn) +

R(λn , un)
‖un‖p

→ P
1
(v + λ̂av) in Lp(0, 1) as n → +∞

and hence

v = P
1
(v + λ̂av),

with ‖v‖p = 1. Thus, λ̂ ∈ Σ and v = φ̂ is an eigenfunction of (4.28) associated with λ̂.
On the other hand, as un is, for every n ≥ 1, a bounded variation solution of (1.1) such that

λnaf(un) → 0 in Lp(0, 1) as n → +∞,

Corollary 3.5 implies that un is a strong solution of (1.1), for sufficiently large n. Thus, integrating the differ-
ential equation of (1.1) in (0, z) yields

− ψ(u󸀠n(z)) = λn
z

∫
0

af(un) dx → 0 as n → +∞, (5.9)

where ψ is the function defined in (2.2). Since

−ψ(u󸀠n(z)) = ‖ψ(u󸀠n)‖∞,

we find, from (5.9) and (2.2), that ‖u󸀠n‖∞ → 0 and hence ‖un‖C1 → 0, as n → +∞. Let us set

g(s) =
{{
{{
{

f(s)
s

if s ̸= 0,

f 󸀠(0) if s = 0.

Since f 󸀠(0) = 1, from (2.3) we obtain that

−v󸀠󸀠n = λna
f(un)
‖un‖p
(1 + (u󸀠n)2)

3

2 = λnag(un)vn(1 + (u󸀠n)2)
3

2 → λ̂av in Lp(0, 1) as n → +∞.

In particular, (vn)n is bounded in W2,p(0, 1). As any subsequence of (vn)n contains a further subsequence
converging in C1[0, 1] to v, the proof is completed.

The following conclusions are immediate consequences of Lemma 5.3.

Corollary 5.4. Assume (a
1
) and (f

1
). Then any sequence ((λn , un))n in S, with un ̸= 0 for all n ≥ 1, such that

lim

n→+∞
(λn , un) = (λ0, 0) inℝ × Lp(0, 1)

satisfies
lim

n→+∞
un
‖un‖p
= φ

0
or lim

n→+∞
un
‖un‖Lp
= −φ

0
in C1[0, 1],

where λ
0
and φ

0
are, respectively, the principal positive eigenvalue and the associated positive normalized

eigenfunction of (4.28).

Corollary 5.5. Assume (a
1
) and (f

1
). Then any sequence ((λn , un))n in S, with un ̸= 0 for all n ≥ 1, such that

lim

n→+∞
(λn , un) = (0, 0) inℝ × Lp(0, 1)

satisfies
lim

n→+∞
un
‖un‖p
= 1 or lim

n→+∞
un
‖un‖Lp
= −1 in C1[0, 1].
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Corollary 5.6. Assume (a
1
) and (f

1
). Then any sequence ((λn , un))n in S> such that un ̸= 0, for all n ≥ 1, and

lim

n→+∞
(λn , un) = (λ̂, 0) inℝ × Lp(0, 1),

satisfies that either
λ̂ = λ

0
and lim

n→+∞
un
‖un‖p
= φ

0
in C1[0, 1],

or
λ̂ = 0 and lim

n→+∞
un
‖un‖p
= 1 in C1[0, 1].

Taking into account that Σ is a closed subset of ℝ, from these results we can prove that S and S> are closed

subsets ofℝ × Lp(0, 1).

Proposition 5.7. Assume that (a
1
) and (f

1
) hold. Then both S and S> are closed and locally compact subsets

ofℝ × Lp(0, 1).

Proof. By Lemma 5.3 the solutions of (5.1) can bifurcate in ℝ × Lp(0, 1) from the trivial line ℝ × {0} only
at (λ̂, 0), with λ̂ ∈ Σ. Since, by the continuity of N, the set of solutions of (5.1) is closed ℝ × Lp(0, 1), we
conclude that S is closed inℝ × Lp(0, 1).

Similarly, by Corollary 5.6, the solutions of (5.1), with u > 0, can bifurcate inℝ × Lp(0, 1) from the trivial

lineℝ × {0} only at (0, 0), or at (λ
0
, 0). Since the set of the solutions of (5.1), with u ≥ 0, is closedℝ × Lp(0, 1),

we conclude that S> is closed inℝ × Lp(0, 1).
The local compactness of S and S> follows from the complete continuity of I +N.

We conclude this subsection with some technical results, which might have their own interest. First, we

establish the following convergence-in-length result.

Lemma 5.8. Assume (a
1
) and (f

1
). Then any sequence ((λn , un))n in S, converging to (λ, u) ∈ S inℝ × Lp(0, 1),

satisfies

lim

n→+∞

1

∫
0

√
1 + |Dun|2 =

1

∫
0

√
1 + |Du|2. (5.10)

Proof. From (2.10) we have that, for every n ≥ 1,

1

∫
0

√
1 + |Dun|2 ≤

1

∫
0

√
1 + |Dv|2 −

1

∫
0

λnaf(un)(v − un) dx

for all v ∈ BV(0, 1). Thus, taking v = u and letting n → +∞, as the sequence (f(un))n is bounded in Lq(0, 1),
we infer that

lim sup

n→+∞

1

∫
0

√
1 + |Dun|2 ≤

1

∫
0

√
1 + |Du|2 − lim

n→+∞

1

∫
0

λnaf(un)(u − un) dx

=
1

∫
0

√
1 + |Du|2.

On the other hand, the lower semicontinuity of the length functional with respect to the L1-convergence
in BV(0, 1) yields

lim inf

n→+∞

1

∫
0

√
1 + |Dun|2 ≥

1

∫
0

√
1 + |Du|2.

Therefore, (5.10) holds.

From Lemma 5.8 and [6, Fact 3.1] we infer the next strict convergence result, which is a pivotal technical tool

for proving ourmain bifurcation theorem. For a discussion of the notion of strict convergence in BV(0, 1), the
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reader is referred to [4, p. 125]. Here, we just recall that the topology of the strict convergence is induced by

the metric

d(u, v) = ‖u − v‖L1 +
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

∫
0

|Du| −
1

∫
0

|Dv|
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

for all u, v ∈ BV(0, 1),

and that BV(0, 1), endowed with this metric, is continuously embedded into Lp(0, 1) for all p ∈ [1,∞].

Corollary 5.9. Assume that (a
1
) and (f

1
) hold. Then any sequence ((λn , un))n in S, converging to (λ, u) ∈ S

inℝ × Lp(0, 1), satisfies
lim

n→+∞
un = u in L1(0, 1),

lim

n→+∞

1

∫
0

|Dun| =
1

∫
0

|Du|,
(5.11)

i.e., (un)n converges strictly to u in BV(0, 1).

Remark 5.1. Proposition (5.7) andCorollary 5.9 imply, in particular, that both S and S> are closed and locally

compact subsets ofℝ × BV(0, 1), when BV(0, 1) is endowed with the topology of the strict convergence.

Finally, the following simple fact holds true.

Lemma 5.10. Let (un)n be a sequence in L∞(0, 1)which converges to u ∈ L∞(0, 1) a.e. in [0, 1]. Then we have

lim sup

n→+∞
(ess inf un) ≤ ess inf u,

lim inf

n→+∞
(ess sup un) ≥ ess sup u.

(5.12)

Proof. We will prove the first inequality. Assume, by contradiction, that there exists k ∈ ℝ such that

lim sup

n→+∞
(ess inf un) > k > ess inf u. (5.13)

Let E be a set of positive measure such that u(x) < k in E and let (unj )j be a subsequence of (un)n such that

lim

j→+∞
(ess inf unj ) = lim sup

n→+∞
(ess inf un).

Lastly, let F be a set of measure zero such that, for every x ∈ [0, 1] \ F,

unj (x) ≥ ess inf unj ,
lim

j→+∞
unj (x) = u(x).

Pick x ∈ E \ F. By the definition of E, we have u(x) < k. Thus, by the definition of F, we get

lim sup

n→+∞
(ess inf un) = lim

j→+∞
(ess inf unj ) ≤ lim

j→+∞
unj (x) = u(x) < k,

which contradicts (5.13) and ends the proof of the first estimate of (5.12). As the second one can be proven

similarly, we omit the technical details of its proof.

The Bifurcation Theorems

In order to state the main global bifurcation result of this paper, we assume that, besides (a
1
), the weight

function a also satisfies
(a

2
) there is z ∈ (0, 1) such that either a(x) > 0 a.e. in (0, z) and a(x) < 0 a.e. in (z, 1), or a(x) < 0 a.e. in (0, z)
and a(x) > 0 a.e. in (z, 1).

Thanks to assumption (a
2
) the one-signed bounded variation solutions of (1.1) enjoy the special properties

listed in the next result.



466 | J. López-Gómez and P. Omari, Global Components of Positive Bounded Variation Solutions

Proposition 5.11. Assume (f
1
) and suppose that a ∈ L∞(0, 1) satisfies a(x) > 0 a.e. in (0, z) and a(x) < 0 a.e.

in (z, 1). Let (λ, u) be a bounded variation solution of (1.1)with either u > 0, or u < 0. Then one of the following
three alternatives holds:
∙ λ = 0 and then u is constant.
∙ λu > 0 and then u ≫ 0 if λ > 0, or u ≪ 0 if λ < 0; moreover, regardless its sign, the function u is decreas-

ing in [0, 1], concave in [0, z), convex in (z, 1], and either u ∈ W2,1(0, 1), or u ∈ W2,1

loc

[0, z) ∩W1,1(0, z),
u ∈ W2,1

loc

(z, 1] ∩W1,1(z, 1), u󸀠(z−) = −∞ = u󸀠(z+).
∙ λu < 0 and then u ≫ 0 if λ < 0, or u ≪ 0 if λ > 0; moreover, regardless its sign, the function u is increas-

ing in [0, 1], convex in [0, z), concave in (z, 1], and either u ∈ W2,1(0, 1), or u ∈ W2,1

loc

[0, z) ∩W1,1(0, z),
u ∈ W2,1

loc

(z, 1] ∩W1,1(z, 1), u󸀠(z−) = +∞ = u󸀠(z+).
In all cases, u satisfies

{{{
{{{
{

−(
u󸀠(x)

√1 + (u󸀠(x))2
)
󸀠

= λa(x)f(u(x)) a.e. in (0, 1),

u󸀠(0) = u󸀠(1) = 0.
(5.14)

If, in addition, we assume (a
1
) and

(f
2
) f is increasing inℝ,

then the third alternative cannot occur.

Proof. Let us suppose that λu > 0. Condition (f
1
) yields λf(u) > 0. Hence, setting h = λaf(u), Proposition 3.6

and Corollary 3.7 imply that u is concave in [0, z), convex in (z, 1], and, moreover, either u ∈ W2,1(0, 1), or
u ∈ W2,1

loc

[0, z) ∩W1,1(0, z), u ∈ W2,1

loc

(z, 1] ∩W1,1(z, 1), u(z−) ≥ u(z+), and u󸀠(z−) = −∞ = u󸀠(z+). In any case
u satisfies (5.14). In particular, we have that u is decreasing in [0, 1].

Similarly, we show that if λu < 0, then u is increasing in [0, 1], convex in [0, z), and concave in (z, 1].
In addition, either u ∈ W2,1(0, 1), or u ∈ W2,1

loc

[0, z) ∩W1,1(0, z), u ∈ W2,1

loc

(z, 1] ∩W1,1(z, 1), u(z−) ≤ u(z+),
u󸀠(z−) = +∞ = u󸀠(z+), and anyhow u satisfies (5.14).

Next, let us suppose that λ > 0 and u > 0. we want to show that u ≫ 0. Assume, by contradiction, that

u > 0 and ess inf u = 0.

Since u is decreasing in [0, 1] and continuous in [0, z) ∪ (z, 1], we see that

0 = ess inf u = min u = u(1).

As, in addition, u󸀠(1) = 0, the uniqueness of solution for the Cauchy problem

{{{
{{{
{

−(
u󸀠

√
1 + u󸀠2
)
󸀠

= λa(x)f(u),

u(1) = 0, u󸀠(1) = 0,

guaranteed by (f
1
), entails that either u = 0 in [0, 1], if u is continuous in [0, 1], or u = 0 in (z, 1], if u is

discontinuous at z. The first case cannot occur, because we are assuming that u > 0. Thus, u is discontinuous
at z and vanishes on (z, 1], which is impossible, because u󸀠(z+) = −∞. Therefore, we conclude that u ≫ 0.

Similarly, we can prove that if λ < 0 and u < 0, then u ≪ 0, or if λ > 0 and u < 0, then u ≪ 0, or if λ < 0
and u > 0, then u ≫ 0.

Finally, let us further suppose that (a
1
) and (f

2
) hold.Wewant to show that if (λ, u) is a bounded variation

solution of (1.1), with u > 0, then λ ≥ 0. Suppose, by contradiction, that λ < 0. We know that u is increasing
in [0, 1] and u ≫ 0. From the differential equation in (5.14), using (f

1
), we get

λa(x) = −( u󸀠(x)
√1 + (u󸀠(x))2

)
󸀠

1

f(u(x))

= −(
1

f(u(x))
u󸀠(x)

√1 + (u󸀠(x))2
)
󸀠

+ (
1

f(u(x)))
󸀠 u󸀠(x)
√1 + (u󸀠(x))2

a.e. in (0, 1).
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Integrating in (0, z) and in (z, 1), respectively, using the condition u󸀠(0) = u󸀠(1) = 0 and u󸀠(z−) = u󸀠(z+) = +∞,
and summing up, we find that

λ
1

∫
0

a dx = − 1

f(u(z−))
+

1

f(u(z+))
+

1

∫
0

(
1

f(u(x)))
󸀠 u󸀠(x)
√1 + (u󸀠(x))2

dx

=
f(u(z−)) − f(u(z+))
f(u(z−))f(u(z+))

−
1

∫
0

f 󸀠(u(x))
f 2(u(x))

(u󸀠(x))2

√1 + (u󸀠(x))2
dx ≤ 0,

because u(z−) ≤ u(z+) and (f
2
) holds. Therefore, as λ < 0 and, by (a

1
),

1

∫
0

a dx < 0,

we get a contradiction.

Similarly, we show that if (λ, u) is a bounded variation solution of (1.1), with u < 0, then λ ≤ 0.
This allows us to conclude that, for one-signed bounded variation solutions (λ, u) of (1.1), the alternative

λ = 0 or λu > 0 must holds.

The following symmetric counterpart of Proposition 5.11 holds.

Proposition 5.12. Assume (f
1
) and suppose that a ∈ L∞(0, 1) satisfies a(x) < 0 a.e. in (0, z) and a(x) > 0 a.e.

in (z, 1). Let (λ, u) be a bounded variation solution of (1.1), with either u > 0, or u < 0. Then the following three
alternatives hold:
∙ λ = 0 and then u is constant.
∙ λu > 0 and then u ≫ 0 if λ > 0, or u ≪ 0 if λ < 0; moreover, regardless its sign, the function u is increas-

ing in [0, 1], convex in [0, z), concave in (z, 1], and either u ∈ W2,1(0, 1), or u ∈ W2,1

loc

[0, z) ∩W1,1(0, z),
u ∈ W2,1

loc

(z, 1] ∩W1,1(z, 1), and u󸀠(z−) = +∞ = u󸀠(z+).
∙ λu < 0 and then u ≫ 0 if λ < 0, or u ≪ 0 if λ > 0; moreover, regardless its sign, the function u is decreas-

ing in [0, 1], concave in [0, z), convex in (z, 1], and either u ∈ W2,1(0, 1), or u ∈ W2,1

loc

[0, z) ∩W1,1(0, z),
u ∈ W2,1

loc

(z, 1] ∩W1,1(z, 1), and u󸀠(z−) = −∞ = u󸀠(z+).
In all cases, u satisfies (5.14). If, in addition, we assume (a

1
) and (f

2
), then the third alternative cannot occur.

Remark 5.2. Proposition 5.11 implies that if (λ, u) ∈ S> and u ̸= 0, then u ≫ 0.

Our main global bifurcation result establishes the existence of two unbounded connected components C>
0

and C>λ
0

of the set S> of the positive solutions of (1.1), as defined in (5.8), bifurcating from (λ, 0) at λ = 0 and
λ = λ

0
, respectively.

Theorem 5.13. Assume (f
1
), (a

1
) and (a

2
). Then there exist two connected components C>

0

and C>λ
0

of S> such
that:
∙ C>

0

and C>λ
0

are unbounded inℝ × Lp(0, 1),
∙ C>

0

and C>λ
0

are closed and connected subsets of BV(0, 1), endowed with the topology of the strict conver-
gence,

∙ (0, 0) ∈ C>
0

and (λ
0
, 0) ∈ C>λ

0

,
∙ {(0, r) : r ≥ 0} ⊆ C>

0

,
∙ if (λ, u) ∈ C>

0

∪ C>λ
0

and u ̸= 0, then u ≫ 0,
∙ if (λ, 0) ∈ C>

0

∪ C>λ
0

for some λ > 0, then λ = λ
0
,

∙ either C>
0

∩ C>λ
0

= 0, or (λ
0
, 0) ∈ C>

0

and (0, 0) ∈ C>λ
0

and, in such case, C>
0

= C>λ
0

,
∙ there exists a neighborhood U of (0, 0) inℝ × Lp(0, 1) such that C>

0

∩ U consists of strong solutions of (1.1),
∙ there exists a neighborhood V of (λ

0
, 0) inℝ×Lp(0, 1) such thatC>λ

0

∩V consists of strong solutions of (1.1).

Proof. We suppose here that the first alternative holds in (a
2
), that is, we assume that there is z ∈ (0, 1) such

that a(x) > 0 a.e. in (0, z) and a(x) < 0 a.e. in (z, 1). The argument in the other case follows similar patterns.

The proof is divided into two parts.
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Part 1. Bifurcation from (λ
0
, 0): Existence and properties of C>λ

0

. We are going to apply the unilateral global

bifurcation theorem [40, Theorem 6.4.3] to equation (5.1) in Lp(0, 1), with p > 2. Following [40, Chapter 6],
we introduce the closed subspace

Y = {y ∈ Lp(0, 1) :
1

∫
0

yφ
0
dx = 0},

and, for every ε > 0 and η ∈ (0, 1), we consider the open wedges

Q+ε,η(λ0) = {(λ, u) ∈ ℝ × Lp(0, 1) : |λ − λ0| < ε,
1

∫
0

uφ
0
dx > η‖u‖p},

Q−ε,η(λ0) = {(λ, u) ∈ ℝ × Lp(0, 1) : |λ − λ0| < ε,
1

∫
0

uφ
0
dx < −η‖u‖p}.

Thanks to Proposition 5.1, we infer from [40, Lemma 6.4.1] that, for every ε > 0 and η ∈ (0, 1), there exists
a neighborhood V of (λ

0
, 0) inℝ × Lp(0, 1) such that

(S ∩ V) \ {(λ
0
, 0)} ⊂ Q+ε,η(λ0) ∪ Q−ε,η(λ0).

Due to (a
1
) and (f

1
), by possibly reducing the size of V, we can also suppose that

‖λaf(u)‖
1
< 1 for all (λ, u) ∈ S ∩ V.

Thus, by Corollary 3.5, S ∩ V consists of strong solutions of (1.1).

Let us fix ε > 0, η ∈ (0, 1). By Proposition 5.1 and [40, Theorem 5.6.2], all the assumptions of [40, Theo-

rem 6.4.3] hold true with reference to λ
0
. Thus, there is a connected component Cλ

0

of S \ (Q−ε,η(λ0) ∩ V), with
(λ

0
, 0) ∈ Cλ

0

, such that one of the following non-excluding options holds:

(A1) Cλ
0

is unbounded inℝ × Lp(0, 1),
(A2) there exists λ̂ ∈ Σ \ {λ

0
} such that (λ̂, 0) ∈ Cλ

0

,

(A3) there exists (λ, y) ∈ Cλ
0

∩ (ℝ × (Y \ {0})), i.e., y ̸= 0 and ∫1
0

yφ
0
dx = 0.

If Cλ
0

∩ ((−∞, 0) × Lp(0, 1)) ̸= 0, then by connectedness there exists u ∈ Lp(0, 1) such that (0, u) ∈ Cλ
0

.

Since umust be constant andCλ
0

is amaximal connected subset of S \ (Q−ε,η(λ0) ∩ V),Cλ0 contains the vertical
line {(0, r) : r ∈ ℝ} and hence Cλ

0

∩ ([0, +∞) × Lp(0, 1)) is unbounded. Accordingly, if we set

C+λ
0

= Cλ
0

∩ ([0, +∞) × Lp(0, 1)),

we see that, in any case, C+λ
0

is a maximal connected subset of S ∩ ([0, +∞) × Lp(0, 1)), satisfying either (A1),
or (A2), or (A3).

Let us also observe that, by Corollary 5.4, possibly shortening V, we have that

u ≫ 0 for all (λ, u) ∈ (C+λ
0

∩ V) \ {(λ
0
, 0)};

however,we cannot guarantee thatC+λ
0

doesnot contain anynegative, or sign-changing, solution. The remain-

der of the proof of this part is devoted to showing that an unbounded component C>λ
0

of C+λ
0

, constituted by

positive solutions, actually exists.

Let us define C>λ
0

as the component of S> such that (λ
0
, 0) ∈ C>λ

0

. Proposition 5.11 and the subsequent

Remark 5.2 guarantee that u ≫ 0 for all (λ, u) ∈ C>λ
0

with u ̸= 0. We know that

C>λ
0

= C+λ
0

in V, (5.15)

since u ≫ 0 for all (λ, u) ∈ C+λ
0

∩ V with u ̸= 0. Moreover, by construction, we have C>λ
0

⊆ C+λ
0

. Actually, the

following result holds.

Claim. The set C>λ
0

is unbounded inℝ × Lp(0, 1).

To prove this claim, we distinguish two cases, according to either (0, 0) ∈ C>λ
0

, or (0, 0) ̸∈ C>λ
0

.

In case (0, 0) ∈ C>λ
0

, C>λ
0

is unbounded in ℝ × Lp(0, 1), because, being a component, it must contain the

whole vertical half-line {(0, r) : r ∈ [0, +∞)}.
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In case (0, 0) ̸∈ C>λ
0

, we will show that

C+λ
0

= C>λ
0

. (5.16)

Consequently, as the component C+λ
0

= C>λ
0

cannot satisfy alternatives (A2) and (A3) above, C>λ
0

must sat-

isfy (A1), i.e., it is unbounded inℝ × Lp(0, 1).
In order to prove (5.16), we suppose on the contrary that C>λ

0

is a proper subset of C+λ
0

. Being compo-

nents, C+λ
0

is connected and C>λ
0

is closed; hence, there exist a sequence ((λn , un))n in C+λ
0

\ C>λ
0

and a solution

(λω , uω) ∈ C>λ
0

such that

lim

n→+∞
(λn , un) = (λω , uω) inℝ × Lp(0, 1).

As (λω , uω) ∈ S>, the definition of S> implies that one of the following three cases occurs:

∙ either (λω , uω) = (0, 0),
∙ or (λω , uω) = (λ0, 0),
∙ or u > 0.
The first case, (λω , uω) = (0, 0), is immediately ruled out because we are supposing (0, 0) ̸∈ C>λ

0

. The second

case, (λω , uω) = (λ0, 0), cannot occur, because otherwise

(λn , un) ∈ (C+λ
0

\ C>λ
0

) ∩ V for all large n,

which is impossible by (5.15).

Thus, uω > 0 must hold, and actually, due to Proposition 5.11, uω ≫ 0. If in a neighborhood of (λω , uω)
the component C+λ

0

consisted of solutions of the form (λ, v) with v > 0, C>λ
0

would not be maximal for the

inclusion in S> and hence, could not be a component. Therefore, without loss of generality, we can assume

that, for every n ≥ 1, either un ≤ 0, or un changes sign.
On the other hand, since we have un → uω in Lp(0, 1), there is a subsequence, relabeled by n, such that

un(x) → uω(x) a.e. in [0, 1]. If there existed a subsequence of ((λn , un))n, still labeled by n, such that un ≤ 0
for all n, it would necessarily follow that u ≤ 0. Therefore, since u ≫ 0, un must change sign for all large n.
Thus, by Corollary 5.9 and Lemma 5.10, possibly along some subsequence, we find that (5.11) and (5.12)

hold. As u ≫ 0, we also have, by Proposition 5.11, that u is decreasing. Hence, we find

ess sup u − ess inf u =
1

∫
0

|Du| = lim

n→+∞

1

∫
0

|Dun| ≥ lim inf

n→+∞
(ess sup un − ess inf un)

≥ lim inf

n→+∞
(ess sup un) − lim sup

n→+∞
(ess inf un) ≥ lim inf

n→+∞
(ess sup un)

≥ ess sup u,

which is impossible because ess inf u > 0. This contradiction shows that C+λ
0

= C>λ
0

. The proof of our claim is

therefore complete.

Therefore, we have proved that, in all circumstances, C>λ
0

is a connected component of S>, unbounded

inℝ × Lp(0, 1), as claimed by Theorem5.13. Actually, a slightly stronger conclusion holds:C>λ
0

is a connected

subset of BV(0, 1), endowedwith the topology of the strict convergence. Indeed, otherwisewe could partition
C>λ

0

into two disjoint subsets, closed in ℝ × BV(0, 1) with respect to the topology of the strict convergence.

Since, by Corollary 5.9, these sets should be closed inℝ × Lp(0, 1) as well, a contradiction would follow.

Part 2. Bifurcation from (0, 0): Existence and properties of C>
0

. The proof of Part 1 can be adapted, with

some simplifications, to construct C>
0

. Therefore we will omit some details of such a construction, not to

be repetitive. Indeed, in this case we can define C>
0

as the component of S> such that (0, 0) ∈ C>
0

. Since S>

contains the vertical half-line {(0, r) : r ∈ [0, +∞)}, we see that C>
0

is unbounded inℝ × Lp(0, 1). Next, Propo-
sition 5.11 and Remark 5.2 guarantee that if (λ, u) ∈ C>

0

and u ̸= 0, then u ≫ 0. Further, Lemma 5.3 implies

that if (λ, 0) ∈ C>
0

for some λ > 0, then λ = λ
0
, because λ

0
is the only positive eigenvalue of (4.28) with posi-

tive eigenfunctions. Finally, Corollary 3.5 shows that there exists a neighborhood U of (0, 0) in ℝ × Lp(0, 1)
such that C>

0

∩ U consists of strong solutions. Exactly as in Part 1, we also see that C>λ
0

is a connected subset

of BV(0, 1), endowed with the topology of the strict convergence.
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Finally, the maximality and the connectedness of both C>
0

and C>λ
0

yield the following alternative: either

C>
0

∩ C>λ
0

= 0, or (λ
0
, 0) ∈ C>

0

and (0, 0) ∈ C>λ
0

and, in such case, C>
0

= C>λ
0

. This ends the proof.

We conclude this section remarking that, under an additional regularity condition on f , some further informa-

tion can be obtained about the fine structure of the connected components C>
0

and C+λ
0

near their respective

bifurcation points from the trivial line. More precisely, the next result follows easily by combining Corol-

lary 3.5with Theorem5.13 and the analysis already done in [43, Section 4]. As they can be easily reproduced,

the technical details of its proof are omitted here.

Theorem 5.14. Assume (a
1
), (f

1
), and

(f
3
) there are ℓ ≥ 2 and η > 0 such that f ∈ Cℓ(−η, η).

Then there exists a neighborhood U of (0, 0) inℝ × Lp(0, 1) such that if (λ, u) ∈ U is a bounded variation solu-
tion of (1.1), then either u = 0, or λ = 0 and u = r for some r ∈ ℝ \ {0}. In particular, there is r

0
> 0 such that

C>
0

∩ U consist of {(0, r) : r ∈ [0, r
0
)}.

Furthermore, there exist a neighborhood V of (λ
0
, 0) inℝ × Lp(0, 1), ε > 0 and two maps of class Cℓ−1,

λ : (−ε, ε) → ℝ, z : (−ε, ε) → Z,

where

Z = {z ∈ C1[0, 1] : z󸀠(0) = z󸀠(1) = 0,
1

∫
0

zφ
0
dx = 0}

is endowed with the topology ofℝ × C1[0, 1], such that
∙ λ(0) = λ

0
and z(0) = 0,

∙ (λ(s), s(φ
0
+ z(s))) is a strong solution of (1.1) for all s ∈ (−ε, ε),

∙ if (λ, u) ∈ V is a bounded variation solution of (1.1), then either u = 0, or λ = λ(s) and u = s(φ
0
+ z(s)) for

some s ∈ (−ε, ε); in particular, C>λ
0

∩ V is precisely the curve (λ(s), s(φ
0
+ z(s))) with s ∈ [0, ε).

Finally, the bifurcation at λ
0
is transcritical if f 󸀠󸀠(0) ̸= 0; in particular, the bifurcation of positive solutions is

supercritical if f 󸀠󸀠(0) < 0 and subcritical if f 󸀠󸀠(0) > 0. Suppose, further, that ℓ ≥ 3 in (f
3
). Then a subcritical

pitchfork bifurcation occurs at λ
0
if f 󸀠󸀠(0) = 0.

6 Conclusions, Conjectures and Open Questions
In this paper the topological structure of the set of positive solutions of the one-dimensional quasilinear

indefinite Neumann problem (1.1) has been analyzed in the special case when f(0) = 0 and f 󸀠(0) = 1. For
the first time in the literature, a unilateral bifurcation theorem in the space of bounded variation functions

has been established for an elliptic problem driven by the mean curvature operator. According to it, there

exist two global connected components of the set of positive solutions emanating from the line of the trivial

solutions at the two principal eigenvalues of the linearized problem around 0.

As already predicted by the analysis carried out in [43, Section 8], the solutions on these components

are regular as long as they are sufficiently small, while they may develop jump singularities at the nodes of

the weight function, a, as they become sufficiently large. Thus, we have established, in the general setting of

this paper, the existence of components consisting, simultaneously, of regular and singular solutions, which

might be a breakthrough in “global bifurcation theory” as applied to study more general quasilinear equa-

tions and systems. However, a number of important questions still remain open that fall outside the general

scope of this paper, but deserve some further effort to gain insight into the problem of ascertaining the fine

structure of the boundedvariation solutions of (1.1). A very relevant one consists in clarifying thehidden rela-

tionships between the regular and the singular solutions of (1.1), with special attention towards the problem

of understanding the precise mechanisms generating the formation of jump singularities along the λ-paths
of regular solutions. We have a strong heuristic evidence that the local regularity of the weight function a at
its nodes should play a significant role to describe the transition from regular to singular solutions, i.e., in

explaining the underlying formation of singularities on the small regular solutions.



J. López-Gómez and P. Omari, Global Components of Positive Bounded Variation Solutions | 471

Nevertheless, in some particular, but pivotal, examples we already know that the global bifurcation

diagram of bounded variation solutions looks like shows Figure 1. Namely, when the associated potential

F(s) = ∫s
0

f(t) dt of f is superlinear at infinity, then the component of positive bounded variation solutions C>λ
0

bifurcating from (λ, 0) at λ = λ
0
looses the a priori bounds in C1[0, 1] at some λ∗ > 0, where the solutions

become singular and fill in a subcontinuum consisting of singular bounded variation solutions bifurcating

from infinity at λ = 0. Instead, when the potential F is sublinear at infinity, then the component C>λ
0

remains

separated away from the vertical lineℝ × {0} and looses the a priori bounds in C1[0, 1] at some λ∗ > 0, where
it links another unbounded subcontinuum of singular bounded variation solutions whose λ-projection con-
tains (λ∗, +∞). We conjecture that, actually, these are the only admissible global bifurcation diagrams under

the assumptions of Theorem 5.13, at least, topologically, in the sense that the underlying global bifurcation

diagrams should be homeomorphic to those shown by Figure 1, though the number of solutions of (1.1) for

a fixed value of λ on the component C>λ
0

might be arbitrarily large according, e.g., to the number of interior

nodes and the relative size of the weight a on each of the nodal subintervals.
For simplicity, here we have restricted ourselves to deal with the simplest situation when the function a

possesses a single interior node z, and thus the positive solutions of (1.1) are monotone. As our proof of The-

orem 5.13 relies, on a pivotal basis, on this special feature, getting a proof of this theorem in the general case

when a has an intricate nodal behavior might be a real challenge plenty of technical difficulties. Neverthe-

less, in spite of these technical troubles, we still conjecture the validity of Theorem 5.13, at least, under the

assumptions imposed to the weight a in Corollary 3.7. The validity of Theorem 5.13 in more general settings

remains therefore an open problem here.

A further challenge, of a rather different vein, consists in describing the precise asymptotic profile of the

bounded variation solutions of (1.1) as λ → 0, or λ → +∞, according to the behavior of the associated poten-
tial F at infinity. In some particular cases of interest, we already know that the derivatives of the solutions

of (1.1) approximate, asymptotically, the profile of the solution of the problem

{{{
{{{
{

−(
v
√
1 + v2
)
󸀠

= b(x) in (0, 1),

v(0) = 0, v(1) = 0,

where

b(x) =

{{{{{
{{{{{
{

a(x)
∫z
0

a(t) dt
in (0, z),

−a(x)
∫1z a(t) dt

in (z, 1),

and z is the unique interior node of the function a. This feature should be relevant to establish in various

cases the non-existence of positive regular solutions of (1.1); however this analysis, being outside the scope

of this paper, is postponed here and will be carried out elsewhere.
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