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Abstract: We consider the critical p-Laplacian system
Aa . a
~pu = Sl Ul = P s p—f|u|“-2u|v|’3, xeQ,

Ab .
—Apv - ?IHI“IVIHV = palvl” v + %Iul“IVI’Hv, xeQ,

u, vin D3P (Q),
where Apu := div(]Vu|P~2Vu) is the p-Laplacian operator defined on
DYP(RN) := {u e LP"(RN) : |Vu| € LP(RV)},

endowed with the norm |u| pi.r := (f]RNIVuIP dx)%,N >3,1<p<N,A pu1,42 20,y +0,a, b, a, B > 1satisfy
a+b=p,a+f=p*:= NN—_’;, the critical Sobolev exponent, Q is RN or a bounded domain in RN and D(l)’p (Q)
is the closure of C3°(Q) in D*? (RYN). Under suitable assumptions, we establish the existence and nonexis-
tence of a positive least energy solution of this system. We also consider the existence and multiplicity of the
nontrivial nonnegative solutions.
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1 Introduction

Equations and systems involving the p-Laplacian operator have been extensively studied in the recent years
(see, e.g., [2,3,5,7-10,13, 16,17, 19, 20, 22, 23, 26] and the references therein). In the present paper, we
study the critical p-Laplacian system

Aa, . i a _
Byt = Sl v = P 2w L ulupl, xeq,
b p*

~Dpv - %b|u|“|v|"-2v = palvP P + ﬁ—{lul”‘lvlﬁ‘zv, XeQ, (1.1)

u,vin D37 (Q),
where Apu := div(|Vu|P~2Vu) is the p-Laplacian operator defined on

DYP(RN) := {u e LP"(RN) : |Vu| € LP(RV)},
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endowed with the norm ||u||D1p = (j]RNIVulp dx)v N>3,1<p<N,Apu1,u2>20,y+0,a,b,a,p>1 sat-
isfra+b=p,a+p=p* p , the critical Sobolev exponent, Q is RN or a bounded domain in RY and

1 P (Q) is the closure of C°°(Q) in DVP(RN). The case for p = 2 was thoroughly investigated by Peng, Peng
and Wang [21] recently; some uniqueness, synchronization and non-degenerated properties were verified
there. Note that we allow the powers in the coupling terms to be unequal. We consider the two cases
(H1) Q=RN,1=0, uy, u > 0;
(H2) Qisabounded domainin RN, A >0, u1, o =0,y = 1.

Let
A L
ueDy” @\(0} ([, [ulP” dx)r*

(1.2)

be the sharp constant of imbedding for Do’p (Q) — LP"(Q) (see, e.g., [1]). Then S is independent of Q and is
attained only when Q = RY. In this case, a minimizer u € D™?(RV) satisfies the critical p-Laplacian equation

~Apu = ulP ?u, xeRV. (1.3)

Damascelli, Merchan, Montoro and Sciunzi [14] recently showed that all solutions of (1.3) are radial and
radially decreasing about some pointin RY when 5 < p < 2.Vétois [25] considered a more general equation
and extended the result to the case 1 < p < szrv . Sc1un21 [24] extended this result to the case 2 < p < N. By
exploiting the classification results in [4, 18], we see that, for 1 < p < N, all positive solutions of (1.3) are of
the form

N-p\p-1 % sﬁ ? N
Uey(x) := [N(—l) ] (ﬁ) , £€>0,yeRV, (1.4)
p- erT +|x—y|PT
and
* N
J [VUg,|P dx = J |Ug,ylP dx =S». (1.5)
RN RN

In case (H1), the energy functional associated with system (1.1) is given by

1 1
v =2 J(IVu|p+IVVIp)—p— J(F1|u|p + walvP" +ylul*vlf),  (u,v) €D,
RV RN

where D := D1P(RY) x D1P(RY), endowed with the norm [|(u, V)|, = [ul},,, + [VI},,. In this case, (1.1) with
a = B and p = 2 is well studied by Chen and Zou [11, 12]. Define

fwneniuzoveo, [wur= [ (u + L), [1vvp = [ (vl + Epuerp)}.
p p

RN RN RN RN

It is easy to see that N # 0 and that any nontrivial solution of (1.1) is in N. By a nontrivial solution we mean
a solution (u, v) such that u # 0 and v # 0. A solution is called a least energy solution if its energy is minimal
among energies of all nontrivial solutions. A solution (u, v) is positive if u > 0 and v > 0, and semitrivial if it
is of the form (u, 0) with u # 0 or (0, v) with v # 0. Set A := inf(,,,yexv I(u, v), and note that

1 1 . .

A= i f VulP +|Vv[P f —j P P “v|P).

Jnf v e v = ine o[ Gl iyl
RN RV

Consider the nonlinear system of equations

uik 7+ %k"%’lf -1,

ol B _ (1.6)
p
k>0,1>0.

Our main results in this case are the following.
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Theorem 1.1. If (H1) holds andy < O, then A = * (yl(N pilp y;(pr)/p)SN/P and A is not attained.

Theorem 1.2. Let (H1) and the following conditions hold:
(€1) ¥Y<p<N,a,p>pand

3@ p\E B py
0<y_(3p) mln{%(a_i) ,%(a_i) }; (1.7)
(C2) N+2<p< z,a B < pand
N2
> Gy max{ 2 (222 ﬁ) (e g) . (1.8)

Then A = % (ko + 1o)SV/P and A is attained by (NkoUp,y, V1o Us,y), where (ko, lo) satisfies (1.6) and
ko = min{k : (k, I) satisfies (1.6)}. (1.9)

Theorem 1.3. Assume that 2L N+2 <p< 2 , a, B < p and (H1) holds. If y > O, then A is attained by some (U, V),
where U and V are positive, radially symmetric and decreasing.

Theorem 1.4 (Multiplicity). Assume that 2% N+2 <p< 2 , a, B < p and (H1) holds. There exists
Np? Pi2-B\F g 2-an
i€ (0’ (N-p)? maX{X(Z—a) ’ F<2 —/3) H
such that for any y € (0, y1) there exists a solution (k(y), l(y)) of (1.6) satisfying

1({k)Uey. {fin)Ue,) > 4

and (Vk(y)Ue,y, V1(y)Us,y) is a (second) positive solution of (1.1).

For the case (H2), we have the following theorem.

Theorem 1.5. If (H2) holds, p < VN and

0<A<

-A1(Q),
(a“b )

where A1(Q) > O is the first Dirichlet eigenvalue of A, in Q, then system (1.1) has a nontrivial nonnegative
solution.

2 Proof of Theorem 1.1

Lemma 2.1. Assume that (H1) holds and —oco < y < 0. If A is attained by a couple (u,v) € N, then (u, v) is
a critical point of 1, i.e., (u, v) is a solution of (1.1).

Proof. Define

~{wveniuzo,veo, G = I Vul - J (sala” + L pulvi#) = o},
RN RN p

- {(u, VeD:u#0,vEO, Gou,v) = J IVv]P — J(p2|v|p* + Bylul “WIF) = }
RN RN

Obviously, N = N3 nN,. Suppose that (u, v) € N is a minimizer for I restricted to N. It follows from the stan-
dard minimization theory that there exist two Lagrange multipliers L,, L, € R such that

I'(u,v) + L1G(u,v) + LGh(u,v) =0



644 —— 7.Guo, K. Pereraand W. Zou, Critical p-Laplacian Systems DE GRUYTER

Noticing that
I'(u,v)(u,0) = G1(u,v) =0,
I'(u, v)(0,v) = Ga(u,v) =0,
* * 44
G (u, v)(u, 0) = ~(p* - p) j P + (p - a) j & v,
RN RN p
a
G (u, v)(0, V) = B j ANV
RN p
G4 (. 0) = - [ ELpupeyp > o,
RN p
! _ _(p* _ p* _ & ajy B
Gy(u,v)(0,v) ==(p" -p) | w2lvl” + (0= B) | —|ul®Ivl",
RN RN p
we get that
G’l(u’ V)(u, O)Ll + G’z(u’ V)(u, O)LZ = 0’
G} (u, v)(0,v)L1 + Gh(u, v)(0,v)L, =0
and

G, V)(w,0) + G5, VO, V) = (" - p) [ IVup <0,
]RN
Gh(u, v)(u, 0) + G4 (u, v)(0,v) = =(p* - p) j IVvIP < 0.
IRN
We claim that f]RN [Vul? > 0. Indeed, if LRNIVuIP = 0, then by (1.2) we have

B p*
J P < s*’%( J IVulp) .

RY RV
Thus, a desired contradiction comes out, u = 0 almost everywhere in R", Similarly, f]RN |[Vv|P > 0. Hence,
|G} (u, v)(u, 0)| = =G’ (u, v)(u, 0) > G (u, v)(0, v),
IG5 (u, v)(0, V)| = =G5 (u, v)(0, v) > G5(u, v)(u, 0).
Define the matrix
M (G’l(u,V)(u,O) G’z(u,V)(u,0)>
" \Gi(u,v)(0,v) Gh(u,v)(0,v))"
Then
det(M) = |G’1(u’ V)(u’ O)| : |G,2(u’ V)(Oa V)l - Gll(u’ V)(Os V) . Glz(us V)(u’ O) > 0’
which means that L, = L, = 0. O
Proof of Theorem 1.1. 1t is standard to see that A > 0. By (1.4), we know that w,, := ygp -N/p? Us,o satisfies
~Apu = pilulP" 2uin RN, where i = 1, 2. Set e = (1,0, ...,0) € RV and
(ur(x), vr(X)) = (wy, (x), wy, (x + Rey)),

where R is a positive number. Then vg — 0 weakly in D*2(R") and vg — 0 weakly in L?" (R) as R — +oo0.
Hence,

B « p*iﬁ-l)
Rlir}lm J ugvp dx = REIPOO j ugvp vy odx
RV RY
2 -
< lim ( J uk Yye dx)p 71( J Vi dx)p B
R—+00 a v
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Therefore, for R > 0 sufficiently large, the system
JquRlp dx = J ;uluR dx = tR J
RN RV RN
ik

JIVVRII’ dx = Jyzvp dx = sR

RN RN

yluR dx+tR sh J

pavh dx+t”sR Jﬁyuﬁvﬁ

RN

has a solution (tg, sg) with
lim (|t —1|+|sg—-1]) =0
R—+00

Furthermore, (¥tgug, {/Srvr) € N. Then, by (1.5), we obtain that

A= inf I(u,v) gI(PtRuR, V/SRVR)

(u,v)eN
1
= N(tR JIVuRlp dx + sg JleR|p dx)
RN RN
1 - Ly N
= N(tRpl P+ spu, ” )Sp,
which implies that 4 < & (u; VP 4 ;W P/P)sNIp,

For any (u,v) e N,
N p*
j |VulP dx < puy j lulP" dx < yls*”?( j |VulP dx) "
]RN ]RN ]RN

Therefore, IIRNWqu dx > yI(N_p)/pSN/p. Similarly,

_N-p o
Jlelp dx>p, * Sv.

RN

Then A > L (u; " PP 4 y;P/P)SNip Hence,

1, -M» _Nep

A=N<y1 P, )5% (2.1)

Suppose by contradiction that A is attained by some (u, v) € N. Then (Jul, [v]) € N and I(Jul, |v|]) = A. By
Lemma 2.1, we see that (Jul, |v|) is a nontrivial solution of (1.1). By the strong maximum principle, we may
assume that u > 0, v > 0, and so JRN uvP dx > 0. Then

. p*
J [Vul? dx < uy J [ulP" dx < y137%< J |[VulP dx) ",

RN RN RN
which yields that
_Nop
JIVqu dx>p, ” S,
IRN
Similarly,
_Np
JIVvlp dx>p, " Sv.
]RN
Therefore,

N-p _N-p

A=t =g [ava? v wvPyaxs S(u " rw " )sE,
]RN

which contradicts (2.1). O
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3 Proof of Theorem 1.2

Proposition 3.1. Assume that c, d € R satisfy

ylcp*p—p ay
‘uzdp*’%p +ﬁ_i/ a pp (3.1)
b

c>0, d>0.

If% <p<N,a,B>pand(1.7) holds, then c + d > k + I, where k, | € R satisfy (1.6).

Proof. Lety =c+d,x=g,yo=k+land xo = ’T‘ By (3.1) and (1.6), we have that

-p
p-p x+1) 7 a4
y s DT R0, vy = filo)
H1X P+ Z—ZXT
e (x+1 7 g2
s % i= fo(x), Yo! = falxo0).
Mz + Elxp
Thus,
( l)p *-2p  a-2p (p* )
ay(x+1)"7 x
flog = —2 P - PHLG & px - (a-p)],
pp* (ux 7+ X2 Y
p*-2p
xX+1) 7 a ap (p* -
fyo0 = PYOXDT (g pyt - o B D],
pp*(yz + p—i/xp )2 ﬁy

— (__ P2y \p/(B-p) _ap
Letxq = (p*(p*_p)yl) , X2 = o—= and
pr(p*-pp ¢

oy B (@),

g1(x) =

p*(p* - Py

8200 = (B-pixs —ax7 + By

It follows from (1.7) that

pay  \i5
ey 8110 = gl("l):(ﬁ‘p)<m)ﬂ ~(a-p) <0,
Jmin | g>(0) = g2(x2) = -p (; i) p—(pﬁyp)yz >0

That is, f1(x) is strictly decreasing in (0, +0o0) and f>(x) is strictly increasing in (0, +00). Hence,

y'7 > max{fi (0. 200} > min_(max{f; (0. f200)

~ min (max{fy(0. £(0)) = o

where {f; = f5} := {x € (0, +00) : f1(x) = /L(x)}. O

Remark 3.1. From the proof of Proposition 3.1 it is easy to see that system (1.6), under the assumption of
Proposition 3.1, has only one real solution (k, I) = (ko, lp), where (ko, lp) is defined as in (1.9).
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Define the functions Ay s s
Filk, D) = k7 + p-fk?”lﬁ ~1, k>0,1>0,

Fotk, 1) = pol 7" ﬁykvlv -1, k20,150,

< p » » » _*L (3.2)
1(k) —(ay)ﬂkTu k7Y, 0 <k<u, 77,

k() := ( ﬁy)a
Then F; (k, I(k)) = 0 and F,(k(1), 1) = 0

p
a

17(1 yzl P ) , 0<I§y;

p -p

Lemma 3.2. Assume that 25 <p <%, a, B <pandy > 0. Then
Fi(k,l) =0, Fyk,l)=0, k,1>0, (3.3)
has a solution (kg, lo) such that
F>(k,1(k)) <0 forallk € (0, ko), (3.4)

that is, (ko, lo) satisfies (1.9). Similarly, (3.3) has a solution (k, l1) such that
Fi(k(),l) <0 foralll €(0,1ly), (3.5)

that is,
(k1, Iy) satisfies (1.6) and l; = min{l : (k, I) is a solution of (1.6)}.

Proof. We only prove the existence of (ko, ly). It follows from F1(k, ) = 0, k, I > O, that
__r
I=1(k) forallke (0,1,” 7).

Substituting this into F,(k, I) = 0, we have

* PP

p* p*-p . a ﬁ p p)a PN\F , —@pe-0 p-B B
]Jz(ay) (1—]111( P )‘8 p_ —<a—y) k 2 (1 ’llk p )'B —0. (3.6)
By setting
*\N% p . a p n)tx BBt ppew p)(p @) B
0 = (B - k) B (BT 0 T

the existence of a solution of (3.6) in (O, ylp /®"=p) ) is equivalent to f(k) = O possessing a solution in
(, y_p/p “P))_Since a, § < p, we get that

Jim f(k) = ~co, f(yl"%”) lﬂ Fso,

which implies that there exists kg € (0, ],l;p/(p*_p)) such that f(ko) = 0 and f(k) < O for k € (0, ko). Let o = I(ko).
Then (ko, lp) is a solution of (3.3) and (3.4) holds. O

Remark 3.2. From N+2<p< N and a, B < p we get that 2 < p* < 2p. It can be seen from & > <p <N and
a,f >pthat2 < 2p < p*.

Lemma 3.3. Assume that A%—fz <p< %, a, B < p and (1.8) holds. Let (ko, lo) be the same as in Lemma 3.2. Then

(ko + Io)f% max{u1, pa} <1

and
Fy(k,1(k)) <0 forallk € (0, ko), Fi(k(k),l) <0 foralll € (0, lp). 3.7)
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Proof. Recalling (3.2), we obtain that

ay p
(P 5 et P p-«a p*-p
_(ay)kﬂ(yl -k7) (}11 ¢ )’
D p
I! D —-a\y5 ll “p*p =0,
(o)) =1(m"7)
— N
I'(ky>0 forke ( (pylﬂa)” _”),
Canh ok
I'(k) <0 forke((};lﬁa)p TP T).
From
- - * Bop2pa 0 ptp BT p—@  -ptop\2 4 2w alp-a)  spw
1”(k)=p—ﬁp‘”1 Pk Lok ﬁ[ ~k7 ) -tk ) (——— -k ]=o
p oy )k R T (G ) =6t ke (e )
and k € ((p “)p/‘p -p) }[p/(p “P)) we have k = (%)p/@“p).Then, by (1.8), we get that
min (k) = min I'k) =1 (k)
ke(O,y;p/(p*fp)] ((p n)p/(p “p) ’[p/(p fp]

*( ) gt
(p p* pu1> (i g)ﬁ
1.

>

Therefore, I'(k) > —1 for k € (0, yIp/(p*_p)] with
( p(p-a) )ﬁ

@p-p B/’

which implies that I(k) + k is strictly increasing on [0, p}” /" =P)] Noticing that ko < ur 1P"P) e have

__pr
uo =l(u1 DR T 5> ko) + ko = Io + ko,

that is, ui(ko + lo)®? PP < 1. Similarly, u; (ko + lo)®?" PP < 1. To prove (3.7), by Lemma 3.2 it suffices
to show that (ko, lp) = (k1, 7). It follows from (3.4) and (3.5) that k; > ko and [lp > l;. Suppose by con-
tradiction that k1 > k(). Then l(kl) + k1 > I(ko) + k(). Hence, 11 + k(l1) = l(kl) + k1 > l(ko) + ko = lo + k(lo)
Following the arguments as in the beginning of the current proof, we have that I + k() is strictly increasing
forl e [0, yzp/(p ») ]. Therefore, 1; > ly, which contradicts ly > [;. Then k; = ko, and similarly Iy = [;. O

Remark 3.3. For any y > 0, condition (1.8) always holds for dimension N large enough.
Proposition 3.4. Assume that 2% N+2 <p< 2 , &, B < p and (1.8) holds. Then
k+1<ko+ 1o,
Fi(k,1) >0, Fy(k, 1) >0, (3.8)
k,1>0, (k, 1) #(0,0),
has a unique solution (k, 1) = (ko, lo).

Proof. Obviously, (ko, lo) satisfies (3.8). Suppose that (k, ) is any solution of (3.8) and, without loss of gener-
ality, assume that k > 0. We claim that [ > 0. In fact, if = 0, then k < ko + lo and F1(k, 0) = u1 k®"-P/P — 1> 0.
Thus,

1< H1’~<p%p < pa(ko + lo)p%p,

a contradiction to Lemma 3.3.
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Suppose by contradiction that k < ko. It can be seen that k(I) is strictly increasing on (O, (I’iz;f)p/ ®"-p)]
and strictly decreasing on

2-B\it5 i =
[<112_0‘) ) My ] and k(0) = k(y2 ) =0.
Since 0 < k < ko = k(lo), there exist 0 < I; < 5 < y;p/(p"—p) such that k(I;) = k(l5) = k and

Foll,) <0 &= k<k() &= l1<l<l. (3.9

It follows from F;(k,1) > 0 and F»(k,1) > 0 that I > I(k) and I < I; or [ > L. By (3.7), we see F,(k, I(k)) < O.
By (3.9), we get that I; < I(k) < I,. Therefore, [ > .
On the other hand, set I5 := ko + lp — k. Then I35 > Iy and, moreover,
k(l3) + ko + I — k = k(13) + I3 > k(lp) + lp = ko + lo,

that is, k(3) > k. By (3.9), we have I; < I3 < I,. Since k + 1 < ko + lo, we obtain that [ < ko + lo -k = I3 < L.
This contradicts I > I,. O

Proof of Theorem 1.2. Recalling (1.4) and (1.6), we see that (\/koUs,y, VloUe,y) € N is a nontrivial solution
of (1.1), and
1 N
4 <1({koUey, {fioUey ) = ko +10)S7 . (3.10)

Let {(uy, vy)} ¢ N be a minimizing sequence for A4, i.e., I(u,, vy,) — A as n — oo. Define

p

cnz( jlunlp* dx)p% and dnz(lenlp* dx)'T*.

RN RN
Then

* [24
Sew s [[1vunl? dx = [ (uatunl?” + Shiua “Ivil?) dx

RN RN
ﬁ a a ﬁ
<picyd +p—fc;;d;;, (3.11)
Sdn < [0l dx= [ (vl + Pl iuyieivalP) ax
RN RN p
p* a B
< uady +%C,’;dﬁ. (3.12)
Dividing both sides of these inequalities by Sc,, and Sd,,, respectively, and denoting
- d
Cn = CZ , dn= L s
Sri-p Sri-p
we deduce that
L = _p*-p % a _Br
H1Cr” +F(:n" dp 21, uady” +Féﬁd,,p >1,

that is, F1(¢y, an) > 0 and F>(Cy, an) > 0. Then, for % <p < Nanda,f > p, Proposition 3.1 and Remark 3.1

ensure that ¢, + dn > k + 1 = ko + lp, whereas for Z—NZ <p< % and a, B < p Proposition 3.4 guarantees that

~ N+
Cn + dy = ko + lo. Therefore, , ;
-p
Cn+dn > (k()+l())sW = (k0+lo)ST. (313)

Noticing that I(un, vy) = % J']RN(IVunlp + [Vva[P), by (3.10)—(3.12) we have

S(cp + dy) < NI(uy, vy) = NA +0(1) < (ko + lo)S% +0(1).

Combining this with (3.13), we get that ¢, + dn, — (ko + 1o)SWP)/P as n — co. Thus,

. .1 1 N
A= nangQI(un, Vp) 2 HILngO NS(cn +dp) = N(ko +1p)S».

A= %(ko +10)S7 = 1( HioUe, ’(/EUW). O

Hence,
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4 Proofs of Theorems 1.3 and 1.4

For (H1) holding and y > 0, define

A= inf I(u,v),
(u,v)eN’

where
N' = {@,v) € D\ (0,0 j(|Vu|P £ IVVP) = j(unuvf‘ + VPl viP)}

RN RN

It follows from N ¢ N’ that A’ < A. By the Sobolev inequality, we see that A’ > 0. Consider
~dpu = uluP s SEl v, x e BO, R)

~Dpv = o |vP 2y + %IuI“IVI”‘Zv, x € B(O, R),

u,v € Hy(B(O, R)),
where B(0, R) := {x € R" : |x| < R}. Define
N'R) = {,v)  HO.RVIO,00: [ (vl 4 19vP) = [ Gull” + byl 4y} 1)
B(0,R) B(0,R)
and
A'R):= inf I(u,v),
(u,v)eN'(R)

where H(0, R) := H}(B(0, R)) x H3(B(0, R)). For ¢ € [0, min{a, B} - 1), consider

* a-—-E&
—Dpu = pa[ulP U+ @O ja-2-eypyipe, x e BO, 1),

p* - 2¢
v = olvir 22y BEZEW ey paey e o, 1), (4.2)
p* - 2¢
u,v e Hy(B(0, 1)).
Define
( 1 . .
ety = o [ VP 9P = o [ Gl v e ),
B(0,1) B(0,1)
Ny := {(u,V) € H(0,1)\{(0,0)} : Ge(u,v) := J (IVul? +|vv|P) (4.3)
B(0,1)
= | Gul 2 a2 4 a9 - of
B(0,1)
and

Ag:= inf  I.(u,v).
(u,v)eNL

Lemma 4.1. Assume that 25 < p < ¥, a, B < p. For € € (0, min{a, B} - 1), there holds

A <min{ inf I.(u,0), inf I.(0,v)}.
(u,0)eN} (0,v)eNL

Proof. From min{a, } < ”7* it is easy to see that 2 < p* — 2e < p*. Then we may assume that u; is a least

energy solution of
~Apu = pilulP" ">y, ue HA\(B(O,1)),i=1,2.

Therefore,
I.(uy,0) = a; := inf ,Ig(u, 0), I.(0,uy)=a;:= inf I.(0,v).

(u,0)eN; (0,v)eNL
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We claim that, for any s € R, there exists a unique t(s) > 0 such that (V/t(s)u1, v/t(s)su,) € N'. In fact,

Jp0.1(IVu1l? + IsPP[Vuz|P)

t(s) » = - -
Jpo.1y (e Ul =2 + palsua|P"=2 + ylug |*#|suz|F-*)
_ gai: +qazlslP
qay +qazlsiP” 2 +[s1FE [p 0 ylug|o-tluy|Pe

where q := ’;9’_;‘_2;2 = pgf’;ﬁgg ), Nase — 0. Noticing that t(0) = 1, we have
) B8 Jpo Yl
s—0 |s|f-¢-25 (p* -28)ay ’
that is,
(B =) [p0.1) YIurl*lualf
t'(s) = - ©.1) sP2s(1+0(1)) ass — 0.
(s) 0 -9 Is| (1+0(1)) -
Then f 5
a—-& —&
B(0,1) Y|u1| |u2| B¢
t(s)=1- S 1+o0(1 ass — 0,
(s) 0 -2 [sI”(1 + 0(1)) -
and so,
_— Ylug|*~€|uy B¢
ts) 7 =1- Jao. IslP£(1 + 0(1)) ass — O.
bay
Since 117 - % = p*+2£, we have
Ae < I(Vt(s)uz, Vt(s)sus)
1 1 . p*-2e
R [ — p-2¢ p-¢ a-¢ B¢
= (5~ 5z )(gas + qaalsl 2w 5P [ ylus <)o
B(0,1)
“ar- (S =)t [yl e+ olst)
b q
B(0,1)
<ay;= inf I.(u,0) as]|s|issmallenough.
(u,0)eN?

Similarly, A, < inf(g ,)en: 1e(0, V). O

Noticing the definition of wy, in the proof of Theorem 1.1, similarly to Lemma 4.1, we obtain that
A' <min{ inf I(u,0), inf I(0,v)}
(u,0)eN’ (0,v)eN’

= min{I(a)yly 0), I(O) w}lz)}
N = B =
:mm{ﬁyl v Sv, yH2 P Sk } (4.4)

Proposition 4.2. For any ¢ € (0, min{a, B} — 1), system (4.2) has a classical positive least energy solution
(Ug, ve) and u., v, are radially symmetric decreasing.

Proof. ltisstandard to see that A, > 0.For (u, v) € N. withu > Oand v > 0, we denote by (u*, v*) its Schwartz

symmetrization. By the properties of the Schwartz symmetrization and y > 0, we get that

j (V' P + |9v*P) < j (el 1P 2% + v P2 4yl |2 159).

B(0,1) B(0,1)
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Obviously, there exists t* € (0, 1] such that (V£*u*, Vt*v*) e N'. Therefore,

N e Kt
B(0,1)
p*-2-p J
<= (IVulP +|vv[?)
p(p* - 2¢)
B(0,1)
=I.(u,v). (4.5)

Therefore, we may choose a minimizing sequence (up, vn) € N. of A, such that (u,, v,) = (u, v};) and
I (uy, vy) — Acasn — oo.By (4.5), we see that u,, v, are uniformly bounded in Hcl)(B(O, 1)). Passing to a sub-
sequence, we may assume that u, — u,, v, — v, weakly in H(l)(B(O, 1)). Since Hé(B(O, 1)) — LP"~2¢(B(0, 1))
is compact, we deduce that

. . e e . . e
(HaluelP ™72 + polvel?” 7 + yluel#|velP ) = lim j (Haunl”" 72 + palval?" 72 + ylun]*lvalP~%)
B0 BO.1)

_ pp*-2¢)
= m nll_{gols(uny Vn)
_ p(p" -2¢)
p*-2e-p
which implies that (u,, v¢) # (0, 0). Moreover, u, > 0, v, > 0 are radially symmetric. Noticing that

A >0,

(IVuel” + [VvelP) < lim J (IVuunl? + [VValP),
B(0,1) B(0,1)
we get that
(Viel? + Vvel) < [ Gualuel?” 28 4 pualvel? 2%+ yluel Iy ).
B(©,1) B(0,1)
Then there exists t, € (0, 1] such that (V/fzue, VE:ve) € N%, and therefore

A < Ie(%“e; <J/E‘/s_')

1 1

. j (IVuel? +19vel)
p p*-2¢

B(0,1)

. p'-2e-p » »
nh—>ngo—p(p*—2£) J’ (IVun|? + [Vval?)

IN

B(0,1)

lim I¢(un, vn) = Ae,
n—.oo
which yields that t, = 1, (ue, ve) € N%, I(ug, ve) = Ae and
(IVuelP +Vvel’) = lim J (IVupl? + [Vvn[?).
B(0,1) B(0,1)
Thatis, u, — ug, vp — v strongly in H, é (B(0, 1)). It follows from the standard minimization theory that there
exists a Lagrange multiplier L € R satisfying
IL(ug, ve) + LGL(ue, ve) = 0.
Since I(ug, ve)(Ue, Ve) = Ge(Ue, ve) = 0 and
Gy (ue, ve)(Ue, Ve) = —(p* - 26 = p) j (Maluel?" =2 + pa Vel 7€ + yluel*#lvelP~*) < 0,
B(0,1)

we get that L = 0, and so I.(ug, v¢) = 0. By Ag = I(ug, v¢) and Lemma 4.1, we have u, # 0 and v, # 0. Since
Ug, Ve > 0 are radially symmetric decreasing, by the regularity theory and the maximum principle, we obtain
that (u., v¢) is a classical positive least energy solution of (4.2). O
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Proof of Theorem 1.3. We claim that
A'(Ry=A" forallR > 0. (4.6)

Indeed, assume R; < R;. Since N'(R1) ¢ N'(R,), we get that A’(R,) < A'(Ry). On the other hand, for every
(u,v) € N'(R,), define

(1 (x), v1(x)) := ((ﬁ—i)%u(%x), (%)¥V(%X>)'

Then it is easy to see that (uq, v1) € N'(Ry). Thus, we have
A'(Ry) < I(uy, v1) = I(u, v) forall (u,v) e N'(R»),

which means that A’(R;) < A’(R;). Hence, A’(R1) = A’(R;). Obviously, A’ < A'(R). Let (uy, vy) € N’ beamin-
imizing sequence of A’. We assume that u,, v, € Hé(B(O, Ry)) for some R, > 0. Therefore, (un, vn) € N'(Rp)
and

Al = nan(}OI(un, Vn) > nli_)n(}oA'(Rn) = A'(R),

which completes the proof of the claim.
By recalling (4.1) and (4.3), for every (u, v) € N'(1), there exists t, > 0 with t, — 1 as € — 0 such that
(Vfteu, VEev) € N.. Then

limsup A, < limsup I (Vteu, Vt:v) = I(u,v) forall (u,v) e N'(1).
£—0 £—0
It follows from (4.6) that
limsupA, <A'(1)=A'. (4.7)

=0

According to Proposition 4.2, we may let (u., v.) be a positive least energy solution of (4.2), which is radially
symmetric decreasing. By (4.3) and the Sobolev inequality, we have

_pr-2e-2

min{a, 8} -1
T I

J (IVuelP +|VveP) > C>0 foralle € (0, 3

0,1)

where C is independent of €. Then it follows from (4.7) that u,, v, are uniformly bounded in H(l,(B(O, 1)). We
may assume that u, — ug, ve — Vo, up to a subsequence, weakly in H(l)(B(O, 1)). Hence, (ug, vo) is a solution
of

-Apu = uilulP "u + %lul“‘zulﬂﬁ, x € B(0, 1),

-ty =t v e 2 xe 0,0,

u,v e Hy(B(0, 1)).

Suppose by contradiction that [uc|e + [[Vel o is uniformly bounded. Then, by the dominated convergent the-
orem, we get that

lim j ul "% = J ul, lim J VP J v, lim J Ul = J ulvh,

E— E— E—

B(0,1) B(0,1) B(0,1) B(0,1) B(0,1) B(0,1)
Combining these with I (ug, ve) = I' (U, Vo), similarly to the proof of Proposition 4.2, we see that u, — uo,
Ve — Vg stronglyin Hé(B(O, 1)). It follows from (4.8) that (ug, vo) # (0, 0) and, moreover, ug > 0, vo > 0. With-
out loss of generality, we may assume that ug # 0. By the strong maximum principle, we obtain that uy > 0
in B(0, 1). By the Pohozaev identity, we have a contradiction

0< J (IVug|? + |Vvo|P)(x - v)do = 0,
9B(0,1)
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where v is the outward unit normal vector on 0B(0, 1). Hence, |luglloo + [[Velloo — 00 as € — 0. Let
K := max{u.(0), v¢(0)}.

Since u¢(0) = maxp(o,1) Us(x) and v¢(0) = maxp(o,1) Ve(x), we see that K, — +oo as € — 0. Setting

Ue() 1= K ue(Ke%0), Vo) = Ko ve(K%0),  ae o= ’#,
we have
max{U.(0), V(0)} = max{ max Ug(x), max V.(x)}=1, (4.9)
xeB(0,K%) XeB(0,K2%)
and (Ug, V,) is a solution of
(a-¢g)y

~DpUe = p UF 72671 4 Us-evE e x e B0, K%),

p* - 2¢

A Ve = VP T iﬁ_—gz)ngffvﬁ’l’e, x € B(0, K%).

Since
j VU (0P dx = KPP j V()PP dy
RN RN
- KNPE j V(0P dx
IRN
< j Vi (0P dx,
]RN

we see that {(U, V¢)}n>1 is bounded in D. By elliptic estimates, we get that, up to a subsequence,
(US’ VS) - (Us V) € D

uniformly in every compact subset of R¥ as ¢ — 0, and (U, V) is a solution of (1.1), thatis, I'(U, V) = 0. More-
over, U > 0, V > 0 are radially symmetric decreasing. By (4.9), we have (U, V) # (0, 0), and so (U, V) € N'.
Thus,
) 11
A <I(U, V) = (— - —) J(lVUlP +|VVIP) dx
b p

*

RN
11
<liminf(> - ) I (VUL + [VV,[?) dx
¢e-0 \p p*
B(0,K%¢)
“timinf(- =) [ (VUL + (VL) dx
e—0 \p p*-2¢
B(0,K%¢)
ctiminf( - —=—-) | (Ve + 19 dx
~ e50 \p p*-2¢
B(0,1)
= liminf A;.
-0

It follows from (4.7) that A’ < I(U, V) < liminf,_,q A, < A’, which means that I(U, V) = A’. By (4.4), we get
that U # 0 and V # 0. The strong maximum principle guarantees that U > 0 and V > 0. Since (U, V) € N, we
have I(U, V) > A > A'. Therefore,

I(U,V)=A=A4A, (4.10)

that is, (U, V) is a positive least energy solution of (1.1) with (H1) holding, which is radially symmetric
decreasing. This completes the proof. O
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Remark 4.1. If (H1) and (C2) hold, then it can be seen from Theorems 1.2 and 1.3 that (VkoUs,y, VloUs,)) is
a positive least energy solution of (1.1), where (ko, lo) is defined by (1.9) and Uy, is defined by (1.4).

Proof of Theorem 1.4. To prove the existence of (k(y), l(y)) for y > 0 small, recalling (3.2), we denote F;(k, L, y)
by Fi(k, 1), i = 1, 2, in this proof. Let k(0) = yzp/(p P and 1(0) = ygp/(p P Then

F1(k(0), 1(0), 0) = F>(k(0), 1(0), 0) = 0.

Obviously, we have

*

p -p e

uik

kF1(k(0), 1(0), 0) = 750,

01F1(k(0), 1(0), 0) = 0rF2(k(0), 1(0), 0) = O,

b _pyzlP;HJ >O’

01F>(k(0), 1(0), 0) =
which implies that

d (akFl(k(O)’ 1(0)1 0) alFl (k(o), I(O)’ O)) S
0kF2(k(0), 1(0),0) 0:F2(k(0), 1(0), 0)

By the implicit function theorem, we see that k(y), I(y) are well defined and of class C* in (-y», y,) for some

Y2 > 0, and Fq(k(y), I(y), y) = F2(k(y), l(y), y) = 0. Then (x”/k(y)Ug,y, xp/l(y)Ug,y) is a positive solution of (1.1).
Noticing that

S

lim(k(y) + 1y)) = kKO) +10) =iy * +p15 ",

N-p N-,
p

|

we obtain that there exists y; € (0, y,] such that

_N-p _N-p
p p

k(y) + ly) > min{y1 , Uy } forally € (0, y1).
It follows from (4.4) and (4.10) that

1) Ueys {101 Uey) = 5 kp + 17

I I T (R Y
>m1n{Np1"Sn,Ny2”Sp}
>A'=A=IU,V),

that is, when (H1) is satisfied, ({/k(y) Ue,y, \p/l(y)Ug,y) is a different positive solution of (1.1) with respect
to (U, V). O

5 Proof of Theorem 1.5

In this section, we consider the case (H2).
Proposition 5.1. Let q,r > 1 satisfy q + r < p*, and set
IQ(IVuIP +|Vv|P) dx

Ser@= inf
wvews” @ ([, luld|v]r dx) 7
u,v+0
) JoVul? dx
Sq+r(Q) = 11'11f P ——
uew,”(Q) (fg|u|q+r dx) @
u#0
Then oy
Sar(@) = — 15, (5.1)
(qerr)a

Moreover, if ug is a minimizer for Sg.,(Q), then (qYPug, r''Puy) is a minimizer for Sq,r(Q).
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Proof. Foru # 0in Wy (Q)and t > 0, taking v = ¢~*/Pu in the first quotient gives

: VulP dx
5,0(Q) < [t + -] JalVHP dx
(J lulasr dx)im

and minimizing the right-hand side over u and ¢ shows that S, ,(Q) is less than or equal to the right-hand side
of (5.1). Foru,v # 0in Wé’p(Q), let w = t1/Pv, where

ger jQIulq” dx

fQIVIq” dx’

Then jQIulq” dx = jglwlq” dx, and hence

Jlulqlwlrdx < J|u|q” dx = J|w|q+f dx
Q Q Q

by the Holder inequality, so

Jo(VulP +19viPydx [ (7 |[Vul? + 77 [VwP) dx

(J lulalvlr dx)#= (J lulgiwl” dx)e
v [VulP dx B VWP dx
> tWJ-Q—p +t %J.Q—p
(f lula* dx)e (f Iwla+ dx) e

T R
> [t + £777]S44,(Q).

The last expression is greater than or equal to the right-hand side of (5.1), so minimizing over (u, v) gives the
reverse inequality. O

By Proposition 5.1,

P @),  Sep=—2—
(abb)7 O

where A1 (Q) > 0is the first Dirichlet eigenvalue of —A, in Q. When (H2) is satisfied, we will obtain a nontrivial
nonnegative solution of system (1.1) for A < S, 5(Q). Consider the C!-functional

Sa,p(Q) = S, (5.2)

o(w) = - I[IVulp + VP = A (vh)P] dx - i j(u*)“(v*)/‘ dx, weW,
p p

where W = D7(Q) x Dy*(Q) with the norm given by |w[? = |Vulh + Vvl for w = (u,v), ||, denotes the
norm in L?(Q) and u*(x) = max{+u(x), O} are the positive and negative parts of u, respectively. If w is a critical
point of @,

0=0'W)(u,v) = J(IVu‘Ip +|VvIP) dx,
Q
and hence (u,v™) =0, sow = (u*, v*") is a nonnegative weak solution of (1.1) with (H2) holding.

Proposition 5.2. If0 + c < S%’;/N and A < S4,p(Q), then every (PS). sequence of ©® has a subsequence that
converges weakly to a nontrivial critical point of .

Proof. Let {w;} be a (PS). sequence. Then

*

1 1
Oy = j[wuﬂp R L I(u;)“(v;)ﬁ dx
Q Q

=c+o(1)
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and
@' (wj)w;j = J[IVujP’ +|Vy;lP - A(u;)“(v;)b] dx - J(u;)“(v;)ﬁ dx
Q Q
= o(Iwjll), (5.3)
SO 1
i J[IVujlp +|Vy;lP - /\(u}“)“(v}T)b] dx = c +o(lwj]l + 1). (5.4)

Q

Since the integral on the left-hand side is greater than or equal to (1 - m)llellp, A< Sgp(Q)andp > 1,
it follows that {w;} is bounded in W. So a renamed subsequence converges to some w weakly in W, strongly
inLS(Q)x LY(Q) forall1 < s, t < p* and a.e. in Q. Then wj — w strongly in Wé’q(Q) X Wé"(Q) forall1l <gq,
r < p by Boccardo and Murat [6, Theorem 2.1], and hence Vw; — Vw a.e. in Q for a further subsequence. It
then follows that w is a critical point of ®.

Suppose w = 0. Since {w;} is bounded in W and converges to zero in L”(Q) x LP(Q), equation (5.3) and
the Holder inequality give

4 1% +ya,+\B p ||W].||p*—p
o(1) = | (IVu;|P + |Vv;IP) dx - (u}.) (v]. ) dx = [wjlP( 1 - — )
Q Q Sa"’ﬁ

If lwjll — 0, then ®(w;) — 0, contradicting ¢ # 0, so this implies

N

p

Iw;llP > Sa,/; +0(1)
for a renamed subsequence. Then (5.4) gives
wslIP s?
Cc= %+0(1)2 %’B+o(l),

contradicting ¢ < Sf;"/[f /N. O

Recall (1.4) and (1.5) and let 17 : [0, c0) — [0, 1] be a smooth cut-off function such that (s) = 1 fors < %and
n(s) = 0 fors > 3; set

e p () = 11( %)Ua,om

for p > 0. We have the following estimates for u., (see [15, Lemma 3.1]):

N =4
j Vue, P dx < S +¢(=)", (5.5)
RN p
1o log(l—)) —CeP ifN=p?,
» C €
I Ug,p dx 2 1 el (5.6)
= D _ D e p-1 . 2
RN ce Cp <p) if N > p~,
N
J uly dx = S5 - c(£)7, (5.7)
RY P

where C = C(N, p). We will make use of these estimates in the proof of our last theorem.

Proof of Theorem 1.5. In view of (5.2),

IwiP,

o) 2 (1 Jwip -

p*

 Sap(Q)
‘ p*safﬁ
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so the origin is a strict local minimizer of ®. We may assume without loss of generality that 0 € Q. Fixp > 0
so small that Q > B,(0) > supp ue p, and let w, = (a*/Pug p, f1/Pu, ) € W. Note that

*

RP a b RP a8 .
®(Rw,) = ?(p |Vus,p|g - Aar fr |U£,p|£) - arBr |us,p|£* — =00

as R — +oo and fix Ry > 0 so large that ®(Row,) < 0. Then let

I'={y € C([0,1], W) : y(0) = 0, y(1) = Row,}

and set

¢ :=inf max ®(y(¢)) > 0.
yel te[0,1]

By the mountain pass theorem, ® has a (PS). sequence {w;}.
Since t — tRow. isapathinT,

N
P

1

1 /p*IVue o5 = A(@BP)7 lug 1B 10

¢ < max O(tRow,) = _(p [Vite,plp 1( B £’p|p> = =5/. (5.8)
te[0,1] N (aa‘Bﬁ)IT*'ug,plZ* N

By (5.5)-(5.7),

a_a b_B
Aap p*ﬁp p*
=Sun= (S g

apby:
p*SP + wep log e + O(&P)

S < llog ] + 0(1))51’

(@a2BBYF* (5P + O(eFT)) 7

if N = p?, and
Lo Aapb)? Nep y s
p*Sr — Tsp + O(erT) Aalﬂ’_z’%ﬁf’_?‘ o2
Se < 1 N N _Nop (:(,ﬁ—(—N_I”+O(Sl’f1 )Sp
(aBB)?" (S? + O(e7T)) ™ cSF

if N > p?, s0 S < Sy p if € > 0 is sufficiently small. So ¢ < Szl//f /N by (5.8), and hence a subsequence of {w;}
converges weakly to a nontrivial critical point of ®@ by Proposition 5.2, which then is a nontrivial nonnegative
solution of (1.1) with (H2) holding. O
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