
Adv. Nonlinear Stud. 2017; 17(4): 641–659

Research Article

Zhenyu Guo, Kanishka Perera* and Wenming Zou

On Critical p-Laplacian Systems
DOI: 10.1515/ans-2017-6029
Received February 23, 2016; revised July 13, 2017; accepted July 13, 2017

Abstract:We consider the critical p-Laplacian system

{{{{{{
{{{{{{
{

−∆pu −
λa
p
|u|a−2u|v|b = μ1|u|p

∗−2u +
αγ
p∗

|u|α−2u|v|β , x ∈ Ω,

−∆pv −
λb
p

|u|a|v|b−2v = μ2|v|p
∗−2v + βγ

p∗
|u|α|v|β−2v, x ∈ Ω,

u, v in D1,p
0 (Ω),

where ∆pu := div(|∇u|p−2∇u) is the p-Laplacian operator defined on

D1,p(ℝN) := {u ∈ Lp∗ (ℝN) : |∇u| ∈ Lp(ℝN)},
endowedwith the norm ‖u‖D1,p := (∫ℝN |∇u|

p dx)
1
p , N ≥ 3, 1 < p < N, λ, μ1, μ2 ≥ 0, γ ̸= 0, a, b, α, β > 1 satisfy

a + b = p, α + β = p∗ := Np
N−p , the critical Sobolev exponent, Ω isℝN or a bounded domain inℝN and D1,p

0 (Ω)
is the closure of C∞0 (Ω) in D1,p(ℝN). Under suitable assumptions, we establish the existence and nonexis-
tence of a positive least energy solution of this system. We also consider the existence and multiplicity of the
nontrivial nonnegative solutions.
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1 Introduction
Equations and systems involving the p-Laplacian operator have been extensively studied in the recent years
(see, e.g., [2, 3, 5, 7–10, 13, 16, 17, 19, 20, 22, 23, 26] and the references therein). In the present paper, we
study the critical p-Laplacian system

{{{{{{
{{{{{{
{

−∆pu −
λa
p
|u|a−2u|v|b = μ1|u|p

∗−2u +
αγ
p∗

|u|α−2u|v|β , x ∈ Ω,

−∆pv −
λb
p

|u|a|v|b−2v = μ2|v|p
∗−2v + βγ

p∗
|u|α|v|β−2v, x ∈ Ω,

u, v in D1,p
0 (Ω),

(1.1)

where ∆pu := div(|∇u|p−2∇u) is the p-Laplacian operator defined on

D1,p(ℝN) := {u ∈ Lp∗ (ℝN) : |∇u| ∈ Lp(ℝN)},
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endowed with the norm ‖u‖D1,p := (∫ℝN |∇u|
p dx)

1
p , N ≥ 3, 1 < p < N, λ, μ1, μ2 ≥ 0, γ ̸= 0, a, b, α, β > 1 sat-

isfy a + b = p, α + β = p∗ := Np
N−p , the critical Sobolev exponent, Ω is ℝN or a bounded domain in ℝN and

D1,p
0 (Ω) is the closure of C∞0 (Ω) in D1,p(ℝN). The case for p = 2 was thoroughly investigated by Peng, Peng

and Wang [21] recently; some uniqueness, synchronization and non-degenerated properties were verified
there. Note that we allow the powers in the coupling terms to be unequal. We consider the two cases
(H1) Ω = ℝN , λ = 0, μ1, μ2 > 0;
(H2) Ω is a bounded domain inℝN , λ > 0, μ1, μ2 = 0, γ = 1.

Let

S := inf
u∈D1,p

0 (Ω)\{0}

∫Ω|∇u|
p dx

(∫Ω|u|
p∗ dx) p

p∗ (1.2)

be the sharp constant of imbedding for D1,p
0 (Ω) í→ Lp∗ (Ω) (see, e.g., [1]). Then S is independent of Ω and is

attained only when Ω = ℝN . In this case, a minimizer u ∈ D1,p(ℝN) satisfies the critical p-Laplacian equation

− ∆pu = |u|p∗−2u, x ∈ ℝN . (1.3)

Damascelli, Merchán, Montoro and Sciunzi [14] recently showed that all solutions of (1.3) are radial and
radially decreasingabout somepoint inℝN when 2N

N+2 ≤ p < 2.Vétois [25] consideredamore general equation
and extended the result to the case 1 < p < 2N

N+2 . Sciunzi [24] extended this result to the case 2 < p < N. By
exploiting the classification results in [4, 18], we see that, for 1 < p < N, all positive solutions of (1.3) are of
the form

Uε,y(x) := [N(N − p
p − 1 )

p−1
]
N−p
p2 (

ε
1
p−1

ε
p
p−1 + |x − y|

p
p−1 )

N−p
p
, ε > 0, y ∈ ℝN , (1.4)

and
∫
ℝN

|∇Uε,y|p dx = ∫
ℝN

|Uε,y|p
∗ dx = S

N
p . (1.5)

In case (H1), the energy functional associated with system (1.1) is given by

I(u, v) = 1
p ∫
ℝN

(|∇u|p + |∇v|p) − 1
p∗ ∫
ℝN

(μ1|u|p
∗
+ μ2|v|p

∗
+ γ|u|α|v|β), (u, v) ∈ D,

where D := D1,p(ℝN) × D1,p(ℝN), endowedwith the norm ‖(u, v)‖pD = ‖u‖pD1,p + ‖v‖pD1,p . In this case, (1.1) with
α = β and p = 2 is well studied by Chen and Zou [11, 12]. Define

N = {(u, v) ∈ D : u ̸= 0, v ̸= 0, ∫
ℝN

|∇u|p = ∫
ℝN

(μ1|u|p
∗
+
αγ
p∗

|u|α|v|β), ∫
ℝN

|∇v|p = ∫
ℝN

(μ2|v|p
∗
+
βγ
p∗

|u|α|v|β)}.

It is easy to see that N ̸= 0 and that any nontrivial solution of (1.1) is in N. By a nontrivial solution we mean
a solution (u, v) such that u ̸= 0 and v ̸= 0. A solution is called a least energy solution if its energy is minimal
among energies of all nontrivial solutions. A solution (u, v) is positive if u > 0 and v > 0, and semitrivial if it
is of the form (u, 0) with u ̸= 0 or (0, v) with v ̸= 0. Set A := inf(u,v)∈N I(u, v), and note that

A = inf
(u,v)∈N

1
N ∫
ℝN

(|∇u|p + |∇v|p) = inf
(u,v)∈N

1
N ∫
ℝN

(μ1|u|p
∗
+ μ2|v|p

∗
+ γ|u|α|v|β).

Consider the nonlinear system of equations

{{{{{{
{{{{{{
{

μ1k
p∗−p
p +

αγ
p∗
k
α−p
p l

β
p = 1,

μ2l
p∗−p
p +

βγ
p∗
k
α
p l

β−p
p = 1,

k > 0, l > 0.

(1.6)

Our main results in this case are the following.
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Theorem 1.1. If (H1) holds and γ < 0, then A = 1
N (μ
−(N−p)/p
1 + μ−(N−p)/p2 )SN/p and A is not attained.

Theorem 1.2. Let (H1) and the following conditions hold:
(C1) N

2 < p < N, α, β > p and

0 < γ ≤ 3p2
(3 − p)2

min{μ1α (
α − p
β − p )

β−p
p , μ2

β (
β − p
α − p )

α−p
p }; (1.7)

(C2) 2N
N+2 < p < N

2 , α, β < p and

γ ≥ Np2

(N − p)2
max{μ1α (

p − β
p − α )

p−β
p , μ2

β (
p − α
p − β )

p−α
p }. (1.8)

Then A = 1
N (k0 + l0)S

N/p and A is attained by ( p√k0Uε,y ,
p√l0Uε,y), where (k0, l0) satisfies (1.6) and

k0 = min{k : (k, l) satisfies (1.6)}. (1.9)

Theorem 1.3. Assume that 2N
N+2 < p < N

2 , α, β < p and (H1) holds. If γ > 0, then A is attained by some (U, V),
where U and V are positive, radially symmetric and decreasing.

Theorem 1.4 (Multiplicity). Assume that 2N
N+2 < p < N

2 , α, β < p and (H1) holds. There exists

γ1 ∈ (0, Np2

(N − p)2
max{μ1α (

2 − β
2 − α )

2−β
2 , μ2

β (
2 − α
2 − β )

2−α
2 }]

such that for any γ ∈ (0, γ1) there exists a solution (k(γ), l(γ)) of (1.6) satisfying

I( p√k(γ)Uε,y ,
p√l(γ)Uε,y) > A

and ( p√k(γ)Uε,y ,
p√l(γ)Uε,y) is a (second) positive solution of (1.1).

For the case (H2), we have the following theorem.

Theorem 1.5. If (H2) holds, p ≤ √N and

0 < λ <
p

(aabb)
1
p
λ1(Ω),

where λ1(Ω) > 0 is the first Dirichlet eigenvalue of −∆p in Ω, then system (1.1) has a nontrivial nonnegative
solution.

2 Proof of Theorem 1.1
Lemma 2.1. Assume that (H1) holds and −∞ < γ < 0. If A is attained by a couple (u, v) ∈ N, then (u, v) is
a critical point of I, i.e., (u, v) is a solution of (1.1).

Proof. Define

N1 := {(u, v) ∈ D : u ̸≡ 0, v ̸≡ 0, G1(u, v) := ∫
ℝN

|∇u|p − ∫
ℝN

(μ1|u|p
∗
+
αγ
p∗

|u|α|v|β) = 0},

N2 := {(u, v) ∈ D : u ̸≡ 0, v ̸≡ 0, G2(u, v) := ∫
ℝN

|∇v|p − ∫
ℝN

(μ2|v|p
∗
+
βγ
p∗

|u|α|v|β) = 0}.

Obviously,N = N1 ∩N2. Suppose that (u, v) ∈ N is a minimizer for I restricted toN. It follows from the stan-
dard minimization theory that there exist two Lagrange multipliers L1, L2 ∈ ℝ such that

I�(u, v) + L1G�
1(u, v) + L2G�

2(u, v) = 0.
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Noticing that

I�(u, v)(u, 0) = G1(u, v) = 0,
I�(u, v)(0, v) = G2(u, v) = 0,

G�
1(u, v)(u, 0) = −(p∗ − p) ∫

ℝN

μ1|u|p
∗
+ (p − α) ∫

ℝN

αγ
p∗

|u|α|v|β ,

G�
1(u, v)(0, v) = −β ∫

ℝN

αγ
p∗

|u|α|v|β > 0,

G�
2(u, v)(u, 0) = −α ∫

ℝN

βγ
p∗

|u|α|v|β > 0,

G�
2(u, v)(0, v) = −(p∗ − p) ∫

ℝN

μ2|v|p
∗
+ (p − β) ∫

ℝN

βγ
p∗

|u|α|v|β ,

we get that

{
G�
1(u, v)(u, 0)L1 + G�

2(u, v)(u, 0)L2 = 0,
G�
1(u, v)(0, v)L1 + G�

2(u, v)(0, v)L2 = 0
and

G�
1(u, v)(u, 0) + G�

1(u, v)(0, v) = −(p∗ − p) ∫
ℝN

|∇u|p ≤ 0,

G�
2(u, v)(u, 0) + G�

2(u, v)(0, v) = −(p∗ − p) ∫
ℝN

|∇v|p ≤ 0.

We claim that ∫ℝN |∇u|
p > 0. Indeed, if ∫ℝN |∇u|

p = 0, then by (1.2) we have

∫
ℝN

|u|p∗ ≤ S−
p∗
p ( ∫
ℝN

|∇u|p)
p∗
p
= 0.

Thus, a desired contradiction comes out, u ≡ 0 almost everywhere inℝN . Similarly, ∫ℝN |∇v|
p > 0. Hence,

|G�
1(u, v)(u, 0)| = −G�

1(u, v)(u, 0) > G�
1(u, v)(0, v),

|G�
2(u, v)(0, v)| = −G�

2(u, v)(0, v) > G�
2(u, v)(u, 0).

Define the matrix
M := (

G�
1(u, v)(u, 0) G�

2(u, v)(u, 0)
G�
1(u, v)(0, v) G�

2(u, v)(0, v)
) .

Then
det(M) = |G�

1(u, v)(u, 0)| ⋅ |G�
2(u, v)(0, v)| − G�

1(u, v)(0, v) ⋅ G�
2(u, v)(u, 0) > 0,

which means that L1 = L2 = 0.

Proof of Theorem 1.1. It is standard to see that A > 0. By (1.4), we know that ωμi := μ
(p−N)/p2
i U1,0 satisfies

−∆pu = μi|u|p
∗−2u inℝN , where i = 1, 2. Set e1 = (1, 0, . . . , 0) ∈ ℝN and

(uR(x), vR(x)) = (ωμ1 (x), ωμ2 (x + Re1)),

where R is a positive number. Then vR ⇀ 0 weakly in D1,2(ℝN) and vR ⇀ 0 weakly in Lp∗ (ℝN) as R → +∞.
Hence,

lim
R→+∞

∫
ℝN

uαRv
β
R dx = lim

R→+∞
∫
ℝN

uαRv
α

p∗−1
R v

p∗(β−1)
p∗−1
R dx

≤ lim
R→+∞

( ∫
ℝN

up
∗−1
R vR dx)

α
p∗−1

( ∫
ℝN

vp
∗
R dx)

β−1
p∗−1

= 0.
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Therefore, for R > 0 sufficiently large, the system

{{{{{{
{{{{{{
{

∫
ℝN

|∇uR|p dx = ∫
ℝN

μ1u
p∗
R dx = t

p∗−p
p

R ∫
ℝN

μ1u
p∗
R dx + t

α−p
p
R s

β
p
R ∫
ℝN

αγ
p∗
uαRv

β
R dx,

∫
ℝN

|∇vR|p dx = ∫
ℝN

μ2v
p∗
R dx = s

p∗−p
p

R ∫
ℝN

μ2v
p∗
R dx + t

α
p
R s

β−p
p
R ∫
ℝN

βγ
p∗
uαRv

β
R dx

has a solution (tR , sR) with
lim
R→+∞

(|tR − 1| + |sR − 1|) = 0.

Furthermore, ( p√tRuR , p√sRvR) ∈ N. Then, by (1.5), we obtain that

A = inf
(u,v)∈N

I(u, v) ≤ I( p√tRuR ,
p√sRvR)

=
1
N (tR ∫

ℝN

|∇uR|p dx + sR ∫
ℝN

|∇vR|p dx)

=
1
N (tRμ

− N−pp
1 + sRμ

− N−pp
2 )S

N
p ,

which implies that A ≤ 1
N (μ
−(N−p)/p
1 + μ−(N−p)/p2 )SN/p.

For any (u, v) ∈ N,

∫
ℝN

|∇u|p dx ≤ μ1 ∫
ℝN

|u|p∗ dx ≤ μ1S−
p∗
p ( ∫
ℝN

|∇u|p dx)
p∗
p
.

Therefore, ∫ℝN |∇u|
p dx ≥ μ−(N−p)/p1 SN/p. Similarly,

∫
ℝN

|∇v|p dx ≥ μ
− N−pp
2 S

N
p .

Then A ≥ 1
N (μ
−(N−p)/p
1 + μ−(N−p)/p2 )SN/p. Hence,

A =
1
N (μ
− N−pp
1 + μ

− N−pp
2 )S

N
p . (2.1)

Suppose by contradiction that A is attained by some (u, v) ∈ N. Then (|u|, |v|) ∈ N and I(|u|, |v|) = A. By
Lemma 2.1, we see that (|u|, |v|) is a nontrivial solution of (1.1). By the strong maximum principle, we may
assume that u > 0, v > 0, and so ∫ℝN u

αvβ dx > 0. Then

∫
ℝN

|∇u|p dx < μ1 ∫
ℝN

|u|p∗ dx ≤ μ1S−
p∗
p ( ∫
ℝN

|∇u|p dx)
p∗
p
,

which yields that

∫
ℝN

|∇u|p dx > μ
− N−pp
1 S

N
p .

Similarly,

∫
ℝN

|∇v|p dx > μ
− N−pp
2 S

N
p .

Therefore,
A = I(u, v) = 1

N ∫
ℝN

(|∇u|p + |∇v|p) dx >
1
N (μ
− N−pp
1 + μ

− N−pp
2 )S

N
p ,

which contradicts (2.1).
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3 Proof of Theorem 1.2
Proposition 3.1. Assume that c, d ∈ ℝ satisfy

{{{{{{
{{{{{{
{

μ1c
p∗−p
p +

αγ
p∗
c
α−p
p d

β
p ≥ 1,

μ2d
p∗−p
p +

βγ
p∗
c
α
p d

β−p
p ≥ 1,

c > 0, d > 0.

(3.1)

If N2 < p < N, α, β > p and (1.7) holds, then c + d ≥ k + l, where k, l ∈ ℝ satisfy (1.6).

Proof. Let y = c + d, x = c
d , y0 = k + l and x0 = k

l . By (3.1) and (1.6), we have that

y
p∗−p
p ≥

(x + 1)
p∗−p
p

μ1x
p∗−p
p + αγ

p∗ x α−p
p

:= f1(x), y
p∗−p
p

0 = f1(x0),

y
p∗−p
p ≥

(x + 1)
p∗−p
p

μ2 + βγ
p∗ x α

p
:= f2(x), y

p∗−p
p

0 = f2(x0).

Thus,

f �1(x) =
αγ(x + 1)

p∗−2p
p x

α−2p
p

pp∗(μ1x
p∗−p
p + αγ

p∗ x α−p
p )2

[−
p∗(p∗ − p)μ1

αγ
x
β
p + βx − (α − p)],

f �2(x) =
βγ(x + 1)

p∗−2p
p

pp∗(μ2 + βγ
p∗ x α

p )2
[(β − p)x

α
p − αx

α−p
p +

p∗(p∗ − p)μ2
βγ ].

Let x1 = ( pαγ
p∗(p∗−p)μ1 )p/(β−p), x2 = α−p

β−p and

g1(x) = −
p∗(p∗ − p)μ1

αγ
x
β
p + βx − (α − p),

g2(x) = (β − p)x
α
p − αx

α−p
p +

p∗(p∗ − p)μ2
βγ

.

It follows from (1.7) that

max
x∈(0,+∞)

g1(x) = g1(x1) = (β − p)( pαγ
p∗(p∗ − p)μ1

)
p
β−p − (α − p) ≤ 0,

min
x∈(0,+∞)

g2(x) = g2(x2) = −p(α − p
β − p )

α−p
p +

p∗(p∗ − p)μ2
βγ

≥ 0.

That is, f1(x) is strictly decreasing in (0, +∞) and f2(x) is strictly increasing in (0, +∞). Hence,

y
p∗−p
p ≥ max{f1(x), f2(x)} ≥ min

x∈(0,+∞)
(max{f1(x), f2(x)})

= min
{f1=f2}

(max{f1(x), f2(x)}) = y
p∗−p
p

0 ,

where {f1 = f2} := {x ∈ (0, +∞) : f1(x) = f2(x)}.

Remark 3.1. From the proof of Proposition 3.1 it is easy to see that system (1.6), under the assumption of
Proposition 3.1, has only one real solution (k, l) = (k0, l0), where (k0, l0) is defined as in (1.9).
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Define the functions
{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

F1(k, l) := μ1k
p∗−p
p +

αγ
p∗
k
α−p
p l

β
p − 1, k > 0, l ≥ 0,

F2(k, l) := μ2l
p∗−p
p +

βγ
p∗
k
α
p l

β−p
p − 1, k ≥ 0, l > 0,

l(k) := (
p∗

αγ )
p
β k

p−α
β (1 − μ1k

p∗−p
p )

p
β , 0 < k ≤ μ

− p
p∗−p

1 ,

k(l) := (
p∗

βγ )
p
α l

p−β
α (1 − μ2l

p∗−p
p )

p
α , 0 < l ≤ μ

− p
p∗−p

2 .

(3.2)

Then F1(k, l(k)) ≡ 0 and F2(k(l), l) ≡ 0.

Lemma 3.2. Assume that 2N
N+2 < p < N

2 , α, β < p and γ > 0. Then

F1(k, l) = 0, F2(k, l) = 0, k, l > 0, (3.3)

has a solution (k0, l0) such that
F2(k, l(k)) < 0 for all k ∈ (0, k0), (3.4)

that is, (k0, l0) satisfies (1.9). Similarly, (3.3) has a solution (k1, l1) such that

F1(k(l), l) < 0 for all l ∈ (0, l1), (3.5)

that is,
(k1, l1) satisfies (1.6) and l1 = min{l : (k, l) is a solution of (1.6)}.

Proof. We only prove the existence of (k0, l0). It follows from F1(k, l) = 0, k, l > 0, that

l = l(k) for all k ∈ (0, μ
− p
p∗−p

1 ).

Substituting this into F2(k, l) = 0, we have

μ2(
p∗

αγ )
α
β (1 − μ1k

p∗−p
p )

α
β +

βγ
p∗
k

(p∗−p)α
pβ − (

p∗

αγ )
p−β
β k−

(p∗−p)(p−α)
pβ (1 − μ1k

p∗−p
p )

p−β
β = 0. (3.6)

By setting

f(k) := μ2(
p∗

αγ )
α
β (1 − μ1k

p∗−p
p )

α
β +

βγ
p∗
k

(p∗−p)α
pβ − (

p∗

αγ )
p−β
β k−

(p∗−p)(p−α)
pβ (1 − μ1k

p∗−p
p )

p−β
β ,

the existence of a solution of (3.6) in (0, μ−p/(p
∗−p)

1 ) is equivalent to f(k) = 0 possessing a solution in
(0, μ−p/(p

∗−p)
1 ). Since α, β < p, we get that

lim
k→0+ f(k) = −∞, f(μ

− p
p∗−p

1 ) =
βγ
p∗
μ
− αβ
1 > 0,

which implies that there exists k0 ∈ (0, μ−p/(p
∗−p)

1 ) such that f(k0) = 0 and f(k) < 0 for k ∈ (0, k0). Let l0 = l(k0).
Then (k0, l0) is a solution of (3.3) and (3.4) holds.

Remark 3.2. From 2N
N+2 < p < N

2 and α, β < p we get that 2 < p∗ < 2p. It can be seen from N
2 < p < N and

α, β > p that 2 < 2p < p∗.

Lemma 3.3. Assume that 2N
N+2 < p < N

2 , α, β < p and (1.8) holds. Let (k0, l0) be the same as in Lemma3.2. Then

(k0 + l0)
p∗−p
p max{μ1, μ2} < 1

and
F2(k, l(k)) < 0 for all k ∈ (0, k0), F1(k(k), l) < 0 for all l ∈ (0, l0). (3.7)
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Proof. Recalling (3.2), we obtain that

l�(k) = (
p∗

αγ )
p
β p
β (
k
p−α
p − μ1k

β
p )

p−β
β (

p − α
p

k−
α
p −

μ1β
p
k
β−p
p )

= (
p∗μ1
αγ )

p
β k

p−p∗
β (μ−11 − k

p∗−p
p )

p−β
β (

p − α
μ1β

− k
p∗−p
p ),

l�((p − α
μ1β

)
p

p∗−p ) = l�(μ
− p
p∗−p

1 ) = 0,

l�(k) > 0 for k ∈ (0, (p − α
μ1β

)
p

p∗−p ),
l�(k) < 0 for k ∈ ((

p − α
μ1β

)
p

p∗−p , μ− p
p∗−p

1 ).

From

l��(k̄) = p − β
β (

p∗μ1
αγ )

p
β k̄

p−2β−α
β (μ−11 − k̄

p∗−p
p )

p−2β
β [(

p − α
μ1β

− k̄
p∗−p
p )

2
− (μ−11 − k̄

p∗−p
p )(

α(p − α)
μ1β(p − β)

− k̄
p∗−p
p )] = 0

and k̄ ∈ (( p−αμ1β )
p/(p∗−p), μ−p/(p∗−p)1 ), we have k̄ = ( p(p−α)

(2p−p∗)μ1β )p/(p∗−p). Then, by (1.8), we get that
min

k∈(0,μ−p/(p∗−p)1 ]
l�(k) = min

k∈(( p−αμ1β
)p/(p∗−p) ,μ−p/(p∗−p)1 ]

l�(k) = l�(k̄)

= −(
p∗(p∗ − p)μ1

pαγ )
p
β (
p − β
p − α )

p−β
β

≥ −1.

Therefore, l�(k) > −1 for k ∈ (0, μ−p/(p
∗−p)

1 ] with

k ̸= (
p(p − α)

(2p − p∗)μ1β
)

p
p∗−p ,

which implies that l(k) + k is strictly increasing on [0, μ−p/(p
∗−p)

1 ]. Noticing that k0 < μ−p/(p
∗−p)

1 , we have

μ
− p
p∗−p

1 = l(μ
− p
p∗−p

1 ) + μ
− p
p∗−p

1 > l(k0) + k0 = l0 + k0,

that is, μ1(k0 + l0)(p
∗−p)/p < 1. Similarly, μ2(k0 + l0)(p

∗−p)/p < 1. To prove (3.7), by Lemma 3.2 it suffices
to show that (k0, l0) = (k1, l1). It follows from (3.4) and (3.5) that k1 ≥ k0 and l0 ≥ l1. Suppose by con-
tradiction that k1 > k0. Then l(k1) + k1 > l(k0) + k0. Hence, l1 + k(l1) = l(k1) + k1 > l(k0) + k0 = l0 + k(l0).
Following the arguments as in the beginning of the current proof, we have that l + k(l) is strictly increasing
for l ∈ [0, μ−p/(p

∗−p)
2 ]. Therefore, l1 > l0, which contradicts l0 ≥ l1. Then k1 = k0, and similarly l0 = l1.

Remark 3.3. For any γ > 0, condition (1.8) always holds for dimension N large enough.

Proposition 3.4. Assume that 2N
N+2 < p < N

2 , α, β < p and (1.8) holds. Then

{{{
{{{
{

k + l ≤ k0 + l0,
F1(k, l) ≥ 0, F2(k, l) ≥ 0,

k, l ≥ 0, (k, l) ̸= (0, 0),
(3.8)

has a unique solution (k, l) = (k0, l0).

Proof. Obviously, (k0, l0) satisfies (3.8). Suppose that (k̃, ̃l) is any solution of (3.8) and, without loss of gener-
ality, assume that k̃ > 0. We claim that ̃l > 0. In fact, if ̃l = 0, then k̃ ≤ k0 + l0 and F1(k̃, 0) = μ1 k̃(p

∗−p)/p − 1≥ 0.
Thus,

1 ≤ μ1 k̃
p∗−p
p ≤ μ1(k0 + l0)

p∗−p
p ,

a contradiction to Lemma 3.3.



Z. Guo, K. Perera and W. Zou, Critical p-Laplacian Systems | 649

Suppose by contradiction that k̃ < k0. It can be seen that k(l) is strictly increasing on (0, ( p−βμ2α )
p/(p∗−p)]

and strictly decreasing on

[(
2 − β
μ2α

)
p

p∗−p , μ− p
p∗−p

2 ] and k(0) = k(μ
− p
p∗−p

2 ) = 0.

Since 0 < k̃ < k0 = k(l0), there exist 0 < l1 < l2 < μ−p/(p
∗−p)

2 such that k(l1) = k(l2) = k̃ and

F2(k̃, l) < 0 ⇐⇒ k̃ < k(l) ⇐⇒ l1 < l < l2. (3.9)

It follows from F1(k̃, ̃l) ≥ 0 and F2(k̃, ̃l) ≥ 0 that ̃l ≥ l(k̃) and ̃l ≤ l1 or ̃l ≥ l2. By (3.7), we see F2(k̃, l(k̃)) < 0.
By (3.9), we get that l1 < l(k̃) < l2. Therefore, ̃l ≥ l2.

On the other hand, set l3 := k0 + l0 − k̃. Then l3 > l0 and, moreover,

k(l3) + k0 + l0 − k̃ = k(l3) + l3 > k(l0) + l0 = k0 + l0,

that is, k(l3) > k̃. By (3.9), we have l1 < l3 < l2. Since k̃ + ̃l ≤ k0 + l0, we obtain that ̃l ≤ k0 + l0 − k̃ = l3 < l2.
This contradicts ̃l ≥ l2.

Proof of Theorem 1.2. Recalling (1.4) and (1.6), we see that ( p√k0Uε,y ,
p√l0Uε,y) ∈ N is a nontrivial solution

of (1.1), and
A ≤ I(

p√k0Uε,y ,
p√l0Uε,y) =

1
N
(k0 + l0)S

N
p . (3.10)

Let {(un , vn)} ⊂ N be a minimizing sequence for A, i.e., I(un , vn) → A as n → ∞. Define

cn = ( ∫
ℝN

|un|p
∗ dx) p

p∗
and dn = ( ∫

ℝN

|vn|p
∗ dx) p

p∗
.

Then

Scn ≤ ∫
ℝN

|∇un|p dx = ∫
ℝN

(μ1|un|p
∗
+
αγ
p∗

|un|α|vn|β) dx

≤ μ1c
p∗
p
n +

αγ
p∗
c
α
p
n d

β
p
n , (3.11)

Sdn ≤ ∫
ℝN

|∇vn|p dx = ∫
ℝN

(μ2|vn|p
∗
+
βγ
p∗

|un|α|vn|β) dx

≤ μ2d
p∗
p
n +

βγ
p∗
c
α
p
n d

β
p
n . (3.12)

Dividing both sides of these inequalities by Scn and Sdn, respectively, and denoting

c̃n =
cn
S

p
p∗−p , d̃n =

dn
S

p
p∗−p ,

we deduce that
μ1 c̃

p∗−p
p

n +
αγ
p∗
c̃
α−p
p
n d̃

β
p
n ≥ 1, μ2d̃

p∗−p
p

n +
βγ
p∗
c̃
α
p
n d̃

β−p
p
n ≥ 1,

that is, F1(c̃n , d̃n) ≥ 0 and F2(c̃n , d̃n) ≥ 0. Then, for N2 < p < N and α, β > p, Proposition 3.1 and Remark 3.1
ensure that c̃n + d̃n ≥ k + l = k0 + l0, whereas for 2N

N+2 < p < N
2 and α, β < p Proposition 3.4 guarantees that

c̃n + d̃n ≥ k0 + l0. Therefore,
cn + dn ≥ (k0 + l0)S

p
p∗−p = (k0 + l0)S

N−p
p . (3.13)

Noticing that I(un , vn) = 1
N ∫ℝN (|∇un|

p + |∇vn|p), by (3.10)–(3.12) we have

S(cn + dn) ≤ NI(un , vn) = NA + o(1) ≤ (k0 + l0)S
N
p + o(1).

Combining this with (3.13), we get that cn + dn → (k0 + l0)S(N−p)/p as n → ∞. Thus,

A = lim
n→∞

I(un , vn) ≥ lim
n→∞

1
N
S(cn + dn) =

1
N
(k0 + l0)S

N
p .

Hence,
A =

1
N
(k0 + l0)S

N
p = I(

p√k0Uε,y ,
p√l0Uε,y).
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4 Proofs of Theorems 1.3 and 1.4
For (H1) holding and γ > 0, define

A� := inf
(u,v)∈N� I(u, v),

where
N� := {(u, v) ∈ D \ {(0, 0)} : ∫

ℝN

(|∇u|p + |∇v|p) = ∫
ℝN

(μ1|u|p
∗
+ μ2|v|p

∗
+ γ|u|α|v|β)}.

It follows fromN ⊂ N� that A� ≤ A. By the Sobolev inequality, we see that A� > 0. Consider

{{{{{{
{{{{{{
{

−∆pu = μ1|u|p
∗−2u +

αγ
p∗

|u|α−2u|v|β , x ∈ B(0, R),

−∆pv = μ2|v|p
∗−2v + βγ

p∗
|u|α|v|β−2v, x ∈ B(0, R),

u, v ∈ H1
0(B(0, R)),

where B(0, R) := {x ∈ ℝN : |x| < R}. Define

N�(R) := {(u, v) ∈ H(0, R) \ {(0, 0)} : ∫
B(0,R)

(|∇u|p + |∇v|p) = ∫
B(0,R)

(μ1|u|p
∗
+ μ2|v|p

∗
+ γ|u|α|v|β)} (4.1)

and
A�(R) := inf

(u,v)∈N�(R) I(u, v),
where H(0, R) := H1

0(B(0, R)) × H1
0(B(0, R)). For ε ∈ [0, min{α, β} − 1), consider

{{{{{{
{{{{{{
{

−∆pu = μ1|u|p
∗−2−2εu +

(α − ε)γ
p∗ − 2ε |u|

α−2−εu|v|β−ε , x ∈ B(0, 1),

−∆pv = μ2|v|p
∗−2−2εv + (β − ε)γ

p∗ − 2ε |u|
α−ε|v|β−2−εv, x ∈ B(0, 1),

u, v ∈ H1
0(B(0, 1)).

(4.2)

Define

{{{{{{{{{{{
{{{{{{{{{{{
{

Iε(u, v) :=
1
p ∫
B(0,1)

(|∇u|p + |∇v|p) − 1
p∗ − 2ε ∫

B(0,1)

(μ1|u|p
∗−2ε + μ2|v|p∗−2ε + γ|u|α−ε|v|β−ε),

N�
ε := {(u, v) ∈ H(0, 1) \ {(0, 0)} : Gε(u, v) := ∫

B(0,1)

(|∇u|p + |∇v|p)

− ∫
B(0,1)

(μ1|u|p
∗−2ε + μ2|v|p∗−2ε + γ|u|α−ε|v|β−ε) = 0}

(4.3)

and
Aε := inf

(u,v)∈N�
ε

Iε(u, v).

Lemma 4.1. Assume that 2N
N+2 < p < N

2 , α, β < p. For ε ∈ (0, min{α, β} − 1), there holds

Aε < min{ inf
(u,0)∈N�

ε

Iε(u, 0), inf
(0,v)∈N�

ε

Iε(0, v)}.

Proof. From min{α, β} ≤ p∗
2 it is easy to see that 2 < p∗ − 2ε < p∗. Then we may assume that ui is a least

energy solution of
−∆pu = μi|u|p

∗−2−2εu, u ∈ H1
0(B(0, 1)), i = 1, 2.

Therefore,
Iε(u1, 0) = a1 := inf

(u,0)∈N�
ε

Iε(u, 0), Iε(0, u2) = a2 := inf
(0,v)∈N�

ε

Iε(0, v).
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We claim that, for any s ∈ ℝ, there exists a unique t(s) > 0 such that ( p√t(s)u1,
p√t(s)su2) ∈ N�

ε. In fact,

t(s)
p∗−p−2ε

p =
∫B(0,1)(|∇u1|

p + |s|p|∇u2|p)

∫B(0,1)(μ1|u1|
p∗−2ε + μ2|su2|p∗−2ε + γ|u1|α−ε|su2|β−ε)

=
qa1 + qa2|s|p

qa1 + qa2|s|p∗−2ε + |s|β−ε ∫B(0,1) γ|u1|
α−ε|u2|β−ε

,

where q := p(p∗−2ε)
p∗−p−2ε = p(Np−2ε+2εp)

p2−2εN+2εp → N as ε → 0. Noticing that t(0) = 1, we have

lim
s→0

t�(s)
|s|β−ε−2s

= −
(β − ε) ∫B(0,1) γ|u1|

α−ε|u2|β−ε

(p∗ − 2ε)a1
,

that is,

t�(s) = −
(β − ε) ∫B(0,1) γ|u1|

α−ε|u2|β−ε

(p∗ − 2ε)a1
|s|β−ε−2s(1 + o(1)) as s → 0.

Then

t(s) = 1 −
∫B(0,1) γ|u1|

α−ε|u2|β−ε

(p∗ − 2ε)a1
|s|β−ε(1 + o(1)) as s → 0,

and so,

t(s)
p∗−2ε
p = 1 −

∫B(0,1) γ|u1|
α−ε|u2|β−ε

pa1
|s|β−ε(1 + o(1)) as s → 0.

Since 1
p − 1

q = 1
p∗−2ε , we have
Aε ≤ Iε(

p√t(s)u1,
p√t(s)su2)

= (
1
p
−

1
p∗ − 2ε )(qa1 + qa2|s|

p∗−2ε + |s|β−ε ∫
B(0,1)

γ|u1|α−ε|u2|β−ε)t
p∗−2ε
p

= a1 − (
1
p
−
1
q )

|s|β−ε ∫
B(0,1)

γ|u1|α−ε|u2|β−ε + o(|s|β−ε)

< a1 = inf
(u,0)∈N�

ε

Iε(u, 0) as |s| is small enough.

Similarly, Aε < inf(0,v)∈N�
ε
Iε(0, v).

Noticing the definition of ωμi in the proof of Theorem 1.1, similarly to Lemma 4.1, we obtain that

A� < min{ inf
(u,0)∈N� I(u, 0), inf

(0,v)∈N� I(0, v)}
= min{I(ωμ1 , 0), I(0, ωμ2 )}

= min{ 1N μ
− N−pp
1 S

N
p , 1
N
μ
− N−pp
2 S

N
p }. (4.4)

Proposition 4.2. For any ε ∈ (0, min{α, β} − 1), system (4.2) has a classical positive least energy solution
(uε , vε) and uε, vε are radially symmetric decreasing.

Proof. It is standard to see thatAε > 0. For (u, v) ∈ N�
ε with u ≥ 0 and v ≥ 0,wedenote by (u∗, v∗) its Schwartz

symmetrization. By the properties of the Schwartz symmetrization and γ > 0, we get that

∫
B(0,1)

(|∇u∗|p + |∇v∗|p) ≤ ∫
B(0,1)

(μ1|u∗|p
∗−2ε + μ2|v∗|p∗−2ε + γ|u∗|α−ε|v∗|β−ε).
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Obviously, there exists t∗ ∈ (0, 1] such that ( p√t∗u∗, p√t∗v∗) ∈ N�
ε. Therefore,

Iε(
p√t∗u∗,

p√t∗v∗) = (
1
p
−

1
p∗ − 2ε )t

∗ ∫
B(0,1)

(|∇u∗|p + |∇v∗|p)

≤
p∗ − 2ε − p
p(p∗ − 2ε) ∫

B(0,1)

(|∇u|p + |∇v|p)

= Iε(u, v). (4.5)

Therefore, we may choose a minimizing sequence (un , vn) ∈ N�
ε of Aε such that (un , vn) = (u∗n , v∗n) and

Iε(un , vn) → Aε as n → ∞. By (4.5),we see that un, vn areuniformlybounded inH1
0(B(0, 1)). Passing to a sub-

sequence, we may assume that un⇀ uε, vn⇀ vε weakly in H1
0(B(0, 1)). Since H1

0(B(0, 1)) í→ Lp∗−2ε(B(0, 1))
is compact, we deduce that

∫
B(0,1)

(μ1|uε|p
∗−2ε + μ2|vε|p∗−2ε + γ|uε|α−ε|vε|β−ε) = lim

n→∞
∫

B(0,1)

(μ1|un|p
∗−2ε + μ2|vn|p∗−2ε + γ|un|α−ε|vn|β−ε)

=
p(p∗ − 2ε)
p∗ − 2ε − p lim

n→∞
Iε(un , vn)

=
p(p∗ − 2ε)
p∗ − 2ε − p Aε > 0,

which implies that (uε , vε) ̸= (0, 0). Moreover, uε ≥ 0, vε ≥ 0 are radially symmetric. Noticing that

∫
B(0,1)

(|∇uε|p + |∇vε|p) ≤ lim
n→∞

∫
B(0,1)

(|∇un|p + |∇vn|p),

we get that
∫

B(0,1)

(|∇uε|p + |∇vε|p) ≤ ∫
B(0,1)

(μ1|uε|p
∗−2ε + μ2|vε|p∗−2ε + γ|uε|α−ε|vε|β−ε).

Then there exists tε ∈ (0, 1] such that ( p√tεuε ,
p√tεvε) ∈ N�

ε, and therefore

Aε ≤ Iε(
p√tεuε ,

p√tεvε)

= (
1
p
−

1
p∗ − 2ε )tε ∫

B(0,1)

(|∇uε|p + |∇vε|p)

≤ lim
n→∞

p∗ − 2ε − p
p(p∗ − 2ε) ∫

B(0,1)

(|∇un|p + |∇vn|p)

= lim
n→∞

Iε(un , vn) = Aε ,

which yields that tε = 1, (uε , vε) ∈ N�
ε, I(uε , vε) = Aε and

∫
B(0,1)

(|∇uε|p + |∇vε|p) = lim
n→∞

∫
B(0,1)

(|∇un|p + |∇vn|p).

That is, un → uε, vn → vε strongly inH1
0(B(0, 1)). It follows from the standardminimization theory that there

exists a Lagrange multiplier L ∈ ℝ satisfying

I�ε(uε , vε) + LG�
ε(uε , vε) = 0.

Since I�ε(uε , vε)(uε , vε) = Gε(uε , vε) = 0 and

G�
ε(uε , vε)(uε , vε) = −(p∗ − 2ε − p) ∫

B(0,1)

(μ1|uε|p
∗−2ε + μ2|vε|p∗−2ε + γ|uε|α−ε|vε|β−ε) < 0,

we get that L = 0, and so I�ε(uε , vε) = 0. By Aε = I(uε , vε) and Lemma 4.1, we have uε ̸≡ 0 and vε ̸≡ 0. Since
uε , vε ≥ 0 are radially symmetric decreasing, by the regularity theory and the maximum principle, we obtain
that (uε , vε) is a classical positive least energy solution of (4.2).
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Proof of Theorem 1.3. We claim that
A�(R) ≡ A� for all R > 0. (4.6)

Indeed, assume R1 < R2. Since N�(R1) ⊂ N�(R2), we get that A�(R2) ≤ A�(R1). On the other hand, for every
(u, v) ∈ N�(R2), define

(u1(x), v1(x)) := ((
R2
R1

)
N−p
p u(R2R1

x), (R2R1
)
N−p
p v(R2R1

x)).

Then it is easy to see that (u1, v1) ∈ N�(R1). Thus, we have

A�(R1) ≤ I(u1, v1) = I(u, v) for all (u, v) ∈ N�(R2),

whichmeans that A�(R1) ≤ A�(R2). Hence, A�(R1) = A�(R2). Obviously, A� ≤ A�(R). Let (un , vn) ∈ N� be amin-
imizing sequence of A�. We assume that un , vn ∈ H1

0(B(0, Rn)) for some Rn > 0. Therefore, (un , vn) ∈ N�(Rn)
and

A� = lim
n→∞

I(un , vn) ≥ lim
n→∞

A�(Rn) = A�(R),

which completes the proof of the claim.
By recalling (4.1) and (4.3), for every (u, v) ∈ N�(1), there exists tε > 0 with tε → 1 as ε → 0 such that

( p√tεu,
p√tεv) ∈ N�

ε. Then

lim sup
ε→0

Aε ≤ lim sup
ε→0

Iε(
p√tεu,

p√tεv) = I(u, v) for all (u, v) ∈ N�(1).

It follows from (4.6) that
lim sup
ε→0

Aε ≤ A�(1) = A�. (4.7)

According to Proposition 4.2, wemay let (uε , vε) be a positive least energy solution of (4.2), which is radially
symmetric decreasing. By (4.3) and the Sobolev inequality, we have

Aε =
p∗ − 2ε − 2
2(p∗ − 2ε) ∫

B(0,1)

(|∇uε|p + |∇vε|p) ≥ C > 0 for all ε ∈ (0, min{α, β} − 1
2 ], (4.8)

where C is independent of ε. Then it follows from (4.7) that uε, vε are uniformly bounded in H1
0(B(0, 1)). We

may assume that uε ⇀ u0, vε ⇀ v0, up to a subsequence, weakly in H1
0(B(0, 1)). Hence, (u0, v0) is a solution

of
{{{{{{
{{{{{{
{

−∆pu = μ1|u|p
∗−2u +

αγ
p∗

|u|α−2u|v|β , x ∈ B(0, 1),

−∆pv = μ2|v|p
∗−2v + βγ

p∗
|u|α|v|β−2v, x ∈ B(0, 1),

u, v ∈ H1
0(B(0, 1)).

Suppose by contradiction that ‖uε‖∞ + ‖vε‖∞ is uniformly bounded. Then, by the dominated convergent the-
orem, we get that

lim
ε→0

∫
B(0,1)

up
∗−2ε
ε = ∫

B(0,1)

up
∗

0 , lim
ε→0

∫
B(0,1)

vp
∗−2ε
ε = ∫

B(0,1)

vp
∗

0 , lim
ε→0

∫
B(0,1)

uα−εε vβ−εε = ∫
B(0,1)

uα0v
β
0.

Combining these with I�ε(uε , vε) = I�(u0, v0), similarly to the proof of Proposition 4.2, we see that uε → u0,
vε → v0 strongly inH1

0(B(0, 1)). It follows from (4.8) that (u0, v0) ̸= (0, 0)and,moreover, u0 ≥ 0, v0 ≥ 0.With-
out loss of generality, we may assume that u0 ̸≡ 0. By the strong maximum principle, we obtain that u0 > 0
in B(0, 1). By the Pohozaev identity, we have a contradiction

0 < ∫
∂B(0,1)

(|∇u0|p + |∇v0|p)(x ⋅ ν)dσ = 0,
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where ν is the outward unit normal vector on ∂B(0, 1). Hence, ‖uε‖∞ + ‖vε‖∞ → ∞ as ε → 0. Let

Kε := max{uε(0), vε(0)}.

Since uε(0) = maxB(0,1) uε(x) and vε(0) = maxB(0,1) vε(x), we see that Kε → +∞ as ε → 0. Setting

Uε(x) := K−1ε uε(K
−aε
ε x), Vε(x) := K−1ε vε(K

−aε
ε x), aε :=

p∗ − p − pε
p

,

we have
max{Uε(0), Vε(0)} = max{ max

x∈B(0,Kaεε )
Uε(x), max

x∈B(0,Kaεε )
Vε(x)} = 1, (4.9)

and (Uε , Vε) is a solution of

{{{
{{{
{

−∆pUε = μ1Up
∗−2ε−1
ε +

(α − ε)γ
p∗ − 2ε U

α−1−ε
ε Vβ−εε , x ∈ B(0, Kaεε ),

−∆pVε = μ2Vp
∗−2ε−1
ε +

(β − ε)γ
p∗ − 2ε U

α−ε
ε Vβ−1−εε , x ∈ B(0, Kaεε ).

Since

∫
ℝN

|∇Uε(x)|p dx = Kaε(N−p)−pε ∫
ℝN

|∇uε(y)|p dy

= K−(N−p)εε ∫
ℝN

|∇uε(x)|p dx

≤ ∫
ℝN

|∇uε(x)|p dx,

we see that {(Uε , Vε)}n≥1 is bounded in D. By elliptic estimates, we get that, up to a subsequence,

(Uε , Vε) → (U, V) ∈ D

uniformly in every compact subset ofℝN as ε → 0, and (U, V) is a solution of (1.1), that is, I�(U, V) = 0.More-
over, U ≥ 0, V ≥ 0 are radially symmetric decreasing. By (4.9), we have (U, V) ̸= (0, 0), and so (U, V) ∈ N�.
Thus,

A� ≤ I(U, V) = (
1
p
−

1
p∗ ) ∫
ℝN

(|∇U|p + |∇V|p) dx

≤ lim inf
ε→0

(
1
p
−

1
p∗ ) ∫

B(0,Kaεε )

(|∇Uε|p + |∇Vε|p) dx

= lim inf
ε→0

(
1
p
−

1
p∗ − 2ε ) ∫

B(0,Kaεε )

(|∇Uε|p + |∇Vε|p) dx

≤ lim inf
ε→0

(
1
p
−

1
p∗ − 2ε ) ∫

B(0,1)

(|∇uε|p + |∇vε|p) dx

= lim inf
ε→0

Aε .

It follows from (4.7) that A� ≤ I(U, V) ≤ lim infε→0 Aε ≤ A�, which means that I(U, V) = A�. By (4.4), we get
that U ̸≡ 0 and V ̸≡ 0. The strong maximum principle guarantees that U > 0 and V > 0. Since (U, V) ∈ N, we
have I(U, V) ≥ A ≥ A�. Therefore,

I(U, V) = A = A�, (4.10)

that is, (U, V) is a positive least energy solution of (1.1) with (H1) holding, which is radially symmetric
decreasing. This completes the proof.
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Remark 4.1. If (H1) and (C2) hold, then it can be seen from Theorems 1.2 and 1.3 that ( p√k0Uε,y ,
p√l0Uε,y) is

a positive least energy solution of (1.1), where (k0, l0) is defined by (1.9) and Uε,y is defined by (1.4).

Proof of Theorem 1.4. Toprove the existence of (k(γ), l(γ)) for γ > 0 small, recalling (3.2),we denote Fi(k, l, γ)
by Fi(k, l), i = 1, 2, in this proof. Let k(0) = μ−p/(p

∗−p)
1 and l(0) = μ−p/(p

∗−p)
2 . Then

F1(k(0), l(0), 0) = F2(k(0), l(0), 0) = 0.

Obviously, we have

∂kF1(k(0), l(0), 0) =
p∗ − p
p

μ1k
p∗−2p
p > 0,

∂lF1(k(0), l(0), 0) = ∂kF2(k(0), l(0), 0) = 0,

∂lF2(k(0), l(0), 0) =
p∗ − p
p

μ2l
p∗−2p
p > 0,

which implies that

det(∂kF1(k(0), l(0), 0) ∂lF1(k(0), l(0), 0)
∂kF2(k(0), l(0), 0) ∂lF2(k(0), l(0), 0)

) > 0.

By the implicit function theorem, we see that k(γ), l(γ) are well defined and of class C1 in (−γ2, γ2) for some
γ2 > 0, and F1(k(γ), l(γ), γ) = F2(k(γ), l(γ), γ) = 0. Then ( p√k(γ)Uε,y ,

p√l(γ)Uε,y) is a positive solution of (1.1).
Noticing that

lim
γ→0

(k(γ) + l(γ)) = k(0) + l(0) = μ
− N−pp
1 + μ

− N−pp
2 ,

we obtain that there exists γ1 ∈ (0, γ2] such that

k(γ) + l(γ) > min{μ
− N−pp
1 , μ

− N−pp
2 } for all γ ∈ (0, γ1).

It follows from (4.4) and (4.10) that

I( p√k(γ)Uε,y ,
p√l(γ)Uε,y) =

1
N
(k(γ) + l(γ))S

N
p

> min{ 1N μ
− N−pp
1 S

N
p , 1
N
μ
− N−pp
2 S

N
p }

> A� = A = I(U, V),

that is, when (H1) is satisfied, ( p√k(γ)Uε,y ,
p√l(γ)Uε,y) is a different positive solution of (1.1) with respect

to (U, V).

5 Proof of Theorem 1.5
In this section, we consider the case (H2).

Proposition 5.1. Let q, r > 1 satisfy q + r ≤ p∗, and set

Sq,r(Ω) = inf
u,v∈W1,p

0 (Ω)
u,v ̸=0

∫Ω(|∇u|
p + |∇v|p) dx

(∫Ω|u|
q|v|r dx)

p
q+r ,

Sq+r(Ω) = inf
u∈W1,p

0 (Ω)
u ̸=0

∫Ω|∇u|
p dx

(∫Ω|u|
q+r dx)

p
q+r .

Then
Sq,r(Ω) =

q + r

(qqrr)
1
q+r Sq+r(Ω). (5.1)

Moreover, if u0 is a minimizer for Sq+r(Ω), then (q1/pu0, r1/pu0) is a minimizer for Sq,r(Ω).
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Proof. For u ̸= 0 inW1,p
0 (Ω) and t > 0, taking v = t−1/pu in the first quotient gives

Sq,r(Ω) ≤ [t
r
q+r + t− q

q+r ] ∫Ω|∇u|
p dx

(∫Ω|u|
q+r dx)

p
q+r ,

andminimizing the right-hand side over u and t shows that Sq,r(Ω) is less than or equal to the right-hand side
of (5.1). For u, v ̸= 0 inW1,p

0 (Ω), let w = t1/pv, where

t
q+r
p =

∫Ω|u|
q+r dx

∫Ω|v|
q+r dx

.

Then ∫Ω|u|
q+r dx = ∫Ω|w|

q+r dx, and hence

∫
Ω

|u|q|w|r dx ≤ ∫
Ω

|u|q+r dx = ∫
Ω

|w|q+r dx

by the Hölder inequality, so

∫Ω(|∇u|
p + |∇v|p) dx

(∫Ω|u|
q|v|r dx)

p
q+r =

∫Ω(t
r
q+r |∇u|p + t− q

q+r |∇w|p) dx
(∫Ω|u|

q|w|r dx)
p
q+r

≥ t
r
q+r ∫Ω|∇u|

p dx

(∫Ω|u|
q+r dx)

p
q+r + t−

q
q+r ∫Ω|∇w|

p dx

(∫Ω|w|
q+r dx)

p
q+r

≥ [t
r
q+r + t− q

q+r ]Sq+r(Ω).
The last expression is greater than or equal to the right-hand side of (5.1), so minimizing over (u, v) gives the
reverse inequality.

By Proposition 5.1,
Sa,b(Ω) =

p

(aabb)
1
p
λ1(Ω), Sα,β =

p∗

(ααββ)
1
p∗ S, (5.2)

where λ1(Ω) > 0 is the first Dirichlet eigenvalue of−∆p in Ω.When (H2) is satisfied, wewill obtain a nontrivial
nonnegative solution of system (1.1) for λ < Sa,b(Ω). Consider the C1-functional

Φ(w) = 1
p ∫
Ω

[|∇u|p + |∇v|p − λ(u+)a(v+)b] dx − 1
p∗ ∫

Ω

(u+)α(v+)β dx, w ∈ W,

where W = D1,p
0 (Ω) × D1,p

0 (Ω) with the norm given by ‖w‖p = |∇u|pp + |∇v|pp for w = (u, v), | ⋅ |p denotes the
norm in Lp(Ω) and u±(x) = max{±u(x), 0} are the positive and negative parts of u, respectively. Ifw is a critical
point of Φ,

0 = Φ�(w)(u−, v−) = ∫
Ω

(|∇u−|p + |∇v−|p) dx,

and hence (u−, v−) = 0, so w = (u+, v+) is a nonnegative weak solution of (1.1) with (H2) holding.

Proposition 5.2. If 0 ̸= c < SN/pα,β /N and λ < Sa,b(Ω), then every (PS)c sequence of Φ has a subsequence that
converges weakly to a nontrivial critical point of Φ.

Proof. Let {wj} be a (PS)c sequence. Then

Φ(wj) =
1
p ∫
Ω

[|∇uj|p + |∇vj|p − λ(u+j )
a(v+j )

b] dx − 1
p∗ ∫

Ω

(u+j )
α(v+j )

β dx

= c + o(1)
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and

Φ�(wj)wj = ∫
Ω

[|∇uj|p + |∇vj|p − λ(u+j )
a(v+j )

b] dx − ∫
Ω

(u+j )
α(v+j )

β dx

= o(‖wj‖), (5.3)

so 1
N ∫
Ω

[|∇uj|p + |∇vj|p − λ(u+j )
a(v+j )

b] dx = c + o(‖wj‖ + 1). (5.4)

Since the integral on the left-hand side is greater than or equal to (1 − λ
Sa,b(Ω) )‖wj‖

p, λ < Sa,b(Ω) and p > 1,
it follows that {wj} is bounded inW. So a renamed subsequence converges to some w weakly inW, strongly
in Ls(Ω) × Lt(Ω) for all 1 ≤ s, t < p∗ and a.e. in Ω. Then wj → w strongly in W1,q

0 (Ω) ×W1,r
0 (Ω) for all 1 ≤ q,

r < p by Boccardo and Murat [6, Theorem 2.1], and hence ∇wj → ∇w a.e. in Ω for a further subsequence. It
then follows that w is a critical point of Φ.

Suppose w = 0. Since {wj} is bounded in W and converges to zero in Lp(Ω) × Lp(Ω), equation (5.3) and
the Hölder inequality give

o(1) = ∫
Ω

(|∇uj|p + |∇vj|p) dx − ∫
Ω

(u+j )
α(v+j )

β dx ≥ ‖wj‖p(1 −
‖wj‖p

∗−p
S
p∗
p
α,β

).

If ‖wj‖ → 0, then Φ(wj) → 0, contradicting c ̸= 0, so this implies

‖wj‖p ≥ S
N
p
α,β + o(1)

for a renamed subsequence. Then (5.4) gives

c =
‖wj‖p

N
+ o(1) ≥

S
N
p
α,β

N
+ o(1),

contradicting c < SN/pα,β /N.

Recall (1.4) and (1.5) and let η : [0,∞) → [0, 1] be a smooth cut-off function such that η(s) = 1 for s ≤ 1
4 and

η(s) = 0 for s ≥ 1
2 ; set

uε,ρ(x) = η(
|x|
ρ )Uε,0(x)

for ρ > 0. We have the following estimates for uε,ρ (see [15, Lemma 3.1]):

∫
ℝN

|∇uε,ρ|p dx ≤ S
N
p + C( ερ )

N−p
p−1 , (5.5)

∫
ℝN

upε,ρ dx ≥
{{{
{{{
{

1
C
εp log(ρε ) − Cε

p if N = p2,

1
C
εp − Cρp( ερ )

N−p
p−1 if N > p2,

(5.6)

∫
ℝN

up
∗
ε,ρ dx ≥ S

N
p − C( ερ )

N
p−1 , (5.7)

where C = C(N, p). We will make use of these estimates in the proof of our last theorem.

Proof of Theorem 1.5. In view of (5.2),

Φ(w) ≥ 1
p (

1 −
λ

Sa,b(Ω)
)‖w‖p − 1

p∗S
p∗
p
α,β

‖w‖p∗ ,
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so the origin is a strict local minimizer of Φ. We may assume without loss of generality that 0 ∈ Ω. Fix ρ > 0
so small that Ω ⊃ Bρ(0) ⊃ supp uε,ρ, and let wε = (α1/puε,ρ , β1/puε,ρ) ∈ W. Note that

Φ(Rwε) =
Rp

p (p∗|∇uε,ρ|
p
p − λα

a
p β

b
p |uε,ρ|

p
p) −

Rp∗
p∗

α
α
p β

β
p |uε,ρ|

p∗
p∗ → −∞

as R → +∞ and fix R0 > 0 so large that Φ(R0wε) < 0. Then let

Γ = {γ ∈ C([0, 1],W) : γ(0) = 0, γ(1) = R0wε}

and set
c := inf

γ∈Γ
max
t∈[0,1]

Φ(γ(t)) > 0.

By the mountain pass theorem, Φ has a (PS)c sequence {wj}.
Since t Ü→ tR0wε is a path in Γ,

c ≤ max
t∈[0,1]

Φ(tR0wε) =
1
N (

p∗|∇uε,ρ|
p
p − λ(αaβb)

1
p |uε,ρ|

p
p

(ααββ)
1
p∗ |uε,ρ|pp∗ )

N
p
=: 1
N
S
N
p
ε . (5.8)

By (5.5)–(5.7),

Sε ≤
p∗Sp + λ(α

aβb)
1
p

C
εp log ε + O(εp)

(ααββ)
1
p∗ (Sp + O(ε p2

p−1 )) p−1p = Sα,β − (
λα

a
p −

α
p∗ β b

p −
β
p∗

CSp−1
|log ε| + O(1))εp

if N = p2, and

Sε ≤
p∗S

N
p −

λ(αaβb)
1
p

C
εp + O(ε

N−p
p−1 )

(ααββ)
1
p∗ (S N

p + O(ε
N
p−1 )) N−pN = Sα,β − (

λα
a
p −

α
p∗ β b

p −
β
p∗

CS
N−p
p

+ O(ε
N−p2
p−1 ))εp

if N > p2, so Sε < Sα,β if ε > 0 is sufficiently small. So c < SN/pα,β /N by (5.8), and hence a subsequence of {wj}
converges weakly to a nontrivial critical point of Φ by Proposition 5.2, which then is a nontrivial nonnegative
solution of (1.1) with (H2) holding.
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