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1 Introduction

Recently, great attention has been drawn to the study of fractional and nonlocal elliptic problems with lack
of compactness. These models arise in a quite natural way in many different applications, and we refer to the
recent monograph [27], to the extensive paper [10] and the references cited therein for further details.

This paper is devoted to the study of the existence of solutions of a series of Dirichlet problems in general
open subsets Q of RV, N > 1, possibly unbounded. The problems involve a Hardy coefficient and the so-called
fractional p-Laplace operator (-A)y, with 0 <s <1 < p < oo and ps < N. Hence, p; = pN/(N - ps) is well
defined and is critical in the sense of the fractional Sobolev theory. The operator (-A); (up to normalization
factors) is defined for any x € RY by

lp() — pWIP~* (@) -~ () dy

—_ S = i
(-A)pp(x) = 2lim J Vs

RN\B;(x)

along any ¢ € CS"(]RN ), where B.(x) is the open ball of RN centered at x and with radius & > 0.
Let 0 < a < psand let pi(a) = p(N — a)/(N - ps) < pi(0) = pi. The main results of the paper are based
on the best fractional Hardy—Sobolev constant H, = H(p, N, s, @), given by

(s,

B dx
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where Z(Q) is the completion of C3°(Q), with respect to the norm

lp(x) —eWIP

NS dy, (1.2)

[pls,p = ( JIDS(p(X)Ide>1/p, IDS(x)|P = J
RN

RN

well defined along any test function ¢ € C(Q), extended to the entire RY by putting ¢ = 0 in RV \ Q. We
refer to Section 2 for details.

The constant H, is well defined and strictly positive thanks to Lemma 2.1. However, the fractional Hardy
embedding Z(Q) — LPs@(Q, |x|~%) is continuous but not compact. In order to handle the critical Hardy—
Sobolev potential as well as the nonlocal term given by (-A);,, we first study the exact behavior of weakly
convergent sequences of Z(Q) in the space of measures. This behavior is described in the following theorem,
where the assumption that Q is bounded seems to play an essential role. If Q is a bounded open subset of RY,
then (1.1) reduces simply to the Poincaré theorem when a = ps, that is, (1.1) holds forall a € [0, ps], in other
words for all p} (a) € [p, pi].

Theorem 1.1. Let Q be an open bounded subset of RN and let a € (0, ps]. Let (uj)j be a weakly convergent
sequence in Z(Q), with weak limit u. Then there exist two finite positive measures u and v in RN such that

IDSu;(x)Pdx = u and |uj(x)|Pé‘(“>§—|’fx v inM(RV). (1.3)

Furthermore, there exist two nonnegative numbers U, vy such that

vy dX
v = |u(x)|Ps ("‘)W + Vo680 (1.4)
and
1= DU dx + uobo, 0 < HoBP* ™ < o, (1.5)

where H, is the Hardy constant defined in (1.1).

For the case a = 0 we refer to [29, Theorem 2.5]. As a direct consequence of Theorem 1.1 above and
[29, Theorem 2.5], we prove that the functional

t
1
Hyalw) = - |- () - Ll - A}, 0 - jM(r) dr, (1.6)
0

is weakly lower semi-continuous and coercive in Z(Q), provided that a, 8, y, and A verify suitable restrictions,
depending on the behavior of the Kirchhoff coefficient M, which is assumed to satisfy condition
(M) M : R{ — R{ is continuous and nondecreasing. There exist numbers ¢ > 0 and 6 such thatforall ¢t € Ry,

1,p? dacelo, if M(0) = 0,
O e, with 8 € (1, ps(@)/p)and a € [0, ps)  if M(O) (.7)
=1landa € [0, ps] if M(0) > 0.
A typical prototype for M, due to Kirchhoff, satisfying (M) is given by
M@t)=a+ b9t* 1, a,b>0,a+b>0, Je¢ (1, ps;(a)/p), a€][0,ps), (1.8)

with ¢ = aand 6 = 1if M(0) > 0, while ¢ = band 6 = 9if M(0) = 0, thatis, a = 0. Indeed, if M(0) = 0 for (1.8),
then 9 > 1 as a corollary of [7, Lemma 3.1].

The functional 7, ; is the basis of the elliptic part of some nonlinear Kirchhoff problems which are stud-
ied in Section 3. Theorem 1.1 is also applied in minimization arguments and critical point theorems to get
existence and multiplicity results.

In general, when M(t) > O for all t € R*, then the related Kirchhoff problem is said to be non-degenerate
when M(0) > 0, while it is called degenerate if M(0) = 0.
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In the second part of the paper, we treat Kirchhoff problems in general open sets Q, with possibly Q = RN,
The first problem is

M([ulf ) (-A)5u - JuP= =ow(X)|ul9%u inQ,
’ [x|* (1.9)

U=0 inRV\ Q,

where 0 <s<1<p<ooandO < a < ps <N, while ¢ is a real parameter. Naturally, the condition u = 0 in
RN\ Q disappears when Q = RV. The exponent q satisfies pf < q < p¥(a) < p*. The norm [ -] s,p is defined
in (1.2).
Since O < a < ps < N in problem (1.9), we assume that the nonlocal Kirchhoff term satisfies assumption

(M) M : R} — R is a continuous function such that the following conditions hold:

(M;) there exists 6 € [1, pi(a)/p) such that tM(t) < 6.7 (t) for any t € R}, where ./ is defined in (1.6);

and either

(M) infreps M(t) = a > 0;

or M(0) = 0 and M satisfies both properties

(M) for any 7 > O there exists m = m(t) > 0 such that M(t) > mforall t > T;

(Ms3) there exists a positive number ¢ > 0 such that M(t) > ct?! forall t € [0, 1].
Clearly, condition (M) covers the so-called non-degenerate case and implies at once the validity of (M,)
and (M3). Concerning the positive weight w, we assume
(w) w e LE(RN), with o = p?/(p% —q)and 1 < g < p}.
Condition (w) guarantees that the embedding Z(Q) — L4(Q, w) is compact, even when Q is the entire RV,
as explained in Section 4. Indeed, the natural solution space for problem (1.9) is the fractional density
space Z(Q), that is, the closure of C5°(Q) with respect to [ - 15,p, given in (1.2). Thus,

lullg,w < Cwluls,p forallu e Z(Q), (1.10)

with C,, = H(_)l/p ||w||é/q > 0, as proved in Lemma 4.1.

In the next result, we partially answer the open question asked for the Kirchhoff-Hardy equation [7, (1.1)]
since we cover for a slightly different equation also the degenerate case. Thanks to the variational nature
of (1.9), (weak) solutions of (1.9) are exactly the critical points of the underlying functional J,, which satisfies
the geometry of the mountain pass lemma under the above structural assumptions. The critical points u, of J 4
in Z(Q) are found at special mountain pass levels c, and these solutions of (1.9) are simply called mountain
pass solutions.

Theorem 1.2. Assume that M and w satisfy (M) and (w), with p8 < q < pt(a) < p¥ and 0 < & < ps < N. Then
there exists 0* > 0 such that for any ¢ > ¢* problem (1.9) admits a nontrivial mountain pass solution uy in Z(Q).
Moreover,

(}Lrgo[uo]s,p =0. (1.112)

The degenerate nature of problem (1.9) does not allow us to apply Theorem 1.1 in the proof of Theorem 1.2. As
is customary in elliptic problems, involving critical Hardy nonlinearities, the delicate point is the verification
of the Palais—-Smale condition. For this we exploit an asymptotic property of the mountain pass level c,
taking inspiration from the proof of [15, Theorem 1.3] and also for a somehow similar problem from the
proof of [1, Theorem 1.1].

The case Q = RN and a = 0 of Theorem 1.2 was first treated in [7, Theorem 1.2]. Furthermore, Theorem 1.2
extends in several directions [1, Theorem 1.1 and Theorem 1.2 (i)], [12, Theorem 1.1], [22, Theorem 1.1],
[24, Theorem 1.1], [26, Theorem 1.1], and [30, Theorem 1.1 (ii)].

Moreover, in the non-degenerate case, following [1, Theorem 1.2 (ii)], we have this nice addition.

Theorem 1.3. Assume that M is continuous in R§, satisfying (M,). Suppose further that w verifies (w), with
p<g<pi(a)<p;and0 < a < ps < N, and that

pM(0) < ga. (1.12)
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Then there exists 0* > 0 such that for any 0 > 0* problem (1.9) admits a nontrivial mountain pass solution u
in Z(Q), satisfying the asymptotic property (1.11).

As explained in the introduction of [1], the request (1.12) is automatic whenever M(0) = a, with p < g. The
case M(0) = a occurs in the non-degenerate prototype case (1.8), and more generally, whenever M is mono-
tone increasing in Rj. As we shall see, Theorem 1.3 is proved via a truncation argument on M since the
Kirchhoff function M could increase too quickly with respect to the other terms of problem (1.9). Theorem 1.3
extends in several directions [1, Theorem 1.2 (ii)], in particular to the case in which Q could be possibly
unbounded and also to the case Q = RN, Furthermore, Theorem 1.3 generalizes, e.g., [24, Theorem 1.2 (2)
and (3)] and [12, Theorem 1.1].

In the last part of the work, we study the nonhomogeneous version of the Kirchhoff problem (1.9), con-
sidering M of the special type (1.8), with 8 replacing 9 for simplicity. Actually, we treat the general problem

p(6-1) p6-p: (@) |ulPs @2y
(a + be[u]s,p )(_A);u - Y||u||Hn T
ps (B)-2
— owou|T 2+ M i g inQ, (1.13)
X
U=0 inRY¥\ Q,

with a € [0, ps) but S € [0, ps). Of course, the only interesting case occurs when 8 > 1, and we assume it
without loss of generality, with possibly b = 0. Hence, the addition of a sufficiently small nontrivial pertur-
bation allows us to balance both Hardy—-Sobolev terms with the Kirchhoff coefficient M, possibly zero at zero.
The latter Hardy—Sobolev term could coincide with the Sobolev critical nonlinearity when f = 0, a special
interesting case.

Theorem 1.4. Let a, b > Owith a + b > 0. Assume that w satisfies (W), with 6 > 1,0 < a < ps < N, 0 < B < ps,
PO <pi(a),1<q<pi(B),andpb < p:(B). Then forally e [0, cq pHE) with

a0,
cap=1" ffa g (1.14)
bl ifa=0

there exist a number 6 > 0 and 0. € (0, 0o] such that for any perturbation g € LY(Q) and any parameter o,
satisfying

[0, 6] x (0, 0] ifeither1 <q<p,orp<q<pbanda=0,
(lglly, 0) € o (1.15)
(0, 6] x (00, 0,) ifeitherp<g<pBanda>0,orpld<q<pi(h),
problem (1.13) admits a nontrivial solution uy, ¢ in Z(Q) and
Uli_{go[uy,(r,g]s,p =0 (1.16)

when either p6 < q < p%(B),orp < g<p6banda > 0.

The result of Theorem 1.4 can be summarized in Table 1.

The values 6 > 0 and o, € (0, co] are constructed in the technical Lemma 4.5. It is worth noting that
pbO < pg since pf < p%(P) < pi. Hence, pf cannot be equal to p; (a) = p2(0) = p; when a = 0.

The strategy used in the proof of Theorem 1.2 seems not to work for (1.13). This is why we had to require
that M is of the special canonical form since this allows us to prove that the weak limit of a minimizing
sequence is actually a nontrivial local interior minimum point of the functional corresponding to (1.13), that
is, a nontrivial solution of (1.13).

Theorem 1.4 extends in several directions [24, Theorems 1.3 and 1.4], and generalizes the existence
part contained in the multiplicity results given in [10, Theorem 2.1.1], [14, Theorem 1.1], [21, Theorem 1.1],
[26, Theorem 1.2], and [35, Theorem 1.1].

A natural appealing open problem is to prove the existence of nontrivial solutions for (1.9) and (1.13)
when a = ps, a case not covered in Theorems 1.2-1.4. When a = ps, § = 0 and g = 0, a problem somehow
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q a llglls o
l<g<p >0 €[0,0] €(0,0,]
q=p =0 €[0,8] €(0,0.]
g=p >0 €(0,0] € (-00,a/Cy)
p<q<pb =0 €[0,6] €(0,0.]
p<qg<pb >0 €(0,0] €R
g=pb =0 €(0,0] €(-00,b-y"/6HY)
qg=pb >0 €(0,0] €R

]

pe<g<pi(B) =0 €(0,8] €eR

Table 1. This table summarizes the conclusions of Theorem 1.4.

related to (1.13) is treated in details in [7, Theorem 1.1], but only in the non-degenerate setting, that is, under
condition (M) and under a suitable geometrical restriction on y. Finally, the case a = ps and 8 = 0 is covered
in [32, Theorem 1.3] for a problem similar to (1.13), but again in the non-degenerate setting, that is, when
a> 0.

The paper is organized as follows: In Section 2, we prove Theorem 1.1 with a result from Appendix A. In
Section 3, we provide some applications of Theorem 1.1. Section 4 contains the proofs of Theorems 1.2-1.4.
Finally, in Section 5, we extend the previous results when (-A);, is replaced by a nonlocal integro-differential
operator L%, generated by a general singular kernel K, satisfying the natural assumptions described by
Caffarelli, e.g., in [6]; see also [33, 34].

2 A Concentration-Compactness Result

This section is devoted to the proof of Theorem 1.1, which concerns the delicate study of the exact behavior
of weakly convergent sequences of Z(Q) in the space of measures.

Let us first introduce the fractional Hardy—Sobolev inequality which is basic for (1.1). By [25, Theorems 1
and 2], we know that

s(1-s)
||u||ip ®Y) = CNpW[ ]spa
s(1-5s) . (2.1)
R[Vm( P s < np g

forallu € DSP(RN), where cy, p is apositive constant depending only on N and p and D$-? (RN)is the fractional
Beppo-Levi space, that is, the completion of CSO(IRN ), with respect to the norm [ - |5, , defined in (1.2).

Let Q be any open set of RY and let Z(Q) be the completion of C5°(Q), with respect to the norm [ -]
defined in (1.2). When Q is bounded, p = 2 and K(x) = |x|"N-25, then Z(Q) is equivalent to the Hilbert space
defined in [13]. Even if Z(Q) is not a real space of functions, but a density space, the choice of this solution
space is an improvement with respect to the space

Xo(Q) ={ue WPRN): u=0ae. inR"\Q},

fairly popular in recent papers devoted to nonlocal variational problems. Indeed, the density result proved
in [16, Theorem 6] does not hold true for Xo(Q) without assuming more restrictive conditions on the open
bounded set Q and on its boundary 0Q; see in particular [16, Remark 7]. In conclusion, if Q is an open
bounded subset of RY, then Z(Q) ¢ Xo(Q), with possibly Z(Q) + Xo(Q).

It is worth noting that if Q is any open subset of RY and i1 denotes the natural extension of any u € Z(Q),
then it € DSP(RN) by (2.1). In other words,

Z(Q) c {u e LPs(Q) : it € DSP(RV)}, (2.2)

and equality holds when either Q = RY or 0Q is continuous by [20, Theorem 1.4.2.2]. In what follows, with
abuse of notation, we continue to write u in place of it since the context is clear.
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Therefore, the main density function space Z(RY) reduces to D> (RV), and so
ZRY) = D*P(RY) = {u € L7 RY) : 1p(x) = ()] - x =y > NP e LP(R2Y)}.

Clearly, Z(RN) = DSP(RN) is the suitable solution space for problems (1.9) and (1.13) when Q = RY,

Thus, by the interpolation and the Holder inequalities we easily get the next fractional Hardy—Sobolev
inequality, proved for p = 2in[19, Lemma 2.1]. However, for the sake of completeness we give the proof when
0 < a < ps < N since when either @ = 0 or a = ps, the fractional Hardy-Sobholev inequality reduces exactly
to (2.1).

Lemma 2.1. Assume that O < a < ps < N. Then there exists a positive constant C, possibly depending only on
N, p, s, a, such that
lulle, < Cluls,p

forallu € Z(RN).

Proof. By (2.1), it is enough to consider only the case O < a < ps, so that p < pi(a) < pi. By (2.1) and the
Holder inequality, for all u € Z(RN),

: u(x)|a/s .
ity = [ BNy ppitr-ass ax
He PE

RN

a/ps . @y ps (ps-a)/ps
< ([ moor ) ([ o= @955 ax)

[x|Ps
RN RN

- (o s ) Jucor? ax) "

|x|Ps
RN RN

s (ps—a)/ps
< c1[u)dS o [ulhs PP

ps (@)
=c162[ulsy 7,
as required. O

From Lemma 2.1 it is clear that the fractional Sobolev embedding Z(RN) — LPs (R¥) and the fractional
Hardy-Sobolev embedding Z(RN) < LPs(@ (RN, |x|~®) are continuous, but not compact. However, we are
able to introduce the best fractional Hardy—Sobolev constant H, = H(p, N, s, a), as stated in (1.1). Of course,
the number Hy, is strictly positive and it coincides with the best fractional Sobolev constant when a = 0. Con-
sequently, the embeddings Z(Q) < L?s (Q) and Z(Q) < LPs@(Q, |x|~%) are continuous, but not compact.

The last part of this section is devoted to the proof of Theorem 1.1. Even if the proof of Theorem 1.1 is
fairly similar to that of [15, Theorem 2.2] given in the case p = 2, here we do not use any longer [31, Lemmas 5
and 6], where the requirement that Q is bounded seems to be crucial. However, the proof of Theorem 1.1 is
based on the tightness of the sequence (|D%u;|P);, and the tightness property is obtained as an application of
[3, Theorem 8.6.2]. It is exactly at this step that we use that Q is bounded.

Proof of Theorem 1.1. As noted above, the given sequence (u;); converges weakly to u also in LPs@(Q |x|79).
In particular, there exist two finite positive measures y and v in RN such that (1.3) holds, with the measures

@ 4x.

j e DSui(0)Pdx,  j e w0 X

in RY being uniformly tight in j. Indeed, since Q is bounded, we can find an open bounded set U of R¥ such
that Q ¢ U. Hence, for a.a. x € RN \ U we have uj(x) = 0, from which

J [DSu; ()P dx = I dx( I Mdy)

— yrs
RM\U RN\U RN

- | ol ] 7 )

RM\U RN
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J I |X|u]§,)|/lzl|fps dy)

((NIPd
J dist(x, Q)N+PS Jlul(y” y

N

<||u~||"( [ )
S dist(x, Q)N+ps
RM\U

g(sqpllu;lli)( J d—i), (2.3)
RN\

j iy dist(x, Q)N+ps

and the last integral is finite since dist(RY \ U, Q) > 0 and N + ps > N.
Reasoning as above and considering that uj = 0 in RV \ Q, we get also the tightness of (u;/|x|%/Ps (@);.
Put vj = uj — u. Clearly, v; — 0in Z(Q) as j — co. Repeating the above argument, we get the existence of
two positive measures fi and ¥ on R" such that

ID*v;()Pdx =i and |vj(0P (“)ST’; 59 inM@RY). (2.4)

By [9, Corollary 7.2], with O < a < ps, the sequence (u;); strongly converges to u in LP(Q), with Q being
bounded, and so in LP(RY) by the trivial extension to the entire RN. Thus [4, Theorem 4.9] implies that up to
a subsequence, still named (uj);, there exists h € L?(Q), with

uj »uae.inQ, |y <hae. inQandallj. (2.5)

Hence, for any ¢ € C3°(Q),

j|go(x)|l’s<“>dv lpully; @ = Jim ||gou,||”s‘“) lpully; @
Q
- Tim vy 5 j|<o<x>|ps @ gy
]—00
Q
by the Brezis-Lieb lemma; see [5]. This yields that

- s AX
V=74 u()Ps @ —
Ix|*

since ¢ € C3°(Q) is arbitrary.
Let us first prove (1.4). To this end, fix € >0 and ¢ € C3°(Q). Then there exists C. > O such that
|€+nlP < (1+¢)éP + Ce|nP for all numbers &, € R. Hence, the Leibniz formula gives for all j,

j IDS(v;@)(0Pdx < (1 + ) j IDSV; (0P| ()Pdx + Ce j DS (0P v; ()P d.
]RN ]RN IRN

Thus, the Hardy inequality (1.1) along the sequence (¢v;); of Z(Q) yields

Hellpvily, < lovjl, <(1+¢) I IDSV; ()P lp ()P dx + Ce, gVl (2.6)

RN
for an appropriate constant C¢, , > O since

lp(x) — )P
|x — y|N+ps

min{1, |x - yIP}
dy < 2p||€0||cl (RY) j Ty

RN

Dpcor = | dy < Cp, @.7)
]RN

where Cy, > O depends also on N, p and s. By (2.4), (2.6) and the fact that vj = uj —u — 0in LP(Q) asj — oo,
we obtain at once that

([1opi@a)™™ <122 [1pmpan,

RN RN
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that is, v is absolutely continuous with respect to ji. Hence, by [23, Lemma 1.2] the measure V is decomposed
as a sum of Dirac masses.

It remains to show that ¥ is concentrated at 0. Here we assume that 0 ¢ Supp(¢), so that [ (x)[Ps (¥ /|x|*
is in L (Supp(¢)). In turn, [9, Corollary 7.2] yields

. | (X)|p;‘(a) . .
lpv;it; @ = J (plx—|“|vj(X)|p5(a) dx<C I V() P5 @ dx — 0

Supp(¢) Supp(¢)
as j — oo since 0 < a < ps, so that p < p#(a) < p:. This, combined with (2.4), gives jQ|¢(x)|P5(“)d§ =0.In

other words, V is a measure concentrated in 0. Hence v = vy 8y, and (1.4)is proved.
In order to show (1.5), arguing as in (2.6) and replacing v; by u;, we have

. /ps ()
Ha( [l @) <@ve) [toword+c. [0 peapiucorax 2.8)

Q RN RN

asj — oo by (2.4) and (2.5).
Letnow ¢ € CSO(JRN), with0 < ¢ < 1, ¢(0) = 1, Supp(p) = B(0, 1), and put @z(x) = @(x/&) for &€ > 0 suf-
ficiently small. Since v > v 80, choosing @z as test function in (2.8), we obtain

0 < HoP @ < (14 e)u(B(0, &) + C, I lu(OIP|DS i (x)Pdx. (2.9)
]RN

Note that |V@zle < C/& by construction. Hence

Plop- — Oz P 14
” [uCOIP1@e(x) — pe(y)l dxdys£ lu(ol
x - yIvrs & b~ y[Nersp
UxV Ux(Vn{|x-y|<&})
lu(l?
+C JJ m dx dy, (2.10)

Ux(Vn{|x-y|>&})

where U and V are two generic subsets of RV

We claim that the last term on the right-hand side of (2.9) goes to 0 as &€ — 0. If U = V = RN \ B(0, &),
all integrals in (2.10) are equal to 0, indeed. Now, if U x V = B(0, &) x RN and U x V = RN x B(0, &), by
Lemma A.1 we have

1 p
lim — ” & dxdy =0,
g0 EP |x — y|N+ps-p
Ux(VN{|x-y|<&
x(Vn{lx-yl<&}) 2.11)
. [u(x)|P _
lim —————dxdy =0.
£50 [x - y|N+ps
Ux(Vn{lx-y|>&})
Thus, combining (2.10) with (2.11), we get
lim [1D°p:(OP 0P dx o,
E— IRN
as claimed.
Hence, letting £ — 0 and € — 0in (2.9), we have 0 < Havg/ps @ < Uo. By the Fatou lemma, u > |DSu(x)|P dx,
and this concludes the proof of (1.5) since |DSu(x)[P dx and po8, are orthogonal. O

An immediate consequence of Theorem 1.1 is the following result, where H, is given in (1.1) and M veri-
fies (M). This assumption will be useful to get balance between the Kirchhoff term and the Hardy—Sobolev
critical nonlinearity. For this we also use the variational characterization of the first eigenvalue of the frac-
tional p-Laplacian given by

[ I DS u(0)IP dx

= min (2.12)
P uezono [ uGolPdx

which is positive by [18, Theorem 4.1], with Q being bounded. In passing we recall that p*(0) = p.
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Theorem 2.2. Let M satisfy (M), with ¢ > 0 and a given asin (1.7). Forally € [0, CBHZ) and A € (-o0o0, my,gA1),
with
ifo>1,
myo=1" d (2.13)
c-Yy/Hy if0=1,
the functional J(y 5 : Z(Q) — R, defined by (1.6), is weakly lower semi-continuous and coercive in Z(Q).

Proof. Let (u;); be a sequence such that u; — u in Z(Q). Clearly, u; — u in LP(Q) since Q is bounded, and
there exist two positive measures, verifying (1.3). Now, .# is super-additive in IRj since .# is convex in R]
and .7 (0) = 0. Let us divide the proof into two parts.

Case a € (0, ps]: Since .# is continuous in R§, Op < pi(a) by (1.6) and y > 0, Theorem 1.1 yields

- 1
lim inf 30,0 (x;) = lim mfl—j[///([uj]g’p) - (Xguujuf}; - Ayl

> <[ (i + o) = H (Il +vo) PP~ Aui ]

~—

l
p

> o[ () 4 (o) = S 0ATE + v ) = A
=%

1 )’ 9p/p @
/A s
)+ (- (o) - )
1
> Hya(w) + 5(//1(;10) eﬂe"‘))
0
Ho Y
> Hya(u) + F(C - G_Hg)’ (2.14)

where in the last step we have used (1.7).

Case a = 0: In this case, [29, Theorem 2.5] gives the existence of an at most denumerable set of index A,
Xn € Q, Un =0, v, >0, with p, + v, > 0forall n € A, such that

v = u(x)Ps dx + Z Vnbyx,, M =|D%u(x)P dx+ Z Hnbx,

nel nel

and 0 < Hovﬁ/p; < up forall n € A, where Hy is the Sobolev constant defined in (1.1), with @ = 0. Since . is
continuous in R, fp < p; by (1.6) and y > 0, then as before

.. N Tiem g 1 P Yo, 16p P
lim inf 36,,ay) = lim inf [ (18.) = Gl = Al

> (1t + 3 ) - i+ 3 va) " = A
nen

> [ttty e Y = B0+ ¥ V) - A
nen nepn
= Hya(w) + 5 > () = B2
2 50 + Z(%(un) - un)
neiA
> Hya(u) + p(c - W) Z yn (2.15)
nei

In conclusion, the weak lower semi-continuity of 3,1 in Z(Q) follows at once in both cases thanks to (2.14),
(2.15) and the fact that y < cOHY, where a and  are related by (1.7).
Now, by (1.1), (1.7) and (2.12) we also get for all u € Z(Q),

1
Hyaw) = 2 (e W)[ ulS} - —[u] (2.16)

Consequently, 3, 1 (u) — oo as [u]s, — oo, provided that y < c9H2 and A < my A4, as required. O
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Thecase M = 1, @ = O and p = 2 of Theorem 2.2 was first treated in [28, Theorem 1]. Clearly, when 6 > 1, that
is, my,g = 0o, Theorem 2.2 holds for all A € R. This standard convention is used also in what follows.

3 Some Applications on Bounded Domains

Following [15], we present some applications of Theorem 2.2. Hence, throughout the section we assume that
Q is a bounded open subset of RV, that 0 < s < 1 < p < co and ps < N.

Theorem 3.1 (Superlinear f). Let M verify (M), with ¢ > 0 and a given as in (1.7). Suppose that f: Q x R —» R
is a Carathéodory function satisfying the conditions

(f1) sup{lf(x,t)| : a.e.x € Q, t € [0, C]} < co forany C > 0;

(£,) fix,t) = o(|t|Ps~1) as |t| — co uniformly a.e.inx € Q;

(f3) there exist a non-empty open set A € Q and a set B < A of positive Lebesgue measure such that

. essinfycgF(x, t) .. .essinfycaF(x, t)
limsup ————= = and liminf ——————"~ >
t—0* tp t—0* tp

il

where F(x, t) = jéf(x, 7)dT.
Then forally € [0, CGHg) and A € (-co, my A1), where my g is given in (2.13), there exists a positive constant
0 = 0(A, y) such that for any o € (0, 0) the problem

0-_p* u p;‘(a)—zu _ .
M) =yl 7O A2 oftrw) o )

u=0 inRY\ Q
has a nontrivial solution uy,p,s € Z(Q).
Moreover, if y € [0, CHZ) and either A € R; when 0 > 1, or A € (0o, mygA1) when 0 = 1, then

(}LIE+[uy,/1,o]s,p =0. (3.2)

Proof. Fixy € [0, C9H2) and A € (-co, my,gA1). Problem (3.1) can be seen as the Euler-Lagrange equation of
the functional gy, defined by

Jyno) = Hya(u) - o¥(u), ueZ(Q),

where K, ; is the functional given in (1.6), while

WY(u) = J F(x, u(x)) dx.
Q

Clearly, the functionals (,,» and ¥ are Fréchet differentiable in Z(Q), and actually Jy,,, is of class C LzQ)).
Furthermore, by Theorem 2.2 we know that {3 is weakly lower semi-continuous and coercive in Z(Q).
From (f;) and (f) for any € > O there exists 6. = 6(¢) > 0 such that

|F(x, t)] < |t|Ps + 8¢|t] fora.a.x € Qandallt e R.

Hence, the Vitali convergence theorem yields that ¥ is continuous in the weak topology of Z(Q).

From this point, arguing essentially as in the proof of [15, Theorem 1.1] but working in the functional
space Z(Q) = (Z(Q), [ - ]s,p), we prove the existence of a nontrivial solution uy, 5 , for any o € (0, ). Moreover,
the family {[uy,,0]s,p}0e(0,5) is uniformly bounded in o.

It remains to show the asymptotic behavior (3.2). By (f;) and (f,), with € = 1, and [9, Theorem 6.5], we
have . )

Uf(x, 1y, 1,600y, (X) dx| < HyP* Py 6155 + 61C1luyaols,p < Cyns (3.3)

with Cy,) independent of o since {[uy,,0]s,p}0e(0,5) is uniformly bounded in o.
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Fixy € [0, cHg) and A as in the last part of the statement. Since (3’y Lo(Uy.A0)s Uy 1,00 2(@),2/(Q) = O for any
o € (0, 0), we have

P P po P '
M([uy,/l,a]s,p)[uy,/l,a]s,p - yuuy,/l,a"Ha - A”“y,/l,o”p = <:Hy,,1(uy,/l,a): uy,/\,a)g(Q)’Z:(Q)

=0 Jf(x, Uy, 2,0(X)Uy2,0(x) dx.
Q

This, (1.1), (2.12), (3.3), and the monotonicity of M, combined with (1.7), yield
4 po A p
(C - H_g)[uy,/\,(f]s,p - Z[uy,/l,ﬂ]s,p < <j—c;/’/1(uy,/1,0)’ uy,/\,ﬂ)z(g)’zr(g) < O-Cy,A-

Letting 0 — 0%, we get (3.2) by the choices of y and A. O

The case M =1, a = 0 and p = 2 of Theorem 3.1 was first treated in [28, Theorem 4]. Furthermore, Theo-
rem 3.1 extends in several directions the existence part contained in the multiplicity [26, Theorem 1.1].

Theorem 3.2 (Sublinear f). Let M satisfy (M), with ¢ > 0 and a given as in (1.7). Suppose that f : Q x R —» R
is a Carathéodory function satisfying the following conditions:
(f4) Thereexist q € (1, 0p) and a € LPs/Ps=D(Q) such that

Ifix, O] < a(x)(1 + |t|T7Y)  forall (x,t) € Q x R.
(fs) Thereexist g € (1, p), 6 > 0, ap > 0, and a nonempty open subset w of Q such that
F(x,t) > aot? forall (x,t) € w x (0, 8).

Then forally € [0, cOHY), A € (—co, my,gA1), where my, g is given in (2.13), and o > 0, problem (3.1) has a non-
trivial solution uy, ) s € Z(Q).
Moreover, if y € [0, cHg) and either A € R; when 6 > 1, or A € (0o, my,gA1) when 6 = 1, then (3.2) holds.

Proof. Fix y € [0, CGHZ), A € (=00, my A1) and o > 0. Using the notation of the proof of Theorem 3.1, by
(2.16), (f4) and the Holder inequality, for all u € Z(Q) we have

1 4 po AT p J

> — - — _— — q d -0 #\/ *

dyae(u) p(c P 2)[“]5,1) o [uls,p 00 a()lul® dx - ollallp:) lullp;

1 4 po AT p q

> — —_— —_——_— —_ * *_ . — *\] *

> p(c 9H2>[u]s,p o (uls,p = ollallp; ;- lull,- = ollalips)y lullp;

> l(c - L)[u]ﬁi - L[ulé’p - Ung/pllallp;/(p;_q)[u]Zp = olalpzy llulp; (3.4)
p 6H? ©oph ’

since (p})' < pi/(p: —q) and Q is bounded. Hence Jy, s is coercive and bounded below on Z(Q). Fur-
thermore, J(,,; is weakly lower semi-continuous in Z(Q) by Theorem 2.2. Moreover, V¥ is weakly contin-
uous in Z(Q) by (f4). Thus, Jy1,6 = Hy,1 — 0¥ is weakly lower semi-continuous in Z(Q). Then there exists
Uy A0 € Z(Q) such that

3y,/\,0(uy,/\,o) = inf{gy,/\,o(u) tUE€ Z(Q)}

We claim that uy,),¢ # 0. Let xo € w and let r > 0 such that B,(xo) ¢ w. Fix ¢ € C3°(B,(xo)) with0 < ¢ <1,
[@ls,p < Crand |@llLaB,(x)) > 0. Then, by (M) and (f5), forall ¢ € (O, §),

1 -
Byo(t9) < (MUSCHPITT91E ~ Il = AP 1gI}) - 0t aolplscs,uon < O,

by choosing t > 0 sufficiently small, since 1 < § < p. Thus, the claim is proved. In other words, the nontrivial
critical point uy, ¢ of Jy,1,0 in Z(Q) is a nontrivial solution of (3.1).

To prove (3.2) fix y € [0, CGHg) and A € (—co, my,pA1) and note that the family of nontrivial critical points
{uy,2,0}0e(0,1], constructed above, is clearly uniformly bounded in Z(Q) thanks to (3.4). Therefore, for any
y € [0, CHZ) and either A € R; when 6 > 1, or A € (—oo, m*A;) when 6 = 1, with m* = c - y/H, if 6 = 1, we
can proceed exactly as in the last part of the proof of Theorem 3.1 and get (3.2). O
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When Q is the open unit ball B of center 0 and radius 1 of RY, a typical example of f, verifying (f,)
and (fs), is given by f(x, t) = a(x)(|t|772 + |t|72)t, with 1< g <p, 1 < q < Op, a(x) =-log|x|, 6 =1, and
w={xeB:|x|>1/2}.

Theorem 3.2 extends in several directions the existence result contained in the multiplicity [26, Theo-
rem 1.3].

4 Critical Problems in General Open Sets Q

As said in Sections 1 and 2, the best solution space for problems (1.9) and (1.13) is the fractional space
Z(Q)=(Z(Q), []s,p), where Q is any open subset of RV, possibly the entire RY itself, and so Z(RY) = DSP(RN).
In any case, Z(Q) is a uniformly convex Banach space when 0 < s < 1 < p < co. Throughout this section,
we assume that ps < N, a € [0, ps) and that 8 € [1, pi(a)/p), except for (1.13) where a € (0, ps). Moreover,
M and w satisfy conditions (M) and (w), and g is any Lebesgue exponent, with pf < q < p:(a).

By [2, Proposition A.6], the space LY(Q, w) = (LY9(Q, w), || - l4,w) is a uniformly convex Banach space,
endowed with the norm e

Il = ( [ wooroor? ax)
Q

Essentially, as proved in [7, Lemma 2.1], the following result holds also in our context.

Lemma 4.1. Let (w) holdwith 1 < q < pZ. Then the embedding Z(Q) — L(Q, w) is compact and (1.10) is valid

with C,, = Hy P w]/? > 0.

Proof. By (w), (2.2), the H6lder inequality, and (1.1), for all u € Z(Q),

1/pq . 1/p; 1 1
lulgw < ( J Wx)P dx) : ( jlulps dx) < Hy P wie  [uls
Q Q

so that the embedding Z(Q) — L9(Q, w) is continuous and (1.10) holds.

To complete the proof, it remains to show that if u; — u in Z(Q), then u; — u in L9(Q, w) as j — oo. As
noted in (2.2), the natural extensions of u; and u, denoted by i&; and i, have the property that it; — @ in
DSP(RY). Let W be the natural extension of the weight w to RY. Hence, by the Hélder inequality,

1/p
I WOl - al? dx < 1 J wOOP dx ) = o(1) (4.1)
RN\Bg RN\Bg
as R — oo, with w € L(RN) and supjllu; - ﬂllg; =L < oo by (1.1). Moreover, for all R > 0 the embedding
DSP(RN) — WSP(Bg) is continuous, and so the embedding DS"P(RN) «— LY(Bg) is compact forallv € [1, p})
by [9, Corollary 7.2]. Indeed, by (1.1) and the Holder inequality,

&y gy < CRIEID. + (@15, < (Cr/Ho + D&,

for all it € DSP(RY), where Cr = (wy/N)P$/NRPS and wy is the measure of the unit sphere
SN IxeRY : x| = 1}

of RN,

Fix € > 0. There exists R, > 0 so large that IJRN\BRE w(x)|itj — |7 dx < € by (4.1). Take a subsequence
(@, )k < (#j);. Since f1j, — @in LY(Bg,) for all v € [1, py), up to a further subsequence, still denoted by (ij, ),
we have that &1j, — @t a.e.in Bg,. Thus w(x)|it; — 11]? — O a.e. in Bg, . Furthermore, for each measurable subset
E c Bg,, by the Holder inequality we have

1/p
LN g _
Jw(x)lu,k u| dst(J;W(x)K’dx>
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Hence, (W(x)|@j, — &t|?) is equi-integrable and uniformly bounded in L!(Bg,) since w € L?(RN) by (w). Then
the Vitali convergence theorem implies

lim j W0y, — @]9 dx =0,
k—o0
BRg

and so it; — & in L9(Bg,, W) since the sequence (ii;, )k is arbitrary.
Consequently, IBR w(x)lit; — 1|7 dx = o(1) as j — oo. In conclusion, as j — oo,

I - @l = I W00l - ]9 dx + J W00l — ]9 dx < £ + o(1),

IRN\BRg BRs

thatis, i1 — @tin LA(RN, W) as j — oo, with € > 0 being arbitrary. In particular, uj —» uin L1(Q, w)as j — oo,
and this completes the proof. O

We now turn back to problem (1.9). According to the variational nature, (weak) solutions of (1.9) correspond
to critical points of the associated Euler-Lagrange functional J; : Z(Q) — R defined by

1

_1 Py
do(u) = p///([u]s,p) (@)

pi@y O, g
llull, —allullq,w

for all u € Z(Q). Note that J, is a C'(Z(Q)) functional and for any u, ¢ € Z(Q),

(35W), @) z0),21@) = M([WIS p) U, @Ys,p — (U, @YH, — OU, P)gws (4.2)
where
[ ) = u)P2 () - u@)] - [p(x) - p(y)]

(u, (P>s,p = J x— y|N+sp dx dy,

IRZN
u, 9y, = ilu(X)lp: <“>-2u<x)<o(x>|f<—|’;,
Uy @) g = jw(xnu(x)w-zu(x)go(x) dx.

Q

In order to find the critical points of J,, we intend to apply the mountain pass theorem by checking that J,
possesses a suitable geometrical structure and that it satisfies the Palais—Smale compactness condition. In
particular, to handle the Kirchhoff coefficient on a degenerate setting we need appropriate lower and upper
bounds for M, given by (M;) and (M,), which first appear in [8].

Indeed, condition (M) implies that M(t) > O for any ¢ > 0, and consequently by (M;) forall t € (0, 1] we
have M(t)/.# (t) < 8/t. Thus, integrating on [¢, 1], with 0 < t < 1, we get

WAGER /AN a8 (4.3)

and (4.3) holds for all ¢ € [0, 1] by continuity. Hence, (M3) is a stronger request. Furthermore (4.3) is compat-
ible with (M3) since integrating (Ms3), we have . (t) > ct?/6 for any t € [0, 1], from which .Z (1) > c/6.
Similarly, for any € > O there exists r. = .Z () /€% > 0 such that

M(t) <ret? foranyt > e. (4.4)

We point out that also when M satisfies (M) and (M), that is, we work on a non-degenerate setting, (4.3) and
(4.4) immediately hold true. Finally, we recall that p6 < g < pi(a) and 0 < a < ps.

Lemma 4.2. For any o € R there exists a function e € Z(Q) with [e]s , > 2 and Js(e) < 0. Further, there exist
p € (0, 1] andj > O such that J,(u) = j for any u € Z(Q) with [u]s,p = p.
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Proof. Fix 0 € R. Now take v € Z(Q) such that [v]s , = 1. By (4.4), with € = 1, we get, as t — oo,
IviE;
pia)

since p0 < g < p; (a). Hence, taking e = t, v with t, > 0large enough, we obtain that [e]s , > 2 and J,(e) < O.
Take any u € Z(Q) with [u]s,, < 1. By (1.1), (w) and (4.3),

* 14
Jo(tv) < (V)P0 — — o ¢ps(@) _ " "qutq —00 (4.5)

///(1) @)
Jo(u) = @ O
o) (u ] s(a)” ully, qll llg,w
//1(1) 1 i@  Cwo?
B e U R U
Thus, setting
No(t) = A o — {pi@ _ Cw0+.tq,
)4 Hgs(a /p *((X) q

we find some p € (0, 1) so small that maxcjo,1) 170 (t) = no(p) since pf < g < pi (a). Consequently,

do(u) 21 =10(p) >0
for any u € Z(Q) with [u]s , = p. O

We discuss now the compactness property for the functional J,, given by the Palais—Smale condition at a suit-
able mountain pass level c,. For this, we fix 0 € R and set

= inf t),
Co gelrtrer[l%ﬂa(f( )

where
={& € C([0,1], Z(Q)) : &(0) = 0, &(1) = e}.

Clearly, c; > 0 by Lemma 4.2. We recall that (u;); ¢ Z(Q) is a Palais-Smale sequence for J at level ¢, € Rif
Jo(uj) » ¢ and Jy(uj) >0 asj — oo. (4.6)

We say that J, satisfies the Palais—Smale condition at level c, if any Palais—-Smale sequence (u;); at level ¢,
admits a convergent subsequence in Z(Q).

Before proving the relative compactness of the Palais-Smale sequences, we introduce an asymptotic
property for the level c,. This result is similar to [17, Lemma 6] and will be crucial not only to get (1.11),
but above all to overcome the lack of compactness due to the presence of a Hardy term, which reduces to the
standard critical nonlinearity when a = 0.

Lemma 4.3. There holds
lim ¢y = 0.

g—00

Proof. Lete € Z(Q) be the function obtained by Lemma 4.2 and corresponding to o = 0. Hence J satisfies the
mountain pass geometry at 0 and e for all o > 0. Thus there exists t, > 0 verifying J4(ts€) = maxgo dg(te).
Hence, (J},(tse), €)z),z/«) = 0 and by (4.2),

7 el yM(Eh1ell ) = oty el + 6 7 el @ = O eyl @, (4.7)
We claim that {t;}4>0 is bounded in R*. Indeed, putting ¥ = {0 > 0 : t;[e]s p > 1}, we see that
tolels yM(thlel? ;) < 6.4 (thlels ) < 0///(1)t’;9[e]§30 forany o € X (4.8)
by (M1) and (4.4). Hence, from (4.7) and (4.8) there follows

P8 _ 0.4 (1)[e]?5,

foranyo € X
ps (@) ’
lell%;
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which implies that {t;}scx is bounded in R*, and so, in turn, {t;}+>0 is also bounded, concluding the proof of
the claim.
Now we assert that
all»lgo ts = 0. (4.9)

Indeed, assume by contradiction thatlim sup,_,., t; = T > 0. Hence there is a sequence, say j — 0j T oo such
that

lim to, = 7.
j—oo

Clearly, (t4,); is bounded. Thus, the continuity of M and (4.7) give at once

[p
o0 >

2E lim sup M(tg, [e]f ) > lim oltq P = 0o,
"e”qw j—oo j—

which is the required contradiction since p < p6 < q. This proves the assertion.
Consider now the path &(¢) = te, t € [0, 1], belonging to I'. By Lemma 4.2,

1
0 < ¢y < max Jy(te) < Jo(tge) < —///(tﬂ[e]g,p),
te[0,1] p

where by continuity . (t5[el% ,) — 0as o — oo by (4.9). O
Now, we are ready to show the validity of the Palais—Smale condition.

Lemma 4.4. There exists 6* > 0 such that for any o > o* the functional J4 satisfies the Palais—Smale condition
at level c,.

Proof. Take o > 0andlet (uj); ¢ Z(Q) be a Palais—Smale sequence for J; atlevel c,. Since by (M) our Kirchhoff
term M could be possibly degenerate, we split the proof in two steps.

Step 1: Let the Kirchhoff function M verify M(0) = 0, (M1), (M3), and (M3). Due to the degenerate nature
of (1.9), two situations must be considered: either infjen[ujls p = do > O orinfjen[ujls,p = 0. Hence, we divide
the proof of the current step into two cases.
Caseinfjen([ujls,p = ds > O: First we prove that (u;); is bounded in Z(Q). By (M), with 7 = d?, there exists
mg > 0 such that
M([ujl5 ) > mg foranyj e N. (4.10)

Furthermore, from (M;) it follows that

1, 1 1 1 ‘G
Jo(uy) = 2 {Golu), wpze.z@ 2 oA (15,p) = - M([uy)5,p) 15,5 + (q oF (a))ll wlf; @
1 1 1 S@
> (g = MO, + (7 - el (411

with p6 < g < p%(a). Hence, by (4.6), (4.10) and (4.11) there exists a 8 such that, as j — oo,

1 1
¢+ Boltlsp +0(1) 2 (—5 = )M l%p) W18 > Hali1S .
Lo po 4 (4.12)
Uo = <p_0 - 5)m(7 > 0.
Therefore, (u;); is bounded in Z(Q).

Now we can prove the validity of the Palais—Smale condition. Since (u;); is bounded in Z(Q), Lemma 4.1
and [4, Theorem 4.9] give the existence of u, € Z(Q) such that, up to a subsequence still relabeled (uj)j, it
follows that

uj — Ug in Z(Q), [Ujls,p = Ko
uj — g in LP@(Q, [xI™),  lluj - uolm, — 10, (4.13)

uj — ug in LY(Q, w), uj — uga.e.in Q,
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since pO < q < pi(a) < p%.Clearly, k; > O since we have d, > 0. Therefore, M([uj]f,p) > M@xE)>0asj— oo
by continuity and the fact that O is the unique zero of M by (M;).
In particular, by (4.6) and (4.11) we also have

11 :
co+0(1) 2 uolulfp + (= = —— Il (4.14)

q pi(@
First, we assert that
lim x, = 0. (4.15)

0—00
Otherwise, lim sup,_,, ks = k > 0. Hence there is a sequence, say n — o, T oo, such thatx,, — xasn — oo.
Thus, letting n — co in (4.12), we get from Lemma 4.3 that

0> (1%9 - %)M(Kp)Kp >0

by (M;), which is the desired contradiction and proves the assertion (4.15).
Now, [ugls,p < limj_eo[ujls,p = K¢ since uj — uq in Z(Q), so that (1.1) and (4.15) imply at once

ali_,rgolluollHa = (}Lrgo[ua]s,p =0. (4.16)
By (4.6) we have, as j — oo,
o(1) = M([u;1% ,){uj, @)s,p — Wi, @YH, — 0(Uj, P g,w

for any ¢ € Z(Q). As shown in the proof of [7, Lemma 2.4], by (4.13) the sequence (U;);, defined in

RN \ Diag R?N by

[ (x) = uj(Y)IP~2(uj(x) - uj(y))
|x — y|N+p)/p'

x,y) = Uj(x,y) =

s

is bounded in L?' (R?V), as well as U; — U, a.e. in RV, where

lug(x) = ue(V)IP~2(Ug(x) — ug(y))
|x — y|(N+ps)/p’ ’

Us(x,y) =
Thus, up to a subsequence, we get U; — Uy in Lp'(]RZN), and so (uj, @)s,p — (Ug, P)s,p Since
lp0) — )] - x = y|" NP e LP(RZN),

Then, using (4.13) and the facts that |u;|9-2uj — |ug|92u, in L7 (Q, w) and |u;|Ps @-2u; — [uglPs @2y, in
LP:@'(Q, |x|"%) by [2, Proposition A.8], we obtain

M(Oﬁxum (P)s,p —(Ug, )H, = 0{Ug, (P>q,w

forall p € Z(Q).
Hence, u, is a critical point of the C1(Z(Q)) functional

1 1 Ha) O, .q
30u=—MKp ulf, - - ullZ'Y — Zju . (4.17)
Ko (U) > (ko) [uls,p ps(a)” I, qII llg,w

In particular, (4.6) and (4.13) imply that, as j — oo,

o(1) = (3:7(11)') - 3,,(0(110), uj — ua)z(g),zf(g)
= M([”i]?,p)[”j]ls),p + M(Kf;)[ua]?,p = (uj, Ug)s,p [M([uj]ls),p) + M(Kg)]
- j(|u,~|p? @205~ g PO 20, ) s - ug) L5 g j WO (11192 — [l 210 ) (15 — ug) dx

x|
Q

= M) (kb — (gl p) ~ ujll%  + luslly @ + 0(1)

= M(h) [ — uol?y — Iy — uolf; + o(1).
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Indeed, by (4.13),

lim I w00 (1uj1972uj - lugl??uq) (uj — ug) dx = 0.
j—00

Moreover, again by (4.13) and the celebrated Brezis-Lieb lemma, see [5], as j — oo,

(@)

ps (@)
(W15 p = [ — uolS p + [Uolf,p +0(1), Nyl

p: pi(@)
= luj - uglly ™ + luglly, ™ + o(1).

Finally, we have used the fact that [u;j]s,, — ks by (4.13). Therefore, we have proved the crucial formula
MOcG) Jim [y~ 1f p = MO0 ~ [11%) = Jim s = w7 = 157, (4.18)

By (1.1) and the notation in (4.13), for all ¢ > 0 we have
29 s HoMGE)E. (4.19)

We assert that there exists a ¢* > 0 such that 1, = 0 for all ¢ > o*. Otherwise, there exists a sequence
n+— o, 1 oo such that 15, = 1, > 0. Noting that (4.18) implies in particular that

M) (5 — [uglh ) = 7@,
we get along this sequence, using (4.19) and denoting kg, = Ky, Ug, = Un, that
O = (@O < MO0 (0~ [unlfp PN > HaM(ch).
Hence, we obtain for all n sufficiently large by (M3) and (4.15),
Kﬁ'fa > (Kg _ [un]g’p)% > HaM(Kg)l—ps/(N—a) > Ckﬁ(e—l)[l—ps/(N—a)],

where C = H,c'PS/N-® 5 0, Therefore, with x, > 0 for all n, it follows that for all n sufficiently large

Kﬁ[pS—(G—l)(N—a)+(9—1)pS]/(N—a) _ Kﬁ[ﬁpS—(G—l)(N—a)]/(N—a) >C,

which is impossible by (4.15) since
ps<N<68ps+a.

Indeed, M(0) = 0 implies that 6 > 1 by [7, Lemma 3.1]. The restriction
N-a

po’
follows directly from the fact that 1 < 6 < pi(a)/p = (N — a)/(N - ps), so that

<S

N-ay N-a
0 > ( ) = .
N -ps ps—a
Therefore,
N-a ps-a
—— < — <5,
po’ p
with a > 0. In conclusion, the assertion is proved.
Hence, forall o > o*,
lim uj - uel%: @ = 0.
j—ooo @

Thus, (4.18) yields u; — uy in Z(Q) asj — oo forall o > o* since M%) > 0 by (M,) and the fact that d, > 0.
This completes the proof of the first case.

Caseinfjen([ujls,p = 0: Here, either 0 is an accumulation point for the real sequence ([u;]s,p); and so there
is a subsequence of (uj); strongly converging to u = 0, or O is an isolated point of ([uj]s,p);. The first case
can not occur since it implies that the trivial solution is a critical point at level c,. This is impossible since
0 = J4(0) = ¢y > 0. Hence only the latter case can occur, so that there is a subsequence, denoted by ([u}, s, p),
such that infyen([uj,ls,p = ds > 0 and we can proceed as before. This completes the proof of the second case
and of this step.
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Step 2: Let the Kirchhoff function M satisfy (M1) and (M5). In this case, the proof of Step 1 simplifies, but we
repeat the main argument where necessary. Hence, (M), (M) and (4.6) yield now that, as j — co,

Co+ Boltylap +0(1) 2 (55 = M)t + (¢ = oo
> (I% - é)a[uj]s,p, with (I% - %)a > 0. (4.20)

Therefore, (u;); is bounded in Z(Q), and proceeding exactly as in the proof of Step 1, we get the main formulas
(4.13)-(4.19).

As above, we assert that there exists a ¢* > 0 such that 1, = O for all o > o*. Otherwise, there exists
asequence n — 0, T cosuch that 15, =1, > 0. By (4.18) and (4.19), denoting x4, = kn and u,, = u,, we still
get

i O = (PN < MO N (i [l PN > HaMO).

Hence, by (M) and (4.15),
KﬁpS/(N—a) > (Kg _ [un]g’p)pS/(N—a) > HaM(Kﬁ)l—ps/(N—a) > C,

where C = HyaPS/N-® 5 0, This fact immediately contradicts (4.15).
From this point we can conclude exactly as in Step 1. O

Proof of Theorem 1.2. Lemmas 4.2 and 4.4 guarantee that for any o > 0* the functional J, satisfies all
assumptions of the mountain pass theorem. Hence, for any ¢ > ¢* there exists a critical point u, € Z(Q) for
Jgs atlevel c,. Since Jo(uy) = cg > 0 = J5(0), we have that uy # 0. Moreover, the asymptotic behavior (1.11)
holds thanks to (4.16). O

We now turn to the setting stated in Theorem 1.3. Since (M;) is no longer in charge, in order to control the
growth of the elliptic part of (1.9), we use a truncation argument, as in [1] and in other previous works.

Proof of Theorem 1.3. Take m € R with 0 < a < M(0) < m < aq/p, which is possible since pM(0) < aq by
assumption. Put for all ¢t € Ry,
M(t) if M(t) <m,
Mn(t) = .
m if M(t) > m,

so that
M;,(0) = M(0), minMy(t) = a,
teR}

and denote by .#,, its primitive. Let us consider the auxiliary problem

[u|Ps (@0=2y,

P Y_AYSq _ 12 - — * q-2 i
M ([ulsp)(-B)pu = = = owul"u in @, (4.21)

u=0 inRV\ Q.

We are going to solve (4.21), using a mountain pass argument as done in Step 2 of the proof of Theorem 1.2,
but replacing the Kirchhoff function M with M,,.
Clearly, (4.21) can be thought as the Euler-Lagrange equation of the C! functional

1 g
Im,o(u) = E/ﬂm([uli,p) *( @ I - 7 luallg
forallu € Z(Q). First let us observe that for the functional J,, ; Lemmas 4.2 and 4.3 continue to hold. Indeed,
for Lemma 4.2 it is enough to observe that (4.5) is now replaced by

ps (@)
Im,o(tv) < mtP — mtps*(a) IVIg.w Whaw g _

—09,
ps(a) q
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ast — oo, since p < q < pi(a). Similarly, also Lemma 4.3 can be proved in a simpler way, by observing that
now, since t, > 0 for all o > 0, inequality (4.7) becomes

mtel?, > thlell ,Mu(thlel} ) = &5 el @

for any o € R*. This implies at once that {¢;}secr+ is bounded in R. The rest of the proof is unchanged. Hence
Lemmas 4.2 and 4.3 are valid for Jp, ¢, and it remains to prove for J,,,, the main Lemma 4.4.
Proceeding as in Step 2 of the proof of Theorem 1.2, by (M) now (4.20) becomes

o+ Bolujlsp +0(1) 2 (7= T )le + (q o (a))u wl @, with 2~ 250, (4.22)

since m < aq/p. The other key formulas hold true with no relevant modifications. Thus, arguing as before,
we find that for all m € (M(0), aq/p) there exists a suitable o = 69(m) > O such that problem (4.21) admits
a nontrivial solution uy € Z(Q) with gy, ¢(Ug) = co. Hence, (4.22) implies that for all ¢ > ay,

Co = (g - —)[ug]sp, with g - % >0,

so that (1.11) follows at once by Lemma 4.3.
Fix m € (M(0), aq/p). By (1.11),

a < M(0) = My (0) = lim My([uo}Z).

0200

Therefore, there exists 0* = 0*(m) > 0¢ such that
a<Mn(luslk,) <m forallo>o*.

In conclusion, for all m € (M(0), aq/p) there exists a threshold o* = 6*(m) > 0 such that for all 0 > ¢* the
mountain pass solution u, of (4.21) is also a solution of problem (1.9). O

We conclude the section with the proof of Theorem 1.4, and recall that for (1.13) the Kirchhoff function M is
of the type (1.8), but possibly M(0) = 0, that is, a = 0. Hence in this part of the section we assume, without
further mentioning, that a, b € R§ with a + b > 0, that w satisfies (w) with 6 > 1,0 < a < ps <N, 0 < 8 < ps,
pO<pi(a)<pi, 1<qg<piB)<pi and ph < pi(P).Let us finally recall that cg,p is introduced in (1.14).
Problem (1.13) is the Euler-Lagrange equation of the C* functional J,,,¢ defined by

_1 p po o\ _ O, va
Trio.g(0) = (@lulfp + LI, ~ Ghulfy) - il ~

: ||u||"s(‘” g00u(x) dx
- |

forany u € Z(Q).
Lemma 4.5. Fixy < cq pHY. Then every function of the parametric family {ny,e}es0, defined for all t € [0, 1] by

+
at?1 4 (b Yo ; pip-1_ Cw gg-1

with

0 ifeitherl<g<p,orp<qg<pBanda=0
ot ifeitherp<qg<pi;(B),orp<g<pBanda >0,

admits maximum value 1,,.(p) > O atapointp € (0, 1) foralle > Oifeither1 < g < p,orp < q < pfanda =0,
orp<g<pbanda>0,orpd<q<pi(B),andforalle < [0,¢,), with e, > 0 given by

_JalCy ifg=panda > 0,
b-y*/6H? ifq=pOanda=0
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whenever either ¢ = p and a > 0, or q = p0 and a = 0. Furthermore, putting § = Hé/pny,g(p)B and

qny,o(P)/3Cy ifeitherl1 <qg<p,orp<qg<pBanda=0
0+ =400 ifeitherp < g <pfanda > 0,0rp6 < q < p;(B),
£y ifeitherq=panda > 0,orq=pOanda =0

we have Jy 5,¢(u) > J = pny,e(p)/3 > O forallu € Z(Q) with [u]s , = p, and forall g € L (Q) and o with ||gll, < 6
and

—00, 0,] fifeitherl <q<p,orp<q<pBanda=0,
06{(00 1 if g<p,orp<q<p (4.24)

(-00,0,) ifeitherp<q<pBanda>0,0rpfd<q<pi(f).

Proof. Fixy € (-00, cq pH?) and o € R. By (1.1) and Lemma 4.1,

a b pe V., po O g 1 P
Iyo,e) > =[ulf , + = [uls, - < lully = =luldw - ———lulf " = lIglylullp:
y:0.8 p Hep T s He ~ g Wlaw = gy 14, Slvliulp
a b A o 1 piB) Cw0" 4
1_7[”] <p 0H9 )[ s,p m uls,p q —[uls,p - Hl/p —=lIgllv[uls,p
Cw(ot—¢) 4 lglly
= [uls,pny,e([uls,p) - T[u]s,p Hl/p (uls,p

0
Cy(o" -¢) B liglly )

(4.25)
q Hé/p

2 [u]s,p(rly,e([u]s,p) -

forallu e Z(Q)with [u]s , < 1sinceq > 1.Itremains to show thatJy 5o (u) > jforany u € Z(Q) with [u]s,, = p,
where p € (0, 1) is the maximum point of ¢ in [0, 1]. To this end, take § and ¢. as in the statement, so that
for any u € Z(Q) with [u]s , = p, and for any g € L¥(Q) with ||g[l, < §, and for any o as in (4.24), we have

Jy,0,8 (W) (1y0(p) - &7 - ;) ifeither 1< g <p,orp<q<pfanda=0
u)=p-
rogtit) =P (o (o) - l,p) if either pd < g < pZ (), orp < g < panda >0,
S PNy,e(p) ),
3
as stated. -

Proof of Theorem 1.4. Fix y € [0, ca,ng). Take g and o as in (1.15) with upper bounds § and ¢, given in
Lemma 4.5.

When |gll, # O,sinceg € LV(Q), thereexists i € C5°(Q) such that JQ g()Y(x) dx > 0.Indeed, there exists
a sequence (gj); in Cg°(Q) such that g; — g strongly in LP5 (Q) since C3°(Q) is dense in LP5 (Q). Hence, there
exists jo € IN so large that

1 _
I8j, - 8llp: < Slglly L
Thus, by the Holder inequality, we have
Jgjo(X)g(X) dx = -||gj, — gllp: gl + liglly, > 0
Q

since v = (p})'. Taking ¥ = gj,, we obtain the claim.
Hence, for t € (0, 1) small enough,

T S P R O R q
jy,o,g(tll)) < Ea[lp]s,p + ?b[lp]s,p - p—GYIIIPIIHH - EO'"'I)"q,w % (ﬁ)

<0 (4.26)

||lp||ps ® _ jg(x)lp(x) dx
Q

sincel <p<pB<pi(B)andl<gq.
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It remains to consider the case ||g||, = Oand ¢ > 0, when either1 < g < p,orp < g < pfand a = 0. Hence,
for a fixed v € Z(Q) with ||V||Z,w =1, for t € (0, 1) small enough we still have

P o o V9 0 tq
Jy.0.g(tv) < —alvlt , + —bVIL, - —ylIvIE, - —
y,0,g(tV) pa[v]s,p+ > [Vls,p peyIIVIIHa

27 ( ﬁ) ||v||ps ® ax <0 (4.27)

since 0 > 0 and either 1 < g < p,orp < g <pfanda = 0.
Thus, using the notation of Lemma 4.5, by (4.26) and (4.27),

co = inf{Jysg(u) : u € By} <0,

and Jy ¢ ¢ is bounded below in Ep thanks to (4.25) with p € (0, 1). By the Ekeland variational principle in [11]
and by Lemma 4.5, there exists a sequence (u;); ¢ B, such that

1 1
co < Jy,0,g(uj) < co + 5 and  Jy0,6(v) 2 Jy0,6(u) - 7[v - Ujls,p (4.28)
forallv € B,,. Fora fixed j € N, for all z € B; and for all £ > 0 so small that u; + £z € B,, we have
£
Jy,0,5(Uj +€2) =Ty 0, g(Uj) = 5

by (4.28). Since Jy, 4, is Gateaux differentiable in Z(Q), we have

Iy o.0(Ui +€2) = Ty 5 o (Uj) 1
7 . Uj), z = lim 228 AL S
y,0,6(W)s 2) 20),2/ () lim - ]

forall z € 0B1. Hence |<J;,’o-’g(uj),Z)Z(Q),Z’(Q)| < 1/j since z € 9B is arbitrary. Consequently, J;,,U,g(u,-) — 0in
Z'(Q) asj — co.

Furthermore, since (u;); is bounded in B,, Lemma 4.1 and [4, Theorem 4.9] give the existence of
Uy,q,¢ € B, such that, up to a subsequence still relabeled (u;);, it follows that

Uj — Uy, in Z(Q), (Ujlsp — dyo.g
Uj — Uy g in LM@Y, X7, uj — uy,6gin PSP RY, |x|P) (4.29)
lujlle, — €y,0.8, Uj - UygginLYQ,w), uj > uyggae inQ,

since g < p:(B) < p;. Hence, asj — oo, we easily get

|p9 ps (@)

6-1
0= (J;/,a,g(uj)» uy,o,g)Z(Q),Z’(Q) +o(1) = (a + be[u]]p( ))<u1, uyag)s ) Y||u]| (uja uy,o,g)Ha

- 0(“}'; uy,a,g)q,w - (ujs uy,a,g)H/; - Jg(x)uj(x) dx
Q

p(6-1) p pO-p;(a) s () q
(a + b@dy 0,8 )[Uy’o-’g]s’p yey g,8 ||uy g g" - 0||uy,0,g||q,w

~ Wty - [ 800Uy 0.500 dx. (4.30)
Q

Since uy,g,¢ € Epo’ we have Jy, 5 ¢(uy,0,¢) > Co. Multiplying the expression in (4.30) by 1/p6 and subtracting
below, by (4.29), the weakly lower semi-continuity of the norms and the facts thaty > O and p6 < p¥(a) < p%,
as j — oo we have

p(6-1) p9 -ps (@)
dyo,g p  Vog

a+b .
piw) O q
[uy,a,g]s,p p—euuy,a,g"HSa - a"uy,a,g"q,w

Co < jy,g,g(uy,a,g) <
( S sl - | 80uy0500 dx
Q

a 1

= E(l - %)[uy,o,g]g,p - 0(% - I%)”uy,o,gug,w - (ps*_@ p9)||uyog|
_ (1 - p_le) jg(x)uy,g,g(x) dx
Q

|ps B
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< 2= gl = o~ gl + (o = oo Wl - (1= 25) [ gm0 dx
Q

1
=Jy,0,5(Uj) - p—e(Jg,,g,g(uj), Uj)zQ),z'Q) + 0(1) = co
since p0 < p;(B). Thus, uy, ¢, ¢ is @ minimizer of J, 5¢ in Epo and Jy,5,g(Uy,0,6) = Co <0 <) <Jyq¢(u) for all
u € 0B, by Lemma 4.5. Hence uy, 4 ¢ € B,, so that J;,,g,g(uy,o,g) = 0. In other words, uy, s ¢ is a nontrivial solu-
tion of (1.13).
It remains to show the asymptotic behavior (1.16). From the proof of Lemma 4.5 it is clear that
0 < [uyo,gls,p <p=p(y, 0),

where by (4.23), when either p < g < pf and a > 0, or pf < g < p(B), the positive function p(y, o) verifies
the identity

a
—’+
b p

p9—1(b_ y

C
L oWOP = gt Wy, 0)97P
eHg)p(y ) 7 P

1 «
- - ps (B)-p
’ Hp;(ﬂ)/p(p;(ﬁ))fp(y’ o) '

This implies at once that
Jim p(y,0) =0

since either p < p0 < g < pZ(B),orp < g < pB < pi(B) and a > 0. The proof of (1.16) is now completed. [J

5 General Nonlocal Operators

In this section, we show that Theorems 1.2-1.4 continue to hold when (—A)f, in (1.9) and (1.13) is replaced
by a more general nonlocal integro-differential operator L‘;, defined for any x € RY as

ke =21m [ Ip00 - I 2900 - K -y)dy
RN\B, (x)

along any function ¢ € CSO(IRN ), where the singular kernel K : RY \ {0} — R* is a measurable function satis-
fying the following conditions:
(K1) mK e LY(RN) with m(x) = min{1, |x|?}.
(K») There exists Ko > 0 such that K(x) > Ko|x|~®N+P9) for any x € RN \ {0}.
Obviously, the operator —L‘Z reduces to the fractional p-Laplacian (-A); when K(x) = |x|~N-ps,
Here we denote by Zx(Q) the completion of C3°(Q) with respect to

1/p
[Qls pk = ( j |Digo<x)|1’dx) . where [DSp(x)IP = j lp(x) - )IPK(x - ) dy,

RN RN

which is well defined by (K;) along all ¢ € C5°(Q). Clearly, the embedding Zx(Q) — Z(Q) is continuous since
[uls,p < Kal/p[u]s,p,K for any u € Zx(Q) (5.1)

by (K,). Hence, also by Lemma 4.1 the embedding Zg(Q) — L7(Q, w) is compact under condition (w) since

1<gq<ps.
A weak solution of the problem

[u|Ps (@0-2y 5 )
— — =owX|ul*u inQ,
|x|* (5.2)

u=0 inR¥\ Q,

-M([u)? , x)Cu -
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is a function u € Zg(Q) such that

M([ul] , ), @)s,p = (U, @), = 0, @)gw forany ¢ € Zg(Q),

U PYspk = H (0 - u@P2 [ - u)] - [P0 — PIK(x - ) dx dy.
]RZN

It is worth noting that, as in [1], it is not restrictive to assume K even, since the odd part of K does not give
contribution in the integral above. Indeed, write K = K, + K,, where for all x € RN \ {0},
K(x) + K(-x) K(x) - K(-x)

Ke(x) = — S and Ko(x) = >

Then it is apparent that for all u and ¢ € Zg(Q),

WU, @Yo pk = ” u(x) - u) P2 [ux) - uy)] - [P(x) - pW)]Ke(x - y) dx dy.
]RZN

Actually, the solutions of problem (5.2) correspond to critical points of the functional J4 & : Zx(Q) — R,
defined for all u € Zg(Q) by

1 1 pi@ O, .q
Jox(w) = = (ul? =l ™ = =lullgw-
o,K p ( s,p,K) pi (a) H, q q,w
Now, by using (5.1), Lemmas 4.2-4.4 continue to hold, with obvious changes in their proofs. Thus we have
proved the following two results.

Theorem 5.1. Let K verify (K1) and (K»). Assume that M and w satisfy (M) and (w), with p6 < q < pi(a) <pi
and 0 < a < ps < N. Then there exists 0* > 0 such that for any o > 0* problem (5.2) admits a nontrivial moun-
tain pass solution u, in Zx(Q). Moreover,

Uli_{go[ua]s,p,K =0. (5.3)

Theorem 5.2. Let K verify (K1) and (K,). Assume that M is continuous in R{, satisfying (M>). Suppose that
w verifies (w), with p < g < pi(a) < p¥ and 0 < a < ps < N, and that (1.12) holds. Then there exists c* > 0
such that for any o > o* problem (5.2) admits a nontrivial mountain pass solution uq in Zg(Q), satisfying the
asymptotic property (5.3).

We can generalize also the study of problem (1.13), that is,

) i [l @2y
~(a+ bO[uP ) chu — yluly P ™y

ulps B2y )
5.0,k = ow()ul?u + u +g(x) inQ,

x| |x|B (5.4)
u=0 inRY\ Q.

In this case, by (5.1), Lemma 4.5 continues to hold, provided that y € [0, ca,ngKg) and o satisfies (4.24)
with a suitable new o.. Thus we have proved the following result.

Theorem 5.3. Let K verify (K1) and (K;) and let a, b > O with a + b > 0. Assume that w satisfies (w), with 6 > 1,
O<a<ps<N,0<B<ps, pf<pi(a),l<qg<pi(B),andpb <pi(B). Then forally € [0, ca,bHZKg), with
Ca,p Siven in (1.14), there exist a number § > 0 and 0. € (0, co] such that for any perturbation g € L¥(Q) and
any parameter o satisfying (1.15), problem (5.4) admits a nontrivial solution uy,q ¢ in Zx(Q) and

(}ggo[uy,o,g]s,p,K =0

when either p0 < g < p%(B),orp < g < p@anda > 0.
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Also Theorem 1.1 and all results of Section 3 derivable from it can be easily proved for general operators L’;
provided that the assumption (K) is strengthened and replaced by condition

(K3) there exists Ko > 0 such that Ko|x|"N*P9) < K(x) < |x|"N+P9) /K, for any x in RN \ {0}.

Let us state the results.

Theorem 5.4. Assume that K verifies (K1) and (K>), that Q is an open bounded subset of RN and that a € (0, ps].
Let (uj); be a weakly convergent sequence in Zx(Q) with weak limit u. Then there exist two finite positive mea-
sures y and v in RN such that

* * dx =« .
[Dju;(x)IPdx — u and |uj(x)[Ps (“)W Sy in MRM).
Furthermore, there exist two nonnegative numbers U, vy such that

cq AX
v = u(olPs (“’W + Voo

and
W > [DSu(x)P dx + pobo, 0 < HoKoV2'P* @ < o,

where H, is the Hardy constant defined in (1.1).

The proof is almost exactly as that of Theorem 1.1. The new assumption (K3) is used only to derive (2.3),
(2.6), (2.10), and so their consequences. It is worth noting that (2.7) comes directly from (K1 ). In conclusion,
we have the following results.

Theorem 5.5 (Superlinear f). Assume that K verifies (K,) and (K), that Q is an open bounded subset of RN and
that M satisfies (M), with ¢ > 0 and a given as in (1.7). Suppose that f : Q x R — R is a Carathéodory function
satisfying conditions (f;)-(f3) of Theorem 3.1. Then for all y € [0, CGHgKg) and A € (-o0o, my, 9 x,A1Ko), where
my, gk, IS given as

o) ifeg>1,
Myoko=1 . (5.5)
c—y"/HaKo if6=1,
there exists a positive constant o = o(A, y) such that for any o € (0, 0) the problem
. ps(@)-2y,
~M([ul? . )LPu - upoips(“)M—:Aup‘2u+o x,u) inQ,
([uls p ) Lxu = yluly, e [ul f(x, u) (Kyn0)
u=0 inRY\ Q,

has a nontrivial solution uy,j,s € Zg(Q).
Moreover, if y € [0, CH}ZKg) and either A € R; when 0 > 1, or A € (0o, my,p,x,A1Ko) when 6 = 1, then

lim [uy,A,0ls,p,x = 0. (5.6)

o—0*

Clearly, when 6 > 1, that is, my, gk, = 0o, then the existence part of Theorem 5.5 holds for all A € R.

Theorem 5.6 (Sublinear f). Assume that K verifies (K1) and (K3), that Q is an open bounded subset of RN and
that M satisfies (M), with ¢ > 0 and a given as in (1.7). Suppose that f : Q x R — R is a Carathéodory function
satisfying conditions (f5) and (fs) of Theorem 3.2. For ally € [0, CGHgKg), A € (-00, my,g,x,A1Ko), where my, g k,
is given in (5.5), and o > 0, problem (K, ;) has a nontrivial solution uy, s € Zg(Q).

Moreover, ify € [0, cHgKg) and either A € Ry when 6 > 1, or A € (00, my,g,x,A1Ko) when 0 = 1, then (5.6)
holds.

A Lemma A.1 and its proof

This last section is devoted to the proof of Lemma A.1. This technical lemma plays a crucial role in the study
of concentration and compactness results since it allows us to handle the nonlocal nature of the operator
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u — |DSulP. The proof of Lemma A.1 is fairly similar to that of [17, Proposition 7], stated in the case p = 2.
For the sake of completeness, we give it here.

LemmaA.1. Letw € RN andu € LPs (RN). Let ¢ > 0 and let either U x V = Bo(w) x RN or U x V = RY x B, (w).
Then

1i1r(1) eP ” [u()Plx = yP"N"PS dx dy = 0 (A.1)
E—
Ux(V{lx-yl<e})
and
lim ” lu()Plx - y|™N"PS dx dy = 0. (A.2)
E—

Ux(Vn{lx-yl>e})

Proof. Letw € RY, u € LPs(RN) and € > 0 be fixed. Set

&= ( [ moor dx)p/p;

Be(w)
Clearly,
lim & = 0. (A.3)
e—0
By the Holder inequality,
N ps/N
j Iu(x)lpdxg( j u(0) P dx) ( j 1dx) < CE.ePs (A.4)
Be(w) Be(w) Be(w)

for some C > 0 independent of € (in what follows, we will possibly change C from line to line). We claim that
(Ux V)n{lx -yl < €} € Bae(w) x Bag(w). (A.5)
Indeed, if (x, y) € U x V = B.(w) x RN, with |x - y| < €, we have
w-yl<|lw-x|+|x-y|<e+¢,
and so the validity of (A.5). On the other hand, if (x,y) € U x V = RN x B¢(w), with |x - y| < €, then
lw-x|<|w-y|l+|ly-x|<e+e.

This completes the proof of (A.5).
By (A.5) and the change of variables z = x - y, we have

WGP x — yPNPS dx dy < j GO dx j X - y NS gy
Ux(Vn{|x-y|<e}) Bye(w) By (w)n{|x—y|<e}

< J Iu(x)lpdlezlp‘N‘psdz
By (w) B

< CePPs J ()P dx.

Bae(w)
Using this and (A.4), we obtain
eP ” [u()P|x - ylP"N"PS dx dy < Ce™PS J lu(x)|Pdx < C&..
Ux(Vnflx-y|<e}) Bye(w)

This and (A.3) imply (A.1).
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Let us now prove (A.2). For this aim, fix an auxiliary parameter K > 2, which will be taken arbitrarily

large at the end after sending € — 0. We claim that
Ux V< (Bge(w) x RV) U (RN \ Bge(W)) x Be(w)). (A.6)

Indeed, if U x V = B.(w) x RN, then of course U x V < Bg.(w) x RY, hence (A.6) is obvious. If instead
(x,y) € Ux V = RN x B.(w), we distinguish two cases: if x € Bg.(w), then

(x,y) € Bge(w) x RY;
if x € RN \ Bgs(w), then
(x,y) € RN \ Bge(W)) x V = (RN \ Bge(w)) x Be(w).

This completes the proof of (A.6).
By (A.4),

|U(X)|p|x_y|—N—dexdy: J lu(x)[Pdx J |Z|—N—psdz

Bie(W)x(RNN{|x-y|>¢}) Bre(w) RN\B,
- CePs J (P dx
Bge(w)
< Cnf](g. (A.7)

If x € RV \ Bre(w) and y € B¢(w), then

_x-wl
) 2

[x —w| [x—w| Ke [x —w|
- + .

x—-ylzIx-wl-|y-w| ly —wl|=

Hence, the Holder inequality gives

[uCOP|x - y|™NPS dx dy

(RN\Bge(W))xBe (W)

< 2N+ps J [uOO)P|x — w|™NP3 dx J dy

RN\By, (w) Be(w)
. p/p; psIN
< CSN( J [u(x)[Ps dx) ( J |x — w|~(N+Ps)N/ps dx)
RN\B,(w) RN\B,(w)

o0

< C£N||u||§*< j ~(N+DpS)N/ps)+(N-1) dr)
Ke

=CK™N ||u||§;. (A.8)

ps/N

Combining (A.6), (A.7) and (A.8), we obtain

lu)IP |x — y|™N"PS dx dy
Ux(Vn{lx-y|>e})
< J ()P dx J Ix = yI™NPS dy + J lu(x)1Pdx J Ix — y|™NPS dy
Bge(w) RNn{|x-y|>¢} RN\Bge(w) Be(w)
< Cége + CK*N||u||§;.

Sending first ¢ — 0 and then K — oo, we readily obtain (A.2), thanks to (A.3). O
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