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1 Introduction

Recently, great attention has been drawn to the study of fractional and nonlocal elliptic problems with lack
of compactness. These models arise in a quite natural way in many different applications, and we refer to the
recent monograph [27], to the extensive paper [10] and the references cited therein for further details.

This paper is devoted to the study of the existence of solutions of a series of Dirichlet problems in general
open subsets Ω ofℝN ,N ≥ 1, possibly unbounded. The problems involve aHardy coefficient and the so-called
fractional p-Laplace operator (−∆)sp, with 0 < s < 1 < p < ∞ and ps < N. Hence, p∗s = pN/(N − ps) is well
defined and is critical in the sense of the fractional Sobolev theory. The operator (−∆)sp (up to normalization
factors) is defined for any x ∈ ℝN by

(−∆)spφ(x) = 2 lim
ε↘0

∫

ℝN\Bε(x)

|φ(x) − φ(y)|p−2(φ(x) − φ(y))
|x − y|N+sp

dy

along any φ ∈ C∞0 (ℝN), where Bε(x) is the open ball ofℝN centered at x and with radius ε > 0.
Let 0 ≤ α < ps and let p∗s (α) = p(N − α)/(N − ps) ≤ p∗s (0) = p∗s . The main results of the paper are based

on the best fractional Hardy–Sobolev constant Hα = H(p, N, s, α), given by

Hα = inf
u∈Z(Ω)
u ̸=0

[u]ps,p
‖u‖pHα

, ‖u‖p
∗
s (α)
Hα = ∫

Ω

|u(x)|p∗s (α) dx
|x|α , (1.1)
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where Z(Ω) is the completion of C∞0 (Ω), with respect to the norm

[φ]s,p = ( ∫

ℝN

|Dsφ(x)|pdx)
1/p
, |Dsφ(x)|p = ∫

ℝN

|φ(x) − φ(y)|p

|x − y|N+ps
dy, (1.2)

well defined along any test function φ ∈ C∞0 (Ω), extended to the entire ℝN by putting φ = 0 in ℝN \ Ω. We
refer to Section 2 for details.

The constant Hα is well defined and strictly positive thanks to Lemma 2.1. However, the fractional Hardy
embedding Z(Ω) í→ Lp∗s (α)(Ω, |x|−α) is continuous but not compact. In order to handle the critical Hardy–
Sobolev potential as well as the nonlocal term given by (−∆)sp, we first study the exact behavior of weakly
convergent sequences of Z(Ω) in the space of measures. This behavior is described in the following theorem,
where the assumption that Ω is bounded seems to play an essential role. If Ω is a bounded open subset ofℝN ,
then (1.1) reduces simply to the Poincaré theoremwhen α = ps, that is, (1.1) holds for all α ∈ [0, ps], in other
words for all p∗s (α) ∈ [p, p∗s ].

Theorem 1.1. Let Ω be an open bounded subset of ℝN and let α ∈ (0, ps]. Let (uj)j be a weakly convergent
sequence in Z(Ω), with weak limit u. Then there exist two finite positive measures μ and ν inℝN such that

|Dsuj(x)|pdx
∗
⇀ μ and |uj(x)|p

∗
s (α) dx

|x|α
∗
⇀ ν inM(ℝN). (1.3)

Furthermore, there exist two nonnegative numbers μ0, ν0 such that

ν = |u(x)|p∗s (α) dx
|x|α + ν0δ0 (1.4)

and
μ ≥ |Dsu(x)|p dx + μ0δ0, 0 ≤ Hαν

p/p∗s (α)
0 ≤ μ0, (1.5)

where Hα is the Hardy constant defined in (1.1).

For the case α = 0 we refer to [29, Theorem 2.5]. As a direct consequence of Theorem 1.1 above and
[29, Theorem 2.5], we prove that the functional

Hγ,λ(u) =
1
p [M ([u]ps,p) −

γ
θ ‖u‖

pθ
Hα − λ‖u‖

p
p], M (t) =

t

∫
0

M(τ) dτ, (1.6)

is weakly lower semi-continuous and coercive in Z(Ω), provided that α, θ, γ, and λ verify suitable restrictions,
depending on the behavior of the Kirchhoff coefficient M, which is assumed to satisfy condition
(M) M : ℝ+0 → ℝ+0 is continuous andnondecreasing. There exist numbers c > 0 and θ such that for all t ∈ ℝ+0,

M (t) ≥ ctθ , with θ
{
{
{

∈ (1, p∗s (α)/p) and α ∈ [0, ps) if M(0) = 0,
= 1 and α ∈ [0, ps] if M(0) > 0.

(1.7)

A typical prototype for M, due to Kirchhoff, satisfying (M) is given by

M(t) = a + bϑtϑ−1, a, b ≥ 0, a + b > 0, ϑ ∈ (1, p∗s (α)/p), α ∈ [0, ps), (1.8)

with c = a and θ = 1 ifM(0) > 0,while c = b and θ = ϑ ifM(0) = 0, that is, a = 0. Indeed, ifM(0) = 0 for (1.8),
then ϑ > 1 as a corollary of [7, Lemma 3.1].

The functionalHγ,λ is the basis of the elliptic part of some nonlinear Kirchhoff problems which are stud-
ied in Section 3. Theorem 1.1 is also applied in minimization arguments and critical point theorems to get
existence and multiplicity results.

In general, when M(t) > 0 for all t ∈ ℝ+, then the related Kirchhoff problem is said to be non-degenerate
when M(0) > 0, while it is called degenerate if M(0) = 0.
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In the second part of the paper, we treat Kirchhoff problems in general open sets Ω,with possibly Ω = ℝN .
The first problem is

{{
{{
{

M([u]ps,p)(−∆)spu −
|u|p∗s (α)−2u

|x|α = σw(x)|u|q−2u in Ω,

u = 0 inℝN \ Ω,
(1.9)

where 0 < s < 1 < p < ∞ and 0 ≤ α < ps < N, while σ is a real parameter. Naturally, the condition u = 0 in
ℝN \ Ω disappears when Ω = ℝN . The exponent q satisfies pθ < q < p∗s (α) ≤ p∗s . The norm [ ⋅ ]s,p is defined
in (1.2).

Since 0 ≤ α < ps < N in problem (1.9), we assume that the nonlocal Kirchhoff term satisfies assumption
(M̃) M : ℝ+0 → ℝ+0 is a continuous function such that the following conditions hold:

(M1) there exists θ ∈ [1, p∗s (α)/p) such that tM(t) ≤ θM (t) for any t ∈ ℝ+0, whereM is defined in (1.6);
and either
(M̃2) inft∈ℝ+0 M(t) = a > 0;
or M(0) = 0 and M satisfies both properties
(M2) for any τ > 0 there exists m = m(τ) > 0 such that M(t) ≥ m for all t ≥ τ;
(M3) there exists a positive number c > 0 such that M(t) ≥ ctθ−1 for all t ∈ [0, 1].

Clearly, condition (M̃2) covers the so-called non-degenerate case and implies at once the validity of (M2)
and (M3). Concerning the positive weight w, we assume
(w) w ∈ L℘(ℝN), with ℘ = p∗s /(p∗s − q) and 1 < q < p∗s .
Condition (w) guarantees that the embedding Z(Ω) í→ Lq(Ω, w) is compact, even when Ω is the entire ℝN ,
as explained in Section 4. Indeed, the natural solution space for problem (1.9) is the fractional density
space Z(Ω), that is, the closure of C∞0 (Ω) with respect to [ ⋅ ]s,p, given in (1.2). Thus,

‖u‖q,w ≤ Cw[u]s,p for all u ∈ Z(Ω), (1.10)

with Cw = H−1/p
0 ‖w‖1/q℘ > 0, as proved in Lemma 4.1.

In thenext result,wepartially answer the openquestion asked for theKirchhoff–Hardy equation [7, (1.1)]
since we cover for a slightly different equation also the degenerate case. Thanks to the variational nature
of (1.9), (weak) solutions of (1.9) are exactly the critical points of the underlying functional Jσ, which satisfies
the geometry of themountain pass lemmaunder the above structural assumptions. The critical points uσ of Jσ
in Z(Ω) are found at special mountain pass levels cσ, and these solutions of (1.9) are simply calledmountain
pass solutions.

Theorem 1.2. Assume that M and w satisfy (M̃) and (w), with pθ < q < p∗s (α) ≤ p∗s and 0 ≤ α < ps < N. Then
there exists σ∗ > 0 such that for any σ ≥ σ∗ problem (1.9)admits a nontrivialmountain pass solution uσ in Z(Ω).
Moreover,

lim
σ→∞

[uσ]s,p = 0. (1.11)

Thedegenerate nature of problem (1.9) does not allowus to apply Theorem1.1 in the proof of Theorem1.2. As
is customary in elliptic problems, involving critical Hardy nonlinearities, the delicate point is the verification
of the Palais–Smale condition. For this we exploit an asymptotic property of the mountain pass level cσ,
taking inspiration from the proof of [15, Theorem 1.3] and also for a somehow similar problem from the
proof of [1, Theorem 1.1].

The case Ω =ℝN and α = 0 of Theorem1.2was first treated in [7, Theorem1.2]. Furthermore, Theorem 1.2
extends in several directions [1, Theorem 1.1 and Theorem 1.2 (i)], [12, Theorem 1.1], [22, Theorem 1.1],
[24, Theorem 1.1], [26, Theorem 1.1], and [30, Theorem 1.1 (ii)].

Moreover, in the non-degenerate case, following [1, Theorem 1.2 (ii)], we have this nice addition.

Theorem 1.3. Assume that M is continuous in ℝ+0 , satisfying (M̃2). Suppose further that w verifies (w), with
p < q < p∗s (α) ≤ p∗s and 0 ≤ α < ps < N, and that

pM(0) < qa. (1.12)
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Then there exists σ∗ > 0 such that for any σ ≥ σ∗ problem (1.9) admits a nontrivial mountain pass solution uσ
in Z(Ω), satisfying the asymptotic property (1.11).

As explained in the introduction of [1], the request (1.12) is automatic whenever M(0) = a, with p < q. The
case M(0) = a occurs in the non-degenerate prototype case (1.8), and more generally, whenever M is mono-
tone increasing in ℝ+0 . As we shall see, Theorem 1.3 is proved via a truncation argument on M since the
Kirchhoff functionM could increase too quickly with respect to the other terms of problem (1.9). Theorem1.3
extends in several directions [1, Theorem 1.2 (ii)], in particular to the case in which Ω could be possibly
unbounded and also to the case Ω = ℝN . Furthermore, Theorem 1.3 generalizes, e.g., [24, Theorem 1.2 (2)
and (3)] and [12, Theorem 1.1].

In the last part of the work, we study the nonhomogeneous version of the Kirchhoff problem (1.9), con-
sidering M of the special type (1.8), with θ replacing ϑ for simplicity. Actually, we treat the general problem

{{{{{{{
{{{{{{{
{

(a + bθ[u]p(θ−1)s,p )(−∆)spu − γ‖u‖pθ−p
∗
s (α)

Hα
|u|p∗s (α)−2u

|x|α

= σw(x)|u|q−2u +
|u|p∗s (β)−2u

|x|β
+ g(x) in Ω,

u = 0 inℝN \ Ω,

(1.13)

with α ∈ [0, ps) but β ∈ [0, ps). Of course, the only interesting case occurs when θ > 1, and we assume it
without loss of generality, with possibly b = 0. Hence, the addition of a sufficiently small nontrivial pertur-
bation allows us to balance both Hardy–Sobolev terms with the Kirchhoff coefficientM, possibly zero at zero.
The latter Hardy–Sobolev term could coincide with the Sobolev critical nonlinearity when β = 0, a special
interesting case.

Theorem 1.4. Let a, b ≥ 0 with a + b > 0. Assume that w satisfies (w), with θ > 1, 0 ≤ α < ps < N, 0 ≤ β < ps,
pθ ≤ p∗s (α), 1 < q < p∗s (β), and pθ < p∗s (β). Then for all γ ∈ [0, ca,bHθα) with

ca,b =
{
{
{

∞ if a > 0,
bθ if a = 0

(1.14)

there exist a number δ > 0 and σ∗ ∈ (0,∞] such that for any perturbation g ∈ Lυ(Ω) and any parameter σ,
satisfying

(‖g‖υ , σ) ∈
{
{
{

[0, δ] × (0, σ∗] if either 1 < q < p, or p ≤ q < pθ and a = 0,
(0, δ] × (−∞, σ∗) if either p ≤ q < pθ and a > 0, or pθ ≤ q < p∗s (β),

(1.15)

problem (1.13) admits a nontrivial solution uγ,σ,g in Z(Ω) and

lim
σ→∞

[uγ,σ,g]s,p = 0 (1.16)

when either pθ < q < p∗s (β), or p < q ≤ pθ and a > 0.

The result of Theorem 1.4 can be summarized in Table 1.
The values δ > 0 and σ∗ ∈ (0,∞] are constructed in the technical Lemma 4.5. It is worth noting that

pθ < p∗s since pθ < p∗s (β) ≤ p∗s . Hence, pθ cannot be equal to p∗s (α) = p∗s (0) = p∗s when α = 0.
The strategy used in the proof of Theorem 1.2 seems not to work for (1.13). This is why we had to require

that M is of the special canonical form since this allows us to prove that the weak limit of a minimizing
sequence is actually a nontrivial local interior minimum point of the functional corresponding to (1.13), that
is, a nontrivial solution of (1.13).

Theorem 1.4 extends in several directions [24, Theorems 1.3 and 1.4], and generalizes the existence
part contained in the multiplicity results given in [10, Theorem 2.1.1], [14, Theorem 1.1], [21, Theorem 1.1],
[26, Theorem 1.2], and [35, Theorem 1.1].

A natural appealing open problem is to prove the existence of nontrivial solutions for (1.9) and (1.13)
when α = ps, a case not covered in Theorems 1.2–1.4. When α = ps, β = 0 and g ≡ 0, a problem somehow
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q a ‖g‖υ σ

1 < q < p ≥ 0 ∈ [0, δ] ∈ (0, σ∗]
q = p = 0 ∈ [0, δ] ∈ (0, σ∗]
q = p > 0 ∈ (0, δ] ∈ (−∞, a/Cw)
p < q < pθ = 0 ∈ [0, δ] ∈ (0, σ∗]
p < q < pθ > 0 ∈ (0, δ] ∈ ℝ
q = pθ = 0 ∈ (0, δ] ∈ (−∞, b − γ+/θHθα)
q = pθ > 0 ∈ (0, δ] ∈ ℝ
pθ < q < p∗s (β) ≥ 0 ∈ (0, δ] ∈ ℝ

Table 1. This table summarizes the conclusions of Theorem 1.4.

related to (1.13) is treated in details in [7, Theorem1.1], but only in the non-degenerate setting, that is, under
condition (M̃2) and under a suitable geometrical restriction on γ. Finally, the case α = ps and β = 0 is covered
in [32, Theorem 1.3] for a problem similar to (1.13), but again in the non-degenerate setting, that is, when
a > 0.

The paper is organized as follows: In Section 2, we prove Theorem 1.1 with a result from Appendix A. In
Section 3, we provide some applications of Theorem 1.1. Section 4 contains the proofs of Theorems 1.2–1.4.
Finally, in Section 5, we extend the previous results when (−∆)sp is replaced by a nonlocal integro-differential
operator LpK, generated by a general singular kernel K, satisfying the natural assumptions described by
Caffarelli, e.g., in [6]; see also [33, 34].

2 A Concentration-Compactness Result

This section is devoted to the proof of Theorem 1.1, which concerns the delicate study of the exact behavior
of weakly convergent sequences of Z(Ω) in the space of measures.

Let us first introduce the fractional Hardy–Sobolev inequality which is basic for (1.1). By [25, Theorems 1
and 2], we know that

{{{{{
{{{{{
{

‖u‖p
Lp∗s (ℝN ) ≤ cN,p s(1 − s)

(N − ps)p−1
[u]ps,p ,

∫

ℝN

|u(x)|p dx
|x|ps ≤ cN,p

s(1 − s)
(N − ps)p [u]

p
s,p

(2.1)

for all u ∈ Ds,p(ℝN),where cN,p is apositive constant dependingonly onN and p andDs,p(ℝN) is the fractional
Beppo–Levi space, that is, the completion of C∞0 (ℝN), with respect to the norm [ ⋅ ]s,p defined in (1.2).

Let Ω be any open set of ℝN and let Z(Ω) be the completion of C∞0 (Ω), with respect to the norm [ ⋅ ]s,p
defined in (1.2). When Ω is bounded, p = 2 and K(x) = |x|−N−2s, then Z(Ω) is equivalent to the Hilbert space
defined in [13]. Even if Z(Ω) is not a real space of functions, but a density space, the choice of this solution
space is an improvement with respect to the space

X0(Ω) = {u ∈ W s,p(ℝN) : u = 0 a.e. inℝN \ Ω},

fairly popular in recent papers devoted to nonlocal variational problems. Indeed, the density result proved
in [16, Theorem 6] does not hold true for X0(Ω) without assuming more restrictive conditions on the open
bounded set Ω and on its boundary ∂Ω; see in particular [16, Remark 7]. In conclusion, if Ω is an open
bounded subset ofℝN , then Z(Ω) ⊂ X0(Ω), with possibly Z(Ω) ̸= X0(Ω).

It is worth noting that if Ω is any open subset ofℝN and ũ denotes the natural extension of any u ∈ Z(Ω),
then ũ ∈ Ds,p(ℝN) by (2.1). In other words,

Z(Ω) ⊂ {u ∈ Lp∗s (Ω) : ũ ∈ Ds,p(ℝN)}, (2.2)

and equality holds when either Ω = ℝN or ∂Ω is continuous by [20, Theorem 1.4.2.2]. In what follows, with
abuse of notation, we continue to write u in place of ũ since the context is clear.
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Therefore, the main density function space Z(ℝN) reduces to Ds,p(ℝN), and so

Z(ℝN) = Ds,p(ℝN) = {u ∈ Lp∗s (ℝN) : |φ(x) − φ(y)| ⋅ |x − y|−s−N/p ∈ Lp(ℝ2N)}.

Clearly, Z(ℝN) = Ds,p(ℝN) is the suitable solution space for problems (1.9) and (1.13) when Ω = ℝN .
Thus, by the interpolation and the Hölder inequalities we easily get the next fractional Hardy–Sobolev

inequality, proved for p = 2 in [19, Lemma2.1]. However, for the sake of completenesswe give the proofwhen
0 < α < ps < N since when either α = 0 or α = ps, the fractional Hardy–Sobolev inequality reduces exactly
to (2.1).

Lemma 2.1. Assume that 0 ≤ α ≤ ps < N. Then there exists a positive constant C, possibly depending only on
N, p, s, α, such that

‖u‖Hα ≤ C[u]s,p
for all u ∈ Z(ℝN).

Proof. By (2.1), it is enough to consider only the case 0 < α < ps, so that p < p∗s (α) < p∗s . By (2.1) and the
Hölder inequality, for all u ∈ Z(ℝN),

‖u‖p
∗
s (α)
Hα = ∫

ℝN

|u(x)|α/s

|x|α |u(x)|p∗s (α)−α/s dx
≤ ( ∫

ℝN

|u(x)|p dx
|x|ps )

α/ps
( ∫

ℝN

|u(x)|(p
∗
s (α)− α

s )
ps
ps−α dx)(ps−α)/ps

= ( ∫

ℝN

|u(x)|p dx
|x|ps )

α/ps
( ∫

ℝN

|u(x)|p∗s dx)(ps−α)/ps

≤ c1[u]α/ss,p c2[u]
p∗s (ps−α)/ps
s,p

= c1c2[u]
p∗s (α)
s,p ,

as required.

From Lemma 2.1 it is clear that the fractional Sobolev embedding Z(ℝN) í→ Lp∗s (ℝN) and the fractional
Hardy–Sobolev embedding Z(ℝN) í→ Lp∗s (α)(ℝN , |x|−α) are continuous, but not compact. However, we are
able to introduce the best fractional Hardy–Sobolev constant Hα = H(p, N, s, α), as stated in (1.1). Of course,
the number Hα is strictly positive and it coincides with the best fractional Sobolev constant when α = 0. Con-
sequently, the embeddings Z(Ω) í→ Lp∗s (Ω) and Z(Ω) í→ Lp∗s (α)(Ω, |x|−α) are continuous, but not compact.

The last part of this section is devoted to the proof of Theorem 1.1. Even if the proof of Theorem 1.1 is
fairly similar to that of [15, Theorem2.2] given in the case p = 2, herewe do not use any longer [31, Lemmas 5
and 6], where the requirement that Ω is bounded seems to be crucial. However, the proof of Theorem 1.1 is
based on the tightness of the sequence (|Dsuj|p)j, and the tightness property is obtained as an application of
[3, Theorem 8.6.2]. It is exactly at this step that we use that Ω is bounded.

Proof of Theorem 1.1. As noted above, the given sequence (uj)j converges weakly to u also in Lp
∗
s (α)(Ω, |x|−α).

In particular, there exist two finite positive measures μ and ν inℝN such that (1.3) holds, with the measures

j Ü→ |Dsuj(x)|pdx, j Ü→ |uj(x)|p
∗
s (α) dx

|x|α

inℝN being uniformly tight in j. Indeed, since Ω is bounded, we can find an open bounded set U ofℝN such
that Ω ⊂ U. Hence, for a.a. x ∈ ℝN \ U we have uj(x) = 0, from which

∫

ℝN\U

|Dsuj(x)|pdx = ∫

ℝN\U

dx( ∫

ℝN

|uj(x) − uj(y)|p

|x − y|N+ps
dy)

= ∫

ℝN\U

dx( ∫

ℝN

|uj(y)|p

|x − y|N+ps
dy)
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= ∫

ℝN\U

dx(∫
Ω

|uj(y)|p

|x − y|N+ps
dy)

≤ ∫

ℝN\U

dx
dist(x, Ω)N+ps

∫
Ω

|uj(y)|pdy

≤ ‖uj‖pp( ∫

ℝN\U

dx
dist(x, Ω)N+ps

)

≤ (sup
j
‖uj‖pp)( ∫

ℝN\U

dx
dist(x, Ω)N+ps

), (2.3)

and the last integral is finite since dist(ℝN \ U, Ω) > 0 and N + ps > N.
Reasoning as above and considering that uj = 0 inℝN \ Ω, we get also the tightness of (uj/|x|α/p

∗
s (α))j.

Put vj = uj − u. Clearly, vj ⇀ 0 in Z(Ω) as j → ∞. Repeating the above argument, we get the existence of
two positive measures μ̂ and ν̂ onℝN such that

|Dsvj(x)|pdx
∗
⇀ μ̂ and |vj(x)|p

∗
s (α) dx

|x|α
∗
⇀ ν̂ inM(ℝN). (2.4)

By [9, Corollary 7.2], with 0 < α ≤ ps, the sequence (uj)j strongly converges to u in Lp(Ω), with Ω being
bounded, and so in Lp(ℝN) by the trivial extension to the entireℝN . Thus [4, Theorem 4.9] implies that up to
a subsequence, still named (uj)j, there exists h ∈ Lp(Ω), with

uj → u a.e. in Ω, |uj| ≤ h a.e. in Ω and all j. (2.5)

Hence, for any φ ∈ C∞0 (Ω),

∫
Ω

|φ(x)|p∗s (α)dν − ‖φu‖p
∗
s (α)
Hα = lim

j→∞
‖φuj‖

p∗s (α)
Hα − ‖φu‖p

∗
s (α)
Hα

= lim
j→∞

‖φvj‖
p∗s (α)
Hα = ∫

Ω

|φ(x)|p∗s (α)dν̂
by the Brezis–Lieb lemma; see [5]. This yields that

ν = ν̂ + |u(x)|p∗s (α) dx
|x|α

since φ ∈ C∞0 (Ω) is arbitrary.
Let us first prove (1.4). To this end, fix ε > 0 and φ ∈ C∞0 (Ω). Then there exists Cε > 0 such that

|ξ + η|p ≤ (1 + ε)|ξ|p + Cε|η|p for all numbers ξ, η ∈ ℝ. Hence, the Leibniz formula gives for all j,

∫

ℝN

|Ds(vjφ)(x)|pdx ≤ (1 + ε) ∫
ℝN

|Dsvj(x)|p|φ(x)|pdx + Cε ∫
ℝN

|Dsφ(x)|p|vj(x)|pdx.

Thus, the Hardy inequality (1.1) along the sequence (φvj)j of Z(Ω) yields

Hα‖φvj‖pHα ≤ [φvj]ps,p ≤ (1 + ε) ∫
ℝN

|Dsvj(x)|p|φ(x)|pdx + Cε,φ‖vj‖pp (2.6)

for an appropriate constant Cε,φ > 0 since

|Dsφ(x)|p = ∫

ℝN

|φ(x) − φ(y)|p

|x − y|N+ps
dy ≤ 2p‖φ‖pC1(ℝN ) ∫

ℝN

min{1, |x − y|p}
|x − y|N+ps

dy ≤ Cφ , (2.7)

where Cφ > 0 depends also on N, p and s. By (2.4), (2.6) and the fact that vj = uj − u → 0 in Lp(Ω) as j → ∞,
we obtain at once that

( ∫

ℝN

|φ(x)|p∗s (α)dν̂)p/p∗s (α) ≤ 1 + ε
Hα

∫

ℝN

|φ(x)|pdμ̂,
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that is, ν̂ is absolutely continuous with respect to μ̂. Hence, by [23, Lemma 1.2] the measure ν̂ is decomposed
as a sum of Dirac masses.

It remains to show that ν̂ is concentrated at 0. Here we assume that 0 ∉ Supp(φ), so that |φ(x)|p∗s (α)/|x|α
is in L∞(Supp(φ)). In turn, [9, Corollary 7.2] yields

‖φvj‖
p∗s (α)
Hα = ∫

Supp(φ)

|φ(x)|p∗s (α)
|x|α |vj(x)|p

∗
s (α) dx ≤ C ∫

Supp(φ)

|vj(x)|p
∗
s (α) dx → 0

as j → ∞ since 0 < α ≤ ps, so that p ≤ p∗s (α) < p∗s . This, combined with (2.4), gives ∫Ω|φ(x)|
p∗s (α)dν̂ = 0. In

other words, ν̂ is a measure concentrated in 0. Hence ν̂ = ν0δ0, and (1.4) is proved.
In order to show (1.5), arguing as in (2.6) and replacing vj by uj, we have

Hα(∫
Ω

|φ(x)|p∗s (α)dν)p/p∗s (α) ≤ (1 + ε) ∫
ℝN

|φ(x)|pdμ + Cε ∫
ℝN

|Dsφ(x)|p|u(x)|pdx (2.8)

as j → ∞ by (2.4) and (2.5).
Let now φ ∈ C∞0 (ℝN), with 0 ≤ φ ≤ 1, φ(0) = 1, Supp(φ) = B(0, 1), and put φ ̃ε(x) = φ(x/ε̃) for ε̃ > 0 suf-

ficiently small. Since ν ≥ ν0δ0, choosing φ ̃ε as test function in (2.8), we obtain

0 ≤ Hαν
p/p∗s (α)
0 ≤ (1 + ε)μ(B(0, ε̃)) + Cε ∫

ℝN

|u(x)|p|Dsφ ̃ε(x)|pdx. (2.9)

Note that ‖∇φ ̃ε‖∞ ≤ C/ε̃ by construction. Hence

∬
U×V

|u(x)|p|φ ̃ε(x) − φ ̃ε(y)|p

|x − y|N+ps
dx dy ≤ C

ε̃p ∬
U×(V∩{|x−y|≤ ̃ε})

|u(x)|p

|x − y|N+ps−p
dx dy

+ C ∬
U×(V∩{|x−y|> ̃ε})

|u(x)|p

|x − y|N+ps
dx dy, (2.10)

where U and V are two generic subsets ofℝN .
We claim that the last term on the right-hand side of (2.9) goes to 0 as ε̃ → 0. If U = V = ℝN \ B(0, ε̃),

all integrals in (2.10) are equal to 0, indeed. Now, if U × V = B(0, ε̃) × ℝN and U × V = ℝN × B(0, ε̃), by
Lemma A.1 we have

{{{{{{
{{{{{{
{

lim
̃ε→0

1
ε̃p ∬

U×(V∩{|x−y|≤ ̃ε})

|u(x)|p

|x − y|N+ps−p
dx dy = 0,

lim
̃ε→0

∬
U×(V∩{|x−y|> ̃ε})

|u(x)|p

|x − y|N+ps
dx dy = 0.

(2.11)

Thus, combining (2.10) with (2.11), we get

lim
̃ε→0

∫

ℝN

|Dsφ ̃ε(x)|p|u(x)|pdx = 0,

as claimed.
Hence, letting ε̃→ 0 and ε→ 0 in (2.9),we have 0≤Hαν

p/p∗s (α)
0 ≤ μ0. By the Fatou lemma, μ ≥ |Dsu(x)|p dx,

and this concludes the proof of (1.5) since |Dsu(x)|p dx and μ0δ0 are orthogonal.

An immediate consequence of Theorem 1.1 is the following result, where Hα is given in (1.1) and M veri-
fies (M). This assumption will be useful to get balance between the Kirchhoff term and the Hardy–Sobolev
critical nonlinearity. For this we also use the variational characterization of the first eigenvalue of the frac-
tional p-Laplacian given by

λ1 = min
u∈Z(Ω)\{0}

∫ℝN |D
su(x)|pdx

∫Ω|u(x)|
pdx

, (2.12)

which is positive by [18, Theorem 4.1], with Ω being bounded. In passing we recall that p∗(0) = p∗s .
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Theorem 2.2. Let M satisfy (M), with c > 0 and α given as in (1.7). For all γ ∈ [0, cθHθα) and λ ∈ (−∞,mγ,θλ1),
with

mγ,θ =
{
{
{

∞ if θ > 1,
c − γ/Hα if θ = 1,

(2.13)

the functionalHγ,λ : Z(Ω) → ℝ, defined by (1.6), is weakly lower semi-continuous and coercive in Z(Ω).

Proof. Let (uj)j be a sequence such that uj ⇀ u in Z(Ω). Clearly, uj → u in Lp(Ω) since Ω is bounded, and
there exist two positive measures, verifying (1.3). Now, M is super-additive in ℝ+0 since M is convex in ℝ+0
and M (0) = 0. Let us divide the proof into two parts.

Case α ∈ (0, ps]: Since M is continuous inℝ+0, θp < p∗s (α) by (1.6) and γ ≥ 0, Theorem 1.1 yields

lim inf
j→∞

Hγ,λ(uj) = lim inf
j→∞

1
p [M ([uj]ps,p) −

γ
θ ‖uj‖

θp
Hα − λ‖uj‖

p
p]

≥
1
p [M ([u]ps,p + μ0) −

γ
θ (‖u‖

p∗s (α)
Hα + ν0)θp/p

∗
s (α) − λ‖u‖pp]

≥
1
p [M ([u]ps,p) + M (μ0) −

γ
θ (‖u‖

θp
Hα + ν

θp/p∗s (α)
0 ) − λ‖u‖pp]

= Hγ,λ(u) +
1
p (M (μ0) −

γ
θ ν

θp/p∗s (α)
0 )

≥ Hγ,λ(u) +
1
p (M (μ0) −

γ
θHθα

μθ0)

≥ Hγ,λ(u) +
μθ0
p (c − γ

θHθα
), (2.14)

where in the last step we have used (1.7).

Case α = 0: In this case, [29, Theorem 2.5] gives the existence of an at most denumerable set of index Λ,
xn ∈ Ω, μn ≥ 0, νn ≥ 0, with μn + νn > 0 for all n ∈ Λ, such that

ν = |u(x)|p∗s dx + ∑
n∈Λ

νnδxn , μ ≥ |Dsu(x)|p dx + ∑
n∈Λ

μnδxn ,

and 0 ≤ H0ν
p/p∗s
n ≤ μn for all n ∈ Λ, where H0 is the Sobolev constant defined in (1.1), with α = 0. SinceM is

continuous inℝ+0, θp < p∗s by (1.6) and γ ≥ 0, then as before

lim inf
j→∞

Hγ,λ(uj) = lim inf
j→∞

1
p [M ([uj]ps,p) −

γ
θ ‖uj‖

θp
p∗s − λ‖uj‖pp]

≥
1
p [M ([u]ps,p + ∑

n∈Λ
μn) −

γ
θ (‖u‖

p∗s
p∗s + ∑

n∈Λ
νn)

θp/p∗s
− λ‖u‖pp]

≥
1
p [M ([u]ps,p) + ∑

n∈Λ
M (μn) −

γ
θ (‖u‖

θp
p∗s + ∑

n∈Λ
νθp/p

∗
s

n ) − λ‖u‖pp]

= Hγ,λ(u) +
1
p ∑
n∈Λ

(M (μn) −
γ
θ ν

θp/p∗s
n )

≥ Hγ,λ(u) +
1
p ∑
n∈Λ

(M (μn) −
γ
θHθ0

μθn)

≥ Hγ,λ(u) +
1
p (c −

γ
θHθ0

) ∑
n∈Λ

μθn . (2.15)

In conclusion, the weak lower semi-continuity ofHγ,λ in Z(Ω) follows at once in both cases thanks to (2.14),
(2.15) and the fact that γ < cθHθα, where α and θ are related by (1.7).

Now, by (1.1), (1.7) and (2.12) we also get for all u ∈ Z(Ω),

Hγ,λ(u) ≥
1
p (c −

γ
θHθα

)[u]pθs,p −
λ+

pλ1
[u]ps,p . (2.16)

Consequently,Hγ,λ(u) → ∞ as [u]s,p → ∞, provided that γ < cθHθα and λ < mγ,θλ1, as required.
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The caseM ≡ 1, α = 0 and p = 2 of Theorem 2.2 was first treated in [28, Theorem 1]. Clearly, when θ > 1, that
is, mγ,θ = ∞, Theorem 2.2 holds for all λ ∈ ℝ. This standard convention is used also in what follows.

3 Some Applications on Bounded Domains

Following [15], we present some applications of Theorem 2.2. Hence, throughout the section we assume that
Ω is a bounded open subset ofℝN , that 0 < s < 1 < p < ∞ and ps < N.

Theorem 3.1 (Superlinear f ). Let M verify (M), with c > 0 and α given as in (1.7). Suppose that f : Ω × ℝ → ℝ
is a Carathéodory function satisfying the conditions
(f1) sup{|f(x, t)| : a.e. x ∈ Ω, t ∈ [0, C]} < ∞ for any C > 0;
(f2) f(x, t) = o(|t|p∗s −1) as |t| → ∞ uniformly a.e. in x ∈ Ω;
(f3) there exist a non-empty open set A ⊆ Ω and a set B ⊆ A of positive Lebesgue measure such that

lim sup
t→0+ ess infx∈BF(x, t)

tp = ∞ and lim inf
t→0+ ess infx∈AF(x, t)

tp > −∞,

where F(x, t) = ∫
t
0 f(x, τ) dτ.

Then for all γ ∈ [0, cθHθα) and λ ∈ (−∞,mγ,θλ1), where mγ,θ is given in (2.13), there exists a positive constant
σ = σ(λ, γ) such that for any σ ∈ (0, σ) the problem

{{
{{
{

M([u]ps,p)(−∆)spu − γ‖u‖pθ−p
∗
s (α)

Hα
|u|p∗s (α)−2u

|x|α = λ|u|p−2u + σf(x, u) in Ω,

u = 0 inℝN \ Ω
(3.1)

has a nontrivial solution uγ,λ,σ ∈ Z(Ω).
Moreover, if γ ∈ [0, cHθα) and either λ ∈ ℝ−0 when θ > 1, or λ ∈ (−∞,mγ,θλ1) when θ = 1, then

lim
σ→0+[uγ,λ,σ]s,p = 0. (3.2)

Proof. Fix γ ∈ [0, cθHθα) and λ ∈ (−∞,mγ,θλ1). Problem (3.1) can be seen as the Euler–Lagrange equation of
the functional Jγ,λ,σ defined by

Jγ,λ,σ(u) = Hγ,λ(u) − σΨ(u), u ∈ Z(Ω),

whereHγ,λ is the functional given in (1.6), while

Ψ(u) = ∫
Ω

F(x, u(x)) dx.

Clearly, the functionalsHγ,λ and Ψ are Fréchet differentiable in Z(Ω), and actually Jγ,λ,σ is of class C1(Z(Ω)).
Furthermore, by Theorem 2.2 we know thatHγ,λ is weakly lower semi-continuous and coercive in Z(Ω).

From (f1) and (f2) for any ε > 0 there exists δε = δ(ε) > 0 such that

|F(x, t)| ≤ ε|t|p∗s + δε|t| for a.a. x ∈ Ω and all t ∈ ℝ.

Hence, the Vitali convergence theorem yields that Ψ is continuous in the weak topology of Z(Ω).
From this point, arguing essentially as in the proof of [15, Theorem 1.1] but working in the functional

space Z(Ω) = (Z(Ω), [ ⋅ ]s,p), we prove the existence of a nontrivial solution uγ,λ,σ for any σ ∈ (0, σ). Moreover,
the family {[uγ,λ,σ]s,p}σ∈(0,σ) is uniformly bounded in σ.

It remains to show the asymptotic behavior (3.2). By (f1) and (f2), with ε = 1, and [9, Theorem 6.5], we
have !!!!!!!

∫
Ω

f(x, uγ,λ,σ(x))uγ,λ,σ(x) dx
!!!!!!!
≤ H−p∗s /p

0 [uγ,λ,σ]
p∗s
s,p + δ1C1[uγ,λ,σ]s,p ≤ Cγ,λ , (3.3)

with Cγ,λ independent of σ since {[uγ,λ,σ]s,p}σ∈(0,σ) is uniformly bounded in σ.
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Fix γ ∈ [0, cHθα) and λ as in the last part of the statement. Since ⟨J�γ,λ,σ(uγ,λ,σ), uγ,λ,σ⟩Z(Ω),Z�(Ω) = 0 for any
σ ∈ (0, σ), we have

M([uγ,λ,σ]ps,p)[uγ,λ,σ]
p
s,p − γ‖uγ,λ,σ‖

pθ
Hα − λ‖uγ,λ,σ‖

p
p = ⟨H�

γ,λ(uγ,λ,σ), uγ,λ,σ⟩Z(Ω),Z�(Ω)
= σ∫

Ω

f(x, uγ,λ,σ(x))uγ,λ,σ(x) dx.

This, (1.1), (2.12), (3.3), and the monotonicity of M, combined with (1.7), yield

(c − γ
Hθα

)[uγ,λ,σ]pθs,p −
λ+

λ1
[uγ,λ,σ]ps,p ≤ ⟨H�

γ,λ(uγ,λ,σ), uγ,λ,σ⟩Z(Ω),Z�(Ω) ≤ σCγ,λ .
Letting σ → 0+, we get (3.2) by the choices of γ and λ.

The case M ≡ 1, α = 0 and p = 2 of Theorem 3.1 was first treated in [28, Theorem 4]. Furthermore, Theo-
rem 3.1 extends in several directions the existence part contained in the multiplicity [26, Theorem 1.1].

Theorem 3.2 (Sublinear f ). Let M satisfy (M), with c > 0 and α given as in (1.7). Suppose that f : Ω × ℝ → ℝ
is a Carathéodory function satisfying the following conditions:
(f4) There exist q ∈ (1, θp) and a ∈ Lp∗s /(p∗s −q)(Ω) such that

|f(x, t)| ≤ a(x)(1 + |t|q−1) for all (x, t) ∈ Ω × ℝ.

(f5) There exist q̃ ∈ (1, p), δ > 0, a0 > 0, and a nonempty open subset ω of Ω such that

F(x, t) ≥ a0tq̃ for all (x, t) ∈ ω × (0, δ).

Then for all γ ∈ [0, cθHθα), λ ∈ (−∞,mγ,θλ1), where mγ,θ is given in (2.13), and σ > 0, problem (3.1) has a non-
trivial solution uγ,λ,σ ∈ Z(Ω).

Moreover, if γ ∈ [0, cHθα) and either λ ∈ ℝ−0 when θ > 1, or λ ∈ (−∞,mγ,θλ1) when θ = 1, then (3.2) holds.

Proof. Fix γ ∈ [0, cθHθα), λ ∈ (−∞,mγ,θλ1) and σ > 0. Using the notation of the proof of Theorem 3.1, by
(2.16), (f4) and the Hölder inequality, for all u ∈ Z(Ω) we have

Jγ,λ,σ(u) ≥
1
p (c −

γ
θHθα

)[u]pθs,p −
λ+

pλ1
[u]ps,p − σ∫

Ω

a(x)|u|q dx − σ‖a‖(p∗s )�‖u‖p∗s
≥
1
p (c −

γ
θHθα

)[u]pθs,p −
λ+

pλ1
[u]ps,p − σ‖a‖p∗s /(p∗s −q)‖u‖qp∗s − σ‖a‖(p∗s )�‖u‖p∗s

≥
1
p (c −

γ
θHθα

)[u]pθs,p −
λ+

pλ1
[u]ps,p − σH

−q/p
0 ‖a‖p∗s /(p∗s −q)[u]qs,p − σ‖a‖(p∗s )�‖u‖p∗s (3.4)

since (p∗s )� < p∗s /(p∗s − q) and Ω is bounded. Hence Jγ,λ,σ is coercive and bounded below on Z(Ω). Fur-
thermore, Hγ,λ is weakly lower semi-continuous in Z(Ω) by Theorem 2.2. Moreover, Ψ is weakly contin-
uous in Z(Ω) by (f4). Thus, Jγ,λ,σ = Hγ,λ − σΨ is weakly lower semi-continuous in Z(Ω). Then there exists
uγ,λ,σ ∈ Z(Ω) such that

Jγ,λ,σ(uγ,λ,σ) = inf{Jγ,λ,σ(u) : u ∈ Z(Ω)}.

We claim that uγ,λ,σ ̸= 0. Let x0 ∈ ω and let r > 0 such that Br(x0) ⊂ ω. Fix φ ∈ C∞0 (Br(x0)) with 0 ≤ φ ≤ 1,
[φ]s,p ≤ Cr and ‖φ‖Lq(Br(x0)) > 0. Then, by (M) and (f5), for all t ∈ (0, δ),

Jγ,λ,σ(tφ) ≤
1
p (M((δCr)p)δp[φ]ps,p −

γ
θ t

pθ‖φ‖pθHα − λt
p‖φ‖pp) − σtq̃a0‖φ‖Lq̃(Br(x0)) < 0,

by choosing t > 0 sufficiently small, since 1 < q̃ < p. Thus, the claim is proved. In other words, the nontrivial
critical point uγ,λ,σ of Jγ,λ,σ in Z(Ω) is a nontrivial solution of (3.1).

To prove (3.2) fix γ ∈ [0, cθHθα) and λ ∈ (−∞,mγ,θλ1) and note that the family of nontrivial critical points
{uγ,λ,σ}σ∈(0,1], constructed above, is clearly uniformly bounded in Z(Ω) thanks to (3.4). Therefore, for any
γ ∈ [0, cHθα) and either λ ∈ ℝ−0 when θ > 1, or λ ∈ (−∞,m∗λ1) when θ = 1, with m∗ = c − γ/Hα if θ = 1, we
can proceed exactly as in the last part of the proof of Theorem 3.1 and get (3.2).
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When Ω is the open unit ball B of center 0 and radius 1 of ℝN , a typical example of f , verifying (f4)
and (f5), is given by f(x, t) = a(x)(|t|q̃−2 + |t|q−2)t, with 1 < q̃ < p, 1 < q < θp, a(x) = − log|x|, δ = 1, and
ω = {x ∈ B : |x| > 1/2}.

Theorem 3.2 extends in several directions the existence result contained in the multiplicity [26, Theo-
rem 1.3].

4 Critical Problems in General Open Sets Ω

As said in Sections 1 and 2, the best solution space for problems (1.9) and (1.13) is the fractional space
Z(Ω) = (Z(Ω), [ ⋅ ]s,p), where Ω is any open subset ofℝN , possibly the entireℝN itself, and so Z(ℝN) = Ds,p(ℝN).
In any case, Z(Ω) is a uniformly convex Banach space when 0 < s < 1 < p < ∞. Throughout this section,
we assume that ps < N, α ∈ [0, ps) and that θ ∈ [1, p∗s (α)/p), except for (1.13) where α ∈ (0, ps). Moreover,
M and w satisfy conditions (M̃) and (w), and q is any Lebesgue exponent, with pθ < q < p∗s (α).

By [2, Proposition A.6], the space Lq(Ω, w) = (Lq(Ω, w), ‖ ⋅ ‖q,w) is a uniformly convex Banach space,
endowed with the norm

‖u‖q,w = (∫
Ω

w(x)|u(x)|q dx)
1/q
.

Essentially, as proved in [7, Lemma 2.1], the following result holds also in our context.

Lemma 4.1. Let (w) holdwith1 < q < p∗s . Then the embedding Z(Ω) í→ Lq(Ω, w) is compact and (1.10) is valid
with Cw = H−1/p

0 ‖w‖1/q℘ > 0.

Proof. By (w), (2.2), the Hölder inequality, and (1.1), for all u ∈ Z(Ω),

‖u‖q,w ≤ (∫
Ω

w(x)℘ dx)
1/℘q

⋅ ( ∫
Ω

|u|p∗s dx)1/p∗s ≤ H−1/p
0 ‖w‖1/q℘ [u]s,p ,

so that the embedding Z(Ω) í→ Lq(Ω, w) is continuous and (1.10) holds.
To complete the proof, it remains to show that if uj ⇀ u in Z(Ω), then uj → u in Lq(Ω, w) as j → ∞. As

noted in (2.2), the natural extensions of uj and u, denoted by ũj and ũ, have the property that ũj ⇀ ũ in
Ds,p(ℝN). Let w̃ be the natural extension of the weight w toℝN . Hence, by the Hölder inequality,

∫

ℝN\BR

w̃(x)|ũj − ũ|q dx ≤ L( ∫

ℝN\BR

w̃(x)℘ dx)
1/℘

= o(1) (4.1)

as R → ∞, with w̃ ∈ L℘(ℝN) and supj‖ũj − ũ‖
q
p∗s = L < ∞ by (1.1). Moreover, for all R > 0 the embedding

Ds,p(ℝN) í→ W s,p(BR) is continuous, and so the embedding Ds,p(ℝN) í→ Lν(BR) is compact for all ν ∈ [1, p∗s )
by [9, Corollary 7.2]. Indeed, by (1.1) and the Hölder inequality,

‖ũ‖pW s,p(BR) ≤ CR‖ũ‖
p
p∗s + [ũ]ps,p ≤ (CR/H0 + 1)[ũ]ps,p

for all ũ ∈ Ds,p(ℝN), where CR = (ωN/N)ps/NRps and ωN is the measure of the unit sphere

SN−1 = {x ∈ ℝN : |x| = 1}

ofℝN .
Fix ε > 0. There exists Rε > 0 so large that ∫ℝN\BRε w̃(x)|ũj − ũ|

q dx < ε by (4.1). Take a subsequence
(ũjk )k ⊂ (ũj)j. Since ũjk → ũ in Lν(BRε ) for all ν ∈ [1, p∗s ), up to a further subsequence, still denoted by (ũjk )k,
we have that ũjk → ũ a.e. in BRε . Thus w̃(x)|ũj − ũ|q → 0 a.e. in BRε . Furthermore, for eachmeasurable subset
E ⊂ BRε , by the Hölder inequality we have

∫
E

w̃(x)|ũjk − ũ|q dx ≤ L(∫
E

w̃(x)℘ dx)
1/℘
.
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Hence, (w̃(x)|ũjk − ũ|q)k is equi-integrable and uniformly bounded in L1(BRε ) since w̃ ∈ L℘(ℝN) by (w). Then
the Vitali convergence theorem implies

lim
k→∞

∫
BRε

w̃(x)|ũjk − ũ|q dx = 0,

and so ũj → ũ in Lq(BRε , w̃) since the sequence (ũjk )k is arbitrary.
Consequently, ∫BRε w̃(x)|ũj − ũ|

q dx = o(1) as j → ∞. In conclusion, as j → ∞,

‖ũj − ũ‖qq,w̃ = ∫

ℝN\BRε

w̃(x)|ũj − ũ|q dx + ∫
BRε

w̃(x)|ũj − ũ|q dx ≤ ε + o(1),

that is, ũj → ũ in Lq(ℝN , w̃) as j → ∞, with ε > 0 being arbitrary. In particular, uj → u in Lq(Ω, w) as j → ∞,
and this completes the proof.

We now turn back to problem (1.9). According to the variational nature, (weak) solutions of (1.9) correspond
to critical points of the associated Euler–Lagrange functional Jσ : Z(Ω) → ℝ defined by

Jσ(u) =
1
pM ([u]ps,p) −

1
p∗s (α)

‖u‖p
∗
s (α)
Hα −

σ
q ‖u‖

q
q,w

for all u ∈ Z(Ω). Note that Jσ is a C1(Z(Ω)) functional and for any u, φ ∈ Z(Ω),

⟨J�σ(u), φ⟩Z(Ω),Z�(Ω) = M([u]ps,p)⟨u, φ⟩s,p − ⟨u, φ⟩Hα − σ⟨u, φ⟩q,w , (4.2)

where

⟨u, φ⟩s,p = ∬

ℝ2N

|u(x) − u(y)|p−2[u(x) − u(y)] ⋅ [φ(x) − φ(y)]
|x − y|N+sp

dx dy,

⟨u, φ⟩Hα = ∫
Ω

|u(x)|p∗s (α)−2u(x)φ(x) dx
|x|α ,

⟨u, φ⟩q,w = ∫
Ω

w(x)|u(x)|q−2u(x)φ(x) dx.

In order to find the critical points of Jσ, we intend to apply the mountain pass theorem by checking that Jσ
possesses a suitable geometrical structure and that it satisfies the Palais–Smale compactness condition. In
particular, to handle the Kirchhoff coefficient on a degenerate setting we need appropriate lower and upper
bounds for M, given by (M1) and (M2), which first appear in [8].

Indeed, condition (M2) implies thatM(t) > 0 for any t > 0, and consequently by (M1) for all t ∈ (0, 1]we
have M(t)/M (t) ≤ θ/t. Thus, integrating on [t, 1], with 0 < t < 1, we get

M (t) ≥ M (1)tθ , (4.3)

and (4.3) holds for all t ∈ [0, 1] by continuity. Hence, (M3) is a stronger request. Furthermore (4.3) is compat-
ible with (M3) since integrating (M3), we have M (t) ≥ ctθ/θ for any t ∈ [0, 1], from which M (1) ≥ c/θ.

Similarly, for any ε > 0 there exists rε = M (ε)/εθ > 0 such that

M (t) ≤ rε tθ for any t ≥ ε. (4.4)

We point out that alsowhenM satisfies (M1) and (M̃2), that is, wework on a non-degenerate setting, (4.3) and
(4.4) immediately hold true. Finally, we recall that pθ < q < p∗s (α) and 0 ≤ α < ps.

Lemma 4.2. For any σ ∈ ℝ there exists a function e ∈ Z(Ω) with [e]s,p ≥ 2 and Jσ(e) < 0. Further, there exist
ρ ∈ (0, 1] and ȷ > 0 such that Jσ(u) ≥ ȷ for any u ∈ Z(Ω) with [u]s,p = ρ.
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Proof. Fix σ ∈ ℝ. Now take v ∈ Z(Ω) such that [v]s,p = 1. By (4.4), with ε = 1, we get, as t → ∞,

Jσ(tv) ≤ M (1)tpθ −
‖v‖p

∗
s (α)
Hα

p∗s (α)
tp∗s (α) − σ ‖v‖qq,wq tq → −∞ (4.5)

since pθ < q < p∗s (α). Hence, taking e = t∗vwith t∗ > 0 large enough, we obtain that [e]s,p ≥ 2 and Jσ(e) < 0.
Take any u ∈ Z(Ω) with [u]s,p ≤ 1. By (1.1), (w) and (4.3),

Jσ(u) ≥
M (1)
p [u]pθs,p −

1
p∗s (α)

‖u‖p
∗
s (α)
Hα −

σ
q ‖u‖

q
q,w

≥
M (1)
p [u]pθs,p −

1
Hp

∗
s (α)/p
α p∗s (α)

[u]p
∗
s (α)
s,p −

Cwσ+

q [u]qs,p .

Thus, setting
ησ(t) =

M (1)
p tpθ − 1

Hp
∗
s (α)/p
α p∗s (α)

tp∗s (α) − Cwσ+q tq ,

we find some ρ ∈ (0, 1) so small that maxt∈[0,1] ησ(t) = ησ(ρ) since pθ < q < p∗s (α). Consequently,

Jσ(u) ≥ ȷ = ησ(ρ) > 0

for any u ∈ Z(Ω) with [u]s,p = ρ.

We discuss now the compactness property for the functional Jσ, given by the Palais–Smale condition at a suit-
able mountain pass level cσ. For this, we fix σ ∈ ℝ and set

cσ = inf
ξ∈Γ

max
t∈[0,1]

Jσ(ξ(t)),

where
Γ = {ξ ∈ C([0, 1], Z(Ω)) : ξ(0) = 0, ξ(1) = e}.

Clearly, cσ > 0 by Lemma 4.2. We recall that (uj)j ⊂ Z(Ω) is a Palais–Smale sequence for Jσ at level cσ ∈ ℝ if

Jσ(uj) → cσ and J�σ(uj) → 0 as j → ∞. (4.6)

We say that Jσ satisfies the Palais–Smale condition at level cσ if any Palais–Smale sequence (uj)j at level cσ
admits a convergent subsequence in Z(Ω).

Before proving the relative compactness of the Palais–Smale sequences, we introduce an asymptotic
property for the level cσ. This result is similar to [17, Lemma 6] and will be crucial not only to get (1.11),
but above all to overcome the lack of compactness due to the presence of a Hardy term, which reduces to the
standard critical nonlinearity when α = 0.

Lemma 4.3. There holds
lim
σ→∞

cσ = 0.

Proof. Let e ∈ Z(Ω) be the function obtained by Lemma4.2 and corresponding to σ = 0. Hence Jσ satisfies the
mountain pass geometry at 0 and e for all σ ≥ 0. Thus there exists tσ > 0 verifying Jσ(tσe) = maxt≥0 Jσ(te).
Hence, ⟨J�σ(tσe), e⟩Z(Ω),Z�(Ω) = 0 and by (4.2),

tp−1σ [e]ps,pM(tpσ[e]
p
s,p) = σt

q−1
σ ‖e‖qq,w + tp

∗
s (α)−1
σ ‖e‖p

∗
s (α)
Hα ≥ tp

∗
s (α)−1
σ ‖e‖p

∗
s (α)
Hα . (4.7)

We claim that {tσ}σ≥0 is bounded inℝ+. Indeed, putting Σ = {σ ≥ 0 : tσ[e]s,p ≥ 1}, we see that

tpσ[e]
p
s,pM(tpσ[e]

p
s,p) ≤ θM (tpσ[e]

p
s,p) ≤ θM (1)tpθσ [e]pθs,p for any σ ∈ Σ (4.8)

by (M1) and (4.4). Hence, from (4.7) and (4.8) there follows

tp
∗
s (α)−pθ
σ ≤

θM (1)[e]pθs,p
‖e‖p

∗
s (α)
Hα

for any σ ∈ Σ,
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which implies that {tσ}σ∈Σ is bounded inℝ+, and so, in turn, {tσ}σ≥0 is also bounded, concluding the proof of
the claim.

Now we assert that
lim
σ→∞

tσ = 0. (4.9)

Indeed, assume by contradiction that lim supσ→∞ tσ = τ > 0. Hence there is a sequence, say j Ü→ σj ↑ ∞ such
that

lim
j→∞

tσj = τ.

Clearly, (tσj )j is bounded. Thus, the continuity of M and (4.7) give at once

∞ >
[e]ps,p
‖e‖qq,w

lim sup
j→∞

M(tpσj [e]
p
s,p) ≥ lim

j→∞
σj tq−pσj = ∞,

which is the required contradiction since p ≤ pθ < q. This proves the assertion.
Consider now the path ξ(t) = te, t ∈ [0, 1], belonging to Γ. By Lemma 4.2,

0 < cσ ≤ max
t∈[0,1]

Jσ(te) ≤ Jσ(tσe) ≤
1
pM (tpσ[e]

p
s,p),

where by continuity M (tpσ[e]
p
s,p) → 0 as σ → ∞ by (4.9).

Now, we are ready to show the validity of the Palais–Smale condition.

Lemma 4.4. There exists σ∗ > 0 such that for any σ ≥ σ∗ the functional Jσ satisfies the Palais–Smale condition
at level cσ.

Proof. Take σ > 0and let (uj)j ⊂ Z(Ω)beaPalais–Smale sequence for Jσ at level cσ. Sinceby (M̃) ourKirchhoff
term M could be possibly degenerate, we split the proof in two steps.

Step 1: Let the Kirchhoff function M verify M(0) = 0, (M1), (M2), and (M3). Due to the degenerate nature
of (1.9), two situationsmust be considered: either inf j∈ℕ[uj]s,p = dσ > 0or inf j∈ℕ[uj]s,p = 0.Hence,wedivide
the proof of the current step into two cases.

Case inf j∈ℕ[uj]s,p = dσ > 0: First we prove that (uj)j is bounded in Z(Ω). By (M2), with τ = dpσ, there exists
mσ > 0 such that

M([uj]ps,p) ≥ mσ for any j ∈ ℕ. (4.10)

Furthermore, from (M1) it follows that

Jσ(uj) −
1
q ⟨J

�
σ(uj), uj⟩Z(Ω),Z�(Ω) ≥ 1

pM ([uj]ps,p) −
1
qM([uj]ps,p)[uj]

p
s,p + (

1
q −

1
p∗s (α)

)‖uj‖
p∗s (α)
Hα

≥ (
1
pθ −

1
q )M([uj]ps,p)[uj]

p
s,p + (

1
q −

1
p∗s (α)

)‖uj‖
p∗s (α)
Hα , (4.11)

with pθ < q < p∗s (α). Hence, by (4.6), (4.10) and (4.11) there exists a βσ such that, as j → ∞,

{{{
{{{
{

cσ + βσ[uj]s,p + o(1) ≥ (
1
pθ −

1
q )M([uj]ps,p)[uj]

p
s,p ≥ μσ[uj]ps,p ,

μσ = (
1
pθ −

1
q )mσ > 0.

(4.12)

Therefore, (uj)j is bounded in Z(Ω).
Now we can prove the validity of the Palais–Smale condition. Since (uj)j is bounded in Z(Ω), Lemma 4.1

and [4, Theorem 4.9] give the existence of uσ ∈ Z(Ω) such that, up to a subsequence still relabeled (uj)j, it
follows that

{{{
{{{
{

uj ⇀ uσ in Z(Ω), [uj]s,p → κσ ,
uj ⇀ uσ in Lp

∗
s (α)(Ω, |x|−α), ‖uj − uσ‖Hα → ıσ ,

uj → uσ in Lq(Ω, w), uj → uσ a.e. in Ω,
(4.13)
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since pθ < q < p∗s (α) ≤ p∗s . Clearly, κσ > 0 since we have dσ > 0. Therefore,M([uj]ps,p) → M(κpσ) > 0 as j → ∞
by continuity and the fact that 0 is the unique zero of M by (M2).

In particular, by (4.6) and (4.11) we also have

cσ + o(1) ≥ μσ[uj]ps,p + (
1
q −

1
p∗s (α)

)‖uj‖
p∗s (α)
Hα . (4.14)

First, we assert that
lim
σ→∞

κσ = 0. (4.15)

Otherwise, lim supσ→∞ κσ = κ > 0. Hence there is a sequence, say n → σn ↑ ∞, such that κσn → κ as n → ∞.
Thus, letting n → ∞ in (4.12), we get from Lemma 4.3 that

0 ≥ (
1
pθ −

1
q )M(κp)κp > 0

by (M2), which is the desired contradiction and proves the assertion (4.15).
Now, [uσ]s,p ≤ limj→∞[uj]s,p = κσ since uj ⇀ uσ in Z(Ω), so that (1.1) and (4.15) imply at once

lim
σ→∞

‖uσ‖Hα = lim
σ→∞

[uσ]s,p = 0. (4.16)

By (4.6) we have, as j → ∞,

o(1) = M([uj]ps,p)⟨uj , φ⟩s,p − ⟨uj , φ⟩Hα − σ⟨uj , φ⟩q,w

for any φ ∈ Z(Ω). As shown in the proof of [7, Lemma 2.4], by (4.13) the sequence (Uj)j, defined in
ℝ2N \ Diagℝ2N by

(x, y) Ü→ Uj(x, y) =
|uj(x) − uj(y)|p−2(uj(x) − uj(y))

|x − y|(N+ps)/p� ,

is bounded in Lp� (ℝ2N), as well as Uj → Uσ a.e. inℝ2N , where

Uσ(x, y) =
|uσ(x) − uσ(y)|p−2(uσ(x) − uσ(y))

|x − y|(N+ps)/p� .

Thus, up to a subsequence, we get Uj → Uσ in Lp
�
(ℝ2N), and so ⟨uj , φ⟩s,p → ⟨uσ , φ⟩s,p since

|φ(x) − φ(y)| ⋅ |x − y|−(N+ps)/p ∈ Lp(ℝ2N).

Then, using (4.13) and the facts that |uj|q−2uj ⇀ |uσ|q−2uσ in Lq
�
(Ω, w) and |uj|p

∗
s (α)−2uj ⇀ |uσ|p

∗
s (α)−2uσ in

Lp∗s (α)� (Ω, |x|−α) by [2, Proposition A.8], we obtain
M(σpσ)⟨uσ , φ⟩s,p − ⟨uσ , φ⟩Hα = σ⟨uσ , φ⟩q,w

for all φ ∈ Z(Ω).
Hence, uσ is a critical point of the C1(Z(Ω)) functional

Jκσ (u) =
1
pM(κpσ)[u]

p
s,p −

1
p∗s (α)

‖u‖p
∗
s (α)
Hα −

σ
q ‖u‖

q
q,w . (4.17)

In particular, (4.6) and (4.13) imply that, as j → ∞,

o(1) = ⟨J�σ(uj) − J�κσ (uσ), uj − uσ⟩Z(Ω),Z�(Ω)
= M([uj]ps,p)[uj]

p
s,p +M(κpσ)[uσ]

p
s,p − ⟨uj , uσ⟩s,p[M([uj]ps,p) +M(κpσ)]

− ∫
Ω

(|uj|p
∗
s (α)−2uj − |uσ|p

∗
s (α)−2uσ)(uj − uσ)

dx
|x|α − σ∫

Ω

w(x)(|uj|q−2uj − |uσ|q−2uσ)(uj − uσ) dx

= M(κpσ)(κ
p
σ − [uσ]ps,p) − ‖uj‖

p∗s (α)
Hα + ‖uσ‖

p∗s (α)
Hα + o(1)

= M(κpσ)[uj − uσ]
p
s,p − ‖uj − uσ‖

p∗s (α)
Hα + o(1).
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Indeed, by (4.13),
lim
j→∞

∫
Ω

w(x)(|uj|q−2uj − |uσ|q−2uσ)(uj − uσ) dx = 0.

Moreover, again by (4.13) and the celebrated Brezis–Lieb lemma, see [5], as j → ∞,

[uj]ps,p = [uj − uσ]ps,p + [uσ]ps,p + o(1), ‖uj‖
p∗s (α)
Hα = ‖uj − uσ‖

p∗s (α)
Hα + ‖uσ‖

p∗s (α)
Hα + o(1).

Finally, we have used the fact that [uj]s,p → κσ by (4.13). Therefore, we have proved the crucial formula

M(κpσ) limj→∞
[uj − uσ]ps,p = M(κpσ)(κ

p
σ − [uσ]ps,p) = lim

j→∞
‖uj − uσ‖

p∗s (α)
Hα = ıp

∗
s (α)
σ . (4.18)

By (1.1) and the notation in (4.13), for all σ > 0 we have

ıp
∗
s (α)
σ ≥ HαM(κpσ)ı

p
σ . (4.19)

We assert that there exists a σ∗ > 0 such that ıσ = 0 for all σ ≥ σ∗. Otherwise, there exists a sequence
n Ü→ σn ↑ ∞ such that ıσn = ın > 0. Noting that (4.18) implies in particular that

M(κpσ)(κ
p
σ − [uσ]ps,p) = ı

p∗s (α)
σ ,

we get along this sequence, using (4.19) and denoting κσn = κn, uσn = un, that

ıp
∗
s (α)−p
n = (ıp

∗
s (α)
n )ps/(N−α) = M(κpn)ps/(N−α)(κ

p
n − [un]ps,p)

ps/(N−α) ≥ HαM(κpn).

Hence, we obtain for all n sufficiently large by (M3) and (4.15),

κp⋅
ps
N−α

n ≥ (κpn − [un]ps,p)
ps
N−α ≥ HαM(κpn)1−ps/(N−α) ≥ Cκ

p(θ−1)[1−ps/(N−α)]
n ,

where C = Hαc1−ps/(N−α) > 0. Therefore, with κn > 0 for all n, it follows that for all n sufficiently large

κp[ps−(θ−1)(N−α)+(θ−1)ps]/(N−α)n = κp[θps−(θ−1)(N−α)]/(N−α)n ≥ C,

which is impossible by (4.15) since
ps < N < θ�ps + α.

Indeed, M(0) = 0 implies that θ > 1 by [7, Lemma 3.1]. The restriction

N − α
pθ� < s

follows directly from the fact that 1 < θ < p∗s (α)/p = (N − α)/(N − ps), so that

θ� > (
N − α
N − ps )

�
=
N − α
ps − α .

Therefore,
N − α
pθ� <

ps − α
p ≤ s,

with α ≥ 0. In conclusion, the assertion is proved.
Hence, for all σ ≥ σ∗,

lim
j→∞

‖uj − uσ‖
p∗s (α)
Hα = 0.

Thus, (4.18) yields uj → uσ in Z(Ω) as j → ∞ for all σ ≥ σ∗ sinceM(κpσ) > 0 by (M2) and the fact that dσ > 0.
This completes the proof of the first case.

Case inf j∈ℕ[uj]s,p = 0: Here, either 0 is an accumulation point for the real sequence ([uj]s,p)j and so there
is a subsequence of (uj)j strongly converging to u = 0, or 0 is an isolated point of ([uj]s,p)j. The first case
can not occur since it implies that the trivial solution is a critical point at level cσ. This is impossible since
0 = Jσ(0) = cσ > 0.Hence only the latter case can occur, so that there is a subsequence, denoted by ([ujk ]s,p)k,
such that infk∈ℕ[ujk ]s,p = dσ > 0 and we can proceed as before. This completes the proof of the second case
and of this step.
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Step 2: Let the Kirchhoff function M satisfy (M1) and (M̃2). In this case, the proof of Step 1 simplifies, but we
repeat the main argument where necessary. Hence, (M1), (M̃2) and (4.6) yield now that, as j → ∞,

cσ + βσ[uj]s,p + o(1) ≥ (
1
pθ −

1
q )M([uj]ps,p)[uj]

p
s,p + (

1
q −

1
p∗s (α)

)[uj]
p∗s (α)
Hα

≥ (
1
pθ −

1
q )a[uj]

p
s,p , with (

1
pθ −

1
q )a > 0. (4.20)

Therefore, (uj)j is bounded in Z(Ω), and proceeding exactly as in the proof of Step 1, we get themain formulas
(4.13)–(4.19).

As above, we assert that there exists a σ∗ > 0 such that ıσ = 0 for all σ ≥ σ∗. Otherwise, there exists
a sequence n Ü→ σn ↑ ∞ such that ıσn = ın > 0. By (4.18) and (4.19), denoting κσn = κn and uσn = un, we still
get

ıp
∗
s (α)−p
n = (ıp

∗
s (α)
n )ps/(N−α) = M(κpn)ps/(N−α)(κ

p
n − [un]ps,p)

ps/(N−α) ≥ HαM(κpn).

Hence, by (M̃2) and (4.15),

κp⋅ps/(N−α)n ≥ (κpn − [un]ps,p)
ps/(N−α) ≥ HαM(κpn)1−ps/(N−α) ≥ C,

where C = Hαa1−ps/(N−α) > 0. This fact immediately contradicts (4.15).
From this point we can conclude exactly as in Step 1.

Proof of Theorem 1.2. Lemmas 4.2 and 4.4 guarantee that for any σ ≥ σ∗ the functional Jσ satisfies all
assumptions of the mountain pass theorem. Hence, for any σ ≥ σ∗ there exists a critical point uσ ∈ Z(Ω) for
Jσ at level cσ. Since Jσ(uσ) = cσ > 0 = Jσ(0), we have that uσ ̸≡ 0. Moreover, the asymptotic behavior (1.11)
holds thanks to (4.16).

We now turn to the setting stated in Theorem 1.3. Since (M1) is no longer in charge, in order to control the
growth of the elliptic part of (1.9), we use a truncation argument, as in [1] and in other previous works.

Proof of Theorem 1.3. Take m ∈ ℝ with 0 < a ≤ M(0) < m < aq/p, which is possible since pM(0) < aq by
assumption. Put for all t ∈ ℝ+0,

Mm(t) =
{
{
{

M(t) if M(t) ≤ m,
m if M(t) > m,

so that
Mm(0) = M(0), min

t∈ℝ+0 Mm(t) = a,

and denote by Mm its primitive. Let us consider the auxiliary problem

{{
{{
{

Mm([u]ps,p)(−∆)spu −
|u|p∗s (α)−2u

|x|α = σw(x)|u|q−2u in Ω,

u = 0 inℝN \ Ω.
(4.21)

We are going to solve (4.21), using a mountain pass argument as done in Step 2 of the proof of Theorem 1.2,
but replacing the Kirchhoff function M with Mm.

Clearly, (4.21) can be thought as the Euler–Lagrange equation of the C1 functional

Jm,σ(u) =
1
pMm([u]ps,p) −

1
p∗s (α)

‖u‖p
∗
s (α)
Hα −

σ
q ‖u‖

q
q,w

for all u ∈ Z(Ω). First let us observe that for the functional Jm,σ Lemmas 4.2 and 4.3 continue to hold. Indeed,
for Lemma 4.2 it is enough to observe that (4.5) is now replaced by

Jm,σ(tv) ≤ mtp −
‖v‖p

∗
s (α)
Hα

p∗s (α)
tp∗s (α) − σ ‖v‖qq,wq tq → −∞,
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as t → ∞, since p < q < p∗s (α). Similarly, also Lemma 4.3 can be proved in a simpler way, by observing that
now, since tσ > 0 for all σ > 0, inequality (4.7) becomes

mtpσ[e]
p
s,p ≥ tpσ[e]

p
s,pMm(tpσ[e]

p
s,p) ≥ t

p∗s (α)
σ ‖e‖p

∗
s (α)
Hα

for any σ ∈ ℝ+. This implies at once that {tσ}σ∈ℝ+ is bounded inℝ. The rest of the proof is unchanged. Hence
Lemmas 4.2 and 4.3 are valid for Jm,σ, and it remains to prove for Jm,σ the main Lemma 4.4.

Proceeding as in Step 2 of the proof of Theorem 1.2, by (M̃2) now (4.20) becomes

cσ + βσ[uj]s,p + o(1) ≥ (
a
p −

m
q )[uj]ps,p + (

1
q −

1
p∗s (α)

)‖uj‖
p∗s (α)
Hα , with ap −

m
q > 0, (4.22)

since m < aq/p. The other key formulas hold true with no relevant modifications. Thus, arguing as before,
we find that for all m ∈ (M(0), aq/p) there exists a suitable σ0 = σ0(m) > 0 such that problem (4.21) admits
a nontrivial solution uσ ∈ Z(Ω) with Jm,σ(uσ) = cσ. Hence, (4.22) implies that for all σ ≥ σ0,

cσ ≥ (
a
p −

m
q )[uσ]ps,p , with ap −

m
q > 0,

so that (1.11) follows at once by Lemma 4.3.
Fix m ∈ (M(0), aq/p). By (1.11),

a ≤ M(0) = Mm(0) = lim
σ→∞
σ≥σ0

Mm([uσ]ps,p).

Therefore, there exists σ∗ = σ∗(m) ≥ σ0 such that

a ≤ Mm([uσ]ps,p) < m for all σ ≥ σ∗.

In conclusion, for all m ∈ (M(0), aq/p) there exists a threshold σ∗ = σ∗(m) > 0 such that for all σ ≥ σ∗ the
mountain pass solution uσ of (4.21) is also a solution of problem (1.9).

We conclude the section with the proof of Theorem 1.4, and recall that for (1.13) the Kirchhoff functionM is
of the type (1.8), but possibly M(0) = 0, that is, a = 0. Hence in this part of the section we assume, without
further mentioning, that a, b ∈ ℝ+0 with a + b > 0, that w satisfies (w) with θ > 1, 0 ≤ α < ps < N, 0 ≤ β < ps,
pθ ≤ p∗s (α) ≤ p∗s , 1 < q < p∗s (β) ≤ p∗s , and pθ < p∗s (β). Let us finally recall that ca,b is introduced in (1.14).
Problem (1.13) is the Euler–Lagrange equation of the C1 functional Iγ,σ,g defined by

Iγ,σ,g(u) =
1
p (a[u]

p
s,p + b[u]

pθ
s,p −

γ
θ ‖u‖

pθ
Hα) −

σ
q ‖u‖

q
q,w −

1
p∗s (β)

‖u‖p
∗
s (β)
Hβ − ∫

Ω

g(x)u(x) dx

for any u ∈ Z(Ω).

Lemma 4.5. Fix γ < ca,bHθα. Then every function of the parametric family {ηγ,ε}ε≥0, defined for all t ∈ [0, 1] by

ηγ,ε(t) =
1
p [at

p−1 + (b −
γ+

θHθα
)tpθ−1] − 1

Hp
∗
s (β)/p
β p∗s (β)

tp∗s (β)−1 − Cwq εtq−1, (4.23)

with

ε =
{
{
{

0 if either 1 < q < p, or p ≤ q < pθ and a = 0,
σ+ if either pθ ≤ q < p∗s (β), or p ≤ q < pθ and a > 0,

admits maximum value ηγ,ε(ρ) > 0 at a point ρ ∈ (0, 1) for all ε ≥ 0 if either 1 < q < p, or p ≤ q < pθ and a = 0,
or p < q ≤ pθ and a > 0, or pθ < q < p∗s (β), and for all ε ∈ [0, ε∗), with ε∗ > 0 given by

ε∗ =
{
{
{

a/Cw if q = p and a > 0,
b − γ+/θHθα if q = pθ and a = 0,
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whenever either q = p and a > 0, or q = pθ and a = 0. Furthermore, putting δ = H1/p
0 ηγ,ε(ρ)/3 and

σ∗ =
{{{
{{{
{

qηγ,0(ρ)/3Cw if either 1 < q < p, or p ≤ q < pθ and a = 0,
∞ if either p < q ≤ pθ and a > 0, or pθ < q < p∗s (β),
ε∗ if either q = p and a > 0, or q = pθ and a = 0,

we have Iγ,σ,g(u) ≥ ȷ = ρηγ,ε(ρ)/3 > 0 for all u ∈ Z(Ω)with [u]s,p = ρ, and for all g ∈ Lυ(Ω) and σ with ‖g‖υ ≤ δ
and

σ ∈
{
{
{

(−∞, σ∗] if either 1 < q < p, or p ≤ q < pθ and a = 0,
(−∞, σ∗) if either p ≤ q < pθ and a > 0, or pθ ≤ q < p∗s (β).

(4.24)

Proof. Fix γ ∈ (−∞, ca,bHθα) and σ ∈ ℝ. By (1.1) and Lemma 4.1,

Iγ,σ,g(u) ≥
a
p [u]

p
s,p +

b
p [u]

pθ
s,p −

γ
pθ ‖u‖

pθ
Hα −

σ
q ‖u‖

q
q,w −

1
p∗s (β)

‖u‖p
∗
s (β)
Hβ − ‖g‖υ‖u‖p∗s

≥
a
p [u]

p
s,p + (

b
p −

γ+

pθHθα
)[u]pθs,p −

1
Hp

∗
s (β)/p
β p∗s (β)

[u]p
∗
s (β)
s,p −

Cwσ+

q [u]qs,p −
1

H1/p
0

‖g‖υ[u]s,p

= [u]s,pηγ,ε([u]s,p) −
Cw(σ+ − ε)

q [u]qs,p −
‖g‖υ
H1/p
0

[u]s,p

≥ [u]s,p(ηγ,ε([u]s,p) −
Cw(σ+ − ε)

q −
‖g‖υ
H1/p
0

) (4.25)

for all u ∈ Z(Ω)with [u]s,p ≤ 1 since q > 1. It remains to show that Iγ,σ,g(u) ≥ ȷ for any u ∈ Z(Ω)with [u]s,p = ρ,
where ρ ∈ (0, 1) is the maximum point of ηγ,ε in [0, 1]. To this end, take δ and σ∗ as in the statement, so that
for any u ∈ Z(Ω) with [u]s,p = ρ, and for any g ∈ Lυ(Ω) with ‖g‖υ ≤ δ, and for any σ as in (4.24), we have

Iγ,σ,g(u) ≥ ρ ⋅
{{
{{
{

(ηγ,0(ρ) − Cwσ∗
q − δ

H1/p
0

) if either 1 < q < p, or p ≤ q < pθ and a = 0,

(ηγ,σ+ (ρ) − δ
H1/p
0

) if either pθ ≤ q < p∗s (β), or p ≤ q < pθ and a > 0,

≥
ρηγ,ε(ρ)

3 = ȷ,

as stated.

Proof of Theorem 1.4. Fix γ ∈ [0, ca,bHθα). Take g and σ as in (1.15) with upper bounds δ and σ∗ given in
Lemma 4.5.

When ‖g‖υ ̸= 0, since g ∈ Lυ(Ω), there existsψ ∈ C∞0 (Ω) such that∫Ω g(x)ψ(x) dx > 0. Indeed, there exists
a sequence (gj)j in C∞0 (Ω) such that gj → g strongly in Lp∗s (Ω) since C∞0 (Ω) is dense in Lp∗s (Ω). Hence, there
exists j0 ∈ ℕ so large that

‖gj0 − g‖p∗s ≤
1
2 ‖g‖

υ−1
υ .

Thus, by the Hölder inequality, we have

∫
Ω

gj0 (x)g(x) dx ≥ −‖gj0 − g‖p∗s ‖g‖υ + ‖g‖υυ > 0

since υ = (p∗s )�. Taking ψ = gj0 , we obtain the claim.
Hence, for t ∈ (0, 1) small enough,

Iγ,σ,g(tψ) ≤
tp

p a[ψ]
p
s,p +

tpθ

p b[ψ]pθs,p −
tpθ

pθ γ‖ψ‖
pθ
Hα −

tq

q σ‖ψ‖
q
q,w −

tp∗s (β)
p∗s (β)

‖ψ‖p
∗
s (β)
Hβ − t∫

Ω

g(x)ψ(x) dx

< 0 (4.26)

since 1 < p < pθ < p∗s (β) and 1 < q.
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It remains to consider the case ‖g‖υ = 0 and σ > 0,when either 1 < q < p, or p ≤ q < pθ and a = 0.Hence,
for a fixed v ∈ Z(Ω) with ‖v‖qq,w = 1, for t ∈ (0, 1) small enough we still have

Iγ,σ,g(tv) ≤
tp

p a[v]
p
s,p +

tpθ

p b[v]pθs,p −
tpθ

pθ γ‖v‖
pθ
Hα −

tq

q σ −
tp∗s (β)
p∗s (β)

‖v‖p
∗
s (β)
Hβ dx < 0 (4.27)

since σ > 0 and either 1 < q < p, or p ≤ q < pθ and a = 0.
Thus, using the notation of Lemma 4.5, by (4.26) and (4.27),

c0 = inf{Iγ,σ,g(u) : u ∈ Bρ} < 0,

and Iγ,σ,g is bounded below in Bρ thanks to (4.25) with ρ ∈ (0, 1). By the Ekeland variational principle in [11]
and by Lemma 4.5, there exists a sequence (uj)j ⊂ Bρ such that

c0 ≤ Iγ,σ,g(uj) ≤ c0 +
1
j and Iγ,σ,g(v) ≥ Iγ,σ,g(uj) −

1
j [v − uj]s,p (4.28)

for all v ∈ Bρ0 . For a fixed j ∈ ℕ, for all z ∈ ∂B1 and for all ε > 0 so small that uj + εz ∈ Bρ, we have

Iγ,σ,g(uj + εz) − Iγ,σ,g(uj) ≥ −
ε
j

by (4.28). Since Iγ,σ,g is Gâteaux differentiable in Z(Ω), we have

⟨I�γ,σ,g(uj), z⟩Z(Ω),Z�(Ω) = lim
ε→0

Iγ,σ,g(uj + εz) − Iγ,σ,g(uj)
ε ≥ −

1
j

for all z ∈ ∂B1. Hence |⟨I�γ,σ,g(uj), z⟩Z(Ω),Z�(Ω)| ≤ 1/j since z ∈ ∂B1 is arbitrary. Consequently, I�γ,σ,g(uj) → 0 in
Z�(Ω) as j → ∞.

Furthermore, since (uj)j is bounded in Bρ, Lemma 4.1 and [4, Theorem 4.9] give the existence of
uγ,σ,g ∈ Bρ such that, up to a subsequence still relabeled (uj)j, it follows that

{{{
{{{
{

uj ⇀ uγ,σ,g in Z(Ω), [uj]s,p → dγ,σ,g ,
uj ⇀ uγ,σ,g in Lp

∗
s (α)(ℝN , |x|−α), uj ⇀ uγ,σ,g in Lp

∗
s (β)(ℝN , |x|−β)

‖uj‖Hα → ℓγ,σ,g , uj → uγ,σ,g in Lq(Ω, w), uj → uγ,σ,g a.e. in Ω,
(4.29)

since q < p∗s (β) ≤ p∗s . Hence, as j → ∞, we easily get

0 = ⟨I�γ,σ,g(uj), uγ,σ,g⟩Z(Ω),Z�(Ω) + o(1) = (a + bθ[uj]p(θ−1)s,p )⟨uj , uγ,σ,g⟩s,p − γ‖uj‖
pθ−p∗s (α)
Hα ⟨uj , uγ,σ,g⟩Hα

− σ⟨uj , uγ,σ,g⟩q,w − ⟨uj , uγ,σ,g⟩Hβ − ∫
Ω

g(x)uj(x) dx

= (a + bθdp(θ−1)γ,σ,g )[uγ,σ,g]ps,p − γℓ
pθ−p∗s (α)
γ,σ,g ‖uγ,σ,g‖

p∗s (α)
Hα − σ‖uγ,σ,g‖qq,w

− ‖uγ,σ,g‖
p∗s (β)
Hβ − ∫

Ω

g(x)uγ,σ,g(x) dx. (4.30)

Since uγ,σ,g ∈ Bρ0 , we have Iγ,σ,g(uγ,σ,g) ≥ c0. Multiplying the expression in (4.30) by 1/pθ and subtracting
below, by (4.29), theweakly lower semi-continuity of the norms and the facts that γ ≥ 0 and pθ ≤ p∗s (α) ≤ p∗s ,
as j → ∞ we have

c0 ≤ Iγ,σ,g(uγ,σ,g) ≤
a + bdp(θ−1)γ,σ,g

p [uγ,σ,g]ps,p −
γℓpθ−p

∗
s (α)

γ,σ,g
pθ ‖uγ,σ,g‖

p∗s (α)
Hα −

σ
q ‖uγ,σ,g‖

q
q,w

−
1

p∗s (β)
‖uγ,σ,g‖

p∗s (β)
Hβ − ∫

Ω

g(x)uγ,σ,g(x) dx

=
a
p (1 −

1
θ )[uγ,σ,g]

p
s,p − σ(

1
q −

1
pθ )‖uγ,σ,g‖

q
q,w − (

1
p∗s (β)

−
1
pθ )‖uγ,σ,g‖

p∗s (β)
Hβ

− (1 −
1
pθ )∫

Ω

g(x)uγ,σ,g(x) dx
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≤
a
p (1 −

1
θ )[uj]

p
s,p − σ(

1
q −

1
pθ )‖uj‖

q
q,w + (

1
pθ −

1
p∗s (β)

)‖uj‖
p∗s (β)
Hβ − (1 −

1
pθ )∫

Ω

g(x)uj(x) dx

= Iγ,σ,g(uj) −
1
pθ ⟨I

�
γ,σ,g(uj), uj⟩Z(Ω),Z�(Ω) + o(1) = c0

since pθ < p∗s (β). Thus, uγ,σ,g is a minimizer of Iγ,σ,g in Bρ0 and Iγ,σ,g(uγ,σ,g) = c0 < 0 < ȷ ≤ Iγ,σ,g(u) for all
u ∈ ∂Bρ by Lemma 4.5. Hence uγ,σ,g ∈ Bρ, so that I�γ,σ,g(uγ,σ,g) = 0. In other words, uγ,σ,g is a nontrivial solu-
tion of (1.13).

It remains to show the asymptotic behavior (1.16). From the proof of Lemma 4.5 it is clear that

0 < [uγ,σ,g]s,p < ρ = ρ(γ, σ),

where by (4.23), when either p < q ≤ pθ and a > 0, or pθ < q < p∗s (β), the positive function ρ(γ, σ) verifies
the identity

a
p� +

pθ − 1
p (b −

γ
θHθα

)ρ(γ, σ)pθ−p = σ+ Cwq� ρ(γ, σ)
q−p +

1
Hp∗s (β)/p(p∗s (β))� ρ(γ, σ)p∗s (β)−p .

This implies at once that
lim
σ→∞

ρ(γ, σ) = 0

since either p < pθ < q < p∗s (β), or p < q ≤ pθ < p∗s (β) and a > 0. The proof of (1.16) is now completed.

5 General Nonlocal Operators

In this section, we show that Theorems 1.2–1.4 continue to hold when (−∆)sp in (1.9) and (1.13) is replaced
by a more general nonlocal integro-differential operator LpK, defined for any x ∈ ℝN as

L
p
Kφ(x) = 2 lim

ε↘0
∫

ℝN\Bε(x)

|φ(x) − φ(y)|p−2(φ(x) − φ(y))K(x − y) dy

along any function φ ∈ C∞0 (ℝN), where the singular kernel K : ℝN \ {0} → ℝ+ is a measurable function satis-
fying the following conditions:
(K1) mK ∈ L1(ℝN) with m(x) = min{1, |x|p}.
(K2) There exists K0 > 0 such that K(x) ≥ K0|x|−(N+ps) for any x ∈ ℝN \ {0}.
Obviously, the operator −LpK reduces to the fractional p-Laplacian (−∆)sp when K(x) = |x|−N−ps.

Here we denote by ZK(Ω) the completion of C∞0 (Ω) with respect to

[φ]s,p,K = ( ∫

ℝN

|DsKφ(x)|
pdx)

1/p
, where |DsKφ(x)|

p = ∫

ℝN

|φ(x) − φ(y)|pK(x − y) dy,

which is well defined by (K1) along all φ ∈ C∞0 (Ω). Clearly, the embedding ZK(Ω) í→ Z(Ω) is continuous since

[u]s,p ≤ K−1/p
0 [u]s,p,K for any u ∈ ZK(Ω) (5.1)

by (K2). Hence, also by Lemma 4.1 the embedding ZK(Ω) í→ Lq(Ω, w) is compact under condition (w) since
1 < q < p∗s .

A weak solution of the problem

{{
{{
{

−M([u]ps,p,K)L
p
Ku −

|u|p∗s (α)−2u
|x|α = σw(x)|u|q−2u in Ω,

u = 0 inℝN \ Ω,
(5.2)
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is a function u ∈ ZK(Ω) such that

M([u]ps,p,K)⟨u, φ⟩s,p − ⟨u, φ⟩Hα = σ⟨u, φ⟩q,w for any φ ∈ ZK(Ω),

⟨u, φ⟩s,p,K = ∬

ℝ2N

|u(x) − u(y)|p−2[u(x) − u(y)] ⋅ [φ(x) − φ(y)]K(x − y) dx dy.

It is worth noting that, as in [1], it is not restrictive to assume K even, since the odd part of K does not give
contribution in the integral above. Indeed, write K = Ke + Ko, where for all x ∈ ℝN \ {0},

Ke(x) =
K(x) + K(−x)

2 and Ko(x) =
K(x) − K(−x)

2 .

Then it is apparent that for all u and φ ∈ ZK(Ω),

⟨u, φ⟩s,p,K = ∬

ℝ2N

|u(x) − u(y)|p−2[u(x) − u(y)] ⋅ [φ(x) − φ(y)]Ke(x − y) dx dy.

Actually, the solutions of problem (5.2) correspond to critical points of the functional Jσ,K : ZK(Ω) → ℝ,
defined for all u ∈ ZK(Ω) by

Jσ,K(u) =
1
pM ([u]ps,p,K) −

1
p∗s (α)

‖u‖p
∗
s (α)
Hα −

σ
q ‖u‖

q
q,w .

Now, by using (5.1), Lemmas 4.2–4.4 continue to hold, with obvious changes in their proofs. Thus we have
proved the following two results.

Theorem 5.1. Let K verify (K1) and (K2). Assume that M and w satisfy (M̃) and (w), with pθ < q < p∗s (α) ≤ p∗s
and 0 ≤ α < ps < N. Then there exists σ∗ > 0 such that for any σ ≥ σ∗ problem (5.2) admits a nontrivial moun-
tain pass solution uσ in ZK(Ω). Moreover,

lim
σ→∞

[uσ]s,p,K = 0. (5.3)

Theorem 5.2. Let K verify (K1) and (K2). Assume that M is continuous in ℝ+0 , satisfying (M̃2). Suppose that
w verifies (w), with p < q < p∗s (α) ≤ p∗s and 0 ≤ α < ps < N, and that (1.12) holds. Then there exists σ∗ > 0
such that for any σ ≥ σ∗ problem (5.2) admits a nontrivial mountain pass solution uσ in ZK(Ω), satisfying the
asymptotic property (5.3).

We can generalize also the study of problem (1.13), that is,

{{
{{
{

−(a + bθ[u]p(θ−1)s,p,K )LpKu − γ‖u‖pθ−p
∗
s (α)

Hα
|u|p∗s (α)−2u

|x|α = σw(x)|u|q−2u +
|u|p∗s (β)−2u

|x|β
+ g(x) in Ω,

u = 0 inℝN \ Ω.
(5.4)

In this case, by (5.1), Lemma 4.5 continues to hold, provided that γ ∈ [0, ca,bHθαKθ0) and σ satisfies (4.24)
with a suitable new σ∗. Thus we have proved the following result.

Theorem 5.3. Let K verify (K1) and (K2) and let a, b ≥ 0with a + b > 0. Assume that w satisfies (w), with θ > 1,
0 ≤ α < ps < N, 0 ≤ β < ps, pθ ≤ p∗s (α), 1 < q < p∗s (β), and pθ < p∗s (β). Then for all γ ∈ [0, ca,bHθαKθ0), with
ca,b given in (1.14), there exist a number δ > 0 and σ∗ ∈ (0,∞] such that for any perturbation g ∈ Lυ(Ω) and
any parameter σ satisfying (1.15), problem (5.4) admits a nontrivial solution uγ,σ,g in ZK(Ω) and

lim
σ→∞

[uγ,σ,g]s,p,K = 0

when either pθ < q < p∗s (β), or p < q ≤ pθ and a > 0.
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Also Theorem 1.1 and all results of Section 3 derivable from it can be easily proved for general operators LpK
provided that the assumption (K2) is strengthened and replaced by condition
(K̃2) there exists K0 > 0 such that K0|x|−(N+ps) ≤ K(x) ≤ |x|−(N+ps)/K0 for any x inℝN \ {0}.
Let us state the results.

Theorem 5.4. Assume that K verifies (K1)and (K̃2), thatΩ is an openbounded subset ofℝN and that α ∈ (0, ps].
Let (uj)j be a weakly convergent sequence in ZK(Ω) with weak limit u. Then there exist two finite positive mea-
sures μ and ν inℝN such that

|DsKuj(x)|
pdx ∗

⇀ μ and |uj(x)|p
∗
s (α) dx

|x|α
∗
⇀ ν inM(ℝN).

Furthermore, there exist two nonnegative numbers μ0, ν0 such that

ν = |u(x)|p∗s (α) dx
|x|α + ν0δ0

and
μ ≥ |DsKu(x)|

p dx + μ0δ0, 0 ≤ HαK0ν
p/p∗s (α)
0 ≤ μ0,

where Hα is the Hardy constant defined in (1.1).

The proof is almost exactly as that of Theorem 1.1. The new assumption (K̃2) is used only to derive (2.3),
(2.6), (2.10), and so their consequences. It is worth noting that (2.7) comes directly from (K1). In conclusion,
we have the following results.

Theorem 5.5 (Superlinear f ). Assume that K verifies (K1) and (K̃2), thatΩ is an open bounded subset ofℝN and
that M satisfies (M), with c > 0 and α given as in (1.7). Suppose that f : Ω × ℝ → ℝ is a Carathéodory function
satisfying conditions (f1)–(f3) of Theorem 3.1. Then for all γ ∈ [0, cθHθαKθ0) and λ ∈ (−∞,mγ,θ,K0λ1K0), where
mγ,θ,K0 is given as

mγ,θ,K0 =
{
{
{

∞ if θ > 1,
c − γ+/HαK0 if θ = 1,

(5.5)

there exists a positive constant σ = σ(λ, γ) such that for any σ ∈ (0, σ) the problem

{{
{{
{

−M([u]ps,p,K)L
p
Ku − γ‖u‖pθ−p

∗
s (α)

Hα
|u|p∗s (α)−2u

|x|α = λ|u|p−2u + σf(x, u) in Ω,

u = 0 inℝN \ Ω,
(Kγ,λ,σ)

has a nontrivial solution uγ,λ,σ ∈ ZK(Ω).
Moreover, if γ ∈ [0, cHθαKθ0) and either λ ∈ ℝ−0 when θ > 1, or λ ∈ (−∞,mγ,θ,K0λ1K0) when θ = 1, then

lim
σ→0+[uγ,λ,σ]s,p,K = 0. (5.6)

Clearly, when θ > 1, that is, mγ,θ,K0 = ∞, then the existence part of Theorem 5.5 holds for all λ ∈ ℝ.

Theorem 5.6 (Sublinear f ). Assume that K verifies (K1) and (K̃2), that Ω is an open bounded subset of ℝN and
that M satisfies (M), with c > 0 and α given as in (1.7). Suppose that f : Ω × ℝ → ℝ is a Carathéodory function
satisfying conditions (f4)and (f5) of Theorem3.2. For all γ ∈ [0, cθHθαKθ0), λ ∈ (−∞,mγ,θ,K0λ1K0), wheremγ,θ,K0
is given in (5.5), and σ > 0, problem (Kγ,λ,σ) has a nontrivial solution uγ,λ,σ ∈ ZK(Ω).

Moreover, if γ ∈ [0, cHθαKθ0) and either λ ∈ ℝ−0 when θ > 1, or λ ∈ (−∞,mγ,θ,K0λ1K0)when θ = 1, then (5.6)
holds.

A Lemma A.1 and its proof

This last section is devoted to the proof of Lemma A.1. This technical lemma plays a crucial role in the study
of concentration and compactness results since it allows us to handle the nonlocal nature of the operator
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u Ü→ |Dsu|p. The proof of Lemma A.1 is fairly similar to that of [17, Proposition 7], stated in the case p = 2.
For the sake of completeness, we give it here.

Lemma A.1. Let w ∈ ℝN and u ∈ Lp∗s (ℝN). Let ε > 0 and let either U × V = Bε(w) × ℝN or U × V = ℝN × Bε(w).
Then

lim
ε→0

ε−p ∬
U×(V∩{|x−y|≤ε})

|u(x)|p|x − y|p−N−ps dx dy = 0 (A.1)

and
lim
ε→0

∬
U×(V∩{|x−y|>ε})

|u(x)|p|x − y|−N−ps dx dy = 0. (A.2)

Proof. Let w ∈ ℝN , u ∈ Lp∗s (ℝN) and ε > 0 be fixed. Set

ξε = ( ∫
Bε(w)

|u(x)|p∗s dx)p/p∗s .
Clearly,

lim
ε→0

ξε = 0. (A.3)

By the Hölder inequality,

∫
Bε(w)

|u(x)|p dx ≤ ( ∫
Bε(w)

|u(x)|p∗s dx)p/p∗s ( ∫
Bε(w)

1 dx)
ps/N

≤ Cξεεps (A.4)

for some C > 0 independent of ε (in what follows, we will possibly change C from line to line). We claim that

(U × V) ∩ {|x − y| ≤ ε} ⊆ B2ε(w) × B2ε(w). (A.5)

Indeed, if (x, y) ∈ U × V = Bε(w) × ℝN , with |x − y| ≤ ε, we have

|w − y| ≤ |w − x| + |x − y| ≤ ε + ε,

and so the validity of (A.5). On the other hand, if (x, y) ∈ U × V = ℝN × Bε(w), with |x − y| ≤ ε, then

|w − x| ≤ |w − y| + |y − x| ≤ ε + ε.

This completes the proof of (A.5).
By (A.5) and the change of variables z = x − y, we have

∬
U×(V∩{|x−y|≤ε})

|u(x)|p|x − y|p−N−ps dx dy ≤ ∫
B2ε(w)

|u(x)|p dx ∫
B2ε(w)∩{|x−y|≤ε}

|x − y|p−N−ps dy

≤ ∫
B2ε(w)

|u(x)|p dx ∫
Bε

|z|p−N−ps dz

≤ Cεp−ps ∫
B2ε(w)

|u(x)|pdx.

Using this and (A.4), we obtain

ε−p ∬
U×(V∩{|x−y|≤ε})

|u(x)|p|x − y|p−N−ps dx dy ≤ Cε−ps ∫
B2ε(w)

|u(x)|pdx ≤ Cξε .

This and (A.3) imply (A.1).
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Let us now prove (A.2). For this aim, fix an auxiliary parameter K > 2, which will be taken arbitrarily
large at the end after sending ε → 0. We claim that

U × V ⊆ (BKε(w) × ℝN) ∪ ((ℝN \ BKε(w)) × Bε(w)). (A.6)

Indeed, if U × V = Bε(w) × ℝN , then of course U × V ⊆ BKε(w) × ℝN , hence (A.6) is obvious. If instead
(x, y) ∈ U × V = ℝN × Bε(w), we distinguish two cases: if x ∈ BKε(w), then

(x, y) ∈ BKε(w) × ℝN ;

if x ∈ ℝN \ BKε(w), then

(x, y) ∈ (ℝN \ BKε(w)) × V = (ℝN \ BKε(w)) × Bε(w).

This completes the proof of (A.6).
By (A.4),

∬

BKε(w)×(ℝN∩{|x−y|>ε})

|u(x)|p|x − y|−N−ps dx dy = ∫
BKε(w)

|u(x)|pdx ∫

ℝN\Bε

|z|−N−ps dz

= Cε−ps ∫
BKε(w)

|u(x)|p dx

≤ CξKε . (A.7)

If x ∈ ℝN \ BKε(w) and y ∈ Bε(w), then

|x − y| ≥ |x − w| − |y − w| = |x − w|
2 +

|x − w|
2 − |y − w| ≥ |x − w|

2 +
Kε
2 − ε ≥ |x − w|

2 .

Hence, the Hölder inequality gives

∬

(ℝN\BKε(w))×Bε(w)

|u(x)|p|x − y|−N−ps dx dy

≤ 2N+ps ∫

ℝN\BKε(w)

|u(x)|p|x − w|−N−ps dx ∫
Bε(w)

dy

≤ CεN( ∫

ℝN\BKε(w)

|u(x)|p∗s dx)p/p∗s ( ∫

ℝN\BKε(w)

|x − w|−(N+ps)N/ps dx)
ps/N

≤ CεN‖u‖pp∗s (
∞

∫
Kε

r−((N+ps)N/ps)+(N−1) dr)
ps/N

= CK−N‖u‖pp∗s . (A.8)

Combining (A.6), (A.7) and (A.8), we obtain

∬
U×(V∩{|x−y|>ε})

|u(x)|p|x − y|−N−ps dx dy

≤ ∫
BKε(w)

|u(x)|pdx ∫

ℝN∩{|x−y|>ε}

|x − y|−N−ps dy + ∫

ℝN\BKε(w)

|u(x)|pdx ∫
Bε(w)

|x − y|−N−ps dy

≤ CξKε + CK−N‖u‖pp∗s .
Sending first ε → 0 and then K → ∞, we readily obtain (A.2), thanks to (A.3).
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