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1 Introduction
Let Ω ⊆ ℝN be a bounded domain with a C2-boundary ∂Ω. We consider the nonlinear, nonhomogeneous
Robin problem

{{
{{
{

−div a(Du(z)) = f(z, u(z)) in Ω,
∂u
∂na

+ β(z)|u|p−2u = 0 on ∂Ω.
(1.1)

In this problem, a : ℝN → ℝN is a strictly monotone, continuous map which satisfies certain other regularity
and growth conditions listed in the hypotheses H(a) below. These conditions are general enough to incor-
porate in our framework many differential operators of interest, such as the p-Laplace operator, 1 < p < ∞,
and the sum of a p-Laplacian with a q-Laplacian, 1 < q < p < ∞. The reaction term f(z, x) is a Carathéodory
function (that is, for all x ∈ ℝ, the map z Ü→ f(z, x) is measurable, while, for almost all z ∈ Ω, the function
x Ü→ f(z, x) is continuous).

The interesting feature of our work here is that we do not impose any global growth condition on f(z, ⋅ ).
Instead, we assume a local symmetry condition, namely, we require that, for almost all z ∈ Ω, the function
x Ü→ f(z, x) is odd in the bounded interval [−η, η]. In the boundary condition, ∂u

∂na denotes the generalized
normal derivative corresponding to the differential operator div a(Du) and is defined by

∂u
∂na

= (a(Du), n)ℝN for all u ∈ W1,p(Ω)

with n( ⋅ ) being the outward unit normal on ∂Ω. This kind of normal derivative is dictated by the nonlinear
Green’s identity (see, for example, Gasiński and Papageorgiou [7, p. 210]) and can be also found in the work
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of Lieberman [13]. The boundaryweight function β ∈ C0,α(∂Ω)with α ∈ (0, 1) satisfies β(z) ≥ 0 for all z ∈ ∂Ω.
When β ≡ 0, then we have the Neumann problem.

Under these general hypotheses on the data of (1.1), we show that there exists a whole sequence
{un}n≥1 ⊆ C1(Ω) of distinct nodal (that is, sign-changing) solutions. Our approach uses variational tools
together with suitable truncation-perturbation techniques. Recently, nodal solutions for nonlinear, non-
homogeneous Robin problems were produced by Papageorgiou and Rădulescu [20, 22]. However, in the
aforementioned works, the authors establish the existence of only one nodal solution.

2 Mathematical Background and Hypotheses
Let X be a Banach space and let φ ∈ C1(X,ℝ). We say that φ satisfies the Palais–Smale condition (PS-
condition for short) if every sequence {un}n≥1 ⊆ X such that {φ(un)}n≥1 ⊆ ℝ is bounded and

φ�(un) → 0 in X∗ as n → ∞

admits a strongly convergent subsequence.
Our main variational tool will be a variant due to Heinz [10] of a classical result of Clark [4]. The next

result is essentially due to Heinz [10] and can be found in Wang [28]. Further extensions with applications
to semilinear elliptic Dirichlet problems and to Hamiltonian systems can be found in the works of Liu and
Wang [15] and Kajikiya [12].

Theorem 2.1. Let X be a Banach space and assume that φ ∈ C1(X,ℝ) satisfies the PS-condition, it is even,
bounded from below, φ(0) = 0 and, for every n ∈ ℕ, there exist an n-dimensional subspace Yn of X and ρn > 0
such that

sup {φ(u) : u ∈ Yn ∩ ∂Bρn } < 0,

where ∂Bρn = {u ∈ X : ‖u‖ = ρn}. Then, there exists a sequence {un}n≥1 of critical points of φ such that

φ(un) < 0 for all n ∈ ℕ

and
φ(un) → 0 as n → ∞.

Let ϑ ∈ C1(0, +∞) with ϑ(t) > 0 for all t > 0 and assume that there exists p > 1 such that

0 < ̂c ≤ ϑ�(t)t
ϑ(t)

≤ c0 and c1tp−1 ≤ ϑ(t) ≤ c2(1 + tp−1) (2.1)

for all t > 0 and for some c1, c2 > 0. Then, our hypotheses on the map a( ⋅ ) involved in the definition of the
differential operator are that
H(a) a(y) = a0(|y|)y for all y ∈ ℝN with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0, +∞), t Ü→ a0(t)t is strictly increasing on (0, +∞), a0(t)t → 0 as t → 0+ and

lim
t→0+

a�0(t)t
a0(t)

> −1;

(ii) there exists c3 > 0 such that |∇a(y)| ≤ c3 ϑ(|y|)|y| for all y ∈ ℝN \ {0};
(iii) (∇a(y)ξ, ξ )ℝN ≥ ϑ(|y|)

|y| |ξ|2 for all y ∈ ℝN \ {0} and all ξ ∈ ℝN ;
(iv) if G0(t) = ∫

t
0 a0(s)s ds for t > 0, then there exists q ∈ (1, p) such that

lim sup
t→0+

qG0(t)
tq

≤ c∗ and t Ü→ G0(t1/q) is convex.

Remark 2.2. Hypotheses H(a) (i)–(iii) come from the nonlinear regularity theory of Lieberman [13] and the
nonlinear maximum principle of Pucci and Serrin [26]. Hypothesis H(a) (iv) serves the needs of our problem,
but it is a mild condition which is satisfied in all the main cases of interest, as the examples which follow
illustrate.
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From the above hypotheses it is clear that the primitive G0( ⋅ ) is strictly convex and strictly increasing. We set
G(y) = G0(|y|) for all y ∈ ℝN . Then, G( ⋅ ) is convex, G(0) = 0 and

∇G(0) = 0 and ∇G(y) = G�
0(|y|)

y
|y|

= a0(|y|)y = a(y) for all y ∈ ℝN \ {0}.

So, G( ⋅ ) is the primitive of a( ⋅ ). The convexity of G( ⋅ ), since G(0) = 0, implies that

G(y) ≤ (a(y), y)ℝN for all y ∈ ℝN . (2.2)

The next lemma summarizes the main properties of the map a( ⋅ ). It is a straightforward consequence of
hypotheses H(a) (i)–(iii) and of (2.1).

Lemma 2.3. If hypotheses H(a) (i)–(iii) hold, then
(a) y Ü→ a(y) is continuous and strictly monotone, hence, maximal monotone too;
(b) |a(y)| ≤ c4(1 + |y|p−1) for all y ∈ ℝN and for some c4 > 0;
(c) (a(y), y)ℝN ≥ c1

p−1 |y|
p for all y ∈ ℝN .

The last lemma and (2.2) lead to the following growth estimates for the primitive G( ⋅ ).

Corollary 2.4. If hypotheses H(a) (i)–(iii) hold, then c1
p(p−1) |y|

p ≤ G(y) ≤ c5(1 + |y|p) for all y ∈ ℝN and for some
c5 > 0.

The examples that follow illustrate that our conditions on the map a( ⋅ ) cover many cases of interest.

Example 2.5. The following maps satisfy the hypotheses H(a).
(i) The map a(y) = |y|p−2y with 1 < p < ∞, which corresponds to the p-Laplacian differential operator de-

fined by
∆pu = div(|Du|p−2Du) for all u ∈ W1,p(Ω).

(ii) The map a(y) = |y|p−2y + |y|q−2y with 1 < q < p < ∞, which corresponds to the (p, q)-differential opera-
tor defined by

∆pu + ∆qu for all u ∈ W1,p(Ω).

Such operators arise in problems of mathematical physics. We mention the works of Benci, D’Avenia,
Fortunato and Pisani [1] (quantum physics) and Cherfils and Ilyasov [2] (plasma physics). Recently, ex-
istence and multiplicity results for such equations with Dirichlet boundary conditions were proved by
Cingolani and Degiovanni [3], Gasiński and Papageorgiou [9], Mugnai and Papageorgiou [17], Papageor-
giou and Rădulescu [19, 21, 23] and Sun, Zhang and Su [27].

(iii) The map a(y) = (1 + |y|2)(p−2)/2y with 1 < p < ∞, which corresponds to the generalized p-mean curva-
ture differential operator defined by

div((1 + |Du|2)(p−2)/2Du) for all u ∈ W1,p(Ω).

(iv) The map a(y) = |y|p−2y(1 + 1
1+|y|p ) with 1 < p < ∞, which corresponds to the differential operator

∆pu + div( |Du|
p−2Du

1 + |Du|p ) for all u ∈ W1,p(Ω),

which is used in problems of plasticity.

Finally, we impose the hypothesis that
H(β) β ∈ C0,α(∂Ω) with α ∈ (0, 1) and β(z) ≥ 0 for all z ∈ ∂Ω
and our hypotheses on the reaction term f(z, x) are that
H(f ) f : Ω × ℝ → ℝ is a Carathéodory function such that, for almost all z ∈ Ω, f(z, 0) = 0, f(z, ⋅ ) is odd on

[−η, η] for some η > 0 with f(z, η) ≤ 0 ≤ f(z, −η) and
(i) there exists aη ∈ L∞(Ω)+ such that |f(z, x)| ≤ aη(z) for almost all z ∈ Ω and all |x| ≤ η;
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(ii) if q ∈ (1, p) is as in H(a) (iv), then we have

lim
x→0

f(z, x)
|x|q−2x

= +∞ uniformly for almost all z ∈ Ω.

Remark 2.6. We stress that the above hypotheses do not impose any global growth condition on f(z, ⋅ ). In-
stead, we assume that f(z, ⋅ ) has a kind of oscillatory behavior near zero and that it is symmetric in that
interval. Hypothesis H(f ) (ii) implies the presence of a “concave” term near zero. Wemention the work of Liu
andWang [14] who produced infinitely many nodal solutions for a semilinear Schrödinger equation without
assuming the existence of zeros. We should point out that the idea of using cut-off techniques to produce an
infinity of solutions converging to zero goes back to the work of Wang [28] who modified the reaction term
in the interval [−η, η] and applied the result of Clark and Heinz to the modified functional (see Wang [28,
Lemma 2.3]).

Using hypothesis H(f ) (ii), we see that, given any ξ > 0 and recalling that q < p, we can find δ = δ(ξ ) ∈ (0, η̂)
with η̂ = min{1, η} such that

f(z, x)x ≥ ξ |x|q ≥ ξ |x|p for almost all z ∈ Ω and all |x| ≤ δ. (2.3)

Then, given r ∈ (p, +∞), we can find c6 = c6(r, δ) > 0 such that

f(z, x)x ≥ ξ |x|q − c6|x|r for almost all z ∈ Ω and all x ∈ [−η, η]. (2.4)

From (2.3) we have
F(z, x) ≥ ξ

q
|x|q for almost all z ∈ Ω and all |x| ≤ δ. (2.5)

In our analysis of (1.1), in addition to the Sobolev space W1,p(Ω), we will also use the Banach space
C1(Ω). This is an ordered Banach space with positive cone

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior and, if u ∈ C+ with u(z) > 0 for all z ∈ Ω, then u ∈ int C+. On ∂Ω, we con-
sider the (N − 1)-dimensional Hausdorff (surface) measure σ( ⋅ ). Using this measure, we can define the
“boundary” Lebesgue spaces Lq(∂Ω), 1 ≤ q ≤ ∞. From the theory of Sobolev spacesweknow that there exists
a unique continuous linear map γ0 : W1,p(Ω) → Lp(∂Ω), known as the “trace map”, such that γ0(u) = u|∂Ω
for all u ∈ W1,p(Ω) ∩ C(Ω). We have

Im γ0 = W1/p� ,p(∂Ω)(1p +
1
p�

= 1) and ker γ0 = W1,p
0 (Ω).

Moreover, the trace map γ0 is compact into Lq(∂Ω) for q ∈ [1, (N−1)pN−p ). Hereafter, for the sake of notational
simplicity,wewill drop theuseof the tracemap γ0. The restrictions of Sobolev functions on ∂Ωareunderstood
in the sense of traces. By ‖ ⋅ ‖ we denote the norm of the Sobolev spaceW1,p(Ω) defined by

‖u‖ = [‖u‖pp + ‖Du‖pp]
1/p for all u ∈ W1,p(Ω).

For every x ∈ ℝ, let x± = max{±x, 0}. Then, for u ∈ W1,p(Ω), we set u±( ⋅ ) = u( ⋅ )±. We know that

u = u+ − u−, |u| = u+ + u− and u+, u− ∈ W1,p(Ω).

Also, by | ⋅ |N we denote the Lebesgue measure on ℝN and A : W1,p(Ω) → W1,p(Ω)∗ is the nonlinear map
defined by

⟨A(u), h⟩ = ∫
Ω

(a(Du), Dh)ℝN dz for all u, h ∈ W1,p(Ω).

The map A : W1,p(Ω) → W1,p(Ω)∗ is continuous, monotone and of type (S)+, that is,

un
w
→ u inW1,p(Ω) and lim sup

n→∞
⟨A(un), un − u⟩ ≤ 0 implies that un → u inW1,p(Ω).

Here, by ⟨ ⋅ , ⋅ ⟩ we denote the duality brackets for the pair (W1,p(Ω)∗,W1,p(Ω)) (see Gasiński and Papa-
georgiou [8]). Finally, for any φ ∈ C1(X,ℝ), by Kφ we denote the critical set of φ, that is,

Kφ = {u ∈ X : φ�(u) = 0}.
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3 Nodal Solutions
Using (2.4), we introduce the truncation

e(z, x) =
{{{
{{{
{

− ξηq−1 + c6ηr−1 if x < −η,
ξ|x|q−2x − c6|x|r−2x if − η ≤ x ≤ η,
ξηq−1 − c6ηr−1 if η < x

(3.1)

of the right-hand side of (2.4) and, for all (z, x) ∈ ∂Ω × ℝ, the truncation

b(z, x) =
{{{
{{{
{

− β(z)ηp−1 if x < −η,
β(z)|x|p−2x if − η ≤ x ≤ η,
β(z)ηp−1 if η < x

(3.2)

of the boundary term β(z)|x|p−2x. Both are Carathéodory functions.We consider the auxiliary nonlinear, non-
homogeneous Robin problem

{{
{{
{

−div a(Du(z)) = e(z, u(z)) in Ω,
∂u
∂na

+ b(z, u) = 0 on ∂Ω.
(3.3)

Proposition 3.1. If hypotheses H(a), H(β)andH(f )hold, then (3.3)admits a unique positive solution ū ∈ int C+
and v̄ = −ū ∈ −int C+ is its unique negative solution.

Proof. We introduce the Carathéodory function τ : Ω × ℝ → ℝ defined by

τ(z, x) =
{{{
{{{
{

− ηp−1 if x < −η,
|x|p−2x if − η ≤ x ≤ η,
ηp−1 if η < x.

(3.4)

Let

T(z, x) =
x

∫
0

τ(z, s) ds, E(z, x) =
x

∫
0

e(z, s) ds and B(z, x) =
x

∫
0

b(z, s) ds,

and consider the C1-functional ψ+ : W1,p(Ω) → ℝ defined by

ψ+(u) = ∫
Ω

G(Du) dz + 1
p
‖u‖pp + ∫

∂Ω

B(z, u+) dσ − ∫
Ω

E(z, u+) dz − ∫
Ω

T(z, u+) dz for all u ∈ W1,p(Ω).

From Corollary 2.4 and (3.1), (3.2) and (3.4) it is clear that ψ+ is coercive. Also, using the Sobolev embed-
ding theorem and the trace theorem, we see that ψ+ is sequentially weakly lower semicontinuous. So, by the
Weierstrass theorem, we can find ū ∈ W1,p(Ω) such that

ψ+(ū) = inf {ψ+(u) : u ∈ W1,p(Ω)}. (3.5)

Hypothesis H(a) (iv) implies that we can find c∗1 > c∗ and δ1 ∈ (0, η̂) such that

G0(t) ≤
c∗1
q
tq for all t ∈ [0, δ1]. (3.6)

Let u ∈ int C+ and choose t ∈ (0, 1) small such that

tu(z) ≤ δ1 and t|Du(z)| ≤ δ1 for all z ∈ Ω. (3.7)

Using (3.6), (3.7), (3.1), (3.2) and (3.4), we have (see hypothesis H(β) and the trace theorem)

ψ+(tu) ≤
tpc∗1
p

‖Du‖pp +
tp

p ∫
∂Ω

β(z)up dσ −
tqξ
q

‖u‖qq +
trc6
r

‖u‖rr

≤ (
tp−qc∗1
p

‖Du‖pp +
tp−q

p
c8‖u‖p −

ξ
q
‖u‖qq +

tr−q

r
c8‖u‖rr)tq
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for some c8 > 0. Since 1 < q < p < r, choosing t ∈ (0, 1) even smaller if necessary, we have that ψ+(tu) < 0
implies (see (3.5))

ψ+(ū) < 0 = ψ+(0)

and, hence, ū ̸= 0. From (3.5) we have that ψ�
+(ū) = 0 implies

⟨A(ū), h⟩ + ∫
Ω

|ū|p−2ūh dz + ∫
∂Ω

b(z, u+)h dσ = ∫
Ω

(e(z, u+) + τ(z, u+))h dz for all h ∈ W1,p(Ω). (3.8)

In (3.8), first we choose h = −ū− ∈ W1,p(Ω) and then we have that (see Lemma 2.3 and (3.1), (3.2) and (3.4))
c1
p − 1 ‖Dū

−‖pp + ‖u−‖pp ≤ 0

implies ū ≥ 0 and ū ̸= 0. Also, in (3.8), we choose h = (ū − η)+ ∈ W1,p(Ω) and then we have (see (3.1), (3.2)
and (3.4) for the equality and (2.4) for the first inequality)

⟨A(ū), (ū − η)+⟩ + ∫
Ω

ūp−1(ū − η)+ dz + ∫
∂Ω

β(z)ηp−1(ū − η)+ dσ

= ∫
Ω

(ξηq−1 − c6ηr−1 + ηp−1)(ū − η)+ dz

≤ ∫
Ω

(f(z, η) + ηp−1)(ū − η)+ dz

≤ ⟨A(η), (ū − η)+⟩ + ∫
Ω

ηp−1(ū − η)+ dz + ∫
∂Ω

β(z)ηp−1(ū − η)+ dσ

since A(η) = 0 and f(z, η) ≤ 0 for almost all z ∈ Ω, which implies that

⟨A(ū) − A(η), (ū − η)+⟩ + ∫
Ω

(ūp−1 − ηp−1)(ū − η)+ dz ≤ 0.

Therefore,
|{ū > η}|N = 0,

that is,
ū ≤ η.

Thus, we have proved that

ū ∈ [0, η] = {u ∈ W1,p(Ω) : 0 ≤ u(z) ≤ η for almost all z ∈ Ω} and ū ̸= 0. (3.9)

Then, using (3.1), (3.2), (3.4) and (3.9), we see that (3.8) becomes

⟨A(ū), h⟩ + ∫
∂Ω

β(z)ūp−1h dσ = ∫
Ω

e(z, ū)h dz for all h ∈ W1,p(Ω),

which gives (see Papageorgiou and Rădulescu [18])

{{
{{
{

−div a(Dū(z)) = e(z, ū(z)) for almost all z ∈ Ω,
∂ū
∂na

+ β(z)ūp−1 = 0 on ∂Ω,

that is, ū is a positive solution of (3.3). From Papageorgiou and Rădulescu [24] we have that ū ∈ L∞(Ω) and,
then, the nonlinear regularity result of Lieberman [13, p. 320]) implies that ū ∈ C+ \ {0}. Because of (3.9) we
have

−div a(Dū(z)) = ξ ū(z)q−1 − c6ū(z)r−1 for almost all z ∈ Ω,



N. S. Papageorgiou and V. D. Rădulescu, Infinitely Many Nodal Solutions | 293

which gives
div a(Dū(z)) ≤ c6ηr−p ū(z)p−1 for almost all z ∈ Ω,

that is (see Pucci and Serrin [26, pp. 111, 120]),

ū ∈ int C+ .

Next, we show the uniqueness of this positive solution. To this end, we consider the integral functional
j : L1(Ω) → ℝ = ℝ ∪ {+∞} defined by

j(u) =
{{{
{{{
{

∫
Ω

G(Du1/q) dz + 1
p ∫
∂Ω

β(z)up/q dσ if u ≥ 0, u1/q ∈ W1,p(Ω),

+∞ otherwise.

Let u1, u2 ∈ dom j = {u ∈ L1(Ω) : j(u) < +∞} (the effective domain of j). We set

u = ((1 − t)u1 + tu2)1/q for t ∈ [0, 1].

Using Díaz and Saá [5, Lemma 1], we have

|Du(z)| ≤ [(1 − t)|Du1(z)1/q|q + t|Du2(z)1/q|q]1/q for almost all z ∈ Ω

and because G0( ⋅ ) is increasing and from hypothesis H(a) (iv), for almost all z ∈ Ω, we have

G0(|Du(z)|) ≤ G0([(1 − t)|Du1(z)1/q|q + t|Du2(z)1/q|q]1/q) ≤ (1 − t)G0(|Du1(z)1/q|) + tG0(|Du2(z)1/q|),

which gives
G(Du(z)) ≤ (1 − t)G(Du1(z)1/q) + tG(Du2(z)1/q) for almost all z ∈ Ω,

that is, j( ⋅ ) is convex (recall that q < p and see hypothesis H(β)) By Fatou’s lemma, j( ⋅ ) is lower semicontin-
uous.

Let ȳ ∈ W1,p(Ω) be another positive solution of (3.3). As we did for ū in the first part of the proof, we can
show that

ȳ ∈ [0, η] ∩ int C+.

For any h ∈ C1(Ω) and for |t| < 1 small, we have

ūq + th ∈ dom j and ȳq + th ∈ dom j.

Then, we see that the functional j( ⋅ ) is Gâteaux differentiable at ūq and ȳq in the direction h. Moreover, via
the chain rule and the nonlinear Green’s identity, we have

j�(ūq)(h) = 1
q ∫
Ω

−div a(Dū)
ūq−1

h dz and j�(ȳq)(h) = 1
q ∫
Ω

−div a(Dȳ)
ȳq−1

h dz.

Choose h = ūq − ȳq. Since j( ⋅ ) is convex, j�( ⋅ ) is monotone, and so we have (see (3.1))

0 ≤ ∫
Ω

(
−div a(Dū)

ūq−1
−
−div a(Dȳ)

ȳq−1
)(ūq − ȳq) dz = ∫

Ω

c6(ȳr−q − ūr−q)(ūq − ȳq) dz,

which gives
ū = ȳ

and, then, ū ∈ [0, η] ∩ int C+ is the unique positive solution of (3.3). Evidently, since x Ü→ ξ |x|q−2x − c6|x|r−2x
is odd, we have that v̄ = −ū ∈ [−η, 0] ∩ (−int C+) is the unique negative solution of (3.3).
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We introduce the sets

S+ = {u ∈ W1,p(Ω) : u is a positive solution of (1.1) with u ∈ [0, η]},
S− = {v ∈ W1,p(Ω) : v is a negative solution of (1.1) with v ∈ [−η, 0]}.

As before, the nonlinear maximum principle implies that

S+ ⊆ int C+ and S− ⊆ − int C+.

Moreover, as in Filippakis and Papageorgiou [6], we have that

S+ is downward directed,

that is, if u1, u2 ∈ S+, then we can find u ∈ S+ such that u ≤ min{u1, u2}, and

S− is upward directed,

that is, if v1, v2 ∈ S−, then we can find v ∈ S− such that v ≥ max{v1, v2} (see also Motreanu, Motreanu and
Papageorgiou [16, p. 421]).

Proposition 3.2. If hypotheses H(a), H(β) and H(f ) hold, then ū ≤ u for all u ∈ S+ and v ≤ v̄ for all v ∈ S−.

Proof. Let u ∈ S+. We consider the Carathéodory functions k+(z, x), b̂+(z, x) and τ̂+(z, x) defined by

k+(z, x) =
{{{
{{{
{

0 if x < 0,
e(z, x) if 0 ≤ x ≤ u(z),
e(z, u(z)) if u(z) < x,

(3.10)

b̂+(z, x) =
{{{
{{{
{

0 if x < 0,
β(z)xp−1 if 0 ≤ x ≤ u(z),
β(z)u(z)p−1 if u(z) < x,

for all (z, x) ∈ ∂Ω × ℝ, (3.11)

τ̂+(z, x) =
{{{
{{{
{

0 if x < 0,
xp−1 if 0 ≤ x ≤ u(z),
u(z)p−1 if u(z) < x.

(3.12)

We set

K+(z, x) =
x

∫
0

k+(z, s) ds, B̂+(z, x) =
x

∫
0

b̂+(d, s) ds and ̂T+(z, x) =
x

∫
0

τ̂+(z, s) ds.

Consider the C1-functional γ+ : W1,p(Ω) → ℝ defined by

γ+(u) = ∫
Ω

G(Du) dz + 1
p
‖u‖pp + ∫

∂Ω

B̂+(z, u) dσ − ∫
Ω

K+(z, u) dz − ∫
Ω

̂T+(z, u) dz for all u ∈ W1,p(Ω).

From Corollary 2.4 and (3.10), (3.11) and (3.12) we see that γ+ is coercive. Also, it is sequentially weakly
lower semicontinuous. So, we can find ū0 ∈ W1,p(Ω) such that

γ+(ū0) = inf {γ+(u) : u ∈ W1,p(Ω)}. (3.13)

As before (see the proof of Proposition 3.1), since 1 < q < p < r, for ũ ∈ int C+ and t ∈ (0, 1) small, we have
(see hypothesis H(a) (iv))

γ+(tũ) < 0 = γ+(0),

which implies (see (3.13))
γ+(ū0) < 0 = γ+(0)
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and, hence, ū0 ̸= 0. From (3.13) we have that γ�+(ū0) = 0 implies

⟨A(ū0), h⟩+∫
Ω

|ū0|p−2ū0h dz+ ∫
∂Ω

b̂+(z, ū0)h dz =∫
Ω

(k+(z, ū0)+ τ̂+(z, ū0))h dz for all h ∈W1,p(Ω). (3.14)

In (3.14), we choose h = −ū−0 . Using Lemma 2.3 and (3.10), (3.11) and (3.12), we obtain that
c1
p − 1 ‖Dū

−
0‖
p
p + ‖ū−0‖

p
p ≤ 0

implies ū0 ≥ 0 and ū0 ̸= 0. Also, in (3.14), we choose h = (ū0 − u)+ ∈ W1,p(Ω). Then, we have (see (3.10),
(3.11) and (3.12) for the first equality, see (3.1) and recall that u ∈ [0, η] for the second one and see (2.4) for
the first inequality)

⟨A(ū0), (ū0 − u)+⟩ + ∫
Ω

ūp−10 (ū0 − u)+ dz + ∫
∂Ω

β(z)up−1(ū0 − u)+ dσ

= ∫
Ω

(e(z, u) + up−1)(ū0 − u)+ dz

= ∫
Ω

(ξuq−1 − c6ur−1 + up−1)(ū0 − u)+ dz

≤ ∫
Ω

(f(z, u) + up−1)(ū0 − u)+ dz

= ⟨A(u), (ū0 − u)+⟩ + ∫
Ω

up−1(ū0 − u)+dz + ∫
∂Ω

β(z)up−1(u0 − u)+dσ

since u ∈ S+, which implies that

⟨A(ū0) − A(u), (ū0 − u)+⟩ + ∫
Ω

(ūp−10 − up−1)(ū0 − u)+ dz ≤ 0.

Therefore,
|{ū0 > u}|N = 0,

that is,
ū0 ≤ u.

Thus, we have proved that

ū0 ∈ [0, u] = {y ∈ W1,p(Ω) : 0 ≤ y(z) ≤ u(z) for almost all z ∈ Ω} and ū0 ̸= 0. (3.15)

Because of (3.10), (3.11), (3.12) and (3.15) we have that (3.14) becomes

⟨A(ū0), h⟩ + ∫
∂Ω

β(z)ūp−10 h dσ = ∫
Ω

e(z, ū0)h dz for all h ∈ W1,p(Ω),

which implies that ū0 is a positive solution of (3.3) (see Papageorgiou andRădulescu [18]). Then, fromPropo-
sition 3.1 we have ū0 = ū and, as a result, ū ≤ u for all u ∈ S+.

In a similar fashion, we show that v ≤ v̄ for all v ∈ S+.

Next, we produce extremal constant-sign solutions, that is, a smallest positive solution and a biggest negative
solution.

Proposition 3.3. If hypotheses H(a), H(β) and H(f ) hold, then (1.1) admits a smallest positive solution

u∗ ∈ [0, η] ∩ int C+

and a biggest negative solution
v∗ ∈ [−η, 0] ∩ (− int C+).



296 | N.S. Papageorgiou and V. D. Rădulescu, Infinitely Many Nodal Solutions

Proof. Evidently, we restrict ourselves to the sets S+ and S−. From Hu and Papageorgiou [11, Lemma 3.10]
we know that we can find a decreasing sequence {un}n≥1 ⊆ S+ such that

inf S+ = inf
n≥1

un .

For all n ∈ ℕ, we have

⟨A(un), h⟩ + ∫
∂Ω

β(z)up−1n h dz = ∫
Ω

f(z, un)h dz for all h ∈ W1,p(Ω). (3.16)

Clearly, {un}n≥1 ⊆ W1,p(Ω) is bounded and so we may assume that

un
w
→ u∗ inW1,p(Ω) and un → u∗ in Lp(Ω) and in Lp(∂Ω). (3.17)

In (3.16), we choose h = un − u∗ ∈ W1,p(Ω), we pass to the limit as n → ∞ and we use (3.17). Then, we have
that

lim
n→∞

⟨A(un), un − u∗⟩ = 0

implies
un → u∗ inW1,p(Ω) (3.18)

since A( ⋅ ) is of type (S)+. So, if in (3.16) we pass to the limit as n → ∞ and use (3.18), then

⟨A(u∗), h⟩ + ∫
∂Ω

β(z)up−1∗ h dσ = ∫
Ω

f(z, u∗)h dz for all h ∈ W1,p(Ω). (3.19)

Also (see Proposition 3.2),
ū ≤ u∗. (3.20)

From (3.19) and (3.20) we infer that

u∗ ∈ S+ ⊆ int C+ and u∗ = inf S+.

Similarly, we produce
v∗ ∈ S− and v∗ = sup S−.

Using these two extremal constant-sign solutions, we introduce the Carathéodory functions

μ(z, x) =
{{{
{{{
{

f(z, v∗(z)) + |v∗(z)|p−2v∗(z) if x < v∗(z),
f(z, x) + |x|p−2x if v∗(z) ≤ x ≤ u∗(z),
f(z, u∗(z)) + u∗(z)p−1 if u∗(z) < x,

(3.21)

b̄(z, x) =
{{{
{{{
{

β(z)|v∗(z)|p−2v∗(z) if x < v∗(z),
β(z)|x|p−2x if v∗(z) ≤ x ≤ u∗(z),
β(z)u∗(z)p−1 if u∗(z) < x.

(3.22)

We set

M(z, x) =
x

∫
0

μ(z, s) ds and B̄(z, x) =
x

∫
0

b̄(z, s) ds,

and we consider the C1-functional φ̄ : W1,p(Ω) → ℝ defined by

φ̄(u) = ∫
Ω

G(Du) dz + 1
p
‖u‖pp + ∫

∂Ω

B̄(z, u) dσ − ∫
Ω

M(z, u) dz for all u ∈ W1,p(Ω).
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Proposition 3.4. If hypotheses H(a), H(β) and H(f ) hold, then φ̄ satisfies the PS-condition, it is even, bounded
from below, φ̄(0) = 0 and Kφ̄ ⊆ [v∗, u∗].

Proof. From (3.21) and (3.22) it is clear that φ̄ is coercive. So, it is bounded from below and satisfies the
PS-condition (see Papageorgiou andWinkert [25]). Hypotheses H(f ) imply that φ̄ is even (recall that u∗ ∈ S+
and v∗ ∈ S−) and φ̄(0) = 0. Finally, let u ∈ Kφ̄. Then, φ̄�(u) = 0 implies that

⟨A(u), h⟩ + ∫
Ω

|u|p−2uh dz + ∫
∂Ω

b̄(z, u)h dσ = ∫
Ω

μ(z, u)h dz for all h ∈ W1,p(Ω). (3.23)

In (3.23), we first choose h = (u − u∗)+ ∈ W1,p(Ω). Then, we have (see (3.21) and (3.22) for the first equality
and recall that u∗ ∈ S+ for the second one)

⟨A(u), (u − u∗)+⟩ + ∫
Ω

up−1(u − u∗)+ dz + ∫
∂Ω

β(z)up−1∗ (u − u∗)+ dσ

= ∫
Ω

(f(z, u∗) + up−1∗ )(u − u∗)+ dz

= ⟨A(u∗), (u − u∗)+⟩ + ∫
Ω

up−1∗ (u − u∗)+ dz + ∫
∂Ω

β(z)up−1∗ (u − u∗)+ dσ,

which implies that
⟨A(u) − A(u∗), (u − u∗)+⟩ + ∫

Ω

(up−1 − up−1∗ )(u − u∗)+ dz = 0.

Therefore,
|{u > u∗}|N = 0,

that is,
u ≤ u∗.

Similarly, if in (3.23) we choose h = (v∗ − u)+ ∈ W1,p(Ω), then we obtain that v∗ ≤ u implies

Kφ̄ ⊆ [v∗, u∗].

The extremality of v∗ ∈ − int C+ and of u∗ ∈ int C+ implies the following property.

Corollary 3.5. If hypotheses H(a), H(β) and H(f ) hold, then the elements of Kφ̄ \ {0, v∗, u∗} are nodal solutions
of (1.1).

Now, we are ready to produce a whole sequence of distinct nodal solutions for (1.1).

Theorem 3.6. Assume that hypotheses H(a), H(β) and H(f ) hold. Then, (1.1) has a whole sequence {un}n≥1 ⊆
C1(Ω) of distinct nodal solutions.

Proof. Let η̄ = min{minΩ u∗, −maxΩ v∗} (recall that u∗ ∈ int C+ and v∗ ∈ − int C+). Hypothesis H(a) (iv) im-
plies that we can find δ0 ∈ (0, η̄] such that

G(y) ≤ c9|y|q for all y ∈ ℝN with |y| ≤ δ0 and for some c9 > 0. (3.24)

Also, from (2.5) we have

F(z, x) ≥ ξ
q
|x|q for almost all z ∈ Ω and for all |x| ≤ δ with ξ > 0. (3.25)

Let n ∈ ℕ and let Yn ⊆ W1,p(Ω) be an n-dimensional subspace. Then, all norms are equivalent on Yn. So, we
can find ρn > 0 such that u ∈ Yn and ‖u‖ ≤ ρn imply

|u(z)| ≤ δ for almost all z ∈ Ω. (3.26)
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Using (3.24), (3.25) and (3.26) together with (3.21) and (3.22), for all u ∈ Yn with ‖u‖ ≤ ρn, we have

φ̄(u) ≤ c9‖Du‖
q
q +

1
p ∫
∂Ω

β(z)|u|p dσ −
ξ
q
‖u‖qq ≤ (c10 − ξc11)‖u‖q (3.27)

with c10, c11 > 0 independent of ξ > 0 (use the trace theorem and recall that all norms are equivalent on Yn).
Recall that ξ > 0 is arbitrary (see (2.3)). So, we choose ξ > c10

c11 and we have that

φ(u) < 0 for all u ∈ Yn with ‖u‖ = ρn .

Because of Proposition 3.4 we can apply Theorem 2.1 to find {un}n≥1 ⊆ W1,p(Ω) \ {0} such that

un ∈ Kφ̄ \ {0} for all n ∈ ℕ

and
φ̄(un) → 0 as n → ∞.

Since Kφ̄ ⊆ C1(Ω) (nonlinear regularity theory), we have

un ∈ C1(Ω) \ {0} for all n ∈ ℕ.

Finally, Corollary 3.5 implies that {un}n≥1 ⊆ C1(Ω) is a sequence of distinct nodal solutions for (1.1).
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