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1 Introduction and Main Results

We are concerned with the fractional nonlinear Schrodinger—Poisson system

{ (-A)u+Apu=gu) inR>,

1.1
(-MN)'p = Au? inR3, (1-1)

where A > 0 and (-A)“ is the fractional Laplacian operator for a = s, t € [0, 1]. The fractional Schrédinger
equation was introduced by Laskin [28] in the context of fractional quantum mechanics for the study of
particles on stochastic fields modeled by Lévy processes. The operator (—A)* can be seen as the infinitesimal
generator of Lévy stable diffusion processes (see Applebaum [3]). If A = 0, then (1.1) reduces to the nonlinear
fractional scalar field equation

(-A)u =g(u) inR3. (1.2)

This equation is related to the standing waves of the time-dependent fractional scalar field equation
ipe ~ (-A)°p +g(¢)=0 InR’, (1.3)

which is a physically relevant generalization of the classical nonlinear Schrodinger equation. In fact, up to
replacing (-A)* with (1 — a)(-A)%, the operators in the above equations converge to —A, in a suitable sense,
due to the results in Bourgain, Brezis and Mironescu [9]. Here, i is the imaginary unit and ¢ denotes the
time variable. For power-type nonlinearities, the fractional Schrédinger equation (1.3) was derived in [28]
by replacing the Brownian motion in the path integral approach with the so-called Lévy flights (see, e.g.,
Metzler and Klafter [30]). Hence, the equation we want to study appears as a perturbation of a physically
meaningful equation. Also, Frank and Lenzmann [21, 22] obtained deep results on the uniqueness and
the non-degeneracy of ground states for (1.2) in the case when g(u) = |u[P~2u — u for subcritical p; see also
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Secchi and Squassina [34], where the soliton dynamics for (1.3) with an external potential was investigated.
In [24], Giammetta studied the evolution equation associated with the one-dimensional system

{ —Au+Adu =gu) inR, (1.4)

(-A)f¢p = Au*  inR.

In this case, the diffusion is fractional only in the Poisson equation. Our system is more general and contains
this as a particular case. If Kq(x) = [x|*N, the equation

V-Au+u= (K = [uP)u, ueHY*R?), u>0,

is studied in Frank and Lenzmann [20] and in Elgart and Schlein [19] it is shown that the dynamical evolution
of boson stars is described by the nonlinear evolution equation

0 = V-A + m2yp — (K3 = P12y, m=0,

forafield ¢ : [0, T) x R> — C (see also Frohlich, Jonsson and Lenzmann [23]). The square root of the Lapla-
cian also appears in the semi-relativistic Schrédinger—Poisson—Slater system (see Bellazzini, Ozawa and
Visciglia [6] and also the model studied in D’Avenia, Siciliano and Squassina [16]).

Observe that if we formally take s = t = 1, then (1.1) reduces to the classical Schrédinger—Poisson system

{—Au +Apu =gu) InR, (1.5)

-A¢p = A’ inR3,

which describes systems of identically charged particles interacting with each other in the case when mag-
netic effects can be neglected (see Benci and Fortunato [7]). In recent years, the Schrédinger—Poisson sys-
tem (1.5) has been widely studied by many researchers. Here, we would like to cite some related results,
for example, Cerami and Vaira [11] for positive solutions, Azzollini and Pomponio [5] for ground state so-
lutions, D’Aprile and Wei [15] for semi-classical states, and Ianni [25] for sign-changing solutions. See also
Ambrosetti [2] and the references therein. In [4], Azzollini, d’Avenia and Pomponio were concerned with (1.5)
under the Berestycki—Lions conditions (H2)—(H4) with s = 1 (see below). They proved that (1.5) admits a pos-
itive radial solution if A > 0 small enough. For the critical case, we refer to [38] and to the recent work [39] by
the authors of the present work.

1.1 Main Results

In this paper, we are mainly concerned with positive solutions of (1.1). First, we consider the subcritical case
with the Berestycki—Lions conditions. More precisely, we assume the following hypotheses on g.

(H1) g e CYR, R).

(H2) -oo < liminf gﬂ < lim sup g(—T) =-m<O.
7—0 T 7—0 T
: 8(1) . _
(H3) IIITILS;,E)IP pY <0, where 2} = 335
&
(H4) There exists & > 0 such that G(¢) := jg(r) dr > 0.
0

Our first result is the following theorem.

Theorem 1.1. Suppose that g satisfies (H1)—-(H4) and 2t + 4s > 3. Then, the following hold.

(i) Thereexists Ao > O such that, forevery A € (0, Ao), (1.1) admits a nontrivial positive radial solution (uy, ¢,).

(ii) Along asubsequence, (u,, ¢p) convergesto (u, 0)in H(R?) x DH2(R3) as A — 0, where u is a radial ground
state solution of (1.2).
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Remark 1.2. The hypotheses (H2)-(H4) are the so-called Berestycki-Lions conditions, which were intro-
duced in Berestycki and Lions [8] for the derivation of the ground state of (1.2) with s = 1. Under (H1)-(H4),
Chang and Wang [12] proved the existence of ground state solutions to (1.2) for s € (0, 1). The hypothesis (H1)
is only used to get the better regularity of solutions to (1.2), which guarantees the PohoZaev identity. By the
Pohozaev identity, (H4) is necessary.

Remark 1.3. The hypothesis 2t + 4s > 3 is just used to guarantee that the Poisson equation (-A)!¢ = Au?
makes sense, due to the fact that DH2(R3) — L2 (R3). For details, see Section 2 below.

In the variational approach to the study of elliptic problems, the Palais—Smale condition ((PS) condition for
short) plays a crucial role. To verify the (PS) condition, the so-called Ambrosetti-Rabinowitz condition

T

ujf(s*)dfs (1), TER\{O}, u>2, (AR)
0

has been frequently used in the literature. The main role of (AR) is to guarantee the boundedness of the
(PS) sequence in some suitable Sobolev space. More recently, Pucci, Xiang and Zhang [32] considered frac-
tional p-Laplacian equations of Schrédinger—Kirchhoff type

M( J j e —ul” dy)(—A)su + VOOIulP~2u = f(x, u) + g(x). (1.6)

| X — y|N+ps p
N ]RN
With the use of (AR), they established the existence of multiple solutions to (1.6) via the Ekeland variational
principle and the mountain pass theorem. In fact, (AR) is a technical assumption. Many mathematicians
have tried to remove or weaken it. In [8], Berestycki and Lions considered the autonomous scalar field equa-
tion. Without using (AR), they proved the existence of ground state solutions by the constraint variational
method. However, it is not easy to use the idea in [8] in order to deal directly with non-autonomous problems.
In [26], Jeanjean introduced a monotonicity trick to overcome the difficulty due to the lack of (AR) in the non-
autonomous case. In [39], without (AR), the authors of the present work considered the existence and the
concentration of positive solutions to (1.1) in the critical case for s = t = 1. It is natural to wonder if similar
results can hold for the critical fractional case. This is just our second goal of the present paper. In the critical
case, we assume the following hypotheses on g.
8(7)

(HZ)’ lln‘(l) T =-ac< O.
T

(H3)' lim & =b>0.
T500 T25_1

(H4)' There exists yu > 0 and g < 2} such that g(t) — bt%~! + at > ur? ! forall 7 > 0.
Our second result is the following theorem.

Theorem 1.4. Suppose that g satisfies (H1) and (H2)'—(H4)'. Then, the following hold.

(i) The limit problem (1.2) admits a ground state solution if max{2} — 2,2} < q < 2.

(ii) If 2t + 4s > 3, then there exists Ao > O such that, for every A € (0, Ag), (1.1) admits a nontrivial positive
radial solution (uy, ¢,) if max{2; - 2,2} < q < 2;.

(iii) Along a subsequence, (u,, ¢,) converges to (u, 0) in H¥(R?) x D2(R3) as A — 0, where u is a radial ground
state solution of (1.2).

Remark 1.5. In the case s = 1, the hypotheses (H2)'—(H4)" were introduced in Zhang and Zou [40] (see also
Alves, Souto and Montenegro [1]) to obtain the ground state of the scalar field equation —Au = g(u) in RV,
In [36], Shang and Zhang considered the fractional problem (1.2) in the critical case (see also Shang, Zhang
and Yang [37]). With the help of the monotonicity of 7 — g(1)/1, the ground state solutions were obtained
by using the Nehari approach. To the best of our knowledge, there are few results in the literature about the
ground states of the critical fractional problem (1.2) with a general nonlinearity, particularly without the
Ambrosetti-Rabinowitz condition and the monotonicity of g(7)/t. Theorem 1.4 seems to be the first result in
this direction.
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Remark 1.6. Without loss generality, from now on, we assume thata =b =y = 1.

We conclude by fixing some notation that we will use throughout the paper. We define the norm

1/p
lullp := ( J ul? dX) , Dell,00),

R3

the value

20 = ——,
7 3-2a

and we let &t = F(u) denote the Fourier transform of u.

In the rest of the paper, we use the perturbation approach to prove Theorem 1.1 and Theorem 1.4. Similar
arguments can also be found in [39]. The paper is organized as follows. In Section 2, we introduce the func-
tional framework and some preliminary results. In Section 3, we construct the min-max level. In Section 4,
we use a perturbation argument to complete the proof of Theorem 1.1 and we give the proof of Theorem 1.4.

ae(0,1),

2 Preliminaries and Functional Setting

2.1 Fractional-Order Sobolev Spaces

The fractional Laplacian (-A)* with a € (0, 1) of a function ¢ : R> — R is defined by

F(-D)*P)(&) = [E1P*TF(P)(&), & e R,

where 7 is the Fourier transform, i.e.,
1

TAE) = G

J exp (-2mié - x)¢(x) dx,

R3
where i is the imaginary unit. If ¢ is smooth enough, it can be computed by the singular integral

(-8)%p(x) = caP.V.J P - ()
R

dy X € IR3
3+2a ’ ’
. |x J’|

where ¢, is a normalization constant and P.V. stands for the principal value.
For any a € (0, 1), we consider the fractional-order Sobolev space

H*R3) = {u e L2(R3) : j |&2% )% d¢ < oo}
]R3
endowed with the norm 12
lulla = ( j(l + €PN @l d€> ., ueHY (R,
]RS

and with the inner product

) = [+ gP9ards, uve HGR).

IR3

It is easy to see that the inner products

",V J(1+|¢“|2“)ﬂf/d.f and u,v J(uv+(—A)“/2u(—A)“/2v) dx
R3 R3

on H*(IR3) are equivalent (see [36]). The homogeneous Sobolev space D%?(RR3) is defined by

DER) = {u € L2«(R%) : |&|%0 € L2 (R%)},
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which is the completion of C8°(1R3) under the norm

Ml = 1(-8)"?ul3 = J IE12%al> dé,  ue DYA(RP),
IR3

and the inner product

(U, V) paz = J(—A)“/Zu(—A)“/Zv dx, u,ve D% (R3).

R3
For a further introduction on fractional-order Sobolev spaces, we refer the interested reader to Di Nezza,
Palatucci and Valdinoci [17]. Let
HS(R?) = {u € H*(R?) : u(x) = u(|x|)}.

Now, we introduce the following Sobolev embedding theorems.
Lemma 2.1 (Lions [29]). For any a € (0, 1), H*(R?) is continuously embedded into L4(R>) for q € [2, 2] and
compactly embedded into L{IOC(IR3) for q € [1, 2%). Moreover, H¥(R?) is compactly embedded into L4(R?) for
q €(2,24).
Lemma 2.2 (Cotsiolis and Tavoularis [14], Di Nezza, Palatucci, and Valdinoci [17]). For any a € (0,1), D%?(RR>)
is continuously embedded into L2 (IR3), i.e., there exists Sy > 0 such that

2/2%
( I lu|%a dx) <S4 J (=AY 2ul2dx, ue D¥2(R3).
R3 R3

2.2 The Variational Setting

Now, we study the variational setting of (1.1). By Lemma 2.1, for 2¢ + 4s > 3, we have
HS(]RB) PN le/(3+2t)(]R3).
Then, for u € H¥(R3), by Lemma 2.2, the linear operator P : D%2(R3) — R defined by

P(v) = j w2y < [uly 5000 V2 < ClUlZ Vi
IR3
is well defined on D%2(IR?) and is continuous. Thus, it follows from the Lax—Milgram theorem that there exists
a unique ¢}, € D-2(R?) such that (-A)! ¢!, = Au?. Moreover, for x € R3, we have

2
PL(X) := Acy J vy dy (2.1)
R

pe—yp "
3
where we have set s
_ T(G-20
m3/2 ZZtF(t) .
Formula (2.1) is called the ¢-Riesz potential. Substituting (2.1) into (1.1), we can rewrite (1.1) in the equivalent
form

Ct

(~A)*u + ApLu = g(u), ue H(R?). (2.2)
We define the energy functional Ty : H(R3) — R by

Ta(u) = % J [(=A)2u)? dx + % J Lu?dx - j G(u)dx
R R R
with

T

G(1) = Jg(() dd.
0
Obviously, the critical points of 'y are the weak solutions of (2.2).
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Definition 2.3. (i) Wecall (i, ¢p) € H5(R?) x D2 (IR3) a weak solution of (1.1) if u is a weak solution of (2.2).
(ii) We call u € H5(R?) a weak solution of (2.2) if

J((—A)S/zu(—A)s/zv + ApLuv)dx = I gv)vdx forallv e HS(R®).

R3 R3

Setting
1
T(u) := 7 J ¢l u? dx,
R3

we summarize some properties of ¢!, and T(u) which will be used later.

Lemma 2.4. Ift,s € (0, 1) and 2t + 4s > 3, then, for any u € H*(R3), the following hold.

() uw~ @Y HS(R?) — DLH2(R3) is continuous and maps bounded sets into bounded sets.
(i) ¢! (x) =0, x e R, and T(u) < cAllull? for some ¢ > 0.

(iii) T(u(- /7)) = >+ T(u) forany T > 0 and u € HS(R3).

(iv) If un — u weakly in HS(R?), then ¢, — ¢, weakly in D-2(RR3).

(v) Ifun — uweakly in HS(R3), then T(uy,) = T(u) + T(un — u) + o(1).

(vi) If u is a radial function, so is ¢.,.

Proof. The proof is similar to that in [33], so we omit the details here. O

3 The Subcritical Case

3.1 The Modified Problem

It follows from Lemma 2.4 that ' is well defined on H(IR3) and is of class C!. Since we are concerned with
positive solutions of (2.2), similarly to [8] (see also [12]), we modify our problem first. Without loss of gener-
ality, we assume that

0 < ¢ =inf{t € (0, 00) : G(1) > O},

where ¢ is given in (H4). Let
7o = inf{r > & : g(1) = 0} € [£, 00]

and define a function g : R — R by

3 g(r) fort €0, 0],
g(1) =
0 fort > 19,

and (1) = 0 for T < 0. If u € H%(R3) is a solution of (2.2), where g is replaced by &, then, by the maximum
principle (see Cabré and Sire [10]), we get that u is positive and u(x) < 7o for any x € R3, i.e., u is a solution of
the original problem (2.2) with g. Thus, from now on, we can replace g by g, but still use the same notation g.
In addition, for T > 0, let

g1(1) = max{g(r) + mr,0} and g»(7)=gi(7) - g(1).

Then, we have g,(7) > mt for 7 > 0,

lim 510 =0 and lim 510 =

7T—0 T T—+00 ‘[2; -1

0, (3.1)

and, for any € > 0, there exists C; > 0 such that

g1(1) <eg2(1) + Cet%7L, T3>0, (3.2)
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Let

u
Giu) = jgi(r) dr, i=1,2.
0

Then, by (3.1) and (3.2), for any € > 0, there exists C, > 0 such that

G1(T) < €Go(T) + Ce|T|*, TeR. (3.3)

3.2 The Limit Problem

In the following, we will find solutions of (2.2) by seeking critical points of T'. If A = 0, (2.2) becomes
(-A)u=gu), ueH R, (3.4)
which is referred to as the limit problem of (2.2). We define an energy functional for the limit problem (3.4) by
L(u) = % J |(~A)*"2u|? dx - J Gu)dx, ueH(R?).
R R3

In [12], Chang and Wang proved that, with the same assumptions on g as in Theorem 1.1, there exists a posi-
tive ground state solution U € H?> (R3) of (3.4). Moreover, each such solution U of (3.4) satisfies the PohoZaev
identity

-2
3 . S JI(—A)S/ZUIde= 3 j G(U)dx. (3.5)
R3 R3
Let S be the set of positive radial ground state solutions U of (3.4). Then, S + @ and we have the following
compactness result which plays a crucial role in the proof of Theorem 1.1.

Proposition 3.1. Under the assumptions in Theorem 1.1, S is compact in H$(R3).

As shown in Cho and Ozawa [13], for general s € (0, 1), we do not have a similar radial lemma in H?(]R3). So
the Strauss compactness lemma (see [8]) is not applicable here. Before we prove Proposition 3.1, we begin
with the following compactness lemma which is a special case of [12, Lemma 2.4.]

Lemma 3.2 (Chang and Wang [12]). Assume that Q € C(R, R) satisfies
Q(r) i Q(r) _

lim —= = - =0
-0 T2 It|—co |T|%s

and there exists a bounded sequence {u,}2, ¢ H:(R>) for some v € L1 (R?) with
lim Q(up(x)) = v(x) a.e.x € R>.
n—.oo

Then, up to a subsequence, we have Q(uy) — v strongly in LY(IR?) as n — oo.

Proof of Proposition 3.1. Let{u,}2; c Sand denote by E the least energy of (3.4). Then, for any n, u, satisfies
L(uy,) = E and the PohoZaev identity (3.5), which implies that

3-2s

E.
2s

E= % j |(-A)*"?uy|? dx and J G(up) dx =

R3 R3

Obviously, {[(~A)/2u, |} is bounded. It follows from Lemma 2.2 that {||u,|| 2:}isbounded. By (3.3), as we can
see in [8], {|unll»} is bounded, which yields that {u,} is bounded in H$(R?). Without loss of generality, we can
assume that there exists ug € HS(R?) such that u, — uo weakly in H3(R?), strongly in LY(R3) for q € (2, 2}),
and u,(x) = up(x) a.e. x € R3.
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In the following, we adopt some ideas from [8] to prove that u, — uo strongly in H (R?). For u € H*(R>), let

_ S 1 aysrzy2 _
J(u) = 3 JI( A)*“ul“dx and V(u)= J G(u) dx.

R3 R3

Then, we know that u,, is a minimizer of the constrained minimizing problem

inf{](u) u e HS(R?), Vi(u) = > ;SZSE}.

By (3.1) and Lemma 3.2 we get that
lim [ G1(un) = [ G1(uo).

R3 R3
Then, by Fatou’s Lemma,
3-2s
V(uo) = E,
2s
which implies that ug # 0. Meanwhile, it is easy to see that J(ug) < E. Similarly to [8], we know that u satisfies
-2
J)=E and  V(uo) = 2=,
2s
which yields that
lim [ Gatun) = [ Gatwo).
—00
R3 R3
By Fatou’s Lemma, we know that ||up|l, — |luoll> as n — oo. Thus, u, — ug strongly in HS(RR3). O

3.3 The Min-Max Level

Take U € S and let X
U:(x) = U(;), 7>0.

Then, by the definition of U = F(U), we know that U(- /1) = 3U(¢-) and

j |(-0)*/2U, 2 dx = j e U(§)|2 =32 j (-0)2U 1 dx.

R3 R3 R3

By the PohoZaev identity, we have

L(U,) = (TB;S 2220 [icariur.

R3

Thus, there exists 7o > 1 such that L(U;) < -2 for T > 7. Set

D) = max T')(U;).
7€[0,70]

By virtue of Lemma 2.4, we have I'y(U;) = L(U;) + O(A). Note that since maxr¢[o,r,) L(Ur) = E, we get that
Dy — Eas A — 0%,

Moreover, similarly to [39], we can prove the following lemma, which is crucial in defining the uniformly
bounded set of the mountain paths (see below).

Lemma 3.3. There exist A; > 0 and Cy > O such that, for any 0 < A < A1, we have

Ta(Ug) <=2, |U:lls <Co forallt € (0,70], luls<Co foralluces.
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Now, for any A € (0, A1), we define a min-max value C, as

Ca= inf max Ta(y(1)),
y€Ya 1€[0,70]

where
Y = {y € C([0, To], HE(R?)) : y(0) = 0, y(10) = Ug,, ly()lls < Co + 1, T € [0, 7o}

Obviously, for T > 0, we have
1U-12 = T2725(-A)*"2 U3 + 2| U]5.

Then, we can define Uy = 0 so U; € Y. Moreover, we have

limsupCy < lim Dy = E.
A0+ A—07*

Proposition 3.4. We have lim,_,o+ C) = E.

Proof. 1t suffices to prove that
liminf Cy > E.

A—0*

Now, we give the mountain pass value

b = i f L )
;EYTE%&’%] (y(1))

where
Y ={y € C([0, 1], HS(R?)) : y(0) = 0, y(1) < O}.

It follows from [12, Lemma 3.2] that L satisfies the mountain pass geometry. As we can see in Jeanjean
and Tanaka [27], b agrees with the least energy level of (3.4), i.e., b = E. Note that ¢! (x) > 0 for x € R>.
Then, y(-) = y(19-) € Y for any y € Y, and it follows that Cy > b, which concludes the proof. O

3.4 Proof of Theorem 1.1
Now, for a, d > 0, define
I :={u e H}(R?) : Th(u) < a}
and
s = {u € HS(R3) : inf lu - v]s < d}.
veS
In the following, we will find a solution u € S% of (2.2) for sufficiently small A > 0 and some O < d < 1. The fol-

lowing proposition is crucial for obtaining a suitable (PS) sequence for I'y and plays a key role in our proof.

Proposition 3.5. Let {A;}3°, be such that lim_,o, A; = 0 and {uy,} ¢ S with
lim Ty (up) <E and lim T} (uy,) = 0.
=00 i—oo

Then, for d small enough, there is ug € S, up to a subsequence, such that uy, — uo in Hi(R>).

Proof. For convenience, we write A for A;. Since uy € S and S is compact, we know that {u,} is bounded
in H(IR?). Then, by Lemma 2.4, we see that

lim L(up) <E and lim L'(uy) = 0.

1—00 1—00
It follows from [12, Lemma 3.3] that there is ug € H} (R3), up to a subsequence, such that uy — ug strongly
in H$(R3). Obviously, O ¢ S? for d small. This implies that ug # 0, L(uo) < E, and L (uo) = 0. Thus, L(uo) = E,
i.e., up € S, which completes the proof. O
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By Proposition 3.5, for small d € (0, 1), there exist w > 0, Ag > O such that
ITy@ls 2 w, ueTPn(s?\$?), Ae(0,A). (3.6)

Similarly to [39], we have the following proposition.

Proposition 3.6. There exists a > O such that, for small A > 0,
Ta(y(1)) > Cy—a implies that y(t) € S92,

where y(t) = U(- /1) for T € (0, To].

Proof. From Lemma 2.4 and the PohoZaev identity, we have

3-2s -2
@) = (5 - 2250 [ 1o 2ur + A1),
]R3
Then,
3-2s -2
lim max Ti(y(r)) = max (T - 3—513) J (-0)2U)2 = E
A—0* T€[0,To] 1€[0,70]\ 2 6
IR3

and the conclusion follows. O

Similarly as in [39], thanks to (3.6) and Proposition 3.6, we can prove the following proposition, which as-
sures the existence of a bounded (PS) sequence for T';.

Proposition 3.7. For A > 0 small enough, there exists {un}n < T2 0 S¢ such that T'}(u,) — 0 as n — co.

Proof of Theorem 1.1. 1t follows from Proposition 3.7 that there exists 1o > 0 such that, for A € (0, Ag), there
exists {un} € Fﬁ)ﬂ NS4 with F}((un) — 0 as n — oo. Noting that S is compact in Hf(]R3), we get that {u,} is
bounded in H$(R3). Assume that u, — uy weakly in H(R?). Then l"jl(u 1) = 0.1t follows from the compactness
of S that uy € S?and |uy, — uy|ls < 3d for n large. So, uy # 0 for small d > 0. By Lemma 2.4, we have

Ca(up) = Taup) + Ta(up —up) + o(1).

Noting that
m
Gy(T) > ?Tz forany 7 € R,

it follows from (3.3) that, for some C > 0,

1 m .
TA(un —up > 5 ju(—A)S”(un —wp)l? + - wl>)dx-C j lup — ual® dx.

R3 R3

Then, by Lemma 2.2, for small d > 0, it is easy to verify that I'y(u, — uy) > O for large n. Sou, € l“fA n S9 with
F;l(u,\) = 0. Thus, u, is a nontrivial solution of (2.2). Finally, by Proposition 3.5, we can get the asymptotic
behavior of uj as A — 0*. O

4 The Critical Case

In this section, we consider the Schrédinger—Poisson system (1.1) in the critical case. First, we establish
the existence of ground state solutions to the fractional scalar field equation (1.2) with a general critical
nonlinear term. Then, by a perturbation argument, we seek solutions of (1.1) in some neighborhood of the
ground states of (1.2).
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4.1 The Limit Problem

In this subsection, we use the constraint variational approach to seek ground state solutions of (1.2). A similar
argument also can be found in [8, 18, 40]. Let

T(u) = % J [(-A)2ul?dx and V(u) = j G(u) dx.
R3 R3

We recall that U is called a ground state solution of (1.2) if and only if I(U) = mg, where
mo := inf{I(u) : u € H*(R?) \ {0} is a solution of (1.2)}

and
I(w) = T(u) — V(u).

The existence of ground states is reduced to looking at the constraint minimization problem

M :=inf{T(u) : V(u) = 1,u € H¥(R?)} (4.1)
and eventually removing the Lagrange multiplier by some appropriate scaling. Now, we state the main result
in this subsection.

Theorem 4.1. Let s € (0, 1) and assume that (H2)'-(H4)' hold along with

(HO) g€ C(R,R)and gisodd, i.e., g(-1) = -g(1) fort € R.

Then, (1.2) admits a positive ground state solution.

Remark 4.2. Since we are concerned with positive solutions of (1.2), (HO) can be replaced by
(HO)' g € C(R*, R).

Moreover, similarly to Theorem 4.1, a similar result in RY for N > 2s can be also obtained.
Proof of Theorem 4.1. The proof follows the lines of that in [40]. For completeness, we give the details here.

Step 1. Let M be given by (4.1) and let Sg be the Sobolev best constant in Lemma 2.2 for s € (0, 1). Then,
we claim that 1
0<M«< 5(2;‘)(3*25)/335.

First, we prove that {u € HS(R3) : V(u) = 1} # @. By [14, 35], S5 can be achieved by

2>—(3—2s)/2

for any € > 0, where k € R, p > 0 are fixed constants. Let ¢ € C3°(IR?) be a cut-off function with support B,
such that ¢ =1 on By and 0 < ¢ < 1 on B,, where B, := {x € R® : |x| < r}. Let .(x) = @(x) Ue(x). From [35],
it follows that

Ue(x) = Kg—(3—25)/2(y2 +

eSi/%s

j pel® =5/ +0(e%) and J I(=0)*/2el? = S + 0(37%). (4.2)

R3 R3
Letting

Ve
Ve = ——,
T 1el:
we have
I(=A)"2v,]I3 < S5 + O(e37%5).

Letting

1 1
Te := aIIVsIIZ - Ellvsllﬁ,
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by (H4)" we have
V(ve) > 2—1* +Te.

S

In the following, we will show that

. I
gl_l’% £3—f25 = +00. (4.3)

Bymax{2; - 2, 2} < g < 2}, weknow that (3 — 25)g > 3. Then, itis easy to see that there exist C1(s), C2(s) > 0
such that

1/(esy/*) 5

1 r
v ||q > J- |Ue|? > Cl(s)£3*(3—25)q/2 j . dr= 0(83—(3—25)11/2)
el ) 2+ 20T

and 3
0(?%), fors< =,

2/(551/(29) 4

3 1_ 2 28 S —rZ 2s 1 3
IMMsnww.hm|sQ@k | - o(e#mnl), fors=2,

elips B, o :
0(e37%), fors> e

Then, we obtain that
[ > 0(e3732992)  fors e (0, 1).

Noting that max{2} - 2, 2} < g < 2}, it is easy to verify that (4.3) is true. Thus, it follows that V(v¢) > O for
small € > 0. By a scaling, we get that {u € HS(R3) : V(u) = 1} # @.
Next, obviously, M € (0, +00). For small € > 0, we have V(v.) > 0 and

T(ve)

- IR vl 1
— (V(vg))?/%

1
S2(L.r)E "2
ar tle

1+ 0(eN-29)
S(1+2:Tp)2/% "

Ifp>1,then(1+ 8P <1+p(1+t)"Ptforallt> —1.From (4.3), it follows that
. 2k .
(1+0@E" 252 = 1< 1 (1 + 0N )22 0(e">) < 25T,
for small € > 0, which yields 1 + 0(eN=2%) < (1 + 2:T)?/% . Then,
1 3-28)3
M < 3(23) Ss.

Step 2. Here, we show that M can be achieved. Noting that g is odd and using the fractional Pélya—Szeg6
inequality (see Park [31]), without loss of generality, we can assume that there exists a positive minimizing
sequence {u,} ¢ HS(R?) such that V(u,) = 1 and T(u,) — M as n — co. By Lemma 2.2, it is easy to see that
{un} is bounded in H$(R?). By Lemma 2.1 we can assume that u, — uo weakly in H¥(R?), strongly in L4(R3),
and a.e. in R>. Setting v,, = uy, — ug, we have T(uy,) = T(vy) + T(uo) + o(1) and

23 23 2 2 2 2
lunly: = vallys +luolly: +0(1) and lugllz = [vall; + lluoll; + 0(1),

where 0(1) — 0 as n — co. Letting f(s) = g(s) — s% 1 + s, it follows from Lemma 3.2 that
| Faun) = [ Fwo)+ | Fo + 0c0).
R R R

So, V(uy) = V(vp) + V(ug) + o(1).
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Next, we prove that ug is the minimizer for M. Setting S, = T(vy,), So = T(uo), V(vn) = Ay, and V(ug) = Ao,
wehave A, =1 -Ag +0(1)and S, = M — So + 0o(1). Under a scale change, we get that

T(u) > M(V(u))C~29/3 (4.4)
forall u € H(R3) and V(u) = 0. By (4.4) we have Aq € [0, 1].If Ay € (0, 1), then, again by (4.4), we have
M= lim (So+Sn) = im M((A0)®~297 + (1) 7297) = M((A0) 29 + (1 -20)%729) > M(Ag +1-20) = M,
which is a contradiction. On the other hand, if Ag = 0, then Sy = 0, which implies that uy = 0. Then,
lim sup vall3; > (25)°7297
n—oo

and X
I(=8)5"2vy, 5

1 1
M == lim [(-A)"?vp)3 = =(25)C7%9 lim inf
2 n—oo 2 n—00 IVa "5

1 ..
> 52909,

which is again a contradiction. Then, we conclude that Ag = 1, i.e., M is achieved by ug.
Finally, letting U(-) = uo(-/0p), where

3-2s_ \1/2
00:( 3 M) ’

we have that U is a ground state solution of (1.2). O

Remark 4.3. Furthermore, similarly to Chang and Wang [12], if we additionally assume that g € C1(R, R),
then U satisfies the PohoZaev identity
3-2s
2

J [(=A)S2U)? dx = 3 I G(U)dx.

R? R?
Similarly to [27, 40], U is also a mountain pass solution.

Let S; be the set of positive radial ground state solutions U of (1.2). Then, as in Step 2 in the proof of Theo-
rem 4.1, we have the following compactness result.

Proposition 4.4. Under the assumptions of Theorem 4.1, Sy is compact in HS(R3).

4.2 Proof of Theorem 1.4

In the following, we are ready to prove Theorem 1.4. Similarly to Section 3, take U € S; and let
U (x) = U(f), T 0.
T
Then, there exists 71 > 1 such that I(U;) < -2 for 7 > 1;. Setting

Diz max I'y(U;),

T7€[0,71]

there exist A, > 0 and G; > 0 such that, forany 0 < A < A5,
@+ Yy ={y € C([0, T1], H}(R?)) : y(0) = 0, y(11) = Ur,, ly(Dlls < C1 + 1, T € [0, T1]}.
Then, for any A € (0, A1), we define a min-max value C} as

C} = inf max]l“/\(y(‘r)).

V€Y, T€[0,T

Similarly to Section 3, we have the following proposition.
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Proposition 4.5. We have limy_o+ C; = limy_o+ D} = m, where m is the least energy of (1.2).

Now for a, d > 0, define
I :={u e Hi(R?) : 1 (w) < a}
and

d _ S(R3) -« i _
ST = {u e H;(R )Vlé'lsf1 lu-vis < d}.

Similarly to Section 3, for small A > 0 and some O < d < 1, we will find a solution u € S‘f of (2.2) in the crit-
ical case. Also, similarly to [39], we can get the following compactness result, which can yield the gradient
estimate of T';.

Proposition 4.6. Let {A;}%°, be such that lim;_., A; = 0 and {uy,} ¢ S with

lim Ty (up) <m and  lim T} (uy) = 0.
=00 i—oo M

Then, for d small enough, there is u1 € Sy, up to a subsequence, such that uy, — uz in Hf(IR3 ).

Proof. For convenience, we write A for A;. Since u, € S‘f and S; is compact, we know that {u,} is bounded
in H$ (R?). Moreover, up to a subsequence, there exists u; € S¢ such thatu; — u; weaklyin H(R?), a.e.in R,
and |luy — u1|s < 3d for i large. Then, by Lemma 2.4, we see that

lim I(up) <m and lim I'(uy) = 0.
1—00 1—00

Then I’ (u1) = 0. Obviously, ug # 0 if d small. So, I(u;) > m. Meanwhile, thanks to Lemma 3.2, we have

I(up) = I(u1) + I(up — ug) + o(1)

and
1 2 1 23
Iup —un) = S llua —walls = o< llua - ually: +0(1) < o(1).
S
Then, by Lemma 2.2, for d small enough, uy — u; strongly in H (R3). O

By Proposition 4.6, for small d € (0, 1), there exist w; > 0, A; € (0, A1) such that
IT,ls = w1, ueT2n(SE\S¥%), 1e(0,1). (4.5)
Similarly to Section 3, we have the following proposition.
Proposition 4.7. There exists a1 > 0 such that, for small A > 0,
Ta(y(1)) = C,{ - a1 impliesthat y(t) € S’f/z,
where y(t) = U(- /1) for T € (0, T1].

Proof of Theorem 1.4. With the help of (4.5) and Proposition 4.7, similarly to [39], for A > O small enough,
there exists {uy}n C Ffﬁ n S‘f such that F}(un) — 0 as n — oo. As above, there exists u, € S‘f with uy #0
for small d > 0. Moreover, up to a subsequence, u, — u, weakly in Hf(1R3), a.e. in R?, and |u, - uplls < 3d
for n large. Furthermore, l"jl(u/\) = 0. By Lemma 2.4, we have

Ta(up) = Ta(ua) + Ta(un —up) + o(1).
By (H2)'-(H3)', for some C > 0, we have
1 1 N
Datn - u) = 5 j(|(—A)S/2(un )P+ Sl - wP) dx - € j iy - ual% dx.
R3 R3

Then, by Lemma 2.2, liminf, o, Tx(un, — up) > 0 for small d > 0. So, u;, € Ff} n S‘f with l“j\(u;l) = 0. Thus,
u, is a nontrivial solution of (2.2). The asymptotic behavior of u, follows from Proposition 4.6. O
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