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Abstract: We prove a conjecture recently formulated by Maia, Montefusco and Pellacci saying that minimal
energy solutions of the saturated nonlinear Schrödinger system
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{{{{
{

−∆u + λ1u =
αu(αu2 + βv2)
1 + s(αu2 + βv2)

inℝn ,

−∆v + λ2v =
βv(αu2 + βv2)
1 + s(αu2 + βv2)

inℝn

are necessarily semitrivial whenever α, β, λ1, λ2 > 0 and 0 < s < max{α/λ1, β/λ2} except for the symmet-
ric case λ1 = λ2, α = β. Moreover, it is shown that for most parameter samples α, β, λ1, λ2, there are in-
finitely many branches containing seminodal solutions which bifurcate from a semitrivial solution curve
parametrized by s.
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1 Introduction
In this paper, we intend to continue the study on nonlinear Schrödinger systems for saturated optical mate-
rials that was recently initiated by Maia, Montefusco and Pellacci [10]. In their paper, the system of elliptic
partial di�erential equations

{{{{
{{{{
{

−∆u + λ1u =
αu(αu2 + βv2)
1 + s(αu2 + βv2)

inℝn ,

−∆v + λ2v =
βv(αu2 + βv2)
1 + s(αu2 + βv2)

inℝn
(1.1)

was suggested in order tomodel the interaction of two pulses within the optical material under investigation.
Here, the parameters satisfy λ1, λ2, α, β, s > 0 and n ∈ ℕ. One way to find classical fully nontrivial solutions
of (1.1) is to use variational methods. The Euler functional Is : H1(ℝn) × H1(ℝn) → ℝ associated to (1.1) is
given by

Is(u, v) :=
1
2(‖u‖

2
λ1 + ‖v‖2λ2 −

α
s
‖u‖22 −

β
s
‖v‖22) +

1
2s2

∫ℝn ln(1 + s(αu2 + βz2))

=
1
2 (‖u‖

2
λ1 + ‖v‖2λ2) −

1
2s2

∫ℝn g(sZ), (1.2)
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where Z(x) := αu(x)2 + βv(x)2 and g(z) := z − ln(1 + z) for all z ≥ 0. The symbol ‖ ⋅ ‖2 denotes the standard
norm on L2(ℝn) and the norms ‖ ⋅ ‖λ1 , ‖ ⋅ ‖λ2 are defined via

‖u‖λ1 := ( ∫ℝn |∇u|2 + λ1u2)
1/2
, ‖v‖λ2 := ( ∫ℝn |∇v|2 + λ2v2)

1/2
.

Since we are interested in minimal energy solutions (that is, ground states) for (1.1), the ground states
us , vs of the scalar problems associated to (1.1) turn out to be of particular importance. These are positive
radially symmetric and radially decreasing smooth functions satisfying

{{{{{
{{{{{
{

−∆us + λ1us =
α2u3s

1 + sαu2s
inℝn ,

−∆vs + λ2vs =
β2v3s

1 + sβv2s
inℝn .

(1.3)

Since we will encounter these solutions many times, let us recall some facts from the literature. The exis-
tence of positive finite energy solutions us , vs of (1.3) for parameters 0 < s < α/λ1 and 0 < s < β/λ2 can be
deduced from [19, Theorem 2.2] for n ≥ 3 or from [5, Theorem 1 (i)] for n ≥ 2, respectively. In the case n = 1,
the positive functions us , vs are given by us(x) = us(−x), vs(x) = vs(−x) for all x ∈ ℝ and

us|−1[0,+∞)(z) = us(0)
∫
z

(
1

λ1x2 − s−2g(sαx2))1/2 dx for z ∈ (0, us(0)],

vs|−1[0,+∞)(z) = vs(0)
∫
z

(
1

λ2x2 − s−2g(sβx2))1/2 dx for z ∈ (0, vs(0)],

where us(0), vs(0) > 0 are uniquely determined by

λ1us(0)2 − s−2g(sαus(0)2) = λ2vs(0)2 − s−2g(sβvs(0)2) = 0. (1.4)

As in the explicit one-dimensional case, it is knownalso in thehigher-dimensional case that us , vs are radially
symmetric, see [6, Theorem2]. Finally, the uniqueness of us , vs follows from [17, Theorem1] in the case n ≥ 3
and from [12, Theorem 1] in the case n = 2. The uniqueness result for n = 1 is a direct consequence of the
existence proof we gave above.

In this paper, we strengthen the results obtained by Maia, Montefusco and Pellacci [10] concerning
ground state solutions and (component-wise) positive solutions of (1.1), so let us shortly comment on their
achievements. In Theorem3.7of their paper, theyproved the existence of nonnegative radially symmetric and
nonincreasing ground state solutions of (1.1) for all n ≥ 2 and for parameter values 0 < s < max{α/λ1, β/λ2},
where the upper bound for s is in fact optimal by Lemma 3.2 in the same paper. It was conjectured that each
of these ground states is semitrivial except for the special case α = β, λ1 = λ2, where the totality of ground
state solutions is known in a somehow explicit way, see [10, Theorem 2.1] or Theorem 1.1 (i) below. In [10],
this conjecture was proved for parameters s ≥ min{α/λ1, β/λ2}, see Theorem 3.15 and Theorem 3.17 therein.
Our first result shows that the full conjecture is true even in the case n = 1, which was not considered in [10].

Theorem 1.1. Let n ∈ ℕ, α, β, λ1, λ2 > 0 and 0 < s < max{α/λ1, β/λ2}. Then, the following holds.
(i) In the case α = β and λ1 = λ2, all ground states of (1.1) are given by (cos(θ)us , sin(θ)vs) for θ ∈ [0, 2π).
(ii) In the case α ̸= β or λ1 ̸= λ2, every ground state solution of (1.1) is semitrivial.

The proof of this result will we presented in Section 2. Our approach is based on a suitable min-max charac-
terization of the mountain pass level associated to (1.1) involving a fibering map technique as in [11]. This
method even allows to give an alternative proof for the existence of a ground state solution of (1.1) which
is significantly shorter than the one presented in [10] and which, moreover, incorporates the case n = 1,
see Proposition 2.1. More importantly, this approach yields the optimal result.
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In view of Theorem 1.1, it is natural to ask how the existence of fully nontrivial solutions of (1.1) can
be proved. In [10], Maia, Montefusco and Pellacci found necessary conditions and su�cient conditions for
the existence of positive solutions of (1.1) which, however, partly contradict each other. For instance, [10,
Theorem 3.21] claims that positive solutions exist for parameters α = β, λ1 ̸= λ2 and s > 0 su�ciently small
contradicting the nonexistence result from [10, Theorem 3.10]. The error leading to this contradiction is lo-
cated on [10, p. 338, l. 13], where the number λ2/s must be replaced by λ2s, which makes the results from
Theorem 3.19 and Theorem 3.21 in that paper break down. Our approach to finding positive solutions and,
more generally, seminodal solutions of (1.1) is to apply bifurcation theory to the semitrivial solution branches

T1 := {(0, vs , s) : 0 < s < β
λ2

}, T2 := {(us , 0, s) : 0 < s < α
λ1

},

whichwasmotivated by the papers of Ostrovskaya and Kivshar [13] and Champneys and Yang [3]. In the case
n = 1 and λ1 = 1, λ2 = ω2 ∈ (0, 1), α = β = 1, they numerically detected a large number of solution branches
emanating fromT2 containing seminodal solutions.Moreover, they conjectured that the bifurcation points on
T2 accumulate near s = 1, see [3, p. 2184 �.]. Our results confirm these observations. For simplicity, we will
only discuss the bifurcations from T2 since the corresponding analysis for T1 is the same up to interchanging
the roles of λ1, λ2 and α, β. Investigating the linearized problems associated to (1.1) near (us , 0, s) for pa-
rameters close to the boundary of the parameter interval (0, α/λ1), we prove the existence of infinitely many
bifurcating branches containing fully nontrivial solutions of a certain nodal pattern. Despite the fact that the
question whether fully nontrivial solutions bifurcate from T1, T2 makes perfect sense for all space dimen-
sions n ∈ ℕ, our bifurcation result is restricted to n ∈ {1, 2, 3}. Later, we will comment on this issue in more
detail, see Remark 3.6. In order to formulate our bifurcation result, let us define the positive numbers μk to be
the k-th eigenvalues of the linear compact self-adjoint operators ϕ Ü→ (−∆ + λ2)−1(αβu20ϕ) mapping H1

r (ℝn)
to itself, where u0 denotes the positive ground state solution of the first equation in (1.3) for s = 0. By Sturm–
Liouville theory, we know that these eigenvalues are simple and that they satisfy

μ0 > μ1 > μ2 > ⋅ ⋅ ⋅ > μk → 0+ as k → +∞.

Deferring somemore or less standard notational conventions to a later stage, we come to the statement of our
result.

Theorem 1.2. Let n ∈ {1, 2, 3} and let α, β, λ1, λ2 > 0 and k0 ∈ ℕ0 satisfy

λ2
λ1

<
β
α

and μk0 < 1.

Then, there is an increasing sequence (sk)k≥k0 of positive numbers converging to α/λ1 such that continua Ck ⊂ S

containing (0, k)-nodal solutions of (1.1) emanate from T2 at s = sk for all k ≥ k0. In the case k0 = 0, we nec-
essarily have λ1 > λ2 and there is a C > 0 such that all positive solutions (u, v, s) ∈ C0 with s ≥ 0 satisfy

‖u‖λ1 + ‖v‖λ2 < C and s < α − β
λ1 − λ2

<
α
λ1
. (1.5)

In the case n ∈ {2, 3}, we can estimate μ0 from above in order to obtain a su�cient condition for the conclu-
sions of Theorem 1.2 to hold for k0 = 0. This estimate, which leads to Corollary 1.3, is based on the Courant–
Fischermin-max principle andHölder’s inequality. In the one-dimensional case, the values of all eigenvalues
μk are explicitly known, which results in Corollary 1.4.

Corollary 1.3. Let n ∈ {2, 3}. Then, the conclusions of Theorem 1.2 are true for k0 = 0 if

λ2
λ1

<
β
α

< (
λ2
λ1

)
4−n
4
. (1.6)

Corollary 1.4. Let n = 1. Then, the conclusions of Theorem 1.2 are true in the case

λ2
λ1

<
β
α

<
1
2(

√ λ2
λ1

+ 2k0)(√
λ2
λ1

+ 2k0 + 1). (1.7)
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Remark 1.5. Aswementionedabove, one canfind su�cient criteria for the existence of (k, 0)-nodal solutions
bifurcating from T1 by reversing the roles of λ1, λ2 and α, β in the statement of Theorem 1.2 as well as in its
corollaries.

Theorem 1.2 gives rise to many questions which would be interesting to solve in the future. A list of open
problems is provided in Section 5. Before going on with the proof of our results, let us clarify the notation
which we used in Theorem 1.2. The set S ⊂ X × ℝ is the closure of all solutions of (1.1) which do not belong
toT2 and a subset of S is called a continuum if it is amaximal connected setwithin S. Finally, a fully nontrivial
solution (u, v) of (1.1) is called (k, l)-nodal if both component functions are radially symmetric and u has
precisely k + 1 nodal annuli and v has precisely l + 1 nodal annuli. In other words, since double zeros cannot
occur, (u, v) is (k, l)-nodal if the radial profiles of u, respectively v, have precisely k, respectively l, zeros.

2 Proof of Theorem 1.1
According to the assumptions of Theorem 1.1, we will assume throughout this section that the numbers
λ1, λ2, α, β are positive, that s lies between 0 and max{α/λ1, β/λ2} =: s∗, and that the space dimension is
an arbitrary natural number. Furthermore, we define the energy levels

cs = inf{Is(u, v) : (u, v) ∈ H1(ℝn) × H1(ℝn) solves (1.1), (u, v) ̸= (0, 0)},
c∗s = inf{Is(u, v) : (u, v) ∈ H1(ℝn) × H1(ℝn) solves (1.1), u = 0, v ̸= 0 or u ̸= 0, v = 0}.

The first step towards the proof of Theorem1.1 is amore suitablemin-max characterization of the least energy
level cs of (1.1) which, as in [11], gives rise to a simple proof for the existence of a ground state. To this end,
we introduce the Nehari manifold

cNs := inf
Ns
Is , Ns := {(u, v) ∈ H1(ℝn) × H1(ℝn) : (u, v) ̸= (0, 0) and I�s(u, v)[(u, v)] = 0}.

Proposition 2.1. The value
cs = cNs = inf(u,v) ̸=(0,0) supr>0 Is(√ru,√rv). (2.1)

is attained at a radially symmetric and radially nonincreasing ground state of (1.1).

Proof. From [10, (3.15), (3.52)] we get cs = cNs , so let us prove the second equation in (2.1). For every fixed
u, v ∈ H1(ℝn) satisfying (u, v) ̸= (0, 0), we set

β(r) := Is(√ru,√rv) =
r
2 (‖u‖

2
λ1 + ‖v‖2λ2) −

1
2s2

∫ℝn g(rsZ),
so that (√ru,√rv) ∈ Ns holds for r > 0 if and only if β�(r) = 0. Since β is smooth and strictly concave with
β�(0) > 0, a critical point of β is uniquely determined and it is a maximizer (whenever it exists). Since the
supremum of β is +∞, when there is no maximizer of β we obtain

cNs = inf
Ns
Is = inf(u,v) ̸=(0,0) supr>0 Is(√ru,√rv),

which proves (2.1).
Due to 0 < s < max{α/λ1, β/λ2}, we can find a semitrivial function (u, v) ∈ H1(ℝn) × H1(ℝn) satisfying

‖u‖2λ1 + ‖v‖2λ2 <
α
s
‖u‖22 +

β
s
‖v‖22,

which implies that cs < +∞ according to (2.1). So, let (uk , vk) be a minimizing sequence in H1(ℝn) × H1(ℝn)
satisfying supr>0 Is(√ruk ,√rvk) → cs as k → +∞. Using the classical Polya–Szegő inequality and the ex-
tended Hardy–Littlewood inequality

∫ℝn ln(1 + rs(αu2k + βv
2
k)) ≥ ∫ℝn ln(1 + rs(αu∗k 2 + βv∗k 2)) for all r > 0,
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for the spherical rearrangement taken from [1, Theorem 2.2], we may assume uk , vk to be radially symmetric
and radially decreasing. Since the function g(z) = z − ln(1 + z) strictly increases on (0, +∞) from 0 to +∞,
we may moreover assume that (uk , vk) are rescaled in such a way that the equality

1
2s2

∫ℝn g(sZk) = 1

holds for Zk := αu2k + βv
2
k . The inequality

cs + o(1) = lim
k→+∞ sup

r>0 Is(√ruk ,√rvk) ≥ lim sup
k→+∞ Is(uk , vk) =

1
2 lim sup

k→+∞ (‖uk‖2λ1 + ‖vk‖2λ2) − 1

implies that the sequence (uk , vk) is bounded in H1(ℝn) × H1(ℝn). Using the uniform decay rate and the re-
sulting compactness properties of radially decreasing functions bounded in H1(ℝn) × H1(ℝn) (apply, for in-
stance, [18, Compactness Lemma 2]), we may take a subsequence, again denoted by (uk , vk), such that
(uk , vk) ⇀ (u, v) in H1(ℝn) × H1(ℝn) pointwise always everywhere and

1
2s2

∫ℝn g(rsZ) = lim
k→+∞ 1

2s2
∫ℝn g(rsZk) for all r > 0.

From this we infer that 1
2s2

∫ℝn g(sZ) = 1

and, thus, (u, v) ̸= (0, 0). Hence, for all r > 0, we obtain

cs = lim
k→+∞ sup

ρ>0 Is(√ρuk ,√ρvk)
≥ lim sup

k→+∞ (
r
2 (‖uk‖

2
λ1 + ‖vk‖2λ2) −

1
2s2

∫ℝn g(rsZk))
≥
r
2 (‖u‖

2
λ1 + ‖v‖2λ2) −

1
2s2

∫ℝn g(rsZ)
= Is(√ru,√rv),

so that (u, v) is a nontrivial radially symmetric and radially decreasingminimizer. Taking for r the maximizer
of the map r Ü→ Is(√ru,√rv), we obtain the ground state solution (u, v) := (√ru,√rv) having the properties
we claimed to hold. Indeed, the Nehari manifold may be rewritten as

Ns = {(u, v) ∈ H1(ℝn) × H1(ℝn) : (u, v) ̸= (0, 0), H(u, v) = 0}

for
H(u, v) := I�s(u, v)[(u, v)] = ‖u‖2λ1 + ‖v‖2λ2 − ∫ℝn Z2

1 + sZ
,

so that the Lagrange multiplier rule applies due to

H�(u, v)[(u, v)] = 2(‖u‖2λ1 + ‖v‖2λ2) − ∫ℝn 4Z
2 + 2sZ3

(1 + sZ)2
= − ∫ℝn 2Z2

1 + sZ
< 0

for all (u, v) ∈ Ns.

Let us note that cs equals c = mN = mP from [10, Lemma 3.6] and, therefore, corresponds to the mountain
pass level of Is. Given Proposition 2.1, we are in position to prove Theorem 1.1.
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Proof of Theorem 1.1. Part (i) was proved in [10, Lemma 3.2], so let us prove (ii). First, we show that the
ground state energy level cs equals c∗s . Since we have cs ≤ c∗s by definition, we have to show that

sup
r>0 Is(√ru,√rv) ≥ c∗s for all u, v ∈ H1(ℝn) with u, v ̸= 0. (2.2)

From (1.2) we deduce that if ‖u‖2λ1 ≥ (α/s)‖u‖22, thenwe have Is(√ru,√rv) ≥ Is(0,√rv) for all v ̸= 0 and r > 0,
which implies (2.2). In the same way, one proves (2.2) in the case ‖v‖2λ2 ≥ (β/s)‖v‖22, so it remains to prove
(2.2) for functions (u, v) satisfying

‖u‖2λ1 <
α
s
‖u‖22, and ‖v‖2λ2 <

β
s
‖v‖22. (2.3)

To this end, let r > 0 be arbitrary but fixed. From (2.3) we infer that the numbers

t(u, v) :=
α
s ‖u‖

2
2 − ‖u‖2λ1

α
s ‖u‖

2
2 +

β
s ‖v‖

2
2 − ‖u‖2λ1 − ‖v‖2λ2

, r(u, v) := r(αs ‖u‖
2
2 +

β
s
‖v‖22 − ‖u‖2λ1 − ‖v‖2λ2)

satisfy t(u, v) ∈ (0, 1) and r(u, v) > 0 as well as

Is(√ru,√rv) = −
r(u, v)
2 +

1
2s2

∫ℝn ln(1 +
r(u, v)s(αu2 + βv2)

α
s ‖u‖

2
2 +

β
s ‖v‖

2
2 − ‖u‖2λ1 − ‖v‖2λ2

). (2.4)

The concavity of the logarithm yields

∫ℝn ln(1+ r(u, v)s(αu2+βv2)
α
s ‖u‖

2
2+

β
s ‖v‖

2
2−‖u‖

2
λ1 −‖v‖

2
λ2

) = ∫ℝn ln(t(u, v)(1+ r(u, v)sαu2
α
s ‖u‖

2
2−‖u‖

2
λ1

)+(1 − t(u, v))(1+ r(u, v)sβv2
β
s ‖v‖

2
2−‖v‖

2
λ2

))

≥ t(u, v) ∫ℝn ln(1+ r(u, v)sαu2
α
s ‖u‖

2
2−‖u‖

2
λ1

)+(1− t(u, v)) ∫ℝn ln(1+ r(u, v)sβv2
β
s ‖v‖

2
2−‖v‖

2
λ2

)

≥ min{ ∫ℝn ln(1 +
r(u, v)sαu2
α
s ‖u‖

2
2 − ‖u‖2λ1

), ∫ℝn ln(1 +
r(u, v)sβv2
β
s ‖v‖

2
2 − ‖v‖2λ2

)}.

Combining this inequality with (2.4) gives

Is(√ru,√rv) ≥ min{− r(u, v)2 + ∫ℝn ln(1 +
r(u, v)sαu2
α
s ‖u‖

2
2 − ‖u‖2λ1

), − r(u, v)2 + ∫ℝn ln(1 +
r(u, v)sβv2
β
s ‖v‖

2
2 − ‖v‖2λ2

)}.

Taking the supremumwith respect to r > 0, gives (2.2) and, therefore, cs ≥ c∗s , which is what we had to show.
It remains to prove that every ground state is semitrivial unless λ1 = λ2, α = β. To this end, assume that

(u, v) is a fully nontrivial ground state solution of (1.1), so that in particular Is(u, v) = cs holds. Then, cs = c∗s
implies that the inequalities above are equalities for some r > 0. In particular, since the logarithm is strictly
concave and t(u, v) ∈ (0, 1), we get

1 +
r(u, v)sαu2
α
s ‖u‖

2
2 − ‖u‖2λ1

= k(1 +
r(u, v)sβv2
β
s ‖v‖

2
2 − ‖v‖2λ2

) a.e. onℝn

for some k > 0. This implies that k = 1, so that u, v have to be positive multiples of each other. From the
Euler–Lagrange equation (1.1) we deduce that λ1 = λ2 and α = β, which finishes the proof.

3 Proof of Theorem 1.2
In this section, we assume λ1, λ2, α, β > 0 as before but the space dimension n is supposed to be 1, 2 or 3.
In Remark 3.6, we will comment on the reason for this restriction. Let us first provide the functional analytic
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framework we will be working in. In the case n ≥ 2, we set X := H1
r (ℝn) × H1

r (ℝn) to be the product of the
radially symmetric functions in H1(ℝn) and define F : X × (0, +∞) → X by

F(u, v, s) := (
u − (−∆ + λ1)−1(αuZ(1 + sZ)−1)
v − (−∆ + λ2)−1(βvZ(1 + sZ)−1)) , where Z := αu2 + βv2. (3.1)

Hence, finding solutions of (1.1) is equivalent to finding zeros of F. Using the compactness of the embed-
dings H1

r (ℝn) → Lq(ℝn) for n ≥ 2 and 2 < q < 2n/(n − 2), one can check that the function F( ⋅ , s) is a smooth
compact perturbation of the identity in X for all s, so that the Krasnosel’skii–Rabinowitz global bifurcation
theorem [9, 15] is applicable. In the case n = 1, however, this structural property is not satisfied, which mo-
tivates a di�erent choice for X. In Appendix A, we show that one can define a suitable Hilbert space X of
exponentially decreasing functions such that F( ⋅ , s) : X → X is again a smooth compact perturbation of the
identity in X. Except for this technical inconvenience, the case n = 1 can be treated in a similarway to the case
n ∈ {2, 3}, so we carry out the proofs for the latter case only. Furthermore, we always assume that λ2/λ1 < β/α
according to the assumption of Theorem 1.2.

The first step in our bifurcation analysis is to investigate the linearized problems associated to the equa-
tion F(u, v, s) = 0 around the elements of the semitrivial solution branch T2. While doing this, wemake use of
a nondegeneracy result for ground states of semilinear problems which is due to Bates and Shi [2]. Amongst
other things, it tells us that us is a nondegenerate solution of the first equation in (1.3), that is, we have the
following result.

Proposition 3.1. The linear problem

−∆ϕ + λ1ϕ =
3α2u2s + sα3u4s
(1 + sαu2s )2

ϕ, ϕ ∈ H1
r (ℝ

n), 0 < s < α
λ1
,

only admits the trivial solution ϕ = 0.

Proof. In order to apply [2, Theorem 5.4 (6)], we set

g(z) := −λ1z +
α2z3

1 + sαz2
, z ∈ ℝ,

so that us is the ground state solution of−∆u = g(u) inℝn which is centered at the origin. In the notation of [2],
one can check that g is of class (A). Indeed, the properties (g1), (g2), (g3A), (g4A), (g5A) from [2, p. 258] are
satisfied for

b = (
λ1

α2 − αλ1s
)
1/2
, K∞ = 1

and the unique positive number θ > b satisfying

(
α
s
− λ1)θ2 −

1
s2

ln(1 + sαθ2) = 0.

Notice that (g4A), (g5A) follow from the fact that Kg(z) := zg�(z)/g(z) decreases from 1 to −∞ on the interval
(0, b) and that it decreases from +∞ to K∞ = 1 on (b, +∞). Having checked the assumptions of [2, Theo-
rem 5.4 (6)], we obtain that the space of solutions of −∆ϕ − g�(us)ϕ = 0 inℝn is spanned by ∂1us , . . . , ∂nus,
implying that the linear problem only has the trivial solution in H1

r (ℝn). Due to

g�(us) = −λ1 +
3α2u2s + sα3u4s
(1 + sαu2s )2

, (3.2)

this proves the claim.

Using this preliminary result, we can characterize all possible bifurcation points on T2 which are, due to
the implicit function theorem, the points where the kernel of the linearized operator is nontrivial. For nota-
tional purposes, we introduce the linear compact self-adjoint operator L(s) : H1

r (ℝn) → H1
r (ℝn) for parame-

ters 0 < s < α/λ1 by setting

L(s)ϕ := (−∆ + λ2)−1(Wsϕ), Ws(x) :=
αβus(x)2

1 + sαus(x)2
, 0 < s < α

λ1
,
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for ϕ ∈ H1
r (ℝn). Denoting by (μk(s))k∈ℕ0 the decreasing null sequence of eigenvalues of L(s), we will ob-

serve that finding bifurcation points on T2 amounts to solving μk(s) = 1 for s ∈ (0, α/λ1) and k ∈ ℕ0. In fact,
we have the following result.

Proposition 3.2. We have

ker(∂XF(us , 0, s)) = {0} × ker(Id−L(s)) for 0 < s < α
λ1
.

Proof. For (u, v), (ϕ1, ϕ2) ∈ X, we have

∂XF1(u, v, s)[ϕ1, ϕ2] = ϕ1 − (−∆ + λ1)−1( sαZ2 + 3α2u2 + αβv2
(1 + sZ)2

ϕ1 +
2αβuv

(1 + sZ)2
ϕ2),

∂XF2(u, v, s)[ϕ1, ϕ2] = ϕ2 − (−∆ + λ2)−1( sβZ2 + 3β2v2 + αβu2
(1 + sZ)2

ϕ2 +
2αβuv

(1 + sZ)2
ϕ1).

Plugging in u = us, v = 0 and Z = αu2 + βv2 = αu2s gives

∂XF1(us , 0, s)[ϕ1, ϕ2] = ϕ1 − (−∆ + λ1)−1(3α2u2s + sα3u4s
(1 + sαu2s )2

ϕ1),

∂XF2(us , 0, s)[ϕ1, ϕ2] = ϕ2 − (−∆ + λ2)−1( sβα2u4s + αβu2s
(1 + sαu2s )2

ϕ2)

= ϕ2 − (−∆ + λ2)−1( αβu2s
1 + sαu2s

ϕ2)

= ϕ2 − (−∆ + λ2)−1(Wsϕ2)

= ϕ2 − L(s)ϕ2.

From these formulas and Proposition 3.1, we deduce the claim.

Given this result, our aim is to find su�cient conditions for the equation μk(s) = 1 to be solvable. Since there
is only few information available for any given s > 0, our approach consists of proving the continuity of μk
and calculating the limits of μk(s) as s approaches the boundary of (0, α/λ1). It will turn out that the limits
at both sides of the interval exist and that they lie on opposite sides of the value 1 provided our su�cient
conditions from Theorem 1.2 are satisfied. As a consequence, these conditions and the intermediate value
theorem imply the solvability of μk(s) = 1 and it remains to add some technical arguments in order to apply
the Krasnosel’skii–Rabinowitz global bifurcation theorem to prove Theorem 1.2. Calculating the limits of μk
at the ends of (0, α/λ1) requires Proposition 3.3 and Proposition 3.4.

Proposition 3.3. We have
us → u0 and Ws → αβu20 as s → 0,

where the convergence is uniform inℝn.

Proof. As in LemmaA.1 inAppendixA, one shows that on every interval [0, s0]with 0 < s0 < α/λ1, there is an
exponentially decreasing function which bounds each of the functions us with s ∈ [0, s0] from above. In par-
ticular, the Arzelà–Ascoli theorem shows that us → u0 and Ws → αβu20 as s → 0 locally uniformly in ℝn,
so that the uniform exponential decay gives us → u0 andWs → αβu20 uniformly inℝn.

Proposition 3.4. We have

us → +∞ and Ws →
βλ1
α

as s → α
λ1
,

where the convergence is uniform on bounded sets inℝn.

Proof. First, we show that
us(0) = maxℝn us → +∞ as s → s∗ := α

λ1
. (3.3)
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Otherwise, we would observe that us(0) → a for some subsequence, where a ≥ 0. In the case a > 0, a com-
bination of elliptic regularity theory for (1.3) and the Arzelà–Ascoli theorem would imply that us converges
locally uniformly to a nontrivial radially symmetric function u ∈ C1(ℝn) satisfying

−∆u + λ2u =
α2u3

1 + s∗αu2 inℝn

in the weak sense and u(0) = ‖u‖∞ = a. As in Lemma A.1, we conclude that the functions us are uniformly
exponentially decaying, so that u even lies in H1

r (ℝn). Hence, we may test the di�erential equation with u
and obtain

λ1 ∫ℝn u2 ≤ ∫ℝn |∇u|2 + λ1u2 = ∫ℝn α2u4

1 + s∗αu2 <
α
s∗ ∫ℝn u2 = λ1 ∫ℝn u2,

which is impossible. It therefore remains to exclude the case a = 0. In this case, the functions us would con-
verge uniformly inℝn to the trivial solution, implying that us/us(0)would converge to a nonnegative bounded
function ϕ ∈ C1(ℝn) satisfying −∆ϕ + λ1ϕ = 0 inℝn and ϕ(0) = ‖ϕ‖∞ = 1. Hence, ϕ is smooth, so that Liou-
ville’s theorem applied to the function (x, y) Ü→ ϕ(x) cos(√λ1y) defined on ℝn+1 implies that ϕ is constant
and, thus, ϕ ≡ 0, contradicting ϕ(0) = 1. This proves (3.3).

Now, set ϕs := us/us(0). Using

−∆ϕs + λ1ϕs = αϕs
αu2s

1 + sαu2s
inℝn

and the fact that αu2s /(1 + sαu2s ) remains bounded as s → s∗, we get that the functions ϕs converge lo-
cally uniformly as s → s∗ to some nonnegative radially nonincreasing function ϕ ∈ C1(ℝn) satisfying ϕ(0) =
‖ϕ‖∞ = 1. In order toproveour claim, it is su�cient to show thatϕ ≡ 1, since this implies us = us(0)ϕs → +∞
locally uniformly and, in particular,Ws → βλ1/α locally uniformly.

First, we show that ϕ > 0. If this were not true, then there would exist a number ρ ∈ (0, +∞) such
that ϕ|Bρ > 0 and ϕ|∂Br = 0 for all r ∈ [ρ, +∞). In Bρ, we have us → +∞ and α2u2s /(1 + sαu2s ) → λ1 implies
−∆ϕ + λ1ϕ = λ1ϕ inBρ andϕ|∂Bρ = 0, in contradiction to themaximumprinciple.Hence,wemust haveϕ > 0
in ℝn. Repeating the above argument, we find −∆ϕ + λ1ϕ = λ1ϕ in ℝn and ϕ(0) = ‖ϕ‖∞ = 1, so that Liou-
ville’s theorem implies ϕ ≡ ϕ(0) = 1.

The previous propositions enable us to calculate the limits of the eigenvalue functions μk(s) as s approaches
the boundary of (0, α/λ1).

Proposition 3.5. For all k ∈ ℕ0, the functions μk are positive and continuous on (0, α/λ1). Moreover, we have

μk(s) → μk as s → 0, μk(s) →
βλ1
αλ2

as s → α
λ1
.

Proof. As in Proposition 3.3, the uniform exponential decay of the functions us for s ∈ [0, s∗) for s∗ := α/λ1
implies that us → us0 , Ws → Ws0 uniformly in ℝn whenever s0 ∈ [0, s∗]. Hence, the Courant–Fischer min-
max characterization for the eigenvalues μk(s) implies the continuity of μk as well as μk(s) → μk as s → 0.

In order to evaluate μk(s) for s → s∗, we apply Lemma C.1 from Appendix C. The conditions (i) and (ii) of
the lemma are satisfied since we have ‖Ws‖∞ = Ws(0) → βλ1/α andWs → βλ1/α locally uniformly as s → s∗
by Proposition 3.4. From the lemma we get μk(s) → βλ1/αλ2 as s → s∗, which is all we had to show.

Remark 3.6. When n ≥ 4, the statement of Proposition 3.3 is not meaningful since u0 does not exist in this
case by Pohožaev’s identity. So, it is natural to ask how us ,Ws and μk behave when s approaches zero and
n ≥ 4. Having found an answer to this question, it might be possible tomodify our reasoning in order to prove
su�cient conditions for the existence of bifurcation points from T2 in the case n ≥ 4.

The above propositions are su�cient for proving themere existence of the continua Ck from Theorem 1.2. So,
it remains to show that positive solutions lie to the left of the threshold value (α − β)/(λ1 − λ2) and that they
are equibounded in X. The latter result will be proved in Lemma A.1 whereas the first claim follows from the
following nonexistence result which slightly improves [10, Theorem 3.10 and Theorem 3.11].
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Figure 1. The eigenvalue functions μk0 , . . . , μk0+3 on (0, α/λ1).
Proposition 3.7. If positive solutions of (1.1) exist, then we either have

(i) λ1 = λ2, α = β or (ii) s < α − β
λ1 − λ2

< min{ αλ1
, β
λ2

}.

Proof. Assume there is a positive solution (u, v) of (1.1). Testing (1.1) with (v, u) leads to

∫ℝn uv(λ1 − λ2 − (α − β) Z
1 + sZ)

= 0.

Hence, the function λ1 − λ2 − (α − β)Z/(1 + sZ) vanishes identically or it changes sign inℝn. In the first case,
we get (i), so let us assume that the function changes sign. Then, we have λ1 ̸= λ2 and α ̸= β, so that [10,
Theorem 3.11 and Remark 3.18] imply that

0 <
α − β
λ1 − λ2

< min{ αλ1
, β
λ2

}.

Moreover, s ≥ (α − β)/(λ1 − λ2) would imply that

!!!!!!!
λ1 − λ2 − (α − β) Z

1 + sZ
!!!!!!!
> |λ1 − λ2| −

|α − β|
s

≥ 0 inℝn ,

contradicting the assumption that λ1− λ2−(α−β)Z/(1+ sZ) changes sign.Hence,wehave s < (α−β)/(λ1− λ2),
which concludes the proof.

Proof of Theorem 1.2. The main ingredient of our proof is the Krasnosel’skii–Rabinowitz global bifurcation
theorem (cf. [9, 15] or [8, Theorem II.3.3]) which, roughly speaking, says that a change of the Leray–Schauder
index along a given solution curve over some parameter interval implies the existence of a bifurcating contin-
uum emanating from the solution curve within this parameter interval. In our application, the solution curve
is T2 and the first task is to identify parameter intervals within (0, α/λ1) where the index changes. For nota-
tional purposes, we set s∗ := α/λ1.
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Step 1. Existence of Solution Continua Ck Bifurcating from T2. By the assumptions of Theorem1.2 and Propo-
sition 3.5, we have

lim
s→0 μk(s) = μk < 1 and lim

s→s∗ μk(s) = βλ1
αλ2

> 1 for all k ≥ k0.

The continuity of the eigenvalue functions μk on (0, s∗) as well as the fact that μk(s) > μk+1(s) for all k ≥ k0,
s ∈ (0, s∗), therefore implies that 0 < ak0 < ak0+1 < ak0+2 < ⋅ ⋅ ⋅ < α/λ1 for the numbers ak given by

ak := sup{0 < s < α
λ1

: μk(s) < 1}, k ≥ k0.

By the definition of ak, we can find ak < ak < ak such that the following inequalities hold:

(i) μk(s) < 1 < μk−1(ak) for all s ≤ ak , k ≥ k0,

(ii) μk(s) > 1 > μk−1(ak) for all s ≥ ak , k ≥ k0,

(iii) ak − 1/k < ak < ak < ak+1 for all k ≥ k0.

(3.4)

In fact, one first chooses ak ∈ (ak , ak+1) such that (ii) is satisfied and then ak < ak su�ciently close to ak such
that (i) and (iii) hold.

Now, let us show that the Leray–Schauder index ind(F( ⋅ , s), (us , 0)) changes sign on each of the mu-
tually disjoint intervals (ak , ak). The index of F( ⋅ , s) near (us , 0) is computed using the Leray–Schauder
formula which involves the algebraic multiplicities of the eigenvalues μ > 1 of the compact linear operator
Id−∂XF(us , 0, s), see [8, (II.2.11)]. From the formulas appearing in Proposition 3.2 we find that μ > 1 is such
an eigenvalue if and only if one of the equations

(−∆ + λ1)−1(3α2u2s + sα3u4s
(1 + sαu2s )2

ϕ) = μϕ inℝn , ϕ ∈ H1
r (ℝ

n), ϕ ̸= 0,

L(s)ψ = (−∆ + λ2)−1(Wsψ) = μψ inℝn , ψ ∈ H1
r (ℝ

n), ψ ̸= 0,

is solvable. If s = ak, then the second equation is solvable with μ > 1 if and only if μ is an eigenvalue of L(ak)
larger than1. By (3.4) (i), this is equivalent to μ ∈ {μ0(ak), . . . , μk−1(ak)}. Due to Sturm–Liouville theory, each
of these eigenvalues is simple. The first equation is solvable with μ > 1 if and only if ∆ + g�(us) has a negative
eigenvalue in H1

r (ℝn), where g is defined as in (3.2). From [2, Theorem 5.4 (4)–(6)] we infer that there is
precisely one such eigenvalue μ > 1 and μ has algebraic multiplicity one. Denoting the H1

r (ℝn) spectrum
with σ, we arrive at the formula

ind(F( ⋅ , ak), (0, vak )) = (−1)#{μ ∈ σ(Id−∂XF(0,vak ,ak)) : μ>1}
= (−1)k+1
= −(−1)k+2
= −(−1)#{μ ∈ σ(Id−∂XF(0,vak ,ak)) : μ>1}
= − ind(F( ⋅ , ak), (0, vak )).

The Krasnosel’skii–Rabinowitz theorem implies that the interval (ak , ak) contains at least one bifurcation
point (usk , 0, sk), so that themaximal component Ck in S satisfying (usk , 0, sk) ∈ Ck is nonempty. By Proposi-
tion3.2, this implies μj(sk) = 1 for some j ∈ ℕ0 and (3.4) implies j = k, that is, μk(sk) = 1. Indeed, property (ii)
gives μk−1(sk) > 1 and (i) gives μk+1(sk) < 1.

Step 2. sk → s∗ as k → +∞. If the claimdid not hold, thenwewould have sk → s frombelow for some s < s∗.
From sk ∈ (ak , ak), the inequality ak > ak − 1/k and the definition of ak, we deduce that μk(t) ≥ 1 whenever
t ≥ sk + 1/k, k ≥ k0, and, thus,

μk(t) ≥ 1 for all t ∈ (
s + s∗
2 , s∗) and k ≥ k1

for some su�ciently large k1 ∈ ℕ. This contradicts μk(t) → 0 as k → +∞ for all t ∈ (0, s∗) and the claim
is proved.
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Step 3. Existence of Seminodal Solutions withinCk. Webriefly show that fully nontrivial solutions of (1.1) be-
longing to a su�ciently small neighbourhood of (usk , 0, sk) are (0, k)-nodal. Indeed, if solutions (um , vm , sm)
of (1.1) converge to (usk , 0, sk), then vm/vm(0) converges to the eigenfunction ϕ of L(sk)with ϕ(0) = 1which
is associated to the eigenvalue 1. Due to the fact that μk(sk) = 1 and Sturm–Liouville theory, ϕ has precisely
k + 1 nodal annuli, so that the same is true for vm and su�ciently large m ∈ ℕ. On the other hand, the con-
vergence um → u implies that um must be positive for large m, which proves the claim.

Step 4. Positive Solutions. The claim concerning positive solutions of (1.1) follows directly from Proposi-
tion 3.7 and Lemma A.1 from Appendix A.

4 Proof of Corollary 1.3 and Corollary 1.4
Let ζ ∈ H1

r (ℝn) be the unique positive functionwhich satisfies−∆ζ + ζ = ζ 3 inℝn, so that u0, v0 can be rewrit-
ten as

u0(x) = √λ1α−1ζ (√λ1x), v0(x) = √λ2β−1ζ (√λ2x).
Hence, Corollary 1.3 follows from Theorem 1.2 and the estimate

μ0 = max
ϕ ̸=0 αβ‖u0ϕ‖22‖ϕ‖2λ2

≤ max
ϕ ̸=0 αβ‖u0‖24‖ϕ‖24‖ϕ‖2λ2

=
αβ‖u0‖24‖v0‖

2
4

‖v0‖2λ2
=
α
β
‖u0‖24
‖v0‖24

=
β
α(

λ1
λ2

)
4−n
4
.

In the case n = 1, we have ζ(x) = √2 sech(x) and it is known (see, for instance, [4, Lemma 5.1]) that the
eigenvalue problem μ(−ϕ�� + ω2ϕ) = ζ 2ϕ in ℝ admits nontrivial solutions in H1

r (ℝ) if and only if 2/μ =
(ω + 2k)(ω + 2k + 1) for some k ∈ ℕ0. This implies that

μk =
β
α

2

(√ λ2
λ1 + 2k)(√ λ2

λ1 + 2k + 1)
, k ∈ ℕ0,

and Corollary 1.4 follows from Theorem 1.2.

5 Open Problems
Let us finally summarize some open problems concerning (1.1) which we were not able to solve and which
we believe provide a better understanding of the equation. Especially the open questions concerning global
bifurcation scenarios are supposed to be very di�cult from the analytical point of view so that numerical
indications would be very helpful, too. The following questions might be of interest.
(i) As in the author’s work onweakly coupled nonlinear Schrödinger systems [11], one could try to prove the

existence of positive solutions byminimizing the Euler functional over the “systemNehari manifold”Ms
consisting of all fully nontrivial functions (u, v) ∈ X which satisfy I�(u, v)[(u, 0)] = I�(u, v)[(0, v)] = 0.
For which parameter values α, β, λ1, λ2, s are there such minimizers and do they belong to C0?

(ii) What is the existence theory and the bifurcation scenario when αλ2 = βλ1 and α ̸= β, λ1 ̸= λ2?
(iii) In the case α = β, λ1 = λ2, the points on T1, T2 are connected by a smooth curve and the same is true

for every semitrivial solution. Do these connections break up when the parameters of the equation are
perturbed? This is related to the question whether the continuum C0 contains T1.

(iv) It would be interesting to know if the eigenvalue functions μk are strictly monotone. The monotonicity
of μk would imply that sk are the only solutions of μk(s) = 1 so that the totality of bifurcation points is
given by (sk)k≥k0 .

(v) We expect that T1, T2 extend to semitrivial solution branches T̃1, T̃2 containing also negative parameter
values s. A bifurcation analysis for such branches remains open. Let us shortly comment on why we
expect an interesting outcome from such a study. In the model case n = 1 and β = λ2 = 1, one obtains
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from (1.4) the existence of us for all s < 0 as well as the a priori information us(0)2 ∈ (1/(|s| + 1), 1/|s|).
Using this, one successively proves that sus(0)2 → −1 and s(1 + sus(0)2) → 0 as s → −∞. This implies
that Ws(0) = us(0)2/(1 + sus(0)2) → +∞ as s → −∞, so that one expects that μk(s) → +∞ as s → −∞
for all k ∈ ℕ0. In view of μk0 < 1, this leads to the natural conjecture that there are also infinitely many
bifurcating branches (C̃k)k≥k0 in the parameter range s < 0.

(vi) Our paper does not contain any existence result for fully nontrivial solutions when n ≥ 4 and λ1 ̸= λ2 or
α ̸= β. It would be interesting to know whether there is such a nonexistence result.

A A Priori Bounds
In ourproof of the apriori bounds for positive solutions (u, v)of (1.1),wewill use thenotation s∗ := min{α/λ1,
β/λ2} and u(x) = û(|x|), v(x) = v̂(|x|), so that û, v̂ denote the radial profiles of u, v. Notice that all nonnegative
solutions are radially symmetric and radially decreasing by [10, Lemma 3.8]. We want to highlight the fact
that the main ideas leading to Lemma A.1 are taken from [7, Section 2].

Lemma A.1. Let n ∈ {1,2,3}. For all ε > 0, there are cε ,Cε > 0 such that all nonnegative solutions (u, v) of (1.1)
for λ1, λ2, α, β ∈ [ε, ε−1] and s ∈ [0, min{α/λ1, β/λ2} − ε] satisfy

‖u‖λ1 + ‖v‖λ2 < Cε and u(x) + v(x) ≤ Cεe−cε |x| for all x ∈ ℝn .

Proof. We will break the proof into three steps.

Step 1. Boundedness in L∞(ℝn) × L∞(ℝn). Assume that there is an sequence (uk , vk) of nonnegative so-
lutions of (1.1) for parameters (λ1)k , (λ2)k , αk , βk ∈ [ε, ε−1] and sk ∈ [0, s∗ − ε] which is unbounded in
L∞(ℝn) × L∞(ℝn). As always, we write Zk(x) := αkuk(x)2 + βkvk(x)2. Passing to a subsequence, we may as-
sume that Zk(0) = maxℝn Zk → +∞ and ((λ1)k , (λ2)k , αk , βk , sk) → (λ1, λ2, α, β, s) for some s ∈ [0, s∗ − ε]
and λ1, λ2, α, β ∈ [ε, ε−1]. Let us distinguish the cases s > 0 and s = 0 to lead this assumption to a contradic-
tion.

For the case s > 0, the functions

ϕk := ukZk(0)−1/2, ψk := vkZk(0)−1/2
are bounded in L∞(ℝn) and satisfy αkϕk(0)2 + βkψk(0)2 = 1 as well as

−∆ϕk + (λ1)kϕk = αkϕk
Zk

1 + skZk
inℝn ,

−∆ψk + (λ2)kϕk = βkψk
Zk

1 + skZk
inℝn .

Using the fact that Zk/(1+ skZk) ≤ s−1k = s−1 + o(1) and De Giorgi–Nash–Moser estimates, we obtain from the
Arzelà–Ascoli theorem that there are bounded nonnegative radially symmetric limit functions ϕ, ψ ∈ C1(ℝn)
satisfying αϕ(0)2 + βψ(0)2 = 1 and

−∆ϕ + λ1ϕ =
α
s
ϕ inℝn ,

−∆ψ + λ2ψ =
β
s
ψ inℝn .

From λ1 < α/s and λ2 < β/s we obtain

ϕ(r) = κ1r
2−n
2 J n−2

2
((
α
s
− λ1)

1/2
r) and ψ(r) = κ2r

2−n
2 J n−2

2
((
β
s
− λ2)

1/2
r) for r ≥ 0

and for some κ1, κ2 ∈ ℝ. Since the functionsϕ, ψ are nonnegative, this is only possible in the case κ1 = κ2 = 0,
which contradicts αϕ(0)2 + βψ(0)2 = 1. Hence, the case s > 0 does not occur.
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For the case s = 0, we first show that skZk → 0 uniformly on ℝn which, due to the fact that Zk(0) =
maxℝn Zk, is equivalent to proving that skZk(0) → 0. So, let κ be an arbitrary accumulation point of the se-
quence (skZk(0))k∈ℕ andwithout loss of generality we assume that skZk(0) → κ ∈ [0, +∞], so that we are left
to show that κ = 0. To this end, set

ϕk(x) := uk(√skx)Zk(0)−1/2, ψk(x) := vk(√skx)Zk(0)−1/2.
The functions ϕk , ψk satisfy αkϕk(0)2 + βkψk(0)2 = 1 as well as

−∆ϕk + sk(λ1)kϕk = αkϕk
skZk

1 + skZk
= αkϕk

skZk(0)(αkϕ2
k + βkψ

2
k)

1 + skZk(0)(αkϕ2
k + βkψ

2
k)

inℝn ,

−∆ψk + sk(λ2)kψk = βkψk
skZk

1 + skZk
= βkψk

skZk(0)(αkϕ2
k + βkψ

2
k)

1 + skZk(0)(αkϕ2
k + βkψ

2
k)

inℝn .

The Arzelà–Ascoli theorem implies that a subsequence (ϕk), (ψk) converges locally uniformly to nonnegative
functions ϕ, ψ ∈ C1(ℝn) satisfying αϕ(0)2 + βψ(0)2 = 1 and

−∆ϕ = αϕ κ(αϕ2 + βψ2)
1 + κ(αϕ2 + βψ2)

inℝn ,

−∆ψ = βψ κ(αϕ2 + βψ2)
1 + κ(αϕ2 + βψ2)

inℝn .

For the case κ = +∞, we arrive at a contradiction as in the case s > 0, so let us assume that κ < +∞. Then,
z := ϕ + ψ is nonnegative, nontrivial and the inequality αϕ2 + βψ2 ≤ αϕ(0)2 + βψ(0)2 = 1 implies that

−∆z = (αϕ + βψ) κ(αϕ2 + βψ2)
1 + κ(αϕ2 + βψ2)

≥ min{α, β}(ϕ + ψ) κ
1 + κ

(αϕ2 + βψ2)

≥ c(κ)(ϕ + ψ)3

= c(κ)z3,

where c(κ) = min{α, β}2κ/(2(1 + κ)). From [14, Theorem 8.4] we infer that c(κ) = 0 and, thus, κ = 0. Hence,
every accumulation point of the sequence (skZk(0)) is zero, so that skZk converges to the trivial function
uniformly onℝn.

With this result at hand, one can use the classical blow-up technique by considering

ϕ̃k(x) := uk(Zk(0)−1/2x)Zk(0)−1/2, ψ̃k(x) := vk(Zk(0)−1/2x)Zk(0)−1/2.
These functions satisfy αkϕ̃k(0)2 + βkψ̃k(0)2 = 1 as well as

−∆ϕ̃k + Zk(0)−1(λ1)kϕ̃k = αkϕ̃k ZkZk(0)−11 + skZk
inℝn ,

−∆ψ̃k + Zk(0)−1(λ2)kψ̃k = βkψ̃k ZkZk(0)−11 + skZk
inℝn .

Then, we have skZk → 0 uniformly in ℝn and similar arguments as the ones used above lead to a bounded
nonnegative nontrivial solution ϕ, ψ of

−∆ϕ = αϕ(αϕ2 + βψ2) inℝn ,

−∆ψ = βψ(αϕ2 + βψ2) inℝn ,

which we may lead to a contradiction as above. This finally shows that Zk(0) → +∞ is also impossible in
the case s = 0, so that the nonnegative solutions (u, v) of (1.1) are pointwise bounded by some constant
depending on ε.
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Step 2. Uniform Exponential Decay. Let us assume for contradiction that there is a sequence (uk , vk , sk) of
positive solutions of (1.1) satisfying

ûk(rk) + v̂k(rk) ≥ ke−rk/k for all k ∈ ℕ and some rk > 0. (A.1)

Due to the L∞-bounds for (uk , vk) which we proved in the first step, we can use De Giorgi–Nash–Moser esti-
mates and theArzelà–Ascoli theorem to obtain a smooth bounded radially symmetric limit function (u, v) of a
suitable subsequence of (uk , vk). As a limit of positive radially decreasing functions, u, v are also nonnegative
and radially nonincreasing. In particular, we may define

u∞ := lim
r→+∞ û(r) ≥ 0, v∞ := lim

r→+∞ v̂(r) ≥ 0.

Our first aim is to show that u∞ = v∞ = 0. Since (û, v̂) decreases to some limit at infinity, we have û�(r), v̂�(r),
û��(r), v̂��(r) → 0 as r → +∞, so that (1.1) implies that

λ1u∞ =
αu∞Z∞
1 + sZ∞ , λ2v∞ =

βv∞Z∞
1 + sZ∞ , where Z∞ = αu2∞ + βv2∞. (A.2)

Now, define

Ek(r) := û�k(r)2 + v̂�k(r)2 − λ1ûk(r)2 − λ2 v̂k(r)2 + s−2g(sZk(r)),
E(r) := û�(r)2 + v̂�(r)2 − λ1û(r)2 − λ2 v̂(r)2 + s−2g(sZ(r)).

The di�erential equation implies that

E�k(r) = −
2(n − 1)

r (û�k(r)2 + v̂�k(r)2) ≤ 0,

so that Ek decreases to some limit at infinity. The monotonicity of ûk , v̂k and the fact that ûk(r), v̂k(r) → 0 as
r → +∞ imply that this limit must be 0. In particular, we obtain that Ek ≥ 0 and the pointwise convergence
Ek → E implies that E is a nonnegative nonincreasing function. From this we obtain that

0 ≤ lim
r→+∞ E(r) = −λ1u2∞ − λ2v2∞ + s−2g(sZ∞)

(A.2)
= −

Z2∞
1 + sZ∞ + s−2g(sZ∞) =

1
s2

(
sZ∞

1 + sZ∞ − ln(1 + sZ∞)).

This equation implies that Z∞ = 0 and, hence, u∞ = v∞ = 0.
Now, let μ satisfy 0 < μ < √min{λ1, λ2} and choose δ > 0. Due to the fact that u∞ = v∞ = 0, we may

choose r0 > 0 such that û(r0) + v̂(r0) < δ/2holds. From ûk(r0) → û(r0), v̂k(r0) → v̂(r0) and the fact that ûk , v̂k
are decreasing, we obtain that ûk(r) + v̂k(r) ≤ δ for all r ≥ r0 and all k ≥ k0 for some su�ciently large k0 ∈ ℕ.
Having chosen δ > 0 su�ciently small, the inequality û�k , v̂�k ≤ 0 implies that

−(ûk + v̂k)�� + μ2(ûk + v̂k) ≤ 0 on [r0, +∞) for all k ≥ k0.

Hence, the maximum principle implies that for any given R > r0, the function wR(r) := e−μ(r−r0) + e−μ(R−r)
satisfies ûk + v̂k ≤ wR on (r0, R). Indeed, wR dominates ûk + v̂k on the boundary of (r0, R) due to the fact that

wR(r0) = wR(R) ≥ 1 ≥ δ ≥ (ûk + v̂k)(r0) = max{(ûk + v̂k)(r0), (ûk + v̂k)(R)}.

Sending R to infinity, we obtain that

(ûk + v̂k)(r) ≤ e−μ(r−r0) for all r ≥ r0,

which, together with the a priori bounds from the first step, yields a contradiction to the assumption (A.1).
This proves the uniform exponential decay.

Step 3. Conclusion. Given the uniform exponential decay of (u, v), we obtain a uniform bound on ‖u‖L4(ℝn),
‖v‖L4(ℝn) which, using the di�erential equation (1.1), gives a uniform bound on ‖u‖λ1 , ‖v‖λ2 . This finishes
the proof.

Let usmention that in view of Proposition 3.4, the a priori bounds from the above lemma cannot be extended
to the interval s ∈ [0, min{α/λ1, β/λ2}]. Furthermore, positive solutions of (1.1) are not uniformly bounded
for parameters s belonging to neighbourhoods of 0 when n ≥ 4, see Remark 3.6. Notice that the assumption
n ∈ {1, 2, 3} in the proof of the above lemma only becomes important when we apply [14, Theorem 8.4].
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B A Functional Analytic Setting for n = 1
In this section, we show that in the one-dimensional case, the function F( ⋅ , s) : X → X given by (3.1) is a
compact perturbation of the identity for an appropriately chosen Banach space X such that T1, T2 are con-
tinuous curves in X × (0, +∞). Let σ ∈ (0, 1) be fixed and set (X, ⟨ ⋅ , ⋅ ⟩X) to be the Hilbert space given by

X := {(u, v) ∈ H1
r (ℝ) × H1

r (ℝ) : ⟨(u, v), (u, v)⟩X < +∞}

with

⟨(u, v), (ũ, ṽ)⟩X :=
+∞
∫
0

e2σμ1x(u�ũ� + μ21uũ) dx + +∞∫
0

e2σμ2x(v� ṽ� + μ22vṽ) dx,
where μ1 := √λ1 and μ2 := √λ2. One may check that (X, ⟨ ⋅ , ⋅ ⟩X) is a Hilbert space and the subspace
C∞0,r(ℝ) × C∞0,r(ℝ) consisting of smooth even functions having compact support is dense in X. We will use
the formula

((−∆ + μ2)−1f )(x) = μ
2 ∫ℝ e−μ|x−y|f(y) dy =

+∞
∫
0

μΓ(μx, μy)f(y) dy (B.1)

for all f ∈ C∞0,r(ℝ) and μ > 0, where

Γ(x, y) = 1
2 (e
−|x−y| + e−|x+y|).

Proof of Well-Definedness. First, let us prove for all (u, v) ∈ X the estimate

√μ1|u(r)| ≤ ‖(u, v)‖Xe−σμ1r and √μ2|v(r)| ≤ ‖(u, v)‖Xe−σμ2r for r ≥ 0. (B.2)

It su�ces to prove these inequalities for u, v ∈ C∞0,r(ℝ). For such functions, we have

μ1u(r)2 ≤ 2μ1
+∞
∫
r

|uu�| dx ≤ e−2σμ1r ∞
∫
r

e2σμ1x(u�2 + μ21u2) dx ≤ ‖(u, v)‖2Xe
−2σμ1r ,

μ2v(r)2 ≤ 2μ2
+∞
∫
r

|vv�| dx ≤ e−2σμ2r ∞
∫
r

e2σμ2x(v�2 + μ22v2) dx ≤ ‖(u, v)‖2Xe
−2σμ2r .

Next, using that u�(0) = v�(0) = 0 and the fact that u, v have compact support, we obtain+∞
∫
0

e2σμ1x(u�2 + μ21u2) dx =
+∞
∫
0

(e2σμ1xuu�)� − 2σμ1e2σμ1xuu� + e2σμ1xu(−u�� + μ21u) dx
= −2σμ1

+∞
∫
0

e2σμ1xuu� dx + +∞∫
0

e2σμ1xu(−u�� + μ21u) dx
≤ σ
+∞
∫
0

e2σμ1x(u�2 + μ21u2) dx + +∞∫
0

e2σμ1xu(−u�� + μ21u) dx.
Then, performing the analogous rearrangements for v, yields for all u, v ∈ C∞0,r(ℝ) that

‖(u, v)‖2X ≤
1

1 − σ

+∞
∫
0

e2σμ1xu(−u�� + μ21u) dx + 1
1 − σ

+∞
∫
0

e2σμ2xv(−v�� + μ22v) dx. (B.3)
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Applying this inequality to (u, v) = ((−∆ + μ21)−1( f )χR , (−∆ + μ22)−1(g)χR) for f, g ∈ C∞0,r(ℝ) and a suitable fam-
ily (χR)R>0 of cut-o� functions converging to 1, we obtain

""""((−∆ + μ21)
−1(f ), (−∆ + μ22)

−1(g))""""2X (B.3)
≤

1
1 − σ

+∞
∫
0

e2σμ1x(−∆ + μ21)
−1(f )(x)f(x) dx

+
1

1 − σ

+∞
∫
0

e2σμ2x(−∆ + μ22)
−1(g)(x)g(x) dx

(B.1)
=

μ1
1 − σ

+∞
∫
0

+∞
∫
0

e2σμ1xΓ(μ1x, μ1y)f(x)f(y) dx dy

+
μ2

1 − σ

+∞
∫
0

+∞
∫
0

e2σμ2xΓ(μ2x, μ2y)g(x)g(y) dx dy

≤
μ1

1 − σ

+∞
∫
0

+∞
∫
0

eσμ1xeσμ1y|f(x)||f(y)| dx dy

+
μ2

1 − σ

+∞
∫
0

+∞
∫
0

eσμ2xeσμ2y|g(x)||g(y)| dx dy

=
μ1

1 − σ(
+∞
∫
0

eσμ1x|f(x)| dx)
2
+

μ2
1 − σ(

+∞
∫
0

eσμ2x|g(x)| dx)
2
.

Plugging in

f := fu,v :=
αuZ
1 + sZ

≤ αu(αu2 + βv2), g := gu,v :=
βvZ
1 + sZ

≤ βv(αu2 + βv2)

and using the estimate (B.2), we find that there is a positive number C depending on σ, μ1, μ2, α, β but not
on u, v such that

""""((−∆ + μ21)
−1(fu,v), (−∆ + μ22)

−1(gu,v))""""X ≤ C‖(u, v)‖3X . (B.4)

By the density of C∞0,r(ℝ) × C∞0,r(ℝ) in X, this inequality also holds for (u, v) ∈ X. If now (uk , vk) is a sequence
in C∞0,r(ℝ) × C∞0,r(ℝ) converging to (u, v) ∈ X, then similar estimates based on (B.2) show that
""""((−∆+μ

2
1)
−1(fuk ,vk−fum ,vm ), (−∆+μ22)−1(guk ,vk−gum ,vm ))""""X ≤ C‖(uk−um , vk−um)‖X(‖(uk , vk)‖X+‖(um , vm)‖X)2

for some C > 0, implying that F : X × (0, +∞) → X is well defined and that (B.4) also holds for (u, v) ∈ X.

Proof of Compactnessof Id−F. Let now (um ,vm)beabounded sequence inX. Then,without loss of generality,
we can assume that (um , vm) ⇀ (u, v) ∈ X and (um , vm) → (u, v) pointwise almost everywhere. We set

fm := αumZm
1 + sZm

, gm := βvmZm
1 + sZm

, f := αuZ
1 + sZ

, g := βvZ
1 + sZ

,

where Zm := αu2m + βv2m and Z := αu2 + βv2. Then, we have fm→ f and gm→ g pointwise almost everywhere
and the estimate (B.2) implies that

|fm(r)| + |f(r)| ≤ α(|um(r)|Zm(r) + |u(r)|Z(r)) ≤ C(e−3σμ1r + e−σ(μ1+2μ2)r), (B.5)

|gm(r)| + |g(r)| ≤ β(|vm(r)|Zm(r) + |v(r)|Z(r)) ≤ C(e−3σμ2r + e−σ(μ2+2μ1)r) (B.6)

for some positive number C > 0. Using the estimate from above, we therefore obtain that

‖(Id−F)(um , vm) − (Id−F)(u, v)‖2X = """"((−∆ + μ21)
−1(fm − f ), (−∆ + μ22)

−1(gm − g))""""
2
X

≤
μ1
1−σ(

+∞
∫
0

eσμ1x|fm(x) − f(x)| dx)
2
+

μ2
1−σ(

+∞
∫
0

eσμ2x|gm(x) − g(x)| dx)
2
.
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Using (B.5), (B.6) and the dominated convergence theorem, we finally get that

‖(Id−F)(um , vm) − (Id−F)(u, v)‖X → 0 as m → +∞,

which is all we had to show.

C A Spectral Theoretic Result
Finally, we prove a spectral theoretical result which we used in the proof of Proposition 3.5 and for which
we could not find a reference in the literature. The key ingredient of this result is the min-max principle for
eigenvalues of semibounded self-adjoint Schrödinger operators, see, for instance, [16, Theorem XIII.2]. As in
Proposition 3.5, we denote by μk(s), k ∈ ℕ0, the k-th eigenvalue of the compact self-adjoint operator

Ls : H1
r (ℝ

n) → H1
r (ℝ

n) with Lsϕ := (−∆ + λ)−1(Wsϕ) (C.1)

for potentialsWs vanishing at infinity, that is,Ws(x) → 0 as |x| → +∞.

Lemma C.1. Let n ∈ ℕ, κ, λ > 0, a < b and let (Ws)s∈(a,b) be a family of radially symmetric potentialsWs :ℝn→
[0, +∞) vanishing at infinity and satisfying

(i) lim sup
s→b ‖Ws‖∞ = κ and (ii) Ws → κ locally uniformly as s → b.

Then, we have μk(s) → κ/λ as s → b for all k ∈ ℕ0.

Proof. The min-max principle and (i) imply that

lim sup
s→b μk(s) ≤ lim sup

s→b ‖Ws‖∞
λ

=
κ
λ
.

So, it remains to show the corresponding estimate frombelow. Given the assumptionsWs ≥ 0 and (ii), we find
that it is su�cient to show that μεk → κ/λ as ε → 0, where μεk denotes the k-th eigenvalue of the compact self-
adjoint operator Mε : H1

r (ℝn) → H1
r (ℝn) defined by Mεϕ = (−∆ + λ)−1((κ − ε)1B1/εϕ). Here, 1B1/ε denotes the

indicator function of the ball in ℝn centered at the origin with radius 1/ε. Since ε → Mε is continuous on
(0, +∞) with respect to the operator norm, the min-max characterization of the eigenvalues implies that the
mapping

ε Ü→ ωεk
is continuous on (0, +∞), where

ωεk :=
κ − ε
μεk

− λ.

By the definition of μεk , ω
ε
k, the boundary value problem

{{{
{{{
{

−ϕ��(r) − n − 1
r

ϕ�(r) = ωεkϕ(r) for 0 ≤ r ≤ ε−1,
−ϕ��(r) − n − 1

r
ϕ�(r) = −λϕ(r) for r ≥ ε−1

with
ϕ�(0) = 0 and ϕ(r) → 0 as r → +∞

for ϕ ∈ C1([0, +∞)) has a nontrivial solution. Testing the di�erential equation on [0, ε−1] with ϕ, we obtain
that ωεk > 0. Hence, ϕ is given by

ϕ(r) = α
{
{
{

cr 2−n2 J n−2
2
(√ωεkr) if r ≤ ε−1,

r 2−n2 K n−2
2
(√λr) if r ≥ ε−1
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for some α ̸= 0. Here, K denotes the modified Bessel function of the second kind and J represents the Bessel
function of the first kind. From ϕ ∈ C1([0, +∞)) we get the conditions

K n−2
2
(√λε−1) = cJ n−2

2
(√ωεkε

−1), √λK�
n−2
2
(√λε−1) = √ωεkcJ

�
n−2
2
(√ωεkε

−1)
on c and ωεk. Due to the continuity of ε → ωεk on (0, +∞) and due to the fact that K is positive whereas J has
infinitely many zeros going o� to infinity, we infer that √ωεkε

−1 is bounded on (0, +∞). In particular, this
gives that ωεk → 0 and, thus, μεk → κ/λ as ε → 0, which is all we had to show.
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