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Abstract: We prove a conjecture recently formulated by Maia, Montefusco and Pellacci saying that minimal
energy solutions of the saturated nonlinear Schrodinger system

au(au?® + fv?)
1+ s(au? + pv?)

Bv(au? + Bv?)
1+ s(au? + pv?)
are necessarily semitrivial whenever a, 8, A1, A; > 0 and 0 < s < max{a/A;, $/A;} except for the symmet-
ric case A1 = A, a = . Moreover, it is shown that for most parameter samples a, 8, 11, A,, there are in-
finitely many branches containing seminodal solutions which bifurcate from a semitrivial solution curve
parametrized by s.
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1 Introduction

In this paper, we intend to continue the study on nonlinear Schrédinger systems for saturated optical mate-
rials that was recently initiated by Maia, Montefusco and Pellacci [10]. In their paper, the system of elliptic
partial differential equations

au(au? + Bv?)
1+ s(au? + Bv?)

Bv(au? + Bv?)
1+ s(au? + Bv?)
was suggested in order to model the interaction of two pulses within the optical material under investigation.
Here, the parameters satisfy 11, A2, a, B, s > 0 and n € IN. One way to find classical fully nontrivial solutions
of (1.1) is to use variational methods. The Euler functional I : H}(R") x H}(R") — R associated to (1.1) is
given by

—Au+Au= inR",
(1.1)

~Av + Ay = in R"

1 o 1
I, v) o= 5 (1, + VIR, - Sul? - §||v||§) + 57 | In(L+ stau® + pz2)
IRH
1
= SOl + E) - 55 | gts2), (1.2)
]Rn
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where Z(x) := au(x)? + fv(x)? and g(z) := z — In(1 + z) for all z > 0. The symbol | - ||, denotes the standard
norm on L(R") and the norms || - [|z,, || - 1, are defined via

1/2
lulla, :=<[|Vu|2+/t1u2> Vi, :=(j|Vv|2+sz2)

R"? R"

1/2

Since we are interested in minimal energy solutions (that is, ground states) for (1.1), the ground states
us, vs of the scalar problems associated to (1.1) turn out to be of particular importance. These are positive
radially symmetric and radially decreasing smooth functions satisfying

2.3
a’u
—Aus + Ajug = —52 inR",
1+ saug
(1.3)
B2V3
-Avs +Avs = ———  inR".
1+ sPv;

Since we will encounter these solutions many times, let us recall some facts from the literature. The exis-
tence of positive finite energy solutions us, vs of (1.3) for parameters 0 < s < a/A; and 0 < s < $/A, can be
deduced from [19, Theorem 2.2] for n > 3 or from [5, Theorem 1 (i)] for n > 2, respectively. In the case n = 1,
the positive functions ug, v are given by ug(x) = us(—x), vs(x) = vs(—x) for all x € R and
us(0) 1
-1

u z) =
<l10,+00)(2) ()llxz - s2g(sax?)
z

1/2
) dx forz e (0, us(0)],

vs(0)
1

-1 _
Vsli0, 100 (2) = J (Azxz - 572g(spx?)

z

1/2
) dx forz € (0, vs(0)],

where ug(0), vs(0) > 0 are uniquely determined by
A1us(0)? - s72g(saus(0)?) = A,vs5(0)* — s2g(sBvs(0)?) = 0. (1.4)

As in the explicit one-dimensional case, it is known also in the higher-dimensional case that us, v are radially
symmetric, see [6, Theorem 2]. Finally, the uniqueness of us, vs follows from [17, Theorem 1] in the casen > 3
and from [12, Theorem 1] in the case n = 2. The uniqueness result for n = 1 is a direct consequence of the
existence proof we gave above.

In this paper, we strengthen the results obtained by Maia, Montefusco and Pellacci [10] concerning
ground state solutions and (component-wise) positive solutions of (1.1), so let us shortly comment on their
achievements. In Theorem 3.7 of their paper, they proved the existence of nonnegative radially symmetric and
nonincreasing ground state solutions of (1.1) forall n > 2 and for parameter values O < s < max{a/A1, B/A;},
where the upper bound for s is in fact optimal by Lemma 3.2 in the same paper. It was conjectured that each
of these ground states is semitrivial except for the special case a = 8, A; = A,, where the totality of ground
state solutions is known in a somehow explicit way, see [10, Theorem 2.1] or Theorem 1.1 (i) below. In [10],
this conjecture was proved for parameters s > min{a /A1, f/A,}, see Theorem 3.15 and Theorem 3.17 therein.
Our first result shows that the full conjecture is true even in the case n = 1, which was not considered in [10].

Theorem 1.1. Letn € N, @, 8,11, A, > 0and O < s < max{a/A1, B/A;}. Then, the following holds.
(i) Inthecase a = B and A1 = Ay, all ground states of (1.1) are given by (cos(0)us, sin(0)vs) for 6 € [0, 2m).
(ii) Inthe case a + B or A1 # Ay, every ground state solution of (1.1) is semitrivial.

The proof of this result will we presented in Section 2. Our approach is based on a suitable min-max charac-
terization of the mountain pass level associated to (1.1) involving a fibering map technique as in [11]. This
method even allows to give an alternative proof for the existence of a ground state solution of (1.1) which
is significantly shorter than the one presented in [10] and which, moreover, incorporates the case n = 1,
see Proposition 2.1. More importantly, this approach yields the optimal result.
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In view of Theorem 1.1, it is natural to ask how the existence of fully nontrivial solutions of (1.1) can
be proved. In [10], Maia, Montefusco and Pellacci found necessary conditions and sufficient conditions for
the existence of positive solutions of (1.1) which, however, partly contradict each other. For instance, [10,
Theorem 3.21] claims that positive solutions exist for parameters a = 8, A; # A, and s > 0 sufficiently small
contradicting the nonexistence result from [10, Theorem 3.10]. The error leading to this contradiction is lo-
cated on [10, p. 338, 1. 13], where the number A, /s must be replaced by A,s, which makes the results from
Theorem 3.19 and Theorem 3.21 in that paper break down. Our approach to finding positive solutions and,
more generally, seminodal solutions of (1.1) is to apply bifurcation theory to the semitrivial solution branches

T = {(O,VS,S) :0<s< E}, Ty = {(us,O,s) :0<s< i},
/12 /11

which was motivated by the papers of Ostrovskaya and Kivshar [13] and Champneys and Yang [3]. In the case
n=1landA; =1, =w?€(0,1),a= B =1, they numerically detected a large number of solution branches
emanating from 7, containing seminodal solutions. Moreover, they conjectured that the bifurcation points on
T, accumulate near s = 1, see [3, p. 2184 ff.]. Our results confirm these observations. For simplicity, we will
only discuss the bifurcations from 7, since the corresponding analysis for 77 is the same up to interchanging
the roles of A1, A; and a, B. Investigating the linearized problems associated to (1.1) near (us, 0, s) for pa-
rameters close to the boundary of the parameter interval (0, a/A;), we prove the existence of infinitely many
bifurcating branches containing fully nontrivial solutions of a certain nodal pattern. Despite the fact that the
question whether fully nontrivial solutions bifurcate from 77, 7, makes perfect sense for all space dimen-
sions n € N, our bifurcation result is restricted to n € {1, 2, 3}. Later, we will comment on this issue in more
detail, see Remark 3.6. In order to formulate our bifurcation result, let us define the positive numbers j, to be
the k-th eigenvalues of the linear compact self-adjoint operators ¢ — (A + Az)‘l(aﬁué@ mapping H}(R")
to itself, where ug denotes the positive ground state solution of the first equation in (1.3) for s = 0. By Sturm-
Liouville theory, we know that these eigenvalues are simple and that they satisfy

Ho>Hy >Hy > > — 0" ask — +oo.

Deferring some more or less standard notational conventions to a later stage, we come to the statement of our
result.

Theorem 1.2. Letn € {1, 2,3} andlet a, §, A1, A, > 0 and ko € Ny satisfy
A B

—<— and u, <1.

L a Hi,

Then, there is an increasing sequence (Si)k=k, of positive numbers converging to a/A, such that continua C; c 8

containing (0, k)-nodal solutions of (1.1) emanate from T, at s = s for all k > ko. In the case ko = 0, we nec-

essarily have A1 > A, and there is a C > 0 such that all positive solutions (u, v, s) € Co with s > 0 satisfy
a —

a-p _a

M=-A A

In the case n € {2, 3}, we can estimate J, from above in order to obtain a sufficient condition for the conclu-

sions of Theorem 1.2 to hold for ko = 0. This estimate, which leads to Corollary 1.3, is based on the Courant-

Fischer min-max principle and Holder’s inequality. In the one-dimensional case, the values of all eigenvalues

1, are explicitly known, which results in Corollary 1.4.

lulla, + Vi, <C and s < (1.5)

Corollary 1.3. Let n € {2, 3}. Then, the conclusions of Theorem 1.2 are true for ko = O if

b B (AT
A_]_ < E < <E> . (1.6)

Corollary 1.4. Let n = 1. Then, the conclusions of Theorem 1.2 are true in the case

AL B 1 Z Z
E<a<5(\jﬂ+2ko)(\jﬂ-'-2k0+l)' (1.7)
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Remark 1.5. Aswe mentioned above, one can find sufficient criteria for the existence of (k, 0)-nodal solutions
bifurcating from T; by reversing the roles of 11, A; and a, 8 in the statement of Theorem 1.2 as well as in its
corollaries.

Theorem 1.2 gives rise to many questions which would be interesting to solve in the future. A list of open
problems is provided in Section 5. Before going on with the proof of our results, let us clarify the notation
which we used in Theorem 1.2. The set 8§ ¢ X x R is the closure of all solutions of (1.1) which do not belong
to T, and a subset of § is called a continuum if it is a maximal connected set within S. Finally, a fully nontrivial
solution (u, v) of (1.1) is called (k, [)-nodal if both component functions are radially symmetric and u has
precisely k + 1 nodal annuli and v has precisely [ + 1 nodal annuli. In other words, since double zeros cannot
occur, (u, v) is (k, 1)-nodal if the radial profiles of u, respectively v, have precisely k, respectively 1, zeros.

2 Proof of Theorem 1.1

According to the assumptions of Theorem 1.1, we will assume throughout this section that the numbers
A1, Ay, a, B are positive, that s lies between 0 and max{a/A1, B/A>} =: s*, and that the space dimension is
an arbitrary natural number. Furthermore, we define the energy levels

cs = inf{Is(u, v) : (u,v) € HY(R™) x H(R") solves (1.1), (u, v) # (0, 0)},
¢t = inf{Is(u, v) : (u,v) € HY(R") x H (R") solves (1.1), u = 0,v# 0oru # 0, v = O}.

The first step towards the proof of Theorem 1.1 is a more suitable min-max characterization of the least energy
level cs of (1.1) which, as in [11], gives rise to a simple proof for the existence of a ground state. To this end,
we introduce the Nehari manifold

o, s=infls, N := {(u,v) e HY(R™) x HY(R™) : (u, v) # (0, 0) and I’ (u, v)[(u, v)] = O}.

Proposition 2.1. The value

cs=cn, = inf supIs(vVru, Vrv). (2.1)
(u,v)#(0,0) r>0

is attained at a radially symmetric and radially nonincreasing ground state of (1.1).

Proof. From [10, (3.15), (3.52)] we get cs = cu,, SO let us prove the second equation in (2.1). For every fixed
u, v € H'(R") satisfying (u, v) # (0, 0), we set

r 1
B = T(VFu, V7v) = 2 (1l + WIE,) - 55 [ gtrs2),
]R)’l
so that (+/ru, v/rv) € Ny holds for r > 0 if and only if B’(r) = 0. Since B is smooth and strictly concave with
B'(0) > 0, a critical point of B is uniquely determined and it is a maximizer (whenever it exists). Since the
supremum of f is +oo, when there is no maximizer of § we obtain

cn. =inflg = inf  supIs(Vru, Vrv),
N E R T R 0.0 s )

which proves (2.1).
Due to 0 < s < max{a/A;, B/A,}, we can find a semitrivial function (u, v) € H'(R") x H'(R") satisfying

B

2 2 a0 2
lully, +1Ivily, < ;||u||2 + §||V||2,

which implies that cs < +co according to (2.1). So, let (uy, vx) be a minimizing sequence in H*(R") x H*(R")
satisfying sup,.q Is(v/ruk, Vrvk) — ¢s as k — +oco. Using the classical Polya-Szeg6 inequality and the ex-
tended Hardy-Littlewood inequality

J In(1 + rs(auj + pvy)) = j In(1 + rs(au® + pvi?)) forallr > o0,
R R
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for the spherical rearrangement taken from [1, Theorem 2.2], we may assume uy, v to be radially symmetric
and radially decreasing. Since the function g(z) = z — In(1 + 2) strictly increases on (0, +00) from O to +co,
we may moreover assume that (uy, vi) are rescaled in such a way that the equality

1
- j g(sZ) = 1
IRn

holds for Zy := auj, + Bv;. The inequality

cs+0(1) = lim supIs(Vruk, Vrvy) = limsup Is(u, vi) = 1 limsup(luxli +lvil3 ) -1
k—+o0 r>0 k—+00 2 kotoo ! 2

implies that the sequence (ug, v¢) is bounded in H(R") x H'(R"). Using the uniform decay rate and the re-

sulting compactness propetties of radially decreasing functions bounded in H*(R") x H'(R") (apply, for in-

stance, [18, Compactness Lemma 2]), we may take a subsequence, again denoted by (u, v), such that

(ug, vi) — (u, v) in HY(R") x H'(R") pointwise always everywhere and

1 1
557 J g(rsz) = klim 552 I g(rsZy) forallr > 0.
R —+00 R
From this we infer that
557 J g(sz) =1
IR)‘(

and, thus, (u, v) # (0, 0). Hence, for all r > 0, we obtain

cs = lim supIs(\/puk, \/pvi)

k—+00 p>0

. r 1
> lim sup(z(uuknil Fl) - 5 | g(rszk)>

k—+00
]Rn

r 2 2 1
> 2Ol + V) - 55 | 8rs2)
]R"

= Is(\/7u, \/;V),

so that (u, v) is a nontrivial radially symmetric and radially decreasing minimizer. Taking for r the maximizer
of the map r — Is(+/ru, v/rv), we obtain the ground state solution (u, v) := (v/ru, v/rv) having the properties
we claimed to hold. Indeed, the Nehari manifold may be rewritten as

Ns = {(u,v) € HY(R™) x HY(R™) : (u, v) # (0, 0), H(u,v) = 0}

for
ZZ

H(u, v) := Ig(u, v)[(u, V)] = lulf, + VI3, - J Tz

]Rn
so that the Lagrange multiplier rule applies due to
47 +2s7° j 272

H' G vl ) = 200, + ) - | 52 7
n ]Rn
for all (u, v) € Ns. O

Let us note that ¢s equals ¢ = my = m from [10, Lemma 3.6] and, therefore, corresponds to the mountain
pass level of Is. Given Proposition 2.1, we are in position to prove Theorem 1.1.
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Proof of Theorem 1.1. Part (i) was proved in [10, Lemma 3.2], so let us prove (ii). First, we show that the
ground state energy level cs equals c; . Since we have ¢ < ¢} by definition, we have to show that

sup Is(Vru, Vrv) = ¢ forallu,v e HY(R") with u, v # 0. (2.2)

r>0

From (1.2) we deduce that if ||u||§1 > (a/s)llull3, then we have Is(v/ru, vrv) = Is(0, v/rv) forallv # Oand r > 0,
which implies (2.2). In the same way, one proves (2.2) in the case ||v||§2 > (B/s)llvll%, so it remains to prove
(2.2) for functions (u, v) satisfying

2 a0 > B, oo
||u||A1<§||u||2, and ||V||,12<§||V||2~ (2.3)

To this end, let r > O be arbitrary but fixed. From (2.3) we infer that the numbers

B

S

Slhul3 — lully,

a2 2 2 2
t(u,v) := rw,v) := r(;llullz + = vl = llully, = 1Ivily,

’
ul3 + Eivig - ui2, - iz

satisfy t(u, v) € (0, 1) and r(u, v) > 0 as well as

2 2
Is(Vru, Vrv) = ) + 1 J ln<1 + r(w, vis(au” + Bv7) ) (2.4)

2
2 2 <Pl + B i3 -l - V3,

The concavity of the logarithm yields
2 2 2 2
Jln(1+ r(u, v)s(au? +Bv?) ): Jln(t(u,v)(uM)ﬂl—t(u,v))(1+ r(u, v)spv ))

2 2 Anull? =llull? 2 2
o 3+ LIz - w2 -2/, § 3 = lully, Biviz - vi3,

2 2
> t(“"’)Jln<l+m)+(1—t(u,v)) Jln<1+ r(u, v)spv )

a 2 2
g U Sl ul, g Vo SIVIB-IVIR,
2 2
. r(u, v)sau riu, v)spv
> mln{ J ln(l + %>, J ln(l + B(,z—)ﬁz)}
d Shuls — iy, /7 ) SIvI3 = VIS,

Combining this inequality with (2.4) gives

2
Is(Vru, Vrv) > min{—r(uz’ v) + J ln(l + r(u, v)sau® >, BLCIY) + j ln(l + T, v)spv” V)spv >}
IRYI

a 2 2
Jull3 - ful, 2 Bivig - i3,

Rn

Taking the supremum with respect to r > 0, gives (2.2) and, therefore, ¢ > ¢, which is what we had to show.

It remains to prove that every ground state is semitrivial unless A; = A,, a = 8. To this end, assume that
(u, v) is a fully nontrivial ground state solution of (1.1), so that in particular Is(u, v) = ¢, holds. Then, ¢s = ¢
implies that the inequalities above are equalities for some r > 0. In particular, since the logarithm is strictly
concave and t(u, v) € (0, 1), we get

r(u,v)sau® ( r(u, v)spv?

A PP a.e.onR"
2 2 )
Sl = luly, Bivig -3,

for some k > 0. This implies that k = 1, so that u, v have to be positive multiples of each other. From the
Euler-Lagrange equation (1.1) we deduce that A; = A; and a = 8, which finishes the proof. O

3 Proof of Theorem 1.2

In this section, we assume A1, A2, @, > 0 as before but the space dimension n is supposed to be 1, 2 or 3.
In Remark 3.6, we will comment on the reason for this restriction. Let us first provide the functional analytic
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framework we will be working in. In the case n > 2, we set X := H}(R") x H}(R") to be the product of the
radially symmetric functions in H*(R") and define F : X x (0, +c0) — X by

u-(=A+ A1) Nauz(1 +s2)™1)

F(u,v,s) := (v —(-A+ Az)—l(ﬁvZ(l +s2)71)

> , where Z := au?® + Bv2. (3.1)
Hence, finding solutions of (1.1) is equivalent to finding zeros of F. Using the compactness of the embed-
dings Hr1 (R") —» L9(R") forn > 2and 2 < g < 2n/(n - 2), one can check that the function F(-, s) is a smooth
compact perturbation of the identity in X for all s, so that the Krasnosel’skii—Rabinowitz global bifurcation
theorem [9, 15] is applicable. In the case n = 1, however, this structural property is not satisfied, which mo-
tivates a different choice for X. In Appendix A, we show that one can define a suitable Hilbert space X of
exponentially decreasing functions such that F(-, s) : X — X is again a smooth compact perturbation of the
identity in X. Except for this technical inconvenience, the case n = 1 can be treated in a similar way to the case
n € {2, 3}, so we carry out the proofs for the latter case only. Furthermore, we always assume that A,/1; < /a
according to the assumption of Theorem 1.2.

The first step in our bifurcation analysis is to investigate the linearized problems associated to the equa-
tion F(u, v, s) = 0 around the elements of the semitrivial solution branch 7,. While doing this, we make use of
a nondegeneracy result for ground states of semilinear problems which is due to Bates and Shi [2]. Amongst
other things, it tells us that us is a nondegenerate solution of the first equation in (1.3), that is, we have the
following result.

Proposition 3.1. The linear problem
3a?u? + salud

a
A +A1¢p = L+ sad)? Sp, ¢eH(R",0<s< —
S

A
only admits the trivial solution ¢ = 0.

Proof. In order to apply [2, Theorem 5.4 (6)], we set

2.3

g(z) == -z + z € R,

1+saz?’

so that u; is the ground state solution of —Au = g(u) in R" which is centered at the origin. In the notation of [2],
one can check that g is of class (A). Indeed, the properties (g1), (g2), (g3A), (g4A), (g5A) from [2, p. 258] are

satisfied for
A 1 1/2

b_(az—a)lls) » Keo=1

and the unique positive number 6 > b satisfying
(E —A1>92 - iz In(1 + sa6?) = 0.

S s
Notice that (g4A), (g5A) follow from the fact that K,(2) := zg'(2)/g(z) decreases from 1 to —co on the interval
(0, b) and that it decreases from +co to K, = 1 on (b, +00). Having checked the assumptions of [2, Theo-
rem 5.4 (6)], we obtain that the space of solutions of ~A¢ — g'(us)¢ = 0in R" is spanned by 01 us, . . . , Onls,
implying that the linear problem only has the trivial solution in H}(R"). Due to

3a’u? + sadu

g'(us) = A1 + (3.2)

(1+sau?)?
this proves the claim. O

Using this preliminary result, we can characterize all possible bifurcation points on T, which are, due to
the implicit function theorem, the points where the kernel of the linearized operator is nontrivial. For nota-
tional purposes, we introduce the linear compact self-adjoint operator L(s) : H} (R") — H}(R") for parame-
ters 0 < s < a/A; by setting

2
afus(x) 0cs< X

L(8) := (A + X)) (Wsp),  Ws(x) := T+ saus (02 A



102 — R. Mandel, Minimal Energy Solutions and Infinitely Many Bifurcating Branches DE GRUYTER

for ¢ € H}(R™). Denoting by (uk(s))ken, the decreasing null sequence of eigenvalues of L(s), we will ob-
serve that finding bifurcation points on 7, amounts to solving pi(s) = 1 for s € (0, /A1) and k € Np. In fact,
we have the following result.

Proposition 3.2. We have

ker(0xF(us, 0, s)) = {0} x ker(Id -L(s)) forO<s < ﬁ.

M
Proof. For (u,v), (¢1, ¢p2) € X, we have
o 1/ SaZ? + 3a%u? + aPv? 2aBuv
aXFl(u,V,S)[¢1, ¢2]_¢1 ( A+A1) < (1+SZ)2 ¢1+ (1+SZ)2¢2),
o _1( SBZ? + 3B%v? + aBu? 2aBuv
oxFa(u, v, 8)[1, 2] = P2 — (-4 + 1) < 1 +52)2 ¢o + (1+sZ)2¢1)
Plugging in u = us, v = 0 and Z = au? + fv? = au? gives
3a?u? + sadu?
OxFi(s, 0,911, h2] = 1~ (- + A (ZEE S )
1+ saus
sBa’ug + apu?
OxFalus, 0,91, ) = g - (-0 4 oy (LEE LB )
(1 +sau?)
apu?
= -(-A+A
= o= -0+ 2275 sau§¢2)
= ¢y — (A + 1) (Wsh2)
=2 - L(s)¢>.
From these formulas and Proposition 3.1, we deduce the claim. O

Given this result, our aim is to find sufficient conditions for the equation pj(s) = 1 to be solvable. Since there
is only few information available for any given s > 0, our approach consists of proving the continuity of pj
and calculating the limits of p(s) as s approaches the boundary of (0, a/A1). It will turn out that the limits
at both sides of the interval exist and that they lie on opposite sides of the value 1 provided our sufficient
conditions from Theorem 1.2 are satisfied. As a consequence, these conditions and the intermediate value
theorem imply the solvability of ux(s) = 1 and it remains to add some technical arguments in order to apply
the Krasnosel’skii—Rabinowitz global bifurcation theorem to prove Theorem 1.2. Calculating the limits of
at the ends of (0, a/A1) requires Proposition 3.3 and Proposition 3.4.

Proposition 3.3. We have
us — up and Ws— aful ass— 0,

where the convergence is uniform in R".

Proof. AsinLemma A.1in Appendix A, one shows that on every interval [0, so] with O < 5o < a/Aq, thereisan
exponentially decreasing function which bounds each of the functions us with s € [0, so] from above. In par-
ticular, the Arzela—Ascoli theorem shows that us — ug and W5 — aﬁué as s — 0 locally uniformly in R",
so that the uniform exponential decay gives us — up and Wy — afu? uniformly in R". O

Proposition 3.4. We have
BAy

Us —>+oo and Ws— — ass— —,
(44 /\1

where the convergence is uniform on bounded sets in R".

Proof. First, we show that
Us(0) =maxus — +00 ass — s* := &2, (3.3)
R" /11
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Otherwise, we would observe that us(0) — a for some subsequence, where a > 0. In the case a > 0, a com-
bination of elliptic regularity theory for (1.3) and the Arzela—Ascoli theorem would imply that ug converges
locally uniformly to a nontrivial radially symmetric function u € C*(IR") satisfying

2.3

a‘u .
-Au+u=———— in R"
1+s*au

in the weak sense and u(0) = |Ju|« = a. As in Lemma A.1, we conclude that the functions us are uniformly
exponentially decaying, so that u even lies in H}(R"). Hence, we may test the differential equation with u

and obtain X

A1 J u? < J IVul? + Au? = J o <X J u? =4 J u?,
1+s*au? s*
R" R R" R" R"
which is impossible. It therefore remains to exclude the case a = 0. In this case, the functions us would con-
verge uniformly in R" to the trivial solution, implying that us/us(0) would converge to a nonnegative bounded
function ¢ € C1(R") satisfying -A¢p + ;¢ = 0in R" and ¢(0) = |plleo = 1. Hence, ¢ is smooth, so that Liou-
ville’s theorem applied to the function (x, y) — ¢(x) cos(\//l_ly) defined on R™! implies that ¢ is constant
and, thus, ¢ = 0, contradicting ¢»(0) = 1. This proves (3.3).
Now, set ¢bs := us/us(0). Using
A + Aips = acpstz in R
1+ saug

and the fact that au2/(1 + sau?) remains bounded as s — s*, we get that the functions ¢s converge lo-
cally uniformly as s — s* to some nonnegative radially nonincreasing function ¢ € C*(IR") satisfying ¢»(0) =
¢llco = 1.Inorder to prove our claim, it is sufficient to show that ¢ = 1, since this implies ug = us(0)¢ps — +0co
locally uniformly and, in particular, Wy — BA;/a locally uniformly.

First, we show that ¢ > 0. If this were not true, then there would exist a number p € (0, +co) such
that ¢[p, > 0 and ¢|sp, = 0 for all r € [p, +00). In B,, we have us — +oo and a?u?/(1 + sau) — A; implies
-A¢ +A1¢p = Migpin By and ¢lyp, = 0, in contradiction to the maximum principle. Hence, we must have ¢ > 0
in R™. Repeating the above argument, we find —-A¢ + A1¢p = A;¢ in R" and ¢(0) = ||¢| = 1, so that Liou-
ville’s theorem implies ¢ = ¢(0) = 1. O

The previous propositions enable us to calculate the limits of the eigenvalue functions ux(s) as s approaches
the boundary of (0, a/Aq).

Proposition 3.5. For all k € Ny, the functions py are positive and continuous on (0, a/A1). Moreover, we have

Mi(s) = up ass — 0, up(s) — fi—t ass — R
Proof. As in Proposition 3.3, the uniform exponential decay of the functions u; for s € [0, s*) for s* := a/A;
implies that us — us,, Ws — W, uniformly in R" whenever s, € [0, s*]. Hence, the Courant-Fischer min-
max characterization for the eigenvalues uy(s) implies the continuity of u; as well as ui(s) — u ass — 0.
In order to evaluate u(s) for s — s*, we apply Lemma C.1 from Appendix C. The conditions (i) and (ii) of
the lemma are satisfied since we have | Ws| s, = Ws(0) — BA;/aand Ws — BA;/alocally uniformlyass — s*

by Proposition 3.4. From the lemma we get ui(s) — BA1/aA; as s — s*, which is all we had to show. O

Remark 3.6. When n > 4, the statement of Proposition 3.3 is not meaningful since uy does not exist in this
case by PohoZaev’s identity. So, it is natural to ask how us, Ws and uj behave when s approaches zero and
n > 4. Having found an answer to this question, it might be possible to modify our reasoning in order to prove
sufficient conditions for the existence of bifurcation points from T in the case n > 4.

The above propositions are sufficient for proving the mere existence of the continua Cy from Theorem 1.2. So,
it remains to show that positive solutions lie to the left of the threshold value (a — 8)/(A1 — A,) and that they
are equibounded in X. The latter result will be proved in Lemma A.1 whereas the first claim follows from the
following nonexistence result which slightly improves [10, Theorem 3.10 and Theorem 3.11].



104 — R. Mandel, Minimal Energy Solutions and Infinitely Many Bifurcating Branches DE GRUYTER

ﬁAl/a/(z ********************************************************

Hi,

yk0+1

yk0+2
yko+3

!
|
|
l
0 Sko Sko+1 Sko+2  Sko+3 a/Ay

Figure 1. The eigenvalue functions pii,, . . . , tke+3 On (0, a/A1).

Proposition 3.7. If positive solutions of (1.1) exist, then we either have

N B . a-B . ﬁﬁ}
@D A=A, a=8 or (H)S</\1—)lz<mm{)l1’)lz .

Proof. Assume there is a positive solution (u, v) of (1.1). Testing (1.1) with (v, u) leads to

[{hte-tap ) -0

R"

Hence, the function A; — A, — (a — 8)Z/(1 + sZ) vanishes identically or it changes sign in R". In the first case,
we get (i), so let us assume that the function changes sign. Then, we have A; # A; and a + f, so that [10,
Theorem 3.11 and Remark 3.18] imply that

a-p . (a B
0< FR <m1n{E,E}.

Moreover, s > (a - )/(A1 — A;) would imply that

Z la - B -
Al—/lz—(a—ﬁ)1+sz|>|/\1—)l2|— =20 iR,
contradicting the assumption that A; — A, — (a— 8)Z/(1 + sZ) changes sign. Hence, we have s < (a - f8)/(11 - A,),
which concludes the proof. O

Proof of Theorem 1.2. The main ingredient of our proof is the Krasnosel’skii—Rabinowitz global bifurcation
theorem (cf. [9, 15] or [8, Theorem II.3.3]) which, roughly speaking, says that a change of the Leray—Schauder
index along a given solution curve over some parameter interval implies the existence of a bifurcating contin-
uum emanating from the solution curve within this parameter interval. In our application, the solution curve
is 75 and the first task is to identify parameter intervals within (0, a/A1) where the index changes. For nota-
tional purposes, we set s* := a/A1.
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Step 1. Existence of Solution Continua Cy Bifurcating from T,. By the assumptions of Theorem 1.2 and Propo-
sition 3.5, we have

lim pp(s) = <1 and  lim p(s) = & >1 forall k > ko.
s—0 s—s* a/lz

The continuity of the eigenvalue functions uy on (0, s*) as well as the fact that ux(s) > ux+1(s) for all k > ko,
s € (0, s*), therefore implies that 0 < ay, < Ak,+1 < Aky+2 < --+ < /A1 for the numbers aj given by

ay := sup{O <S§< }ti D Uk(S) < 1}, k> ko.
1

By the definition of ai, we can find g, < ax < ai such that the following inequalities hold:

1) () <1 < purea(ay) forall s < ay, k = ko,
() pw(s) > 1> pr-1(ax) forall s > ay, k > ko, (3.4)
(i) ax-1/k<a,<ax<a,, forallk=>ko.

In fact, one first chooses @y € (ax, ar+1) such that (i) is satisfied and then a, < aj sufficiently close to aj such
that (i) and (iii) hold.

Now, let us show that the Leray-Schauder index ind(F(-, s), (us, 0)) changes sign on each of the mu-
tually disjoint intervals (a;, ax). The index of F(-, s) near (us, 0) is computed using the Leray-Schauder
formula which involves the algebraic multiplicities of the eigenvalues u > 1 of the compact linear operator
Id -0xF(us, 0, s), see [8, (1I.2.11)]. From the formulas appearing in Proposition 3.2 we find that u > 1 is such
an eigenvalue if and only if one of the equations

3a%u? +salu

4
(—A+A1)‘1( S¢)=u¢ inR", ¢ eHR"), ¢ +0,

(1 +sau?)?
L)W = (FA+A) ' (Wep) = pyp inR", e Hy(R"), h #0,

is solvable. If s = a;, then the second equation is solvable with u > 1 if and only if u is an eigenvalue of L(a, )
larger than 1. By (3.4) (i), thisis equivalent to u € {uo(ay), . . . , ur-1(a;)}. Due to Sturm-Liouville theory, each
of these eigenvalues is simple. The first equation is solvable with u > 1 if and only if A + g'(us) has a negative
eigenvalue in H(R"), where g is defined as in (3.2). From [2, Theorem 5.4 (4)-(6)] we infer that there is
precisely one such eigenvalue y > 1 and u has algebraic multiplicity one. Denoting the H}(R") spectrum
with o, we arrive at the formula

ind(F(-, @), (0, vg,)) = (~1)F# €00d-0xFOva @) 11}
» £ ’ ’ 7,(
— (_1)k+1
— _(_1)k+2
_ _(_1)#{;4 € 0(Id -0xF(0,vg, ,ax)) : u>1}
= - 1nd(F( <y ak)a (Os Vﬁk))'

The Krasnosel’skii-Rabinowitz theorem implies that the interval (a,, ai) contains at least one bifurcation
point (us,, 0, si), so that the maximal component Cj in 8 satisfying (us,, 0, sx) € Cx is nonempty. By Proposi-
tion 3.2, thisimplies y;(sx) = 1forsomej € Noand (3.4) impliesj = k, thatis, ux(si) = 1. Indeed, property (ii)
gives pux_1(sx) > 1 and (i) gives uy41(sk) < 1.

Step 2. sy — s* as k — +oo. Ifthe claim did not hold, then we would have sy — s from below for somes < s*.
From sy € (a, ax), the inequality a; > ayx — 1/k and the definition of ax, we deduce that p(t) > 1 whenever
t > sx+1/k, k > kg, and, thus,

*

W) =1 forallte (S+s ,s*)andk2k1

for some sufficiently large k; € N. This contradicts px(t) — 0 as k — +oo for all ¢ € (0, s*) and the claim
is proved.
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Step 3. Existence of Seminodal Solutions within Cj. We briefly show that fully nontrivial solutions of (1.1) be-
longing to a sufficiently small neighbourhood of (us, , 0, si) are (0, k)-nodal. Indeed, if solutions (u™, v™", s™)
of (1.1) converge to (us,, 0, sk), then v /v™(0) converges to the eigenfunction ¢ of L(sx) with ¢(0) = 1 which
is associated to the eigenvalue 1. Due to the fact that pi(sx) = 1 and Sturm-Liouville theory, ¢ has precisely
k + 1 nodal annuli, so that the same is true for v and sufficiently large m € IN. On the other hand, the con-
vergence u™ — u implies that u™ must be positive for large m, which proves the claim.

Step 4. Positive Solutions. The claim concerning positive solutions of (1.1) follows directly from Proposi-
tion 3.7 and Lemma A.1 from Appendix A. O

4 Proof of Corollary 1.3 and Corollary 1.4

Let { € H}(R") be the unique positive function which satisfies -A{ + ¢ = {® in R", so that ug, vo can be rewrit-

ten as -
uo(x) = \/}l—la‘l((\/)l—lx), vo(x) = \/)lzﬁ‘l((\/zx).

Hence, Corollary 1.3 follows from Theorem 1.2 and the estimate

.
__aBluodld _ aBluolZIgl; _ aBluolZIvol? _ aluol; _ B A\
max —— 5 — < max 2 2 T B a

O YR N Y Ivol, Ivol?

Ko = E

In the case n = 1, we have {(x) = V2 sech(x) and it is known (see, for instance, [4, Lemma 5.1]) that the
eigenvalue problem u(-¢" + w?¢) = {*¢ in R admits nontrivial solutions in H}(R) if and only if 2/u =
(w + 2k)(w + 2k + 1) for some k € INg. This implies that

- _B 2
Hem a<\/%+2k)(\/%+2k+l)’

and Corollary 1.4 follows from Theorem 1.2.

ke No,

5 Open Problems

Let us finally summarize some open problems concerning (1.1) which we were not able to solve and which

we believe provide a better understanding of the equation. Especially the open questions concerning global

bifurcation scenarios are supposed to be very difficult from the analytical point of view so that numerical
indications would be very helpful, too. The following questions might be of interest.

(i) Asinthe author’s work on weakly coupled nonlinear Schrédinger systems [11], one could try to prove the
existence of positive solutions by minimizing the Euler functional over the “system Nehari manifold” Mg
consisting of all fully nontrivial functions (u, v) € X which satisfy I' (u, v)[(u, 0)] = I' (u, v)[(0, v)] = O.
For which parameter values a, 8, 11, A, s are there such minimizers and do they belong to Cy?

(ii) What is the existence theory and the bifurcation scenario when aA, = fA; and a # 8, A1 # 457

(iii) In the case @ = 8, A1 = A, the points on J7, T, are connected by a smooth curve and the same is true
for every semitrivial solution. Do these connections break up when the parameters of the equation are
perturbed? This is related to the question whether the continuum Gy contains 77.

(iv) It would be interesting to know if the eigenvalue functions yj are strictly monotone. The monotonicity
of pi would imply that sj are the only solutions of p(s) = 1 so that the totality of bifurcation points is
given by (Si)ksk,-

(v) We expect that T1, 7> extend to semitrivial solution branches 77, 7, containing also negative parameter
values s. A bifurcation analysis for such branches remains open. Let us shortly comment on why we
expect an interesting outcome from such a study. In the model case n = 1 and = A, = 1, one obtains
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from (1.4) the existence of u; for all s < 0 as well as the a priori information us(0)% € (1/(|s| + 1), 1/|s]).
Using this, one successively proves that sus(0)?> — -1 and s(1 + sus(0)?) — 0 as s — —oco. This implies
that Ws(0) = us(0)2/(1 + sus(0)?) — +0o as s — —oo, so that one expects that p(s) — +co as s — —0o
for all k € No. In view of ;< 1, this leads to the natural conjecture that there are also infinitely many
bifurcating branches (Cx)ixk, in the parameter range s < 0.

(vi) Our paper does not contain any existence result for fully nontrivial solutions when n > 4 and A; # A; or
a # fB. It would be interesting to know whether there is such a nonexistence result.

A A Priori Bounds

In our proof of the a priori bounds for positive solutions (u, v) of (1.1), we will use the notation s* := min{a/A,,
B/A2} and u(x) = u(|x|), v(x) = ¥(|x]), so that &, v denote the radial profiles of u, v. Notice that all nonnegative
solutions are radially symmetric and radially decreasing by [10, Lemma 3.8]. We want to highlight the fact
that the main ideas leading to Lemma A.1 are taken from [7, Section 2].

LemmaA.1. Letne{1,2,3}. Forall € > 0, there are c., C. > 0 such that all nonnegative solutions (u, v) of (1.1)
forAi,As, a, B € [e,e ] and s € [0, min{a/A1, B/A;} — €] satisfy

lula, + vy, < Ce and  u(x) +v(x) < Cee ™ forallx e R".
Proof. We will break the proof into three steps.

Step 1. Boundedness in L*°(R") x L*°(IR"). Assume that there is an sequence (ug, vk) of nonnegative so-
lutions of (1.1) for parameters (A1)x, (A2)x, &k, Bx € [€, €71] and sk € [0, s* — €] which is unbounded in
L®(R™) x L°(RR"). As always, we write Zy(x) := axux(x)? + Bxvi(x)?. Passing to a subsequence, we may as-
sume that Zx(0) = maxgrn Zx — +0o and ((A1)k, (A2)k, Ak, Bk, Sk) — (A1, A2, a, B, s) for some s € [0, s* — €]
and A1, Ay, a, B € [g, £71]. Let us distinguish the cases s > 0 and s = 0 to lead this assumption to a contradic-
tion.

For the case s > 0, the functions

bic i= wZi(0) V2, Py = vieZi(0)7H?

are bounded in L®(R") and satisfy ax¢(0)? + Bxhx(0)? = 1 as well as

Zx .
Ay + A1)k i = ak¢k Zk in R",

Ay + A2)rdi = PPk ———- T75e Z in R".

Using the fact that Z; /(1 + sxZk) < s;l = 571 + 0(1) and De Giorgi—Nash—Moser estimates, we obtain from the
Arzela-Ascoli theorem that there are bounded nonnegative radially symmetric limit functions ¢, ¥ € C*(R")
satisfying a¢(0)? + Bp(0)? = 1 and

B +hip=S¢ iR,
A + A = é inR".
From A; < a/s and A, < /s we obtain
o(r) = Klrzznjnzz<(g —/11>1/2r) and Y(r) = Kzrzznjnzz(<§ —A2)1/2r> forr>0

and for some k1, k, € RR. Since the functions ¢, 1) are nonnegative, this is only possible in the case k1 =k, =0,
which contradicts ag(0)? + Bp(0)? = 1. Hence, the case s > 0 does not occur.



108 — R. Mandel, Minimal Energy Solutions and Infinitely Many Bifurcating Branches DE GRUYTER

For the case s = 0, we first show that syZy; — 0 uniformly on R" which, due to the fact that Z;(0) =
maxgn Z, is equivalent to proving that s3Zy(0) — 0. So, let k be an arbitrary accumulation point of the se-
quence (sxZk(0))kenw and without loss of generality we assume that sxZy(0) — x € [0, +00], so that we are left
to show that x = 0. To this end, set

Br(0) = ur(VSKX)ZK(0) 2, Pr(x) 1= vie(VSK0) Zi(0) 72,

The functions ¢y, Yy satisfy axdx(0)? + Bxpx(0)? = 1 as well as

~ siZi skZk(0)(ak Py + Brby) .
APk AP = i 7 = T O R+ D)
B sZk skZk(0)(ax i + Bry) "
Ay + sk = ﬁklpkm = Bk T+ SiZeO)@d? + By in R".

The Arzela—Ascoli theorem implies that a subsequence (¢), ({x) converges locally uniformly to nonnegative
functions ¢, i € C1(R") satisfying a¢p(0)? + f(0)?> = 1 and

K@ B
A ey M
gy K@ B
MY =BV gt gy PR

For the case x = +00, we arrive at a contradiction as in the case s > 0, so let us assume that x < +oo. Then,
z := ¢ + 1 is nonnegative, nontrivial and the inequality a¢? + f1? < a¢(0)? + fp(0)? = 1 implies that

K(ag? + Byp?)
1+ k(ag? + pip?)

> min{a, B} + 1) : —(ag? + pp?)
> c(k)(p + ¥)°

-Az = (a¢ + BY)

1

= c(x)2°,

where c(x) = min{a, B}2x/(2(1 + x)). From [14, Theorem 8.4] we infer that c(x) = 0 and, thus, x = 0. Hence,
every accumulation point of the sequence (sxZx(0)) is zero, so that sixZx converges to the trivial function
uniformly on R™.

With this result at hand, one can use the classical blow-up technique by considering

10 = ur(ZK(0) %) Z1(0) M2, Pr(x) = vi(Zi(0) 72 x) Zi(0) V2.

These functions satisfy ax¢x(0)? + Bxx(0)? = 1 as well as

z - z : ZxZk(0)1
~Ay + Zi(0) T Ay = le%%s(k;k inR",
7 - . - ZxZ(0)yt
AP+ ZK(0) Ay = ﬁklpk%s(k;k in R™.

Then, we have s;Z; — 0 uniformly in R" and similar arguments as the ones used above lead to a bounded
nonnegative nontrivial solution ¢, i of

-Ap = agp(ag? + pp?) inR",
-AY = Bp(ag? + fip*) inR",

which we may lead to a contradiction as above. This finally shows that Z;(0) — +oco is also impossible in
the case s = 0, so that the nonnegative solutions (u, v) of (1.1) are pointwise bounded by some constant
depending on €.
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Step 2. Uniform Exponential Decay. Let us assume for contradiction that there is a sequence (u, vk, Si) of
positive solutions of (1.1) satisfying

i (ri) + vi(ri) = ke ™% forall k € N and some ry > O. (A1)

Due to the L*®-bounds for (ug, vi) which we proved in the first step, we can use De Giorgi—Nash—Moser esti-
mates and the Arzela—Ascoli theorem to obtain a smooth bounded radially symmetric limit function (u, v) ofa
suitable subsequence of (ug, vi). As a limit of positive radially decreasing functions, u, v are also nonnegative
and radially nonincreasing. In particular, we may define

Uy = lim u(r) >0, vy := lim v(r) >0.
r—+00 r—+0c0

Our first aim is to show that U, = v, = 0. Since (i1, V) decreases to some limit at infinity, we have i’ (r), V' (r),
u'"(r), V"(r) — 0asr — +00, so that (1.1) implies that

BveoZoo
1+5Z

AU Z oo

Trez. where Z, = auZ, + pv2,. (A.2)

Aluoo = ) AZVoo =

Now, define
Ex(r) := ij(n)? + V3,(N? = Aili(r)? = Ao 0i(r)? + s728(sZi (1)),
E(r) :=0'(n? + V' (r)? = Miiu(r)? = ,9(r)? + s72g(sZ(r)).

The differential equation implies that

By - - 2D

((n? +7,(N?) <0,
so that Ey decreases to some limit at infinity. The monotonicity of ik, Vx and the fact that @iy (r), Vx(r) — 0 as
r — +o0o imply that this limit must be 0. In particular, we obtain that Ex > 0 and the pointwise convergence
E) — E implies that E is a nonnegative nonincreasing function. From this we obtain that
1 ( SZso

w2  Z3,
$2\1+sZy

. a2 a2 -2 L 2 _
OererE(r)— Aus, — v, +5°8(s2) = 1+sZoo+s 8(5Zo)

This equation implies that Z, = 0 and, hence, Uy, = Voo = 0.

Now, let u satisfy 0 < u < vmin{A;, A,} and choose & > 0. Due to the fact that uy, = ve, = 0, We may
choose rg > Osuch that ii(rg) + V(rg) < 6/2 holds. From tix(rg) — u(ro), Vi(ro) — V(ro) and the fact that @iy, v
are decreasing, we obtain that i, (r) + Vi (r) < 6 forall r > ro and all k > k for some sufficiently large ko € IN.

Having chosen 6 > 0 sufficiently small, the inequality i;, 7} < 0 implies that

—1n(1 +sZoo)).

—(f + V)" + p? (il + V) <0 on [rg, +oo) for all k > ko.

Hence, the maximum principle implies that for any given R > rq, the function wg(r) := e #0704 g=H(R-T)
satisfies tix + Vx < wg on (rg, R). Indeed, wg dominates i1y + Vi on the boundary of (rg, R) due to the fact that

WR(ro) = WR(R) 2 1 2§ > (fik + V1)(ro) = max{(ix + vi)(ro), (& + Vi)(R)}.
Sending R to infinity, we obtain that
(g + vi)(r) < e #0770 forallr > ro,

which, together with the a priori bounds from the first step, yields a contradiction to the assumption (A.1).
This proves the uniform exponential decay.

Step 3. Conclusion. Given the uniform exponential decay of (u, v), we obtain a uniform bound on ||u||z4gn),
[Vllzsr) Which, using the differential equation (1.1), gives a uniform bound on [ulls,, [vla,. This finishes
the proof. O

Let us mention that in view of Proposition 3.4, the a priori bounds from the above lemma cannot be extended
to the interval s € [0, min{a/A1, B/A;}]. Furthermore, positive solutions of (1.1) are not uniformly bounded
for parameters s belonging to neighbourhoods of 0 when n > 4, see Remark 3.6. Notice that the assumption
n € {1, 2, 3} in the proof of the above lemma only becomes important when we apply [14, Theorem 8.4].
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B A Functional Analytic Setting forn = 1

In this section, we show that in the one-dimensional case, the function F(-,s) : X — X given by (3.1) is a
compact perturbation of the identity for an appropriately chosen Banach space X such that 77, T, are con-
tinuous curves in X x (0, +00). Let 0 € (0, 1) be fixed and set (X, (-, - )x) to be the Hilbert space given by

X :={(u,v) € H (R) x H:(R) : {(u, v), (u, v))x < +00}
with

+00 +00
((u,v), (@, 7))y = J e2OMX W'’ + puil) dx + J e2oHX (V'Y ¢ udvi) dx,
0 0

where u; := +/A; and p; := \/A,. One may check that (X, (-,-)x) is a Hilbert space and the subspace
Co(R) x 3, (R) consisting of smooth even functions having compact support is dense in X. We will use

the formula
+00

(42700 =5 [ ey dy = [ urux, wfy) dy (8.1)
R 0

forall f € Cgf’,(]R) and y > 0, where
P = S o,
Proof of Well-Definedness. First, let us prove for all (u, v) € X the estimate
Vialu@l < i, v)ixe™" and o lv(n)l < ll(w, v)lixe ™" forr=0. (B.2)

It suffices to prove these inequalities for u, v € Cg’,(R). For such functions, we have

+00 (o)

uiu(r)? < 2u, J luu'| dx < e~2oM7 j e2TMX(y'? 4 p2u?) dx < ||(u, v)llze 27T,
r r
+00

wov(r)? < 2us j [w'| dx < e~20H2"

r

e27X (V12 1 u3v?) dx < ||(u, v)l|5e 27T,

T8

Next, using that u’(0) = v/(0) = 0 and the fact that u, v have compact support, we obtain

+00 +00

J’ e?TMX(y'? 4 p2u?) dx = I (> Xyu") — 20u1 €2 ¥ uu’ + e* P X u(-u" + pdu) dx
0 0
+00 +00
_ 20U1x ! 20u1X i 2
=-20u1 | e uu dx+ | e u(-u" + pju) dx
0 0
+00 +00
<o J e?7MX (W' ¢ p2u?) dx + j e?oMXy(—u" + p2u) dx.
0 0

Then, performing the analogous rearrangements for v, yields for all u, v € Cg’,(R) that

1 +00 1 +00
- J e?oMXy(—u" + p?u) dx + 1 J e?7M2Xy(—y" 1 uv) dx. (B.3)
0

2
u,v <
I I < 7
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Applying this inequality to (u, v) = ((-A + y%)‘l(f)XR, (-A + y%)‘l(g)XR) forf, g € C3’,(R) and a suitable fam-
ily (xr)r>o0 of cut-off functions converging to 1, we obtain

(a6 o @) E eZ"“lX(—A 127 (D) 0f00) dx
-0

+

(ee]

j 291X (A + u2) 1 (g)(0)g(x) dx
0

1 o

+00 +

B M j j M XDy x, 1y Y)fCOf(y) dx dy
0 O

1-0

00 +00

+H2 I Iez""z"r(uzx,yzy)g(X)g(y)dxdy
[0)

o

+00 +00
< M1 J Jegylxegylylf(x)“f(y)ldxdy
0

+00 +00

s J J e e Y |g(x)||g(y)| dx dy
o 0

+00

" +00 2 w0 2
= 1_()(! e’ |f(x)|dx> +1T0<J e’ Ig(x)ldx) .

Plugging in
auZ
f'_f”’v'_1+ sZ = 1+sZ
and using the estimate (B.2), we find that there is a positive number C depending on o, u1, Uz, a, B but not
on u, v such that

< Bv(au?® + Bv?)

<au(au® + pv?), g:i=guy:=

"( A"’Hl 1(fu v)s (= A"’Hz) (gu v) "X Cli(u, V)"X (B.4)

By the density of Ci’,(R) x Cg’,(R) in X, this inequality also holds for (u, v) € X. If now (u, vi) is a sequence
in C8°,(]R) x Cg° (IR) converging to (u, v) € X, then similar estimates based on (B.2) show that

I(A+12) ™ P~ Fumovn)s A+ (G = umvn)lx < ClUk—tms Vie— ) x (1 i, Vi lx+ 1 s Vi) Ix)
for some C > 0, implying that F : X x (0, +oo) — X is well defined and that (B.4) also holds for (u, v) € X.

Proofof Compactness of Id—F. Letnow (u,,,Vvy,)beabounded sequence in X. Then, without loss of generality,
we can assume that (U, vim) — (U, v) € X and (U, vin) — (u, v) pointwise almost everywhere. We set
AQumZnm  BvmZnm auZ _ pvz

fm:=1+sZm’ M Y7, f_1+sZ §= 1552

where Z,, := au2, + fv2, and Z := au?® + Bv2. Then, we have f,, — f and g,, — g pointwise almost everywhere
and the estimate (B.2) implies that

fin ()] + (D)) < a(um(D|Zm(r) + [u(r)|Z(r)) < Ce73MT 4 e 0Wa+2HTy, (B.5)
gm(M)] + 18N < UV (NN Zm(r) + V(NI Z(r) < C(e73%HT 4 @7 0Har2i0)T) (B.6)
for some positive number C > 0. Using the estimate from above, we therefore obtain that

10d ~F)(tm, vim) = (1d =F)(u, VI = |(~A+ 1) (= ), (<D + 13 8m - )]y

+00 +00

2 2
< 1’%(] e"“l"lfm(X)—f(x)ldx) +1"ng< | e"“z"lgm(X)—g(X)ldX> :
o 0
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Using (B.5), (B.6) and the dominated convergence theorem, we finally get that
I(Id ~F)(um, vin) = Ad -F)(u, v)[x — 0 asm — +oo,

which is all we had to show.

C A Spectral Theoretic Result

Finally, we prove a spectral theoretical result which we used in the proof of Proposition 3.5 and for which
we could not find a reference in the literature. The key ingredient of this result is the min-max principle for
eigenvalues of semibounded self-adjoint Schrédinger operators, see, for instance, [16, Theorem XIII.2]. As in
Proposition 3.5, we denote by ui(s), k € Ny, the k-th eigenvalue of the compact self-adjoint operator

Ls: HH(R") —» H}(R") with Lg¢p := (-A +A)"H(Ws¢) (C.1)
for potentials W vanishing at infinity, that is, Ws(x) — 0 as |x| — +oo.

Lemma C.1. Letn € N,k,A > 0,a < b andlet (Ws)se(a,p) be afamily of radially symmetric potentials Wy : R" —
[0, +00) vanishing at infinity and satisfying

(1) limsup|Wslle =k and (ii) Ws — k locally uniformly as s — b.
s—b

Then, we have py(s) — k/Aass — b for all k € No.
Proof. The min-max principle and (i) imply that

Wslloo
lim sup pk(s) < lim sup IWsl _K
s—b s—b /1 /l

So, it remains to show the corresponding estimate from below. Given the assumptions Wy > 0 and (ii), we find
that it is sufficient to show that 7 — x/Aas € — 0, where u} denotes the k-th eigenvalue of the compact self-
adjoint operator M : H}(R") — H} (R") defined by Mc¢p = (-A + A)"((x — €)1p,,,¢). Here, 1p,, denotes the
indicator function of the ball in R" centered at the origin with radius 1/¢. Since € — M, is continuous on
(0, +00) with respect to the operator norm, the min-max characterization of the eigenvalues implies that the
mapping

£ Wy

is continuous on (0, +00), where

Hi
By the definition of pf, wy, the boundary value problem

-¢"(r) - Lrlqb’(r) =wigp(r) foro<r<e™,

9" (r) - Lrl(p’(r) =-A¢p(r) forr>e!
with
¢'(0)=0 and ¢(r) > 0asr — +oo

for ¢p € C'([0, +00)) has a nontrivial solution. Testing the differential equation on [0, £~!] with ¢, we obtain
that (ui > 0. Hence, ¢ is given by

crz%"]n;z(\/a)_ir) ifTSS_l,
o) =a 2
2-n .
r7 Kea(VAr)  ifrze’?
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for some a # 0. Here, K denotes the modified Bessel function of the second kind and ] represents the Bessel
function of the first kind. From ¢ € C1([0, +00)) we get the conditions

KnTJ(\/Xg_l) = c]anz(\/w_ie‘l), VAK', (VAg™) = \/w_ic]’n;z( wie™)

n-2
2

on ¢ and wj. Due to the continuity of € — w§ on (0, +00) and due to the fact that K is positive whereas J has
infinitely many zeros going off to infinity, we infer that wis‘l is bounded on (0, +00). In particular, this
gives that wi — 0 and, thus, yi — Kk/A as € — 0, which is all we had to show. O

Funding: This project was supported by the Deutsche Forschungsgemeinschaft (DFG) through the grant
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References

[1] F. ). Almgren, Jr. and E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, /. Amer. Math. Soc. 2
(1989), no. 4, 683-773.

[2] P.W.Bates and J. Shi, Existence and instability of spike layer solutions to singular perturbation problems, J. Funct. Anal.
196 (2002), no. 2, 211-264.

[3] A.R.Champneys and . Yang, A scalar nonlocal bifurcation of solitary waves for coupled nonlinear Schrédinger systems,
Nonlinearity 15 (2002), no. 6, 2165-2193.

[4] D.de Figueiredo and O. Lopes, Solitary waves for some nonlinear Schrédinger systems, Ann. Inst. H. Poincaré Anal. Non
Linéaire 25 (2008), no. 1, 149-161.

[5] F. Gazzola, ). Serrin and M. Tang, Existence of ground states and free boundary problems for quasilinear elliptic operators,
AdVv. Differential Equations 5 (2000), no. 1-3, 1-30.

[6] B.Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in R", in: Mathematical
Analysis and Applications, Part A, Adv. Math. Suppl. Stud. 7A, Academic Press, New York (1981), 369-402.

[71 N.lkoma, Uniqueness of positive solutions for a nonlinear elliptic system, NoDEA Nonlinear Differential Equations Appl.
16 (2009), no. 5, 555-567.

[8] H.Kielhofer, Bifurcation Theory. An Introduction with Applications to Partial Differential Equations, 2nd ed., Appl. Math.
Sci. 156, Springer, New York, 2012.

[9] M. A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral Equations, MacMillan, New York, 1964.

[10] L. A. Maia, E. Montefusco and B. Pellacci, Weakly coupled nonlinear Schrodinger systems: the saturation effect, Calc. Var.
Partial Differential Equations 46 (2013), no. 1-2, 325-351.

[11] R. Mandel, Minimal energy solutions for cooperative nonlinear Schrodinger systems, NoDEA Nonlinear Differential
Equations Appl. 22 (2015), no. 2, 239-262.

[12] K.McLeod and ). Serrin, Uniqueness of positive radial solutions of Au + f(u) = 0 in R", Arch. Rational Mech. Anal. 99
(1987), no. 2, 115-145.

[13] E.A. Ostrovskaya andY. S. Kivshar, Multi-hump optical solitons in a saturable medium, J. Opt. B1(1999), no. 1, 77-83.

[14] P.Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-Up, Global Existence and Steady States, Birkhduser
Adv. Texts Basler Lehrbiicher, Birkhduser, Basel, 2007.

[15] P.H.Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487-513.

[16] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Analysis of Operators, Academic Press, New York,
1978.

[17] ). Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J. 49 (2000),
no. 3, 897-923.

[18] W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149-162.

[19] C.A.Stuartand H.S. Zhou, Applying the mountain pass theorem to an asymptotically linear elliptic equation on R”,
Comm. Partial Differential Equations 24 (1999), no. 9-10, 1731-1758.



	Minimal Energy Solutions and Infinitely Many Bifurcating Branches for a Class of Saturated Nonlinear Schrödinger Systems
	1 Introduction
	2 Proof of Theorem 1.1
	3 Proof of Theorem 1.2
	4 Proof of Corollary 1.3 and Corollary 1.4
	5 Open Problems
	A A Priori Bounds
	B A Functional Analytic Setting for $n=1$
	C A Spectral Theoretic Result


