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1 Introduction
Let Ω be a bounded domain with piecewise smooth boundary ∂Ω in an n-dimensional Euclidean space ℝn.
Let λi be the i-th eigenvalue of the Dirichlet eigenvalue problem of the poly-Laplacian with arbitrary order{{{{{(−∆)lu = λu in Ω,

u = ∂u
∂ν
= ⋅ ⋅ ⋅ = ∂l−1u

∂νl−1
= 0 on ∂Ω,

(1.1)

where l is a positive integer, ∆ is the Laplacian in ℝn, and ν denotes the outward unit normal vector field of
the boundary ∂Ω. It is well known that the spectrum of this eigenvalue problem is real and discrete, that is,

0 < λ1 ≤ λ2 ≤ λ3 ≤ ⋅ ⋅ ⋅ → +∞,

where each λi has finite multiplicity and is repeated according to its multiplicity. Let V(Ω) denote the volume
of Ω and let Bn denote the volume of the unit ball inℝn.

When l = 1, the eigenvalue problem (1.1) is called a fixedmembraneproblem. In this case, onehasWeyl’s
asymptotic formula

λk ∼ 4π2(BnV(Ω)) 2n k 2
n , k → +∞.

From the above asymptotic formula, one can derive the formula

1
k

k∑
i=1
λi ∼ n

n + 2 4π2(BnV(Ω)) 2n k 2
n , k → +∞. (1.2)
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Pólya [11] proved that

λk ≥ 4π2(BnV(Ω)) 2n k 2
n , k = 1, 2, . . . ,

if Ω is a tiling domain inℝn . Furthermore, he proposed the following conjecture.

Conjecture 1.1 (Pólya). If Ω is a bounded domain in ℝn, then the k-th eigenvalue λk of the fixed membrane
problem satisfies

λk ≥ 4π2(BnV(Ω)) 2n k 2
n , k = 1, 2, . . . .

Berezin [2] and Lieb [8] gave a partial solution for the conjecture of Pólya. In particular, Li and Yau [7] proved
that

1
k

k∑
i=1
λi ≥ n

n + 2 4π2(BnV(Ω)) 2n k 2
n , k = 1, 2, . . . . (1.3)

The formula (1.2) shows that the result of Li and Yau is sharp in the sense of average. From (1.3) one can
infer that

λk ≥ n
n + 2 4π2(BnV(Ω)) 2n k 2

n , k = 1, 2, . . . ,
which gives a partial solution for the conjecture of Pólya with a factor n

n+2 . Recently, Melas [9] has im-
proved (1.3) to the estimate

1
k

k∑
i=1
λi ≥ n

n + 2 4π2(BnV(Ω)) 2n k 2
n + 1

24(n + 2) V(Ω)I(Ω) , k = 1, 2, . . . ,
where

I(Ω) = min
a∈ℝn

∫
Ω

|x − a|2 dx
is called the moment of inertia of Ω.
When l = 2, the eigenvalue problem (1.1) is called a clamped plate problem. For the eigenvalues of the
clamped plate problem, Agmon [1] and Pleijel [10] obtained

λk ∼ 16π4(BnV(Ω)) 4n k 4
n , k → +∞. (1.4)

From (1.4) one can obtain
1
k

k∑
i=1
λi ∼ n

n + 4 16π4(BnV(Ω)) 4n k 4
n , k → +∞. (1.5)

Furthermore, Levine and Protter [6] proved that the eigenvalues of the clamped plate problem satisfy the
inequality

1
k

k∑
i=1
λi ≥ n

n + 4 16π4(BnV(Ω)) 4n k 4
n . (1.6)

The formula (1.5) shows that the coe�cient of k 4
n is the best possible constant. By adding to its right-hand

side two terms of lower order in k, Cheng and Wei [4] obtained the estimate

1
k

k∑
i=1
λi ≥ n

n + 4 16π4(BnV(Ω)) 4n k 4
n + ( n + 2

12n(n + 4) − 1
1152n2(n + 4)) 4π2(BnV(Ω)) 2n n

n + 2 V(Ω)I(Ω) k 2
n

+ ( 1
576n(n + 4) − 1

27648n2(n + 2)(n + 4))(V(Ω)I(Ω) )2, (1.7)

which is an improvement of (1.6). Very recently, Cheng and Wei [5] have improved the estimate (1.7) to the
estimate

1
k

k∑
i=1
λi ≥ n

n + 4 16π4(BnV(Ω)) 4n k 4
n + n + 2

12n(n + 4) 4π2(BnV(Ω)) 2n n
n + 2 V(Ω)I(Ω) k 2

n + (n + 2)2
1152n(n + 4)2 (V(Ω)I(Ω) )2.
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When l is arbitrary, Levine and Protter [6] proved the estimate

1
k

k∑
i=1
λi ≥ n

n + 2l π2l(BnV(Ω)) 2ln k 2l
n , k = 1, 2, . . . , (1.8)

which implies that

λk ≥ n
n + 2l π2l(BnV(Ω)) 2ln k 2l

n , k = 1, 2, . . . .
By adding l terms of lower order of k 2l

n to its right-hand side, Cheng, Qi and Wei [3] obtained a sharper result
than (1.8), that is,

1
k

k∑
i=1
λi ≥ n

n + 2l (2π)2l(BnV(Ω)) 2ln k 2l
n + n(n + 2l) l∑

p=1

l + 1 − p(24)pn ⋅ ⋅ ⋅ (n + 2p − 2) (2π)2(l−p)(BnV(Ω)) 2(l−p)n

(V(Ω)I(Ω) )pk 2(l−p)
n . (1.9)

In this paper, we study the eigenvalues of the Dirichlet eigenvalue problem (1.1) of a Laplacian with
arbitrary order and prove the following result.

Theorem 1.2. Let Ω be a bounded domain in an n-dimensional Euclidean space ℝn. Assume that l ≥ 2 and λi
is the i-th eigenvalue of the eigenvalue problem (1.1). Then, the eigenvalues satisfy

1
k

k∑
j=1
λj ≥ n

n + 2l (2π)2l(BnV(Ω)) 2ln k 2l
n + l

24(n + 2l) (2π)2(l−1)(BnV(Ω)) 2(l−1)n

V(Ω)
I(Ω) k 2(l−1)

n

+ l(n + 2(l − 1))2
2304n(n + 2l)2 (2π)2(l−2)(BnV(Ω)) 2(l−2)n

(V(Ω)I(Ω) )2k 2(l−2)
n . (1.10)

Remark 1.3. When l = 2, Theorem 1.2 reduces to the result of Cheng and Wei [5].

Remark 1.4. When l ≥ 2,we give an important improvement of the result in (1.9) due to Cheng,Qi andWei [3],
since the inequality (1.10) is sharper than (1.9). We will give a proof of this fact in Section 2.

2 Proofs of Theorem 1.2 and Remark 1.4
In this section, we give the proof of Theorem 1.2. At first, we need the following key lemma which will play
an important role in the proof of Theorem 1.2. Its proof will be given in Appendix A.

Lemma 2.1. Let b ≥ 2 be a positive real number and μ > 0. If ψ : [0, +∞) → [0, +∞) is a decreasing function
such that −μ ≤ ψ�(s) ≤ 0
and

A := ∞∫
0

sb−1ψ(s) ds > 0,
then, for any positive integer l ≥ 2, we have

∞∫
0

sb+2l−1ψ(s) ds ≥ 1
b + 2l (bA) b+2lb ψ(0)− 2lb + l

6b(b + 2l)μ2 (bA) b+2(l−1)b ψ(0) 2b−2l+2b

+ l(b + 2(l − 1))2
144b2(b + 2l)2μ4 (bA) b+2l−4b ψ(0) 4b−2l+4b .
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Proof of Theorem 1.2. In this proof, wewill use the same notation as in [3]. Let φ̂j(z) be the Fourier transform
of the trial function φj(x) defined as

φj(x) = {{{uj(x), x ∈ Ω,
0, x ∈ ℝn \ Ω,

where uj(x) is an orthonormal eigenfunction corresponding to the eigenvalue λj, f(z) :=∑k
j=1 |φ̂j(z)|2, and f∗

is the symmetric decreasing rearrangement of f . We assume that A = k
nBn , b = n, and ψ(s) = ϕ(s), where

ϕ : [0, +∞)→ [0, (2π)−nV(Ω)] is a non-increasing function of |x| and ϕ(x) is defined by ϕ(|x|) := f∗(x). Then,
from Lemma 2.1 we can obtain that

k∑
j=1
λj ≥ nBn ∞∫

0

sn+2l−1ϕ(s) ds
≥ nBn( kBn ) n+2ln

n + 2l ϕ(0)− 2ln + lBn( kBn ) n+2(l−1)n

6(n + 2l)μ2 ϕ(0) 2n−2l+2n + l(n + 2(l − 1))2Bn( kBn ) n+2l−4n

144n(n + 2l)2μ4 ϕ(0) 4n−2l+4n . (2.1)

Now, we define a function ξ(t) as
ξ(t) = nBn

n + 2l( k
Bn

) n+2l
n
t−

2l
n + lBn

6(n + 2l)μ2 ( k
Bn

) n+2(l−1)
n

t
2n−2l+2

n + l(n + 2(l − 1))2Bn
144n(n + 2l)2μ4 ( k

Bn
) n+2l−4

n
t
4n−2l+4

n . (2.2)

Here, we assume that l ≤ n + 1. The other cases (i.e., n + 1 < l < 2(n + 1), l ≥ 2(n + 1)) can be discussed by
using a similar method. After di�erentiating (2.2) with respect to the variable t, we derive

ξ �(t) = Bn
n + 2l( k

Bn
) n+2l

n
t−

2l
n −1[−2l + l(2n − 2l + 2)

6nμ2
( k
Bn

)− 2n t 2n+2n
+ l(4n − 2l + 4)(n + 2(l − 1))2

144n2(n + 2l)μ4 ( k
Bn

)− 4n t 4n+4n ]. (2.3)

Putting

ζ(t) = ξ �(t)n + 2l
Bn

( k
Bn

)− n+2ln t 2ln +1
and noticing that μ ≥ (2π)−nB− 1nn V(Ω) n+1n , from (2.3) we have

ζ(t) = −2l + l(2n − 2l + 2)
6nμ2

( k
Bn

)− 2n t 2n+2n + l(4n − 2l + 4)(n + 2(l − 1))2
144n2(n + 2l)μ4 ( k

Bn
)− 4n t 4n+4n

≤ −2l + l(2n − 2l + 2)
6n(2π)−2nB− 2nn V(Ω) 2(n+1)n

( k
Bn

)− 2n t 2n+2n + l(4n − 2l + 4)(n + 2(l − 1))2
144n2(n + 2l)(2π)−4nB− 4nn V(Ω) 4(n+1)n

( k
Bn

)− 4n t 4n+4n . (2.4)

Since the right-hand side of (2.4) is an increasing function of t, if the right-hand side of (2.4) is not larger
than 0 at t = (2π)−nV(Ω), that is,

ζ(t) ≤ −2l + l(2n − 2l + 2)6n k−
2
n
B

4
n
n(2π)2 + l(4n − 2l + 4)(n + 2(l − 1))2144n2(n + 2l) k−

4
n
B

8
n
n(2π)4 ≤ 0, (2.5)

we can claim from (2.5) that ξ �(t) ≤ 0 on (0, (2π)−nV(Ω)]. If ξ �(t) ≤ 0, then ξ(t) is a decreasing function on(0, (2π)−nV(Ω)]. In fact, by a direct calculation, we can obtain

ζ(t) ≤ −2l + l(2n − 2l + 2)6n + l(4n − 2l + 4)(n + 2(l − 1))2
144n2(n + 2l) ≤ 0,

since
B

4
n
n(2π)2 < 1.
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On the other hand, since 0 < ϕ(0) ≤ (2π)−nV(Ω) and the right-hand side of (2.1) is ξ(ϕ(0)), which is a
decreasing function of ϕ(0) on (0, (2π)−nV(Ω)], we can replace ϕ(0) by (2π)−nV(Ω) in (2.1), which gives the
inequality

1
k

k∑
j=1
λj ≥ n

n + 2l (2π)2l(BnV(Ω)) 2ln k 2l
n + l

24(n + 2l) (2π)2(l−1)(BnV(Ω)) 2(l−1)n

V(Ω)
I(Ω) k 2(l−1)

n

+ l(n + 2(l − 1))2
2304n(n + 2l)2 (2π)2(l−2)(BnV(Ω)) 2(l−2)n

(V(Ω)I(Ω) )2k 2(l−2)
n .

This completes the proof of the theorem.

Next, we will prove that the inequality (1.10) is sharper than (1.9).

Proof of Remark 1.4. Under the same assumptions as in Lemma 2.1, letting b = n and A = k
nBn , from

μ ≥ (2π)−nB− 1nn V(Ω) n+1n
we obtain that (bA)− 2b ψ(0)2+ 2b

μ2
≤ (2π)−2n−2V(Ω)2+ 2n(2π)−2nB− 2nn V(Ω) 2(n+1)n

( k
Bn

)− 2n = (2π)−2(Bn)− 4n k− 2n < (2π)−2(Bn)− 4n < 1
and then we have

1
b + 2l l∑

p=2

(l + 1 − p)
6pb ⋅ ⋅ ⋅ (b + 2p − 2)μ2p (bA) b+2(l−p)b ψ(0) 2pb−2(l−p)b

< 1
b + 2l l∑

p=2

(l + 1 − p)
6pb ⋅ ⋅ ⋅ (b + 2p − 2)μ4 (bA) b+2l−4b ψ(0) 4b−2l+4b

< l − 1
36(b + 2l)b(b + 2)μ4 ∞∑

p=0

1
6p(b + 2)p (bA) b+2l−4b ψ(0) 4b−2l+4b

= l − 1
6b(b + 2l)(6(b + 2) − 1)μ4 (bA) b+2l−4b ψ(0) 4b−2l+4b . (2.6)

By a direct calculation, we derive

l(6(b + 2) − 1)(b + 2(l − 1))2 > 24b(b + 2l)(l − 1) > 0.
In fact,

l(6(b + 2) − 1)(b + 2(l − 1))2 − 24b(b + 2l)(l − 1) = 4b(l − 1)(6b(l − 1) − l) + l(6b + 11)(b2 + 4(l − 1)2)> 24b2(l − 1)2 + 4bl(l − 1)(6(l − 1) − 1) > 0,
that is,

24b(b + 2l)(l − 1)
l(6(b + 2) − 1)(b + 2(l − 1))2 < 1. (2.7)

Therefore, from (2.6) and (2.7) we get

1
b + 2l l∑

p=2

(l + 1 − p)
6pb ⋅ ⋅ ⋅ (b + 2p − 2)μ2p (bA) b+2(l−p)b ψ(0) 2pb−2(l−p)b < l − 1

6b(b + 2l)(6(b + 2) − 1)μ4 (bA) b+2l−4b ψ(0) 4b−2l+4b

= 24b(b + 2l)(l − 1)
l(6(b + 2) − 1)(b + 2(l − 1))2× l(b + 2(l − 1))2

144b2(b + 2l)2μ4 (bA) b+2l−4b ψ(0) 4b−2l+4b

< l(b + 2(l − 1))2
144b2(b + 2l)2μ4 (bA) b+2l−4b ψ(0) 4b−2l+4b . (2.8)
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Taking
b = n, A = k

nBn
, ψ(0) = (2π)−nV(Ω), μ = 2(2π)−n√V(Ω)I(Ω) (2.9)

and substituting (2.9) into (2.8), we have

n
n + 2l (2π)2l(BnV(Ω)) 2ln k 2l

n + l
24(n + 2l) (2π)2(l−1)(BnV(Ω)) 2(l−1)n

V(Ω)
I(Ω) k 2(l−1)

n + l(n + 2(l − 1))2
2304n(n + 2l)2 (2π)2(l−2)(BnV(Ω)) 2(l−2)n

(V(Ω)I(Ω) )2k 2(l−2)
n

> n
n + 2l (2π)2l(BnV(Ω)) 2ln k 2l

n + n(n + 2l) l∑
p=1

l + 1 − p(24)pn ⋅ ⋅ ⋅ (n + 2p − 2) (2π)2(l−p)(BnV(Ω)) 2(l−p)n

(V(Ω)I(Ω) )pk 2(l−p)
n .

This completes the proof of the remark.

A Proof of Lemma 2.1
In this section, we give the proof of Lemma 2.1.

Proof of Lemma 2.1. Letting

ϱ(t) = ψ(ψ(0)μ t)
ψ(0) ,

we have ϱ(0) = 1 and −1 ≤ ϱ�(t) ≤ 0. Without loss of generality, we can assume that

ψ(0) = 1 and μ = 1.
Define

Dl := ∞∫
0

sb+2l−1ψ(s) ds.
One can assume that Dl < ∞, otherwise there is nothing to prove. Since Dl < ∞, we can conclude that

lim
s→∞

sb+2l−1ψ(s) = 0.
Putting h(s) = −ψ�(s) for s ≥ 0, we get

0 ≤ h(s) ≤ 1 and
∞∫
0

h(s) ds = ψ(0) = 1.
By making use of integration by parts, one has

∞∫
0

sbh(s) ds = b ∞∫
0

sb−1ψ(s) ds = bA
and

∞∫
0

sb+2lh(s) ds ≤ (b + 2l)Dl ,
since ψ(s) > 0. By the same assertion as in [9], one can infer that there exists an ϵ ≥ 0 such that

ϵ+1∫
ϵ

sb ds = ∞∫
0

sbh(s) ds = bA (A.1)

and
ϵ+1∫
ϵ

sb+2l ds ≤ ∞∫
0

sb+2lh(s) ds ≤ (b + 2l)Dl . (A.2)
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Letting
Θ(s) = bsb+2l − (b + 2l)τ2lsb + 2lτb+2l − 2lτb+2(l−1)(s − τ)2,

we can prove that Θ(s) ≥ 0. By integrating the function Θ(s) from ϵ to ϵ + 1, from (A.1) and (A.2) we deduce,
for any τ > 0, that

b(b + 2l)Dl − (b + 2l)τ2lbA + 2lτb+2l ≥ l6 τb+2(l−1). (A.3)

Defining
f(τ) := (b + 2l)τ2lbA − 2lτb+2l + l6 τb+2(l−1),

for any τ > 0, we can obtain from (A.3) that

Dl = ∞∫
0

sb+2l−1ψ(s) ds ≥ f(τ)
b(b + 2l) .

Then, taking

τ = (bA) 1b (1 + b + 2(l − 1)12(b + 2l) (bA)− 2b ) 1
b
,

we have

f(τ) = (bA) b+2lb (b − l(b + 2(l − 1))6(b + 2l) (bA)− 2b )(1 + b + 2(l − 1)12(b + 2l) (bA)− 2b ) 2l
b

+ l6 (bA) b+2(l−1)b (1 + b + 2(l − 1)12(b + 2l) (bA)− 2b ) b+2(l−1)
b

.

Next, we consider the following four cases.

Case 1. b ≥ 2l. For t > 0, from Taylor’s formula we have(1 + t) 2lb ≥ 1 + 2l
b
t + 2l(2l − b)

2b2
t2 + 2l(2l − b)(2l − 2b)

6b3
t3 + 2l(2l − b)(2l − 2b)(2l − 3b)

24b4
t4

and (1 + t) b+2(l−1)b ≥ 1 + 2(l − 1) + b
b

t + (2(l − 1) + b)(l − 1)
b2

t2 + (2(l − 1) − b)(l − 1)(2(l − 1) + b)
3b3

t3.

Putting
t = b + 2(l − 1)12(b + 2l) (bA)− 2b ,

we have from (bA) 2b ≥ 1(b + 1) 2b ≥ 13 > 14
that t < 1

3 and b − 2lt > 4l
3 > 0 (see also [5]). Then, we obtain(b − l(b + 2(l − 1))6(b + 2l) (bA)− 2b )(1 + b + 2(l − 1)12(b + 2l) (bA)− 2b ) 2l

b

= (b − 2lt)(1 + t) 2lb≥ (b − 2lt)(1 + 2lb t + 2l(2l − b)2b2
t2 + 2l(2l − b)(2l − 2b)

6b3
t3 + 2l(2l − b)(2l − 2b)(2l − 3b)

24b4
t4)≥ b − l(2l + b)

b (b + 2(l − 1)12(b + 2l) (bA)− 2b )2 − (2l − b)(8l2 + 4lb)6b2
(b + 2(l − 1)12(b + 2l) (bA)− 2b )3− (2l − b)(2l − 2b)(12l2 + 6lb)

24b3
(b + 2(l − 1)12(b + 2l) (bA)− 2b )4
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and also(1 + b + 2(l − 1)12(b + 2l) (bA)− 2b ) b+2(l−1)
b = (1 + t) b+2(l−1)b≥ 1 + 2(l − 1) + b

b (b + 2(l − 1)12(b + 2l) (bA)− 2b )+ (2(l − 1) + b)(l − 1)
b2

(b + 2(l − 1)12(b + 2l) (bA)− 2b )2+ (2(l − 1) − b)(l − 1)(2(l − 1) + b)
3b3

(b + 2(l − 1)12(b + 2l) (bA)− 2b )3.
Therefore, we have

f(τ) = (b + 2l)τ2lbA − 2lτb+2l + l6 τb+2(l−1)≥ (bA) b+2lb [b − l(2l + b)b (b + 2(l − 1)12(b + 2l) (bA)− 2b )2 − (2l − b)(8l2 + 4lb)6b2
(b + 2(l − 1)12(b + 2l) (bA)− 2b )3− (2l − b)(2l − 2b)(12l2 + 6lb)

24b3
(b + 2(l − 1)12(b + 2l) (bA)− 2b )4]+ l6 (bA) b+2(l−1)b [1 + 2(l − 1) + bb (b + 2(l − 1)12(b + 2l) (bA)− 2b )+ (2(l − 1) + b)(l − 1)

b2
(b + 2(l − 1)12(b + 2l) (bA)− 2b )2+ (2(l − 1) − b)(l − 1)(2(l − 1) + b)

3b3
(b + 2(l − 1)12(b + 2l) (bA)− 2b )3]= b(bA) b+2lb + l6 (bA) b+2(l−1)b + l(b + 2(l − 1))2144b(b + 2l) (bA) b+2l−4b + η1,

where

η1 = 2l(l + b − 3)(b + 2l)3b2
(b + 2(l − 1)12(b + 2l) )3(bA) b+2l−6b+ l(b + 2(l − 1))(4(l − 1)(2(l − 1) − b) − 3(2l − b)(l − b))

72b3
(b + 2(l − 1)12(b + 2l) )3(bA) b+2l−8b .

Since (bA) 2b ≥ 1(b + 1) 2b ≥ 13 > 14
and b ≥ 2l, we have

η1 ≥ 2l(l + b − 3)(b + 2l)12b2
(b + 2(l − 1)12(b + 2l) )3(bA) b+2l−8b+ l(b + 2(l − 1))(4(l − 1)(2(l − 1) − b) − 3(2l − b)(l − b))

72b3
(b + 2(l − 1)12(b + 2l) )3(bA) b+2l−8b= l(9b3 + (35l − 26)b2 + (36l2 − 90l)b + (4l3 − 36l2 + 48l − 16))

72b3
(b + 2(l − 1)12(b + 2l) )3(bA) b+2l−8b≥ l(72l3 + (70l2 − 52l)b + (36l2 − 90l)b − 36l2)

72b3
(b + 2(l − 1)12(b + 2l) )3(bA) b+2l−8b≥ l((72l3 − 36l2) + (140l − 52l)b + (72l − 90l)b)

72b3
(b + 2(l − 1)12(b + 2l) )3(bA) b+2l−8b≥ 0,

which implies

f(τ) ≥ b(bA) b+2lb + l6 (bA) b+2(l−1)b + l(b + 2(l − 1))2144b(b + 2l) (bA) b+2l−4b .
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Case 2. 2l − 2 ≤ b < 2l. By using Taylor’s formula, for t > 0, we obtain the inequalities(1 + t) 2lb ≥ 1 + 2l
b
t + 2l(2l − b)

2b2
t2 + 2l(2l − b)(2l − 2b)

6b3
t3

and (1 + t) b+2(l−1)b ≥ 1 + 2(l − 1) + b
b

t + (2(l − 1) + b)(l − 1)
b2

t2 + (2(l − 1) + b)(l − 1)(2(l − 1) − b)
3b3

t3.

Putting
t = b + 2(l − 1)12(b + 2l) (bA)− 2b ,

we have b − 2lt > l
3 > 0,(b − l(b + 2(l − 1))6(b + 2l) (bA)− 2b )(1 + b + 2(l − 1)12(b + 2l) (bA)− 2b ) 2l

b

= (b − 2lt)(1 + t) 2lb≥ (b − 2lt)(1 + 2lb t + 2l(2l − b)2b2
t2 + 2l(2l − b)(2l − 2b)

6b3
t3)= b − l(b + 2l)

b (b + 2(l − 1)12(b + 2l) (bA)− 2b )2 − (2l − b)(8l2 + 4lb)6b2
(b + 2(l − 1)12(b + 2l) (bA)− 2b )3− 4l2(2l − b)(2l − 2b)

6b3
(b + 2(l − 1)12(b + 2l) (bA)− 2b )4,

and (1 + b + 2(l − 1)12(b + 2l) (bA)− 2b ) b+2(l−1)
b = (1 + t) b+2(l−1)b≥ 1 + 2(l − 1) + b

b (b + 2(l − 1)12(b + 2l) (bA)− 2b )+ (2(l − 1) + b)(l − 1)
b2

(b + 2(l − 1)12(b + 2l) (bA)− 2b )2+ (2(l − 1) + b)(l − 1)(2(l − 1) − b)
3b3

(b + 2(l − 1)12(b + 2l) (bA)− 2b )3.
Furthermore, using the same method as in Case 1, we deduce that

f(τ) = (b + 2l)τ2lbA − 2lτb+2l + l6 τb+2(l−1)≥ (bA) b+2lb [b − l(b + 2l)b (b + 2(l − 1)12(b + 2l) (bA)− 2b )2 − (2l − b)(8l2 + 4lb)6b2
(b + 2(l − 1)12(b + 2l) (bA)− 2b )3− 4l2(2l − b)(2l − 2b)

6b3
(b + 2(l − 1)12(b + 2l) (bA)− 2b )4]+ l6 (bA) b+2(l−1)b [1 + 2(l − 1) + bb (b + 2(l − 1)12(b + 2l) (bA)− 2b )+ (2(l − 1) + b)(l − 1)

b2
(b + 2(l − 1)12(b + 2l) (bA)− 2b )2+ (2(l − 1) + b)(l − 1)(2(l − 1) − b)

3b3
(b + 2(l − 1)12(b + 2l) (bA)− 2b )3]= b(bA) b+2lb + l6 (bA) b+2(l−1)b + l(b + 2(l − 1))2144b(b + 2l) (bA) b+2l−4b + η2,
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where

η2 = 2l(l + b − 3)(b + 2l)3b2
(b + 2(l − 1)12(b + 2l) )3(bA) b+2l−6b+ l(2(l − 1) + b)((l − 1)(2(l − 1) − b)(b + 2l) − l(2l − b)(2l − 2b))

18b3(b + 2l) (b + 2(l − 1)12(b + 2l) )3(bA) b+2l−8b

≥ 2l(l + b −3)(b +2l)
9b2

(b +2(l −1)12(b +2l) )3(bA) b+2l−8b + l(2(l −1) + b)(l −1)(2(l −1) − b)
18b3

(b +2(l −1)12(b +2l) )3(bA) b+2l−8b

= (4bl(l + b − 3)(b + 2l)
18b3

+ l(2(l − 1) + b)(l − 1)(2(l − 1) − b)
18b3

)(b + 2(l − 1)12(b + 2l) )3(bA) b+2l−8b

≥ (4bl(l + b − 3)(b + 2l)
18b3

+ lb(b + 2l)(2(l − 1) − b)
18b3

)(b + 2(l − 1)12(b + 2l) )3(bA) b+2l−8b

≥ bl(b + 2l)(6l + 3b − 14)
18b3

(b + 2(l − 1)12(b + 2l) )3(bA) b+2l−8b≥ 0,
since (bA) 2b ≥ 1(b + 1) 2b ≥ 13 .
Therefore, we have

f(τ) ≥ b(bA) b+2lb + l6 (bA) b+2(l−1)b + l(b + 2(l − 1))2144b(b + 2l) (bA) b+2l−4b .

Case 3. l ≤ b < 2l − 2. By using Taylor’s formula, for t > 0, we have(1 + t) 2lb ≥ 1 + 2l
b
t + l(2l − b)

b2
t2 + l(2l − b)(2l − 2b)

3b3
t3

and (1 + t) b+2(l−1)b ≥ 1 + 2(l − 1) + b
b

t + (2(l − 1) + b)(l − 1)
b2

t2.

Putting
t = b + 2(l − 1)12(b + 2l) (bA)− 2b > 0,

we have b − 2lt > 0,(b − l(b + 2(l − 1))6(b + 2l) (bA)− 2b )(1 + b + 2(l − 1)12(b + 2l) (bA)− 2b ) 2l
b

= (b − 2lt)(1 + t) 2lb≥ (b − 2lt)(1 + 2lb t + l(2l − b)b2
t2 + l(2l − b)(2l − 2b)

3b3
t3)= b − l(b + 2l)

b (b + 2(l − 1)12(b + 2l) (bA)− 2b )2 − (2l − b)(4l2 + 2lb)3b2
(b + 2(l − 1)12(b + 2l) (bA)− 2b )3− 4l2(2l − b)(l − b)

3b3
(b + 2(l − 1)12(b + 2l) (bA)− 2b )4,

and (1 + b + 2(l − 1)12(b + 2l) (bA)− 2b ) b+2(l−1)
b = (1 + t) b+2(l−1)b≥ 1 + 2(l − 1) + b

b
b + 2(l − 1)
12(b + 2l) (bA)− 2b+ (2(l − 1) + b)(l − 1)
b2

(b + 2(l − 1)12(b + 2l) (bA)− 2b )2.
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By the same argument as in Case 2, we can deduce that

f(τ) = (b + 2l)τ2lbA − 2lτb+2l + l6 τb+2(l−1)≥ (bA) b+2lb [b − l(b + 2l)b (b + 2(l − 1)12(b + 2l) (bA)− 2b )2 − (2l − b)(4l2 + 2lb)3b2
(b + 2(l − 1)12(b + 2l) (bA)− 2b )3− 4l2(2l − b)(l − b)

3b3
(b + 2(l − 1)12(b + 2l) (bA)− 2b )4] + l6 (bA) b+2(l−1)b [1 + 2(l − 1) + bb

b + 2(l − 1)
12(b + 2l) (bA)− 2b+ (2(l − 1) + b)(l − 1)

b2
(b + 2(l − 1)12(b + 2l) (bA)− 2b )2]= b(bA) b+2lb + l6 (bA) b+2(l−1)b + l(b + 2(l − 1))2144b(b + 2l) (bA) b+2l−4b + η3,

where

η3 = 2l(l + b − 3)(b + 2l)3b2
(b + 2(l − 1)12(b + 2l) )3(bA) b+2l−6b − 4l2(2l − b)(l − b)

3b3
(b + 2(l − 1)12(b + 2l) )4(bA) b+2l−8b ≥ 0.

Therefore, we have

f(τ) ≥ b(bA) b+2lb + l6 (bA) b+2(l−1)b + l(b + 2(l − 1))2144b(b + 2l) (bA) b+2l−4b .

Case 4. 2 ≤ b < l. Since 2 ≤ b < l, there exists a positive integer k such that 2 ≤ k − 1 ≤ 2l
b < k and, for t > 0,

we have(1 + t) 2lb ≥ 1 + 2l
b
t + 12! 2lb (2lb − 1)t2 + 13! 2lb (2lb − 1)(2lb − 2)t3 + ⋅ ⋅ ⋅ + 1(k + 1)! 2lb (2lb − 1) ⋅ ⋅ ⋅ (2lb − k)tk+1= 1 + k∑

p=0
{ 1(p + 1)! p∏

q=0
(2lb − q)}tp+1

and (1 + t) b+2lb ≤ 1 + b + 2l
b

t + 12! b + 2lb
2l
b
t2 + 13! b + 2lb

2l
b (2lb − 1)t3 + ⋅ ⋅ ⋅+ 1(k + 1)! b + 2lb

2l
b (2lb − 1) ⋅ ⋅ ⋅ (2lb − (k − 1))tk+1= 1 + k∑

p=0
{ 1(p + 1)! p∏

q=0
(2lb − q + 1)}tp+1,

and also(1 + t) b+2(l−1)b ≥ 1 + 2(l − 1) + b
b

t + 12! (2(l − 1) + b)b
2(l − 1)
b

t2 + 13! (2(l − 1) + b)b
2(l − 1)
b (2(l − 1)b

− 1)t3 + ⋅ ⋅ ⋅+ 1
k!

(2(l − 1) + b)
b

2(l − 1)
b

⋅ ⋅ ⋅ (2(l − 1)b
− (k − 2))tk− !!!!!!!!! 1(k + 1)! (2(l − 1) + b)b

2(l − 1)
b

⋅ ⋅ ⋅ (2(l − 1)b
− (k − 1))!!!!!!!!!tk+1= 1 + k−1∑

p=0
{ 1(p + 1)! p∏

q=0
(2(l − 1)b

− q + 1)}tp+1 − !!!!!!!!! 1(k + 1)! k∏
q=0

(2(l − 1)b
− q + 1)!!!!!!!!!tk+1.

Putting
t = b + 2(l − 1)12(b + 2l) (bA)− 2b

and f(τ) = (bA) b+2lb h(τ), where

h(τ) = (b + 2l)(1 + t) 2lb − 2l(1 + t) b+2lb + 16 (bA)− 2b (1 + t) b+2(l−1)b ,
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then, for 2 ≤ b < l, we have

h(τ) ≥ (b + 2l){1 + k∑
p=0

[ 1(p + 1)! p∏
q=0

(2lb − q)]tp+1} − 2l{1 + k∑
p=0

[ 1(p + 1)! p∏
q=0

(2lb − q + 1)]tp+1}+ l6 (bA)− 2b{1 + k−1∑
p=0

[ 1(p + 1)! p∏
q=0

(2(l − 1)b
− q + 1)]tp+1 − !!!!!!!!! 1(k + 1)! k∏

q=0
(2(l − 1)b

− q + 1)!!!!!!!!!tk+1}= b + l6 (bA)− 2b + k∑
p=1

{ b + 2l(p + 1)! 2lb [ p∏
q=1

(2lb − q) − p∏
q=1

(2lb − q + 1)]}tp+1+ k−1∑
p=0

{ l(bA)− 2b
6(p + 1)! p∏

q=0
(2(l − 1)b

− q + 1)}tp+1 − !!!!!!!!! l(bA)− 2b6(k + 1)! k∏
q=0

(2(l − 1)b
− q + 1)!!!!!!!!!tk+1= b + l6 (bA)− 2b − k∑

p=1
{p2l(b + 2l)b(p + 1)! p−1∏

q=1
(2lb − q)}tp+1 + k∑

p=1
{ l(bA)− 2b6p!

p−1∏
q=0

(2(l − 1)b
− q + 1)}tp

− !!!!!!!!! l(bA)− 2b6(k + 1)! k∏
q=0

(2(l − 1)b
− q + 1)!!!!!!!!!tk+1= b + l6 (bA)− 2b − k∑

p=1
{ p
bp(p + 1)! p∏

q=0
(2l − (q − 1)b)}(b + 2(l − 1)12(b + 2l) (bA)− 2b )p+1+ k∑

p=1
{ l(bA)− 2b6bpp!

p−1∏
q=0

(2(l − 1) − (q − 1)b)}(b + 2(l − 1)12(b + 2l) (bA)− 2b )p− !!!!!!!!! l(bA)− 2b
6bk+1(k + 1)! k∏

q=0
(2(l − 1) − (q − 1)b)!!!!!!!!!(b + 2(l − 1)12(b + 2l) (bA)− 2b )k+1.

Furthermore, we have

f(τ) ≥ b(bA) b+2lb + l6 (bA) b+2(l−1)b + l(b + 2(l − 1))2144b(b + 2l) (bA) b+2l−4b

− k∑
p=2

{ p
bp(p + 1)! p∏

q=0
(2l − (q − 1)b)}(b + 2(l − 1)12(b + 2l) )p+1(bA) b+2l−2p−2b

+ k∑
p=2

{ l
6bpp!

p−1∏
q=0

(2(l − 1) − (q − 1)b)}(b + 2(l − 1)12(b + 2l) )p(bA) b+2l−2p−2b

− !!!!!!!!! l
6bk+1(k + 1)! k∏

q=0
(2(l − 1) − (q − 1)b)!!!!!!!!!(b + 2(l − 1)12(b + 2l) )k+1(bA) b+2l−2k−4b

= b(bA) b+2lb + l6 (bA) b+2(l−1)b + l(b + 2(l − 1))2144b(b + 2l) (bA) b+2l−4b + η4,
where

η4 = k∑
p=2

{(b + 2(l − 1))2l
12bpp! [p−1∏

q=1
(2(l − 1) − (q − 1)b) − p

p + 1 p−1∏
q=1

(2l − qb)]}(b + 2(l − 1)12(b + 2l) )p(bA) b+2l−2p−2b

− !!!!!!!!! l
6bk+1(k + 1)! k∏

q=0
(2(l − 1) − (q − 1)b)!!!!!!!!!(b + 2(l − 1)12(b + 2l) )k+1(bA) b+2l−2k−4b .

From k − 2 ≤ 2(l−1)
b < k we have

k − 2 − i
k + 1 − i ≤ 2(l−1)

b − i
k + 1 − i < k − i

k + 1 − i . (A.4)

Then, from (A.4) we have !!!!!!!!! 2(l−1)b − i
k + 1 − i !!!!!!!!! ≤ 1, i = 0, 1, 2, . . . , k − 1.
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Note that
2(l − 1) − (q − 1)b ≥ 2l − qb ≥ 0, p = 2, 3, . . . , k,

and
p−1∏
q=1

(2(l − 1) − (q − 1)b) − p
p + 1 p−1∏

q=1
(2l − qb) ≥ p−1∏

q=1
(2(l − 1) − (q − 1)b) − p−1∏

q=1
(2l − qb) ≥ 0.

Therefore, we obtain
k∑
p=2

{(b + 2(l − 1))2l
12bpp! [p−1∏

q=1
(2(l − 1) − (q − 1)b) − p

p + 1 p−1∏
q=1

(2l − qb)]}(b + 2(l − 1)12(b + 2l) )p(bA) b+2l−2p−2b

≥ (b + 2(l − 1))2l
24b2

(2(l − 1) − 2(2l − b)3 )(b + 2(l − 1)12(b + 2l) )2(bA) b+2l−6b .

From (bA) 2b ≥ 1(b + 1) 2b ≥ 13
we have

η4 ≥ (b + 2(l − 1))2l24b2
(2(l − 1) − 2(2l − b)3 )(b + 2(l − 1)12(b + 2l) )2(bA) b+2l−6b

− !!!!!!!!! l
6bk+1(k + 1)! k∏

q=0
(2(l − 1) − (q − 1)b)!!!!!!!!!(b + 2(l − 1)12(b + 2l) )k+1(bA) b+2l−2k−4b

= l(b + 2(l − 1))
12b2

{(2(l − 1) − 2(2l − b)3 )− 2b!!!!!!!!! 1
bk(k + 1)! k∏

q=1
(2(l − 1) − (q − 1)b)!!!!!!!!!(b + 2(l − 1)12(b + 2l) )k−1(bA) −2k+2

b }(b + 2(l − 1)12(b + 2l) )2(bA) b+2l−6b

≥ l(b + 2(l − 1))
12b2

{2l + 2b − 63 − 2b!!!!!!!!!k−1∏
q=0

( 2(l−1)
b − q

k + 1 − q )!!!!!!!!!(14)k−1}(b + 2(l − 1)12(b + 2l) )2(bA) b+2l−6b

≥ l(b + 2(l − 1))
12b2

(2l + 2b − 63 − b8)(b + 2(l − 1)12(b + 2l) )2(bA) b+2l−6b≥ 0,
which implies that

f(τ) ≥ b(bA) b+2lb + l6 (bA) b+2(l−1)b + l(b + 2(l − 1))2144b(b + 2l) (bA) b+2l−4b .

This completes the proof of the lemma.
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