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1 Introduction

Let Q be a bounded domain with piecewise smooth boundary 0Q in an n-dimensional Euclidean space R".
Let A; be the i-th eigenvalue of the Dirichlet eigenvalue problem of the poly-Laplacian with arbitrary order

(-M)'u = Au inQ,
ou o1y (1.1)
5-----m-0 on 0Q,

where [ is a positive integer, A is the Laplacian in R", and v denotes the outward unit normal vector field of
the boundary 0Q. It is well known that the spectrum of this eigenvalue problem is real and discrete, that is,

O0<A <A <A3<+- - +00,

where each A; has finite multiplicity and is repeated according to its multiplicity. Let V(Q) denote the volume
of Q and let B,, denote the volume of the unit ball in R".

When [ = 1, the eigenvalue problem (1.1) is called a fixed membrane problem. In this case, one has Weyl’s

asymptotic formula

4 2 2

A~ ———

(BnV(Q))r

From the above asymptotic formula, one can derive the formula

=1

k — +o00.

k 2
S O TR LS ¢ Sy Y (1.2)
k& n+2@B,v@Q)n
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Pélya [11] proved that
4mr?
> ——k
(BnV(Q))n
if Q is a tiling domain in R" . Furthermore, he proposed the following conjecture.

Conjecture 1.1 (P6lya). If Q is a bounded domain in R", then the k-th eigenvalue Ax of the fixed membrane
problem satisfies
47'[2 2
> —k
(BnV(Q))n

Berezin [2] and Lieb [8] gave a partial solution for the conjecture of Pdlya. In particular, Li and Yau [7] proved
that

1 & 2

—Z > M i k-1,2,.... (1.3)

kS n+2B,vQ):
The formula (1.2) shows that the result of Li and Yau is sharp in the sense of average. From (1.3) one can

infer that 5
Nes A jd k=12,
n+2 (B, V(Q))
which gives a partial solution for the conjecture of Pélya with a factor _I5. Recently, Melas [9] has im-

proved (1.3) to the estimate

k=1,2,...,

k 2

1 z o 47 e 1 V(Q),

k& n+2 (B,V(Q))* 24(n+2) I(Q)
where

I(Q) = min j Ix — al? dx
acR?
Q

is called the moment of inertia of Q.
When [ = 2, the eigenvalue problem (1.1) is called a clamped plate problem. For the eigenvalues of the
clamped plate problem, Agmon [1] and Pleijel [10] obtained

16m* 4

A~ ———kit, k= +oo. (1.4)
(BnV(Q))n
From (1.4) one can obtain
k 4
EZAIW Lm—”l,k%, k — +oo. (1.5)
k| n+4 (B, V(Q)n

Furthermore, Levine and Protter [6] proved that the eigenvalues of the clamped plate problem satisfy the
inequality

1 & n 16m* 4
1 L (1.6)
k Z - n+4 (B, V(Q))

The formula (1.5) shows that the coefficient of ki is the best possible constant. By adding to its right-hand
side two terms of lower order in k, Cheng and Wei [4] obtained the estimate

lzk: o _n 167" L ( n+2 1 ) 472 n VQ,:
k & _”+4(B,1V(Q))% 12n(n+4) 1152n%(n+4)/(B,v(Q))7 n+2 I(Q)

1 1 V(Q)
+(576n(n+4) B 27648n2(n+2)(n+4))( I(Q)) ’ (1.7)

which is an improvement of (1.6). Very recently, Cheng and Wei [5] have improved the estimate (1.7) to the
estimate

1¢ Ln 16m* s, n+2 42 n vQ). . (n+2)?2 <V(Q)>2
k; _n+4(BnV(Q))% 12n(n+4)(3 V(Q))nn"'z 1(Q) +1152n(n+4)2 IQ) /) °
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When [ is arbitrary, Levine and Protter [6] proved the estimate

k 21
lz > — kW, k=1,2,..., (1.8)
k b n+21(B V(Q))n

which implies that

n 2! 2

> ———— kv, k=1,2,....
n+2l (B, Q)+

By adding [ terms of lower order of k7 toits right-hand side, Cheng, Qi and Wei [3] obtained a sharper result
than (1.8), that is,

. n (2m)?! 2 I+1-p (2m)2-p) V(Q)\P . 20n
; - n+2l(B,v(Q)h e (n+21) Z (24)Pn---(n+2p -2) (g y(Q)) Ip)([(Q)) ko (19)

In this paper, we study the eigenvalues of the Dirichlet eigenvalue problem (1.1) of a Laplacian with
arbitrary order and prove the following result.

Theorem 1.2. Let Q be a bounded domain in an n-dimensional Euclidean space R". Assume that l > 2 and A;
is the i-th eigenvalue of the eigenvalue problem (1.1). Then, the eigenvalues satisfy

1 i n_ em? N l @m>D V(@) 2w
k =1 T n+2l (Bn V(Q))%I 24(n + 21) (an(Q))# I(Q)

In+2(1-1)% @m)2-2 (V(Q))z w2

2304n(n + 21)? (B, V(Q))Z(l 2\ [(Q) (1.10)

Remark 1.3. When [ = 2, Theorem 1.2 reduces to the result of Cheng and Wei [5].

Remark 1.4. When > 2, we give an important improvement of the result in (1.9) due to Cheng, Qi and Wei [3],
since the inequality (1.10) is sharper than (1.9). We will give a proof of this fact in Section 2.

2 Proofs of Theorem 1.2 and Remark 1.4

In this section, we give the proof of Theorem 1.2. At first, we need the following key lemma which will play
an important role in the proof of Theorem 1.2. Its proof will be given in Appendix A.

Lemma 2.1. Let b > 2 be a positive real number and p > 0. If{ : [0, +00) — [0, +00) is a decreasing function
such that

—u<y'(s)<0
and

A= Jsb‘llp(s) ds > 0,
0

then, for any positive integer l > 2, we have

r b+21 1 M -2 l b+2(l 1) 2b— 21,,2
! Ws)ds 2 g ) g0y E o o ) ) 2
I(h +2(1-1))? bezlt 4b-al+h

(bA) 7~ h(0)

" 144b2(b + 20214
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Proof of Theorem 1.2. In this proof, we will use the same notation as in [3]. Let §;(z) be the Fourier transform
of the trial function ¢j(x) defined as

00 uj(x), xeQ,
(x) =
b o, x e R"\ Q,

where uj(x) is an orthonormal eigenfunction corresponding to the eigenvalue Aj, f(2) == 21’;1 |©; (2)|%, and f*
is the symmetric decreasing rearrangement of f. We assume that A = nB , b =n, and Y(s) = ¢(s), where
¢ : [0, +00) — [0, (2m) " V(Q)] is a non-increasing function of |x| and ¢ (x) is defined by ¢(|x|) := f* (x). Then,
from Lemma 2.1 we can obtain that

(o)

Aj > nBy, Js"”l‘lqb(s) ds
0

U

j=1

n+2(l 1) n+2l-4

n+2
nB (L) IBn(£) | 100+ 20-1)Ba() " .
2 n B ¢( )_7 —2¢( )2 21+2 . n4 ¢( )A 21+4 (2.1)
n+2 6(n+2lhu 144n(n + 21)%u
Now, we define a function &(¢) as
{(t) _ nBjy (L)n;u _%1 + an (L)mzyl)tmrfuz + l(n + 2(1 - 1))an (L)nﬂ"li4 t%. (2.2)
n+2I\B 6(n +20u? 144n(n+2D)2u* \ B

Here, we assume that [ < n + 1. The other cases (i.e., n+1 <1< 2(n+1), [ > 2(n + 1)) can be discussed by
using a similar method. After differentiating (2.2) with respect to the variable t, we derive

kS 12n=21+2)( k \"7 e
£ = n+21(_> e [_21+ 6nu? (B_n) e
- - 2 _% n+
+l(lm 21+ 4)(n+2(1-1)) <£> plmes | (2.3)
144n2(n + 2Hu* By
Putting
n+ 2l - 2,4
{0 = £'(0) (B) £
Y[ n
and noticing that y > (21) "B,," V(Q)n;1 from (2.3) we have
12n-21+2) Foamn 14N =21+ 8)(n+2(1-1)2 [ k \"#
-2 2B Ly (4)e
6nu? By, 144n2(n + 21" By,
_% n+, — 2 _% n+
<o+ I(2n - 21+2) (L) L 1(4n - 21+4)(n+2(l 1)) (L) plnt (2.4)
2(n+1) By 4(n+1> B,

6n(2m)~2"B," V(Q) 144n2(n + 21)(2m)~4"B," V(Q)

Since the right-hand side of (2.4) is an increasing function of ¢, if the right-hand side of (2.4) is not larger
than O at t = (27)""V(Q), that is,

4 8
I2n-21+2), > B 1l4n-2l+4)(n+2(1-1))> _4 B
(O =-2ls = koot T44n2(n + 20) i =% 2:5)

we can claim from (2.5) that &'(t) < 0 on (0, 2m)™"V(Q)]. If £'(t) < 0, then &(t) is a decreasing function on
(0, (2m)~"V(Q)]. In fact, by a direct calculation, we can obtain

12n-21+2) . I(4n =21+ 4)(n+2(1-1))?

(0 <20+ 6n 144n2(n + 21)

= Uy

since
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On the other hand, since 0 < ¢(0) < (271)7"V(Q) and the right-hand side of (2.1) is é(¢(0)), which is a
decreasing function of ¢(0) on (0, (271) " V(Q)], we can replace ¢(0) by (271)""V(Q) in (2.1), which gives the
inequality

1 & n em  a l @m0 y(Q) , aeen
E Z A}' = I g+ I 20 (0 "
o 2@y 242D (g yq)) S 1Q)
In+2(1-1)%? @m)?>=2 < V(Q) )2 20-2)
2304n(n + 21)2 (B V(Q))Z(I;Z) I(Q)
This completes the proof of the theorem. O

Next, we will prove that the inequality (1.10) is sharper than (1.9).

Proof of Remark 1.4. Under the same assumptions as in Lemma 2.1, letting b =nand A = n—gn, from

n+l

7= (Zn)‘"B;% VQ) ™

we obtain that

<1

(bA) 5 h(0)**5 . _@m7rv@)*s ( k )‘H _@m? 2 < @2n)~?

2(n+1) Bn

w Q2B Q) (Bn) 7 (Bn)

and then we have

14 (I+1-p) br2(p) pb-2(-p)
b+21pZ 6Pb~--(b+2p_2)yzp(bl4) 5 P(0)” b

=2

! — bi2l-4 4b-21+4
N e Lt S TR S

< b+zlp:2 6°b--- (b +2p — 2)u*
I_ 1 v 1 b+21-4 4b-21+4
< 36(b + 20b(b + 2 pgo 55 o) w0
-1 b+2l-4 4b-2l+4
) A : 2.
b+ 26 12— A T PO (2.6)

By a direct calculation, we derive
1(6(b +2) - 1)(b +2(1-1))> > 24b(b + 21)(1 - 1) > 0.
In fact,
1(6(b +2) —1)(b +2(1 - 1))> = 24b(b + 21)(1 - 1) = 4b(l - 1)(6b(1 - 1) = ) + I(6b + 11)(b* + 4(1 - 1)?)
> 24b%*(1-1)% + 4bI(1 - 1)(6(1-1) - 1) > 0,

that is, b+ 201
24b(b +2D(1-1)
1. 2.
16(b+2) - (b+2(-1)2 * 2.7)
Therefore, from (2.6) and (2.7) we get
(I+1-p) b+2(1-p) 2pb-2(1-p) I-1 bi2l4 4b-2li4

(bA) =5 p(0) 5" ~(bA) 5 P(0)*3

< 6b(b+2D)(6(b+2) - L

- 24b(b +2D)(1-1)
T U6 +2)-1)(b+2(1-1))2

1 d
b+2lpg'2 6Pb---(b+2p - 2)u?p

l(b + 2(1 - l))2 b+?71—4 4b—§1+4
Ta4b?(h + 20z P T PO
- 2 b+21-4 4b-21+4
(b2 20D o) 90", @.8)

144b2(b + 212"



36 —— G.Weiand L. Zeng, Estimates for Eigenvalues of Poly-Harmonic Operators DE GRUYTER

Taking

b=n, A= % P(0) = 2m)"V(Q), p=22m) " VV(Q)I(Q) (2.9)

n
and substituting (2.9) into (2.8), we have
n Qm? l Qm2ED v(Q) en In+2(1-1)%2  (2m)20-2 <V(Q) )2 20-2)
n+ 2l (BnV(Q))ZWI 24(n + 21) (B, V(Q))# I(Q) 2304n(n + 21)2 (B,J/(Q))g 1(Q)
n (02 ,on i l+1-p (2m)2Ep) (V(Q) )P 20-p)
n+2l (BnV(Q))z?I (n+20) ] (24)Pn---(n+2p -2) (BnV(Q))@ 1(Q)

This completes the proof of the remark. O

A Proof of Lemma 2.1

In this section, we give the proof of Lemma 2.1.

Proof of Lemma 2.1. Letting
¥
(5t
Y©O) ’

we have p(0) = 1 and -1 < g'(t) < 0. Without loss of generality, we can assume that

o(t) =

YPO)=1 and u=1.
Define
(0]
D;:= Jsb"Zl‘llp(s) ds.
0
One can assume that D; < co, otherwise there is nothing to prove. Since D; < 0o, we can conclude that

SIHEO Sb+21_1l/)(5) = 0.

Putting h(s) = -’ (s) for s > 0, we get
O<h(s)<1 and Jh(s)ds =1(0) = 1.
0

By making use of integration by parts, one has

o0

J sPh(s)ds = b J sP~Yy(s) ds = bA
0 0
and -
J s"*2!n(s)ds < (b + 20Dy,
0

since 1(s) > 0. By the same assertion as in [9], one can infer that there exists an € > 0 such that
€+1 ()
J st ds = Jsbh(s) ds = bA (A1)
€ 0

and
€+1

J s+l gs < J sP*2n(s)ds < (b + 21)D;. (A.2)
0

€
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Letting
O(s) = bs?*2l — (b + 2D)12!sb + 217b*+2 — 2 1P 420D (5 — 7)2,

we can prove that ©(s) > 0. By integrating the function ©(s) from € to € + 1, from (A.1) and (A.2) we deduce,
forany 7 > 0, that

b(b +20D; - (b + 2D)T2bA + 2170+ > érb“(’-l). (A.3)

Defining
f(T) := (b + 272 bA - 21772 4 érb”“*),

for any 7 > 0, we can obtain from (A.3) that

_ ( b+21-1 f(1)
Dl—!’s lp(s)dsz—b(b+21).
Then, taking

. % b+ 2(1 - 1) _% %
7= (bA) <1+ 120 + 21 PV ) ’

we have

b+21(b_ I(b+2(1-1)) b

_ pal b+ 2(1 - 1) 2
fx) = (bA) 6(b +21) )

12(b + 21) (bA)™
b+2(1-1)

(bAY )

(bA)_% ><1 +

l b+2(1-1) b+2(1-1)
tgbA) (“ 1206+ 2])

Next, we consider the following four cases.
Case 1. b > 21. Fort > 0, from Taylor’s formula we have

1+ t)%l S1+ %It N 21(21-b) 2, 2121 - b)(21 - 2b) By 21(21 - b)(21 - 2b)(21 - 3b) t4

2bh2 6b3 24b4
and
b2(-1) 20-1)+b, QU-1)+b)1-1), QI-1)-b)(1-1)2(I-1)+D) 5
1+t)y » =21+ b t+ b2 t°+ 353 t.
Putting
_b+2(1-1) _2
(= Tmra) P
we have from ; 1 11
(bA)b > = >=>—
(b+1)s 3 4

that t < % and b - 21t > %l > 0 (see also [5]). Then, we obtain

b+2(1-1)

(b _lb+2(1-1))
12(b + 21)

6(b + 20) (bAW)

(bA)’%><1 +

—(b-2I1+ )%

S (- th)<1 . %lt . 2121 - b)t2 N 2121 - b)(21 - 2b) By 2121 - b)(21 - 2b)(21 - 3Db) t4>

2h2 6b3 24b4
I2L+b)/b+2(1-1) 2 2 2l-b)@BI2 +4lb)/b+2(1-1) 2 3
zb-— <12(b+21) (bA) )_ 62 (12(b+21) (bA) )

_(ﬂ—bxﬂ—zmuzﬂ+mm(b+2u—n

5 4
24b3 120 +21) Y ")
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and also
b+2(-1) -2 be2ll) B be-1)
20-1)+b/b+2(1-1) -2
2l = < 1200 1 21) P4 )
@I-1D+b)(1-1)/b+2(1-1) -2 2
¥ b2 ( 120 1 21) P4 )
@I-1)-bI-1)RI-1)+b)/b+2(1-1) -2 3
i 3p3 ( 20 +2) Y ) :
Therefore, we have
f(r) = (b + 2072 bA - 2177+ ¢ érb*z(”l)
bt I2L+b)/b+2(1-1) -2 2 2l-b)@8 +4lb)/b+2(1-1) ! 3
z (b4) [b_ b (12(b+21) baF) - 6b? <12(b+21) b))
(21 - b)(21 - 2b)(1212 + 61b) y b+ 2(1 - 1) -2 4
- 243 ( 1200+ 21 PA ) ]
l bead-1) 20-1)+b/b+2(1-1) -2
tgbd [1 TTh < 20 +21) A )
@I-1D+b)(1-1)/b+2(1-1) -2 2
¥ b2 ( 120 1 21) P4 )
I-1)-b)(1-1)QU1I-1)+b)/b+2(1-1) 2 3
! 303 ( 1200+ 21 PA ) ]
B bial l bea(-1) I(b+2(1-1))2 b2l
= b(bA) + E(bA) + m(bA) + rll,
where
_2l0+b-3)b+2D) (b+2(1-1)\3 bedis
= 3b2 ( 12(b + 21) ) (bA)
I(b+2(1-1))4(l1-1)2U1-1)=b)=3Q2L-b)(1=Db)) /b +2(1-1)\3 bigr-s
* 72b° ( 12(b +2)) ) (bA) 7.
Since 1 11
bA) > > - > —
bd) (b+1)p 3 4
and b > 21, we have
20+ b=3)b+2D) /b +2(1-1)\3 big-s
= 12b2 < 12(b + 21) ) (bA)
Ib+2(1-1)4I-1)2(1-1)-b)-3RQI-b)I-Db))/b+2(1-1)\3 beals
" 72b3 < 12(b +21) ) (b4)
_1(9b? + (351 - 26)b? + (3617 — 90D)b + (41> — 361* + 481 - 16)) ( b+2(1-1) )3(bA)M#
B 72b3 12(b + 21
(7213 + (7012 = 52D)b + (3612 = 901)b — 361%) / b + 2(1 - 1)\ bigr-s
= 72b3 ( 12(b + 20) ) (bA)
3_ 2 - - - 3 b+21-8
g 1((728 = 3612) + (1401 - 521)b + (721 901)b)<b+2(l 1)) (ba) B
72b3 12(b +21)

>0,

which implies
pea 1 poe-y  1(b+2(1-1))? ba2l-4
f(T) > b(bA) b+ g(bA) b + m(bA) b,
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Case 2. 21 -2 < b < 21. By using Taylor’s formula, for ¢t > 0, we obtain the inequalities

(1+t)2?l S 1+%It+ ZI(ZI_b)t2+ 21(21-b)(21-2b) 4

2b2 6b3
and
b+2(1-1) 2(1-1)+b QI-1)+b)1-1) , QI-1)+b)(1-1)2(I-1)-b) 5
1+t)" > =1+ b t+ b2 t°+ 353 t.
Putting
B b+2(1-1) 2
= o A

we have b - 21t > 1 > 0,

21

b+ 2(1— 1)(bA)7%>?

(b _lb+2(1-1))
12(b + 21)

6(b + 2D) (bAﬁ)(l *
—(b-20H1+ )%

>(b-210(1+ A, 2eb), , 20C-hial-2b) e)

b 2b? 6b3
o I onr i) - LR (o Do)
AR (b Do),
and
(S t) T =asot
A =
¢ DD e Do 1)
N I-1)+ b)(l3;31)(2(l -1)-b) ( 191;(?9(1_211))(17‘4)_%)3‘

Furthermore, using the same method as in Case 1, we deduce that

f(r) = (b +2D)T*'bA - 21+ 4 é‘rb”("l)

> (b)* [b - (A Dwart ) - LD a) b 2Dt )
sy 01203
¥ é(bA)W [1 A _;) ! b(lezr(i(i_zll))(bA)_%>
IR R S
D+ DD ) (D1 201 )3]

B et poe-y 1(b+2(1 - 1))? b2l-4
= b(bA)® +6(bA) b+ 144b(b +2]) (bA) P +12,
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where
_2l0+b-3)(b+2D) (b+2(1-1)\3 baals
- 3p2 < 12(b + 20) ) (bA)
— - - - — - - - 3 +2[-8
. 12(1-1)+b)((1-1)2(I-1)=b)(b +2]) - 1(21 - b)(21 2b))(b+ 2(1 1)) (bA)%
18b3(b +21) 12(b + 21)
210+b-3)b+2D) /b +2(1-1)\3 s 12UI-1)+b)(1-1)Q21I-1)-b)/b+2(1-1)\> bi2l8
= o2 ( 12(b + 2D Ca 1853 ( 12(b + 2D ) oA
3 4bl1+b-3)b+2D) I12UI-1)+b)(1-1)21-1)-b)\/b+2(1-1)\3 bi2l-8
_( 1853 " 1853 )( 12(b + 2)) ) (bA)
4bl1+b-3)b+2D) Ibb+2DRI-1)-b)\/b+2(1-1)\3 beals
2( 185 " 1853 )( 12(b + 20) ) (bA)™
bl(b+2D)(61+3b-14) /b +2(1-1)\> bials
= 1853 ( 12(b + 2)) ) (bA)
>0,
since 1
(bA)b > _> -,
(b+1)p 3
Therefore, we have
a1 pe-y (b +2(1-1))? beola
f(T) > b(bA) b+ g(bA) b + m(blq) b,
Case 3. 1< b < 21 - 2. By using Taylor’s formula, for t > 0, we have
2 21, 1@2l1-b), 12l1-b)(2l-2b) 5
(1+¢t)r 21+3t+ b2 t°+ 353 t
and 2(1 b l b)(l
L4052 514 2 _;)J” e+ & _1);2 W=D
Putting
3 b+2(1-1) 2
= o) PO
we have b - 21t > 0,
I(b+2(1-1) . > b+2(1-1),, _2\%
G ebran A (s 20121 Y )
=(b-21)1+0)7F
2l 12l-b) , 1@21-Db)(21-2D) 5
2(b—21t)(1+3t+ B2 t°+ E t)
B Ib+2D)/b+2(1-1) 2\2 (I-b)@I2+2lb)/b+2(1-1) _2)\3
=b-—5 ( 1200+ 21) P4 b) B 3p2 ( 1206+ 21) P4 ")
4PQ21-b)I-b)/b+2(1-1) _2\*
B 353 ( 126+ 21) P4 ") ’
and
b+2(1-1) 2 bzl B be20-1)
(1+m(b14) b) —(1+t) b

2(l-1)+bb+2(1-1)
>1+

b 12(b + 21)

. (2(1—1)+b)(l—1)(b+2(l—1)

b2 12(b +21)

(bA)H

(bA)-%)Z.
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By the same argument as in Case 2, we can deduce that

f(t) = (b +2D)7?'bA - 2177+ 4 érb”“-l)

ol ) )
(b 1), L, R
e s

= b(bA)"F + —(bA)M“ . —1(11’4 sz((; 2)1))2(1;,4)“1” 3,

where
B e L= ea

Therefore, we have
vy 1(b+2(1- 1))2 be2it

fr) = b F + L (bA) taab o) P

Case 4.2 < b < l. Since 2 < b < [, there exists a positive integer k such that2 < k-1 < %l < kand, fort > 0,
we have

2 21 121721 , 12721 20 Ng o 1 21721 (2l N g
(1+0P =1+t Z'b(b 1>t+3'b(b 1)(b 2>t+ (k+1)'b< 1) (b k)t
k p
1 21
— - - p+1
1+I;O{(p+1)!q_o<b q)}t
and
beal b+2l, 1b+2121, 1b+2121/21 3
1+t)p <1+ b t+i T +3! b b(b l)t 4o
1 b+2l21/21 21 ol
theDl b b(b 1) ( (k- ”)t
k
1 21
=1+ {— —_g+1 }tp”,
pZO (p+1)!£!)(b )
and also
be20-1) 20-1+b, 1QI-D+bh2(0-1), 1QI-D+b)2(1-1)/2(0-1) \3
aA+t)y" ¢ =1+ ) +2! 5 b t+3! b 5 ( b 1)t+
1QUI-1)+b)2(1-1) 2(1-1) r
K b b ( b _(k_2)>t
- QUI-1)+b)2(1-1) 20-1) ol
‘(k+1)! b b ( b (k 1))t
- 2(1-1) b1 |1 fq20-1) ol
1+Z{(p+1)ln< ‘“1)}t (k+1)!£!)( p a1
Putting
_b+2(l—1) 2
T 12(b+2D) (bAY™

b+2!

and f(1) = (bA) 5 h(T), where

b+ 2(l 1)

h(t) = (b +2D(1+ )% =211+ )% + —(bA)‘E(l t) ,
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then, for 2 < b < 1, we have

DE GRUYTER

X 1 &2l " X 1 &2 "
h(‘r)z(b+21){1+Z[—(p+1)! 1‘[(3 q)]tp }—21{1+p§)[—(p+1)!E)(E—q+1)]tp }

q=0

+ é(bA)-§{1

[ 2 b+21 21
=b+ 2 (bA)S p;{(pﬂ)! b[ﬂ(

Z[(p+1)| l—[<2(l—1)
)15 -ar1)[Je~

+ 1) tk+1}

1 KL20-1)
+1
+1>]tp _’(k+1)!q1_10< b

U bA)y T B2 1) [ lway s Kaa-1) ol
+p2=0{6(p+1)! ll( b +1>}tp _|6(k+1)' U( 1>t
Lo S [p2Ub 2Dk " I(bA) 5 B r2(1-1)
=brgA) Z{ b(p + 1) H( )}tp Z{ 6p! H( b +1> ¢
p=1 p=1 q=0
I(bA) 5 2(1-1) 1
_‘6(k+1)!ﬂ)< b +1)t
RN PR k p P b+2(-1) 2\P*
= b+ gAY - z{bp(p+1)! H)(zl_(q_l)b)}( 12(b + 2I) (bA)” )
I(bA)5 B b+2(1-1) 2P
Z{ 6bPp! HQ(Z‘”‘“"”’”}( 120 +21) A )
I(bA) 5 b+2(l—1) Lk
“ebFT(k+ 1! ]‘[(2(1 D-(a- ”b)‘ 120121 Y ) :
Furthermore, we have
bt b+2(1-1 -1))2 b+2l-4
f0) > boA)'F 4 b5 + KD oy

Zibpw flet-a-

S b+2(1-1)
z{6bP 'H( (-1-(q- ”b)}( 12(b+21)> (b4)

b+ 2(1 - 1) p+l b+21;2p72
1’b)}<m) (bA)

b+2l- Zp 2

l b+2(1-1)\k1 b+2l-2k=4
—lm Q(Z(l—l)—(q—l)b)l(m> (bA) 7
~ bl pown (b +2(1- 1))? br2l-d
= b(bA) —(bA) m(bl‘l) b+ 1Ny,
where
k
(b +2( 1))21 b+2(1-1) b+2l- 21.1 2
g{—lzb,, : [1‘[(2(1— 1)-(q-1)b) - —E— 1‘[(21— b)”(—lz(b — ) )
b +2(1-1)\k? be2l-2k-4
I bk+1(k L H(Z(l D-(g- Db)] 12(b+ 20) ) (bA) 7
From k-2 < % < k we have
k-2-i 2GHR-i k-
k+1—iSk+1—i<k+1—i' (A.4)
Then, from (A.4) we have
2(11;1) _i

k+1-1

<1, i=0,1,2,...

k-1,
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Note that
20-1)-(q-1)b>2l-gb>0, p=2,3,...,k

and
H(za— D-(g-Vb)- — H(zl— qb) = H(2<l— 1)-(g-1b)- H(zl— gb) = 0.
q=1 q=1

Therefore, we obtain

k
(b+2(1-1))21 b+2(-1) be2t-2p-2
pzz{ 12bPp! [H(z(l D-(g-Db-2 H(ZI ”( 120 + 21) ) (bA)
(b+2(1-1))21 201-b)\/b+2(1-1) bave
T 4 (2(1_ D-—3 )( 1200 + 2)) ) (bA)y=>
From
1
(bA)? =
(b+1)b 3
we have
(b+2(1-1))21 201-b)\[b+2(-1) b
e T CE )( 12(b + 2)) > (b4)~+

b+2 1)\k+1 bealakct
’6bk+1(k oL H(Z” D@~ 1)b)l 120b + 21)) ba

b +2(1-1)) 2(21-b)
T 122 {(2(1_ V-3 )

bk(k Dy 12(b +21) 12(b + 21)

k=1, 20C1) _ k-1

b q 1 b+2(1-1) beal-s
q_0<k+1—q)‘<z> }( 12(b+21)) (bA) >
I(b+2(1-1))(21+2b-6 b\rb+2(1-1)\2 sas
R T G s 12(b+21)) (b4)

1‘[(2(1 - om|( 5 ) e () ea

-2b

- I(b+2(1-1))[2l+2b-6
- 12b2 3

>0,

which implies that
bi2t vy I(b+2(1- 1))? be2l
A2 bioa)'# + o) S+ S e

This completes the proof of the lemma.
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