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Abstract: We show that the spatially inhomogeneous Allen—-Cahn equation —£?Au = u(u — a(x))(1 - u) in a
smooth bounded domain Q ¢ RN, u = 0 on 0Q, with 0 < a(-) < 1 continuous and ¢ > 0 a small parameter,
cannot have globally minimizing solutions with transition layers in a smooth subdomain of Q whereon a — %
does not change signand a — % # 0 on that subdomain’s boundary. Under the assumption of radial symmetry,
this property was shown by Dancer and Yan in [5]. Our approach may also be used to simplify some parts
of the latter and related references. In particular, for this model, we can give a streamlined new proof of the
existence of locally minimizing transition layered solutions with nonsmooth interfaces, considered originally
by del Pino in [6] using different techniques. Besides of its simplicity, the main advantage of our proofis that it
allows one to deal with more degenerate situations. We also establish analogous results for a class of problems
that includes the spatially inhomogeneous Fisher-KPP equation —£2Au = p(x)u(1 - u) with p sign-changing.
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1 Introduction and Main Results

Consider the well-studied elliptic problem

_2 = - - i
JleAu u@w-a(x)(1-u) inQ, (1.1)

u=0 on 0Q,

where a(-) is a continuous function satisfying 0 < a(x) < 1 for x € Q, Q is a bounded domain in R¥, N > 1,
with smooth boundary, and € > 0 is a small number. In [15], this problem was referred to as the spatially
inhomogeneous Allen—Cahn equation, while in [7] as the Fife—Greenlee problem.

For the physical motivation behind this problem as well as for the extensive mathematical studies that
have been carried out over the last decades, we refer the interested reader to the recent articles [7, 15] and
the references therein.
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The functional corresponding to (1.1) is

2

=5 J \Dul? dx - IF(X, wdx, ueHYQ),
Q Q
where .
Fx, f) = j s(s — a())(1 - s) ds. (1.2)

0

In this paper, we will study the behavior of global and local minimizers of the above functional as € — 0.
Using the same techniques, we will also study the globally minimizing solutions of the spatially inhomo-
geneous Fisher—KPP type equation. In the appendixes, we state two variational lemmas that we will use
throughout this paper.

1.1 Global Minimizers of the Spatially Inhomogeneous Allen—-Cahn Equation

It is easy to see that the minimization problem
inf{I(u) : u € H}(Q)}

has a minimizer. Minimizers furnish classical solutions of (1.1) (at least when a is Hélder continuous) with
values in [0, 1] and, more precisely, in (0, 1), provided that ¢ is sufficiently small (see [5, Lemma 2.2]). Let

A={x:er,a(x)<%} and B={x:er,a(x)>%}.

In [5, Theorem 1.1], Dancer and Yan show that any global minimizer u, of I, in Hé(Q) satisfies

1 uniformly on any compact subset of A,
Us — (1.3)

0 uniformly on any compact subset of B,

as € — 0. However, this result provides no information about the global minimizers near the set S = {x € Q :
a(x) = %} Their proof uses a comparison argument (see Lemma B.1 below) together with a result from [3]
(see also Lemma A.1 herein) that the minimizer of the problem

2
inf{% I |Du|? dx - J’ Fpu)dx:u-¢ € Hé(BT(xo))} (1.4)
B (x0) B (x0)

with Fp(t) = Ié s(s - b)(1 - s) ds tends to 1 (or 0) uniformly on B (xo) if b < 1 (orb>3), as e— o0, for
any ¢ with 0 < ¢ < 1; here, B:(xo) = {x : x € RV, |x — x¢| < 7}. There is no similar result for the case b = %
Actually, in the latter case, the minimizer may have an interior transition layer for some ¢ with0 < ¢ <1
(see [2] and the references therein). On the other hand, if Q is a ball centered at the origin and a(-) is ra-
dially symmetric, then so is every global minimizer u. of I in Hcl)(Q) (see [5, Proposition 2.6]). Moreover,
[5, Theorem 1.3 (i)—(ii)] tells us that for any O < r; < r; < r3 < r4 with a(r;) = %, i=1,2,3,4, such that
a(r) < % (or > %) forr e (ri,r)u(rs,ry)and a(r) = % forr € [ry, r3], we have that u, — 1 (or 0) uniformly on
any compact subset of (r1, r4), as € — 0. The proof of this result relies heavily on the radial symmetry of u,
making use of a blow-up argument together with results stemming from the proof of De Giorgi’s conjecture in
low dimensions and an energy comparison argument (using the same approach, with a few modifications,
a more general radially symmetric problem was treated in [16]). As was pointed out in [5], the nonsymmet-
ric case is far from understood. Nevertheless, in the current paper, we are able to verify the validity of the
corresponding nonradial version of the above result as follows.

Theorem 1.1. Assume that a(x) < 1 (or> %) in a smooth domain A, (or B1) such that A1 c Q (or By c Q) and
a(x) < 3 (or > 3) on 0A; (or 0B,). Then, any global minimizer u. of I, in Hy(Q) satisfies ug — 1 (or ug — 0)
uniformly on A (or By), as € — O.
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Proof. We will only consider the case A, since the case B is identical. Let > 0 be any number such that

21 < min(1 - a(x)). (1.5)

xeQ

For small 6 > 0, we have a(x) < % if dist(x, 0A1) < 6. Therefore, by (1.3), we deduce that u, — 1 uniformly
on the compact subset of A that is described by {x € Q : dist(x, 041) < g}, as € — 0. Consider the subset of
Q that is defined by A, = A1 U {x € Q : dist(x, 94;) < g} We fix a small 6 such that A, > A; is smooth and
A, c Q. Since any global minimizer satisfies O < u, < 1 if  is small, we have that

1-us(x)<n, xeoA,. (1.6)

We claim that 1 — u.(x) < 1, x € A,, which clearly implies the validity of the assertion of the theorem. Suppose
that the claim is false. Then, for some sequence of small €’s, there exists an x. € A, such that

1 - ug(xe) = max(1l — ug(x)) > 1. (1.7)

X€A;

We will first exclude the possibility that
1-ug(x)<2n, xeA,. (1.8)

To this end, we will argue by contradiction. Let

ﬂE(X) = {maX{ue(X)’ 2 - 2]’1 - uS(X)}y X € AZ,
uS(X)’ XEQ\AZ.

Since max{u,, 2 - 2 - u.} is the composition of a Lipschitz function with an H'(A,) function, it follows
from [8] that i1, € H'(A,). Furthermore, from (1.6) and the Lipschitz regularity of A, we obtain that i1, € H(l) (Q),
see again [8]. Note that it. € C(Q). On the other hand, (1.8) implies that

1-2n<ue(x) <te(x) <1, xe€d,.
In turn, recalling (1.2) and (1.5), this implies that
F(x, ug(x)) < F(x, 1(x)), xe€Aj. (1.9)
To see this, observe that
for each x € Q the function F(x, t) is increasing with respect to t € [1 - 27, 1], (1.10)

since F¢(x, t) = t(t — a(x))(1 - t). (Note that t — F(t, x) changes monotonicity in (0, 1) only at t = a(x)).
From (1.7), which implies that u.(x.) < @1-(x¢), it follows that F(x, u.(x)) < F(x, @ic(x)) on an open subset
of A, containing x.. Hence,

JF(X, Ug(x)) dx < jF(x, s (x)) dx. (1.11)
Q Q
Moreover, it holds that
j Dit|? dx < j Duel? dx, (1.12)
Q Q

see [14, p.93]. The above two relations yield that I.(it;) < I.(u¢), contradicting the fact that u, is a global
minimizer of I, in H})(Q). Consequently, we have that

0<1-ug(xe)<1-2nm. (1.13)

Now, let

200 = min{1, max{us(x), 2 - 2n - u(x)}}, x € A,,
e u:(x), xeQ\A,,
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see also [11]. As before, it is easy to see that i1, € H(l)(Q). Since a(x) < %, x € A,, it follows readily that
F(x,t) < F(x,1) forallte (0,1), x €A,.

Hence, as before, making use of (1.10), (1.13), and the above relation, we get (1.11), (1.12) with i, in place
of it¢, which again contradict the minimality of u,. O

Remark 1.2. In the radially symmetric case, if 0 < ry <1, <r3 <ry4 satisfy a(ry) = %, i=1,2,3,4, and
a(r) < 3 (or > 3) for r € (r1,r2), a(r) > 3 (or < 3) for r € (r3, r4), and a(r) = 3 for r € [r,, r3], incorporat-
ing our approach into the proof of [5, Theorem 1.3 (iii)—(iv)] can lead to a simpler proof of the fact that global

minimizers have only one transition layer in (rq, r4), see also [1], which for N > 2 takes place near r, (or r,).

1.2 Local Minimizers of the Spatially Inhomogeneous Allen—-Cahn Equation

In the case where there exists a smooth (n — 1)-dimensional submanifold I' of Q that divides Q in an interior
and an exterior subdomain, which we denote by Q_ and Q,, respectively, such that a = % and g—ﬁ > 0 (or<0)
on I', where v denotes the outer normal to I, it was shown in the pioneering work of Fife and Greenlee [9]
that (1.1) has a solution 0 < w, < 1 such that

1 (or 0), uniformly on any compact subset of Q_,
€ (1.14)

0 (or1), wuniformly on any compact subset of Q.,

as e — 0. Their approach was based on matched asymptotics and on bifurcation arguments. Such a solution is
said to have a transition layer along the interface w, = 0, which collapses in a smooth mannerto T, as & — 0.
In fact, they considered more general equations of the form £2Au = f(x, u) and their proof carries over to
the case of finitely many such interfaces. This result was extended by del Pino in [6], via degree-theoretic
arguments, for general (even nonsmooth) interfaces. In the following theorem, we present a truly simple
proof of the result in [6] for (1.1), which also allows for transition layers between degenerate stable roots of
the equation f(x, -) = O (see also [1, Hypothesis (h)]). In fact, with a little more work in the proof and using
some ideas from [21], even more degenerate situations can be allowed.

Theorem 1.3. Assume the existence of a closed set T ¢ Q and of open disjoint subsets Q, and Q_ of Q such that
Q=0Q,uTuQ_.

Assume also the existence of an open neighborhood N of T’ such that

1 1 1 1

ax) < = (or > —) forxe NnQ_, alx)>= (or < —) forx e NnQ,.

2 2 2 2
Then, there exists a solution 0 < w, < 1 of (1.1) that satisfies (1.14). Moreover, w; is a local minimizer of I
in H(l)(Q).

Proof. We will only consider the first scenario, since the one depicted in parentheses can be handled identi-
cally. Let 7, 6 be any positive numbers such that

4n <mina(x) + min(1 - a(x)) and {x:dist(x,T) < 8} c N.
xeQ xeQ
For convenience purposes, we will assume that 0Q is a part of 0Q, (otherwise, the solution would also have
a boundary layer along 0Q). Let
Q0 =[x € Q. : dist(x, T) > 6}

and
C={ueH)Q):u<2nae onQ® 1-us<2nae onQl}.
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It is easy to verify that the constrained minimization problem
inf{I,(u) : u € C}

has a minimizer w, € C such that 0 < w, < 1 (see the related paper [11]). Our goal is to show that w, does not
realize (touch) the constraints if € > 0 is sufficiently small. Naturally, this will imply that w, is a local mini-
mizer of I.(u) in Hé(Q) and thus a classical solution of (1.1) satisfying the desired assertions of the theorem.
The minimizer w, of the constrained problem is a classical solution of the equation (1.1) in {x : dist(x, I') < &},
and in fact a global minimizer in the sense that I.(w,) < I.(w, + ¢) for every ¢ that is compactly supported in
this region. Furthermore, by the strong maximum principle (see, for example, [12, Lemma 3.4]), we deduce
that 0 < w, < 1 in the same region. As in [5], making use of Lemma B.1 in Appendix B, we can bound w,
from below by the minimizer of (1.4), with b = max{a(x), x e Nn Q_} < 1 and ¢ = 0, over every ball that is
contained in Q_ n {x : dist(x, ') < §}. From the result of [3] which we mentioned in the introduction (see also
Lemma A.1 herein), we obtain that w, — 1, uniformly on Q_ n {x : dist(x, ') € [g, g]}, as € — 0. In particu-
lar, for small € > 0, we have

0<1-wg(x)<n ifxe Q_suchthat dist(x,T) = g

As in the part of the proof of Theorem 1.1 that is below (1.6), it follows that the above relation holds for
all x € Q_ such that dist(x, ') > g. We point out that here the function w, may not be continuous in the vicin-
ity of the constraints, but it is as long as it does not touch them, since there it is a classical solution of (1.1),
which suffices for our purposes. Analogous relations hold in Q.. Consequently, w, stays away from the con-
straints for small € > 0 and is therefore a local minimizer of I, in Hé(Q) with the desired asymptotic behav-
ior (1.14), since 7, § > 0 can be chosen arbitrarily small. O

1.3 Global Minimizers of the Spatially Inhomogeneous Fisher—-KPP Equation

Using the same approach, we can treat the elliptic problem

{ —&?Au=p(x)g(u) inQ,

(1.15)
u=0 on 0Q,

where Q is as before, g € C! such that
g(0)=g(1)=0, g()>0forte(0,1), g(t)<OforteR)\(O,1),

pE C(Q), and € > 0 is a small number. Note that this includes the important Fisher-KPP equation, where
g(t) = t(1 - t), arising in population genetics (see [10]).
The functional corresponding to (1.15) is

Je(u) =

2
z j \Duf? dx - Jp(x)G(u) dx, ueHLYQ),
Q

Q

where

t
G(t) = Jg(s) ds. (1.16)
0

It is easy to see that the minimization problem
inf{Je(u) : u € H}(Q)}

has a minimizer. Minimizers furnish classical solutions of (1.15) (at least when p is Hélder continuous) with
values in [0, 1] and, more precisely, in (0, 1), provided that ¢ is sufficiently small. Let

A={x:xeQ,p(x)>0} and B={x:xeQ,p() <0}
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Similarly to [5, Theorem 1.1], using Lemmas A.1 and B.1 below, we can show that any global minimizer u,
of J.(u) satisfies (1.3) (related results can be found in [4] and in [13, Chapter 10]).

In the nondegenerate case, where I’ is a finite union of smooth (n - 1)-dimensional submanifolds of Q
such that p = 0 and ‘;—€ + 0 on I', where v denotes the outer normal to I', it can be shown that the width of
the transition region of w, is of order P (see [18]). On the other side, in the corresponding nondegenerate
case of (1.1) considered in [9], the width of the transition region is of order €. This difference can be traced
back to the fact that the one-dimensional version of (1.1) falls in the framework of standard geometric sin-
gular perturbation theory, see [20] (u = 0, u = 1 are asymptotically stable roots of f(x, u) = 0, with respect
to the dynamics of it = f(x, u), for all x € (), whereas the corresponding version of (1.15) is not (here, the
roots u = 0, u = 1 of g(u) = 0 exchange stability as x crosses I') and one has to use a blow-up transformation
(see [17]).

A Minimizers of a Homogeneous Problem over Balls

The following lemma can be found in [19] and generalizes the result of [3] that we mentioned in relation
to (1.4).

Lemma A.1. Suppose that W e C? satisfies 0= W(u) < W(t), t € [0, u), W(£) >0, t e R, W(=t) > W(¢t), t € [0, ],
or W'(t) <0, t<0, for some u>0. Let xo e R, T>0, n€(0, u), and D> D', where D' is determined from the
relation U(D') = u — 1, where in turn U is the only function in C?[0, co) that satisfies

U" =W'(U) for s>0, U(0)=0, lim U(s) = p,

(keep in mind that U’ > 0). There exists a positive constant €y, depending only on t, n, D, W, and n, such that
there exists a global minimizer u. of the energy functional

2
E(v):% J IDv|? dx + J W(v)dx, ve Hy(B:(x0)),

Bz (xo) Bz (xo0)

which satisfies 0 < ug(x) < U, x € Bz(xp), and
U-n<ug(x), X e€Br_pelXo),

provided that € < &.

B A Comparison Lemma from [5]

The following result is [5, Lemma 2.3].

Lemma B.1. Let D be a bounded domain in RN with smooth boundary. Let g1(x, t), g2(x, t) be locally Lipschitz
functions with respect to t, measurable functions with respect to x, and for any bounded interval I, there exists
a constant C such that supyep (1 18i(x, t)] < C, i =1, 2, holds. Let

t
Gi(x, t) = Ig,-(x, s)ds, i=1,2.
0

For i € WH2(D) = HY(D), i = 1, 2, consider the minimization problem
inf{J;(u; D) : u - @; € Wy>(D) = H5(D)},
where

Ji(u; D) = H%IVuIZ - Gi(x, u)} dx.
D
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Letu; € WH2(D),i = 1, 2, be minimizers to the minimization problems above. Assume that there exist constants
m < M such that

e m<ui(x)<Ma.e.fori=1,2,x€D,

o g1(x,t)>g2(x,t)a.e.forx e D, t € [m, M],

o M2>@1(x) = @2(x) >ma.e. for x € D.

Suppose further that @; € W»P(D) for any p > 1 and that they are not identically equal on 0D. Then, we have

ui(x) > ux(x), xeD.
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