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Abstract: We show that the spatially inhomogeneous Allen–Cahn equation −ε2∆u = u(u − a(x))(1 − u) in a
smooth bounded domain Ω ⊂ ℝN , u = 0 on ∂Ω, with 0 < a( ⋅ ) < 1 continuous and ε > 0 a small parameter,
cannot have globally minimizing solutions with transition layers in a smooth subdomain of Ω whereon a − 1

2
does not change sign and a − 1

2 ̸= 0on that subdomain’s boundary. Under the assumption of radial symmetry,
this property was shown by Dancer and Yan in [5]. Our approach may also be used to simplify some parts
of the latter and related references. In particular, for this model, we can give a streamlined new proof of the
existence of locallyminimizing transition layered solutionswith nonsmooth interfaces, considered originally
by del Pino in [6] using di�erent techniques. Besides of its simplicity, themain advantage of our proof is that it
allowsone todealwithmoredegenerate situations.Wealso establish analogous results for a class of problems
that includes the spatially inhomogeneous Fisher–KPP equation −ε2∆u = ρ(x)u(1 − u)with ρ sign-changing.
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1 Introduction and Main Results
Consider the well-studied elliptic problem

{
−ε2∆u = u(u − a(x))(1 − u) in Ω,

u = 0 on ∂Ω,
(1.1)

where a( ⋅ ) is a continuous function satisfying 0 < a(x) < 1 for x ∈ Ω̄, Ω is a bounded domain in ℝN , N ≥ 1,
with smooth boundary, and ε > 0 is a small number. In [15], this problem was referred to as the spatially
inhomogeneous Allen–Cahn equation, while in [7] as the Fife–Greenlee problem.

For the physical motivation behind this problem as well as for the extensive mathematical studies that
have been carried out over the last decades, we refer the interested reader to the recent articles [7, 15] and
the references therein.
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The functional corresponding to (1.1) is

Iε(u) =
ε2

2 ∫
Ω

|Du|2 dx − ∫
Ω

F(x, u) dx, u ∈ H1
0(Ω),

where

F(x, t) =
t

∫
0

s(s − a(x))(1 − s) ds. (1.2)

In this paper, we will study the behavior of global and local minimizers of the above functional as ε → 0.
Using the same techniques, we will also study the globally minimizing solutions of the spatially inhomo-
geneous Fisher–KPP type equation. In the appendixes, we state two variational lemmas that we will use
throughout this paper.

1.1 Global Minimizers of the Spatially Inhomogeneous Allen–Cahn Equation

It is easy to see that the minimization problem

inf{Iε(u) : u ∈ H1
0(Ω)}

has a minimizer. Minimizers furnish classical solutions of (1.1) (at least when a is Hölder continuous) with
values in [0, 1] and, more precisely, in (0, 1), provided that ε is su�ciently small (see [5, Lemma 2.2]). Let

A = {x : x ∈ Ω, a(x) < 1
2} and B = {x : x ∈ Ω, a(x) > 1

2}.

In [5, Theorem 1.1], Dancer and Yan show that any global minimizer uε of Iε in H1
0(Ω) satisfies

uε → {
1 uniformly on any compact subset of A,
0 uniformly on any compact subset of B,

(1.3)

as ε → 0. However, this result provides no information about the global minimizers near the set S = {x ∈ Ω :
a(x) = 1

2 }. Their proof uses a comparison argument (see Lemma B.1 below) together with a result from [3]
(see also Lemma A.1 herein) that the minimizer of the problem

inf{ ε
2

2 ∫
Bτ(x0)

|Du|2 dx − ∫
Bτ(x0)

Fb(u) dx : u − φ ∈ H1
0(Bτ(x0))} (1.4)

with Fb(t) = ∫
t
0 s(s − b)(1 − s) ds tends to 1 (or 0) uniformly on B τ

2
(x0) if b < 1

2 (or b > 1
2 ), as ε → 0, for

any φ with 0 ≤ φ ≤ 1; here, Bτ(x0) = {x : x ∈ ℝN , |x − x0| < τ}. There is no similar result for the case b = 1
2 .

Actually, in the latter case, the minimizer may have an interior transition layer for some φ with 0 ≤ φ ≤ 1
(see [2] and the references therein). On the other hand, if Ω is a ball centered at the origin and a( ⋅ ) is ra-
dially symmetric, then so is every global minimizer uε of Iε in H1

0(Ω) (see [5, Proposition 2.6]). Moreover,
[5, Theorem 1.3 (i)–(ii)] tells us that for any 0 < r1 < r2 ≤ r3 < r4 with a(ri) = 1

2 , i = 1, 2, 3, 4, such that
a(r) < 1

2 (or > 1
2 ) for r ∈ (r1, r2) ∪ (r3, r4) and a(r) = 1

2 for r ∈ [r2, r3], we have that uε → 1 (or 0) uniformly on
any compact subset of (r1, r4), as ε → 0. The proof of this result relies heavily on the radial symmetry of uε
making use of a blow-up argument together with results stemming from the proof of De Giorgi’s conjecture in
low dimensions and an energy comparison argument (using the same approach, with a few modifications,
a more general radially symmetric problem was treated in [16]). As was pointed out in [5], the nonsymmet-
ric case is far from understood. Nevertheless, in the current paper, we are able to verify the validity of the
corresponding nonradial version of the above result as follows.

Theorem 1.1. Assume that a(x) ≤ 1
2 (or ≥ 1

2 ) in a smooth domain A1 (or B1) such that Ā1 ⊂ Ω (or B̄1 ⊂ Ω) and
a(x) < 1

2 (or > 1
2 ) on ∂A1 (or ∂B1). Then, any global minimizer uε of Iε in H1

0(Ω) satisfies uε → 1 (or uε → 0)
uniformly on Ā1 (or B̄1), as ε → 0.
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Proof. We will only consider the case A, since the case B is identical. Let η > 0 be any number such that

2η < min
x∈Ω̄

(1 − a(x)). (1.5)

For small δ > 0, we have a(x) < 1
2 if dist(x, ∂A1) ≤ δ. Therefore, by (1.3), we deduce that uε → 1 uniformly

on the compact subset of A that is described by {x ∈ Ω : dist(x, ∂A1) ≤ δ
2 }, as ε → 0. Consider the subset of

Ω that is defined by A2 = A1 ∪ {x ∈ Ω : dist(x, ∂A1) < δ
2 }. We fix a small δ such that A2 ⊃ A1 is smooth and

Ā2 ⊂ Ω. Since any global minimizer satisfies 0 < uε < 1 if ε is small, we have that

1 − uε(x) ≤ η, x ∈ ∂A2. (1.6)

We claim that 1 − uε(x) ≤ η, x ∈ Ā2, which clearly implies the validity of the assertion of the theorem. Suppose
that the claim is false. Then, for some sequence of small ε’s, there exists an xε ∈ A2 such that

1 − uε(xε) = max
x∈Ā2

(1 − uε(x)) > η. (1.7)

We will first exclude the possibility that

1 − uε(x) ≤ 2η, x ∈ Ā2. (1.8)

To this end, we will argue by contradiction. Let

ũε(x) =
{
{
{

max{uε(x), 2 − 2η − uε(x)}, x ∈ A2,
uε(x), x ∈ Ω \ A2.

Since max{uε , 2 − 2η − uε} is the composition of a Lipschitz function with an H1(A2) function, it follows
from [8] that ũε ∈H1(A2). Furthermore, from (1.6) and the Lipschitz regularity ofA2weobtain that ũε ∈H1

0(Ω),
see again [8]. Note that ũε ∈ C(Ω̄). On the other hand, (1.8) implies that

1 − 2η ≤ uε(x) ≤ ũε(x) ≤ 1, x ∈ Ā2.

In turn, recalling (1.2) and (1.5), this implies that

F(x, uε(x)) ≤ F(x, ũε(x)), x ∈ Ā2. (1.9)

To see this, observe that

for each x ∈ Ω̄ the function F(x, t) is increasing with respect to t ∈ [1 − 2η, 1], (1.10)

since Ft(x, t) = t(t − a(x))(1 − t). (Note that t Ü→ F(t, x) changes monotonicity in (0, 1) only at t = a(x)).
From (1.7), which implies that uε(xε) < ũε(xε), it follows that F(x, uε(x)) < F(x, ũε(x)) on an open subset
of A2 containing xε. Hence,

∫
Ω

F(x, uε(x)) dx < ∫
Ω

F(x, ũε(x)) dx. (1.11)

Moreover, it holds that

∫
Ω

|Dũε|2 dx ≤ ∫
Ω

|Duε|2 dx, (1.12)

see [14, p. 93]. The above two relations yield that Iε(ũε) < Iε(uε), contradicting the fact that uε is a global
minimizer of Iε in H1

0(Ω). Consequently, we have that

0 < 1 − uε(xε) < 1 − 2η. (1.13)

Now, let

ûε(x) =
{
{
{

min{1, max{uε(x), 2 − 2η − uε(x)}}, x ∈ A2,
uε(x), x ∈ Ω \ A2,
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see also [11]. As before, it is easy to see that ûε ∈ H1
0(Ω). Since a(x) ≤

1
2 , x ∈ Ā2, it follows readily that

F(x, t) < F(x, 1) for all t ∈ (0, 1), x ∈ Ā2.

Hence, as before, making use of (1.10), (1.13), and the above relation, we get (1.11), (1.12) with ûε in place
of ũε, which again contradict the minimality of uε.

Remark 1.2. In the radially symmetric case, if 0 < r1 < r2 ≤ r3 < r4 satisfy a(ri) = 1
2 , i = 1, 2, 3, 4, and

a(r) < 1
2 (or > 1

2 ) for r ∈ (r1, r2), a(r) > 1
2 (or < 1

2 ) for r ∈ (r3, r4), and a(r) = 1
2 for r ∈ [r2, r3], incorporat-

ing our approach into the proof of [5, Theorem 1.3 (iii)–(iv)] can lead to a simpler proof of the fact that global
minimizers have only one transition layer in (r1, r4), see also [1], which for N ≥ 2 takes place near r2 (or r2).

1.2 Local Minimizers of the Spatially Inhomogeneous Allen–Cahn Equation

In the case where there exists a smooth (n − 1)-dimensional submanifold Γ of Ω that divides Ω in an interior
and an exterior subdomain, which we denote by Ω− and Ω+, respectively, such that a = 1

2 and ∂a
∂ν > 0 (or < 0)

on Γ, where ν denotes the outer normal to Γ, it was shown in the pioneering work of Fife and Greenlee [9]
that (1.1) has a solution 0 < wε < 1 such that

wε → {
1 (or 0), uniformly on any compact subset of Ω−,
0 (or 1), uniformly on any compact subset of Ω+,

(1.14)

as ε → 0. Their approachwasbasedonmatchedasymptotics andonbifurcation arguments. Sucha solution is
said to have a transition layer along the interface wε = 0, which collapses in a smoothmanner to Γ, as ε → 0.
In fact, they considered more general equations of the form ε2∆u = f(x, u) and their proof carries over to
the case of finitely many such interfaces. This result was extended by del Pino in [6], via degree-theoretic
arguments, for general (even nonsmooth) interfaces. In the following theorem, we present a truly simple
proof of the result in [6] for (1.1), which also allows for transition layers between degenerate stable roots of
the equation f(x, ⋅ ) = 0 (see also [1, Hypothesis (h)]). In fact, with a little more work in the proof and using
some ideas from [21], even more degenerate situations can be allowed.

Theorem 1.3. Assume the existence of a closed set Γ ⊂ Ω and of open disjoint subsets Ω+ and Ω− of Ω such that

Ω = Ω+ ∪ Γ ∪ Ω−.

Assume also the existence of an open neighborhoodN of Γ such that

a(x) < 1
2 (or >

1
2) for x ∈ N ∩ Ω−, a(x) > 1

2 (or <
1
2) for x ∈ N ∩ Ω+.

Then, there exists a solution 0 < wε < 1 of (1.1) that satisfies (1.14). Moreover, wε is a local minimizer of Iε
in H1

0(Ω).

Proof. We will only consider the first scenario, since the one depicted in parentheses can be handled identi-
cally. Let η, δ be any positive numbers such that

4η < min
x∈Ω̄

a(x) +min
x∈Ω̄

(1 − a(x)) and {x : dist(x, Γ) ≤ δ} ⊂ N.

For convenience purposes, we will assume that ∂Ω is a part of ∂Ω+ (otherwise, the solution would also have
a boundary layer along ∂Ω). Let

Ωδ± = {x ∈ Ω± : dist(x, Γ) > δ}

and
C = {u ∈ H1

0(Ω) : u ≤ 2η a.e. on Ω̄δ+, 1 − u ≤ 2η a.e. on Ω̄δ−}.
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It is easy to verify that the constrained minimization problem

inf{Iε(u) : u ∈ C}

has aminimizer wε ∈ C such that 0 ≤ wε ≤ 1 (see the related paper [11]). Our goal is to show that wε does not
realize (touch) the constraints if ε > 0 is su�ciently small. Naturally, this will imply that wε is a local mini-
mizer of Iε(u) in H1

0(Ω) and thus a classical solution of (1.1) satisfying the desired assertions of the theorem.
Theminimizer wε of the constrained problem is a classical solution of the equation (1.1) in {x : dist(x, Γ) < δ},
and in fact a global minimizer in the sense that Iε(wε) ≤ Iε(wε + ϕ) for every ϕ that is compactly supported in
this region. Furthermore, by the strong maximum principle (see, for example, [12, Lemma 3.4]), we deduce
that 0 < wε < 1 in the same region. As in [5], making use of Lemma B.1 in Appendix B, we can bound wε
from below by the minimizer of (1.4), with b = max{a(x), x ∈ N ∩ Ω−} < 1

2 and φ ≡ 0, over every ball that is
contained in Ω− ∩ {x : dist(x, Γ) < δ}. From the result of [3] which wementioned in the introduction (see also
Lemma A.1 herein), we obtain that wε → 1, uniformly on Ω− ∩ {x : dist(x, Γ) ∈ [ δ4 ,

δ
2 ]}, as ε → 0. In particu-

lar, for small ε > 0, we have

0 < 1 − wε(x) ≤ η if x ∈ Ω− such that dist(x, Γ) = δ
2 .

As in the part of the proof of Theorem 1.1 that is below (1.6), it follows that the above relation holds for
all x ∈ Ω− such that dist(x, Γ) ≥ δ

2 . We point out that here the function wε may not be continuous in the vicin-
ity of the constraints, but it is as long as it does not touch them, since there it is a classical solution of (1.1),
which su�ces for our purposes. Analogous relations hold in Ω+. Consequently, wε stays away from the con-
straints for small ε > 0 and is therefore a local minimizer of Iε in H1

0(Ω) with the desired asymptotic behav-
ior (1.14), since η, δ > 0 can be chosen arbitrarily small.

1.3 Global Minimizers of the Spatially Inhomogeneous Fisher–KPP Equation

Using the same approach, we can treat the elliptic problem

{
−ε2∆u = ρ(x)g(u) in Ω,

u = 0 on ∂Ω,
(1.15)

where Ω is as before, g ∈ C1 such that

g(0) = g(1) = 0, g(t) > 0 for t ∈ (0, 1), g(t) < 0 for t ∈ ℝ \ (0, 1),

ρ ∈ C(Ω̄), and ε > 0 is a small number. Note that this includes the important Fisher–KPP equation, where
g(t) = t(1 − t), arising in population genetics (see [10]).

The functional corresponding to (1.15) is

Jε(u) =
ε2

2 ∫
Ω

|Du|2 dx − ∫
Ω

ρ(x)G(u) dx, u ∈ H1
0(Ω),

where

G(t) =
t

∫
0

g(s) ds. (1.16)

It is easy to see that the minimization problem

inf{Jε(u) : u ∈ H1
0(Ω)}

has a minimizer. Minimizers furnish classical solutions of (1.15) (at least when ρ is Hölder continuous) with
values in [0, 1] and, more precisely, in (0, 1), provided that ε is su�ciently small. Let

A = {x : x ∈ Ω, ρ(x) > 0} and B = {x : x ∈ Ω, ρ(x) < 0}.
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Similarly to [5, Theorem 1.1], using Lemmas A.1 and B.1 below, we can show that any global minimizer uε
of Jε(u) satisfies (1.3) (related results can be found in [4] and in [13, Chapter 10]).

In the nondegenerate case, where Γ is a finite union of smooth (n − 1)-dimensional submanifolds of Ω
such that ρ = 0 and ∂ρ

∂ν ̸= 0 on Γ, where ν denotes the outer normal to Γ, it can be shown that the width of
the transition region of wε is of order ε 2

3 (see [18]). On the other side, in the corresponding nondegenerate
case of (1.1) considered in [9], the width of the transition region is of order ε. This di�erence can be traced
back to the fact that the one-dimensional version of (1.1) falls in the framework of standard geometric sin-
gular perturbation theory, see [20] (u = 0, u = 1 are asymptotically stable roots of f(x, u) = 0, with respect
to the dynamics of u̇ = f(x, u), for all x ∈ Ω̄), whereas the corresponding version of (1.15) is not (here, the
roots u = 0, u = 1 of g(u) = 0 exchange stability as x crosses Γ) and one has to use a blow-up transformation
(see [17]).

A Minimizers of a Homogeneous Problem over Balls
The following lemma can be found in [19] and generalizes the result of [3] that we mentioned in relation
to (1.4).

Lemma A.1. Suppose that W ∈ C2 satisfies 0=W(μ) <W(t), t ∈ [0, μ), W(t) ≥ 0, t ∈ℝ, W(−t) ≥W(t), t ∈ [0, μ],
or W�(t) < 0, t < 0, for some μ > 0. Let x0 ∈ℝN , τ > 0, η ∈ (0, μ), and D > D�, where D� is determined from the
relation U(D�) = μ − η, where in turn U is the only function in C2[0,∞) that satisfies

U�� = W�(U) for s > 0, U(0) = 0, lim
s→∞

U(s) = μ,

(keep in mind that U� > 0). There exists a positive constant ε0, depending only on τ, η, D,W, and n, such that
there exists a global minimizer uε of the energy functional

E(v) = ε2

2 ∫
Bτ(x0)

|Dv|2 dx + ∫
Bτ(x0)

W(v) dx, v ∈ H1
0(Bτ(x0)),

which satisfies 0 < uε(x) < μ, x ∈ Bτ(x0), and

μ − η ≤ uε(x), x ∈ B̄(τ−Dε)(x0),

provided that ε < ε0.

B A Comparison Lemma from [5]
The following result is [5, Lemma 2.3].

Lemma B.1. LetD be a bounded domain inℝN with smooth boundary. Let g1(x, t), g2(x, t) be locally Lipschitz
functions with respect to t, measurable functions with respect to x, and for any bounded interval I, there exists
a constant C such that supx∈D, t∈I |gi(x, t)| ≤ C, i = 1, 2, holds. Let

Gi(x, t) =
t

∫
0

gi(x, s) ds, i = 1, 2.

For φi ∈ W1,2(D) = H1(D), i = 1, 2, consider the minimization problem

inf{Ji(u;D) : u − φi ∈ W1,2
0 (D) = H1

0(D)},

where
Ji(u;D) = ∫

D

{
1
2 |∇u|

2 − Gi(x, u)} dx.
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Let ui ∈ W1,2(D), i = 1, 2, beminimizers to theminimization problems above. Assume that there exist constants
m < M such that
∙ m ≤ ui(x) ≤ M a.e. for i = 1, 2, x ∈ D,
∙ g1(x, t) ≥ g2(x, t) a.e. for x ∈ D, t ∈ [m,M],
∙ M ≥ φ1(x) ≥ φ2(x) ≥ m a.e. for x ∈ D.
Suppose further that φi ∈ W2,p(D) for any p > 1 and that they are not identically equal on ∂D. Then, we have

u1(x) ≥ u2(x), x ∈ D.
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