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1 Introduction

In the article [6], Nagasaki and Suzuki considered the Liouville-type problem

-Au =pf(u) inQ,
pf(u) 1.1)
u=0 on 0qQ,
where Q ¢ R? is a smooth bounded domain, p>0,andf: R — Ris asmooth function such that
f(t) = e' + o(t) with (t) = o(e') as t — +oo. (1.2)

Equations of the form (1.1) are of actual interest in several contexts, including turbulent Euler flows, chemo-
taxis, and the Nirenberg problem in geometry; see, e.g., [5] and the references therein. A recent example is
given by the mean field equation

ae™ P(da)

—Au=A7 in Q,
auP(da)dx (1.3)

[-1,1] J‘J‘[—l,l]XQ e
u=0 on 0Q,
which was derived in [7] for turbulent flows with variable intensities, where P € M([-1, 1]) is a probability

measure related to the vortex intensity distribution. In this case, setting

-1

f(t) = J ae® P(da), pzA( ” e iP(da)dx) ,

[-1,1] [-1,1]xQ

it is readily seen that if P({1}) > 0, then along a blow-up sequence, (1.3) is of the form (1.1). See [10-13]
for more details, where the existence of solutions by variational arguments and blow-up analysis are also
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considered. Blow-up solution sequences for (1.3) have also been recently constructed in [9] following the
approach introduced in [4].

In [6], Nagasaki and Suzuki derived a concentration-compactness principle for (1.1), mass quantization,
and the location of blow-up points, under some additional technical assumptions for f. More precisely, they
assumed that

lp(t) - @' (t) < G(t) forsome G € CH(R, R) satisfying G(¢) + |5 (¢)| < Ce?" with y < % (1.4)

and
f(t)y>0 forallt>o0. (1.5)

By a complex analysis approach, they established the following result.

Theorem 1.1 ([6]). Let f satisfy assumptions (1.2), (1.4), and (1.5). Let uy, be a solution sequence to (1.1) with
p = pn — 0. Suppose u, converges to some nontrivial function uy. Then,

uo(x) = 87 ) Ga(x, pj)

j=1
for some p1,...,pm € Q, m € N, where Gq denotes the Green’s function for the Dirichlet problem on Q. Fur-
thermore, at each blow-up point p;,j = 1, ..., m, there holds that

+ V[Z Gg(p;,p»] =0.
x=pj

1
V| Ga(x, pj) + > log |x —pjl]
” i%

The original estimates in [6] are involved and require the technical assumption y € (O, %). It should be men-
tioned that this assumption was later weakened to the natural assumption y € (0, 1) in [14], by taking a dif-
ferent viewpoint on the line of [1].

Here, we are interested in revisiting the complex analysis framework introduced in [6]. In particular,
we study the effect of the lower-order terms which naturally appear when the equation is considered on a com-
pact Riemannian 2-manifold. We observe that, although the very elaborate key L>-estimate obtained in [6],
namely, Proposition 1.2 below, may be extended in a straightforward manner to the case of manifolds (see
Appendix A for the details), the lower-order terms are naturally estimated only in L'. Therefore, we are led to
consider an L!-framework, which turns out to be significantly simpler and which holds under the weaker as-
sumptiony € (0, %). As a byproduct, we obtain a quick proof of mass quantization and blow-up point location
for the case y € (0, 1).

In order to state our results, for a function u € C%(Q), we define the quantity

uz
S(u) = ? — Uzz, (1.6)

where

dx—idy . Oy+idy
;= :

O=—75 2

Then, if u is a solution to (1.1), we have
0z[S(w)] = —%uz[f(u) -f'w)] = %uz[go(u) - ' (w)].

In particular, in the Liouville case f(u) = e¥, the function S(u) is holomorphic. Therefore, the complex deriva-
tive 9;[S(u)] may be viewed as an estimate of the “distance” between the equation in (1.1) and the standard
Liouville equation.

We recall that the main technical estimate in [6] is given by the following proposition.

Proposition 1.2 ([6]). Let u, be a blow-up sequence for (1.1). Assume (1.2), (1.4), and (1.5). Then,

0zS)llzeo() = %"V“p(f,(up) = flup)llze=) — 0.



DE GRUYTER T. Riccardi and G. Zecca, On the Blow-Up of Solutions to Liouville-Type Equations = 77

It is natural to expect that corresponding results should hold on a compact Riemannian 2-manifold (M, g)
without boundary. We show that, in fact, the L*-convergence as stated in Proposition 1.2 still holds true
on M (see Proposition A.1 in Appendix A). However, a modified point of view is needed in order to suitably
locally define a function S corresponding to (1.6), such that the lower-order terms may be controlled, as well
as to prove its convergence to a holomorphic function in some suitable norm, so that the mass quantization
and the location of the blow-up points may be derived. As we shall see, our point of view holds under the
weaker assumption y € (0, %) and is significantly simpler than the original L*°-framework.

More precisely, on a compact Riemannian 2-manifold without boundary (M, g), we consider the problem

-Agu = pf(u)—c, inM,

J udx =0, 1.7)
M

where ¢, = p|M |1 jM f(u) dx e R, dx denotes the volume element on M, and A; denotes the Laplace-Beltrami
operator. We assume that f(t) = e’ + ¢(t) satisfies (1.2) and, moreover, that

lp(t) — () < G(t) for some G € C(R, R) satisfying G(t) + |S'(t)| < Ce?* with y < % (1.8)
and
f(t)>-C forallt>0. (1.9)
In the spirit of [3], we assume that along a blow-up sequence we have
0 Jf(u) dx<C. (1.10)
M

In particular, without loss of generality, we may assume that
cp—Co asp— 0. (1.11)

We note that (1.9) implies that u > —C. We now define the modified quantity corresponding to S(u). Let
8 ={p1, ..., Ppm} denote the blow-up set. Let p € 8§ and denote X = (x1, x2). We consider a local isothermal
chart (¥, U) such that B.(p) ¢ U, ¥(p) = 0, B(p)NS = @, g(X) = e5®(dx? + dx3), and &(0) = 0. For the sake
of simplicity, we identify here functions on M with their pullback functions to B = B(0, r) = ¥(B.(p)). We de-
note by Gp(X, Y) the Green’s function of Ax = 07 + 02, on B. We set

K(X) = - I Gp(X, eV aY + ¢z (1.12)
B
with ¢; € C defined by
0:[&(z,2) + coK(z, 2)]lz=0 = O, (1.13)

where cg is defined in (1.11). Let u denote a solution sequence to (1.7). We define w(z) = u - ¢, K, so that
—Aw = efpf(u) in B. Finally, consider S(w), where S is defined in (1.6). Our main estimate is given in the
following theorem.

Theorem 1.3. Assume that f(t) = e' + @(t) satisfies (1.2), (1.8), and (1.9). Let u, be a blow-up solution se-
quence for (1.7). Then,
(i) foreveryl<s<(y+3)7,

pIVu,(f' (up) = fup))lizsany = 0 asp — 0%;
(ii) for every blow-up point p € 8, the function S(w) — Sq in L*(B) as p — 0%, where Sy is holomorphic in B.

Consequently, we derive the following corollary.
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Corollary 1.4. Assume that f(t) = e + @(t) satisfies (1.2), (1.8), and (1.9). Suppose u, converges to some
nontrivial function ug. Then,

uo(x) = 8m Z Gu(x, pj). (1.14)
j=1

Moreover, for all p € 8, we have the relation

=0. (1.15)
X=0

1 1
[VX( quZ\{p} Gu(¥~(X), ) + Gu(¥(X), p) + o log |X| + gf(X))]

We provide the proofs of Theorem 1.3 and Corollary 1.4 in Section 2. For the sake of completeness and in
order to readily allow a comparison with the L*-framework employed in [6], in Appendix A we extend Propo-
sition 1.2 to the case of Riemannian 2-manifolds without boundary.

Throughout this note, we denote by C > 0 a constant whose actual value may vary from line to line.

2 Proof of Theorem 1.3

We begin by establishing the following result.
Lemma 2.1. Let u be a solution to (1.7). For every r > 0, we have
)’J'e‘”‘IVul2 dx < C, (2.1)
M
where C = C(r, M, @, Cop).
Proof. We multiply the equation —Agu = pf(u) - ¢, by e™™. Integrating, we have

r J e "vul? dx = j e ™Agu dx
M

=-p j e ™Mf(u) dx + cp J e ™dx
M

<p j e ™)l dx +cp I e’C dx
M M

<p J e o)l dx + cpe e’C|M|,

M

since u > —C. Using the assumptions on ¢, there exists ¢y, > 0 such that |g(u)| < e* for u > ty, so that

rje"”IVulzdst+p< J eI dx + J e‘”‘l<p(u)|dx>£C+p(Je“dx+ I e"“l<p(u)|dx>,

M {u>to} {usto} M {u<to}
and the claim follows using again the fact that u > —C. O
The following proposition proves Theorem 1.3 (i).

Proposition 2.2. Let u be a solution to (1.7). Then, for every 1 < s < (y + %)‘1 and for every € > 0, we have
IVu(f' (u) = f)llzsquy < Cp77V~°

forO<p<1.

Proof. Inview of (1.8), we have
0 < Ifw) - f ()| < Ce™.
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Hence,
I(fw) = f' () Vulls < Cle?™ Vullgs.

Moreover, (1.10) implies that
J eldx <cp™t.
M
Then, for every 1 < g < y~1, using Holder’s inequality we have
1, _
leYllLay < CIM|a Yp7Y.

LetO <r<1-s(y+3). By Lemma 2.1, for

using Holder’s inequality again, we have

s s

1—
leY“Vuls ) = j el (e |Vul®) dx < ( J erd dX>
M M

Then, by (2.3) and (2.4) we have
||eV”Vu||Ls(M) < Cpiyig.

Combining (2.2) and (2.5), the claim is proved.
Let p € 8. We denote by (¥, U) an isothermal chart satisfying
Un8={p}, YW=0cR’ ¥(p)=0, gX) =e'P(dx}+dx), &o0)=0,

2 s+L
< Je 21| 2 dx> < Cle" Npo(yy-
M

— 79

(2.2)

(2.3)

(2.4)

(2.5)

where X = (x1, x2) denotes a coordinate system on O. We consider € > 0 sufficiently small so that B(p, €) € U
and let B = B(0, r) = ¥(B(p, €)). The Laplace-Beltrami operator A is then mapped to the operator e s® Ay

on O, where Ay = 6)2(2 + 6)2(2. By Gg(X, Y) we denote the Green’s function of Ax on B, namely,
1 2
-AxGp(X,Y) =0y inB,
Gp(X,Y)=0 onoB.

We recall from (1.12) that
K(X) = - j Gp(X, Ve’V dy + c1z
B
with ¢; the constant defined by (1.13), namely,

0:(4(z, 2) + coK(z, 2)]|z=0 = O,
where cq = lim,_,o ¢,. Then, K € C*°(B) and

AxK = e inB.

Let u, be a blow-up solution sequence for (1.7). Asp — 0, u — up in CX(M\ 8), u — up € W4(M) for

loc
1<¢g<2,and f(u) — f(uo) in Cj;.(M \ 8), we have Agu — Agug in Cj5, (M \ §), so that

Agll() = Co 1nM\S

We consider the following functions defined in B:

f=uo¥l, o = up o V1,
w(z) = it - ¢pK, wo(2) = itg — coK,
1 1

S(w) = wy; - 5W§, So = Wozz — Ew(z)z.

The following proposition proves Theorem 1.3 (ii).

(2.6)
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Proposition 2.3. The complex function Sy defined in (2.6) is holomorphic in B and S — Sg in L'(B).

Proof. By (2.6) we have
—-Axw = pf(ﬂ)ef and w; =1, - K.

Then, using Ax = 40,; we compute
2:(S(w)] = 7 (OcAxw ~ woyw)
= B (f@: + iaf (@) + e f@)E: - € Ic)
= D ef(fla) ~ f @)z - £ )& + cok) + (co - ) e fliK. (2.7)
Using (2.7) we derive that
0;S — 0 in LY(B). (2.8)

Indeed, this follows by Proposition 2.2, (1.13), and by the fact that | pf(il)| 5 abo(dx) for some a > 0. On the
other hand, by (2.6), since u — ug in C2°.(M \ 8), we have

loc

w— wo inCi(B\{0})

and then
S—So inCy.(B\{0}). (2.9)

At this point, we set £ = (1, &) and { = &; + i&, and we observe that by the Cauchy integral formula we
may write

2:S (IS
S0 = 1 [ G20 dxe o [ 2R dz = 0+ Q. (2.10)
B +0B
We have . S
RO = ho(©) = 5~ J CO_(ZZ) dz inC® (B) (2.11)

+0B
and hg is holomorphic in B. On the other hand, we have

g—0 inL'(B). (2.12)

To prove (2.12), it is sufficient to observe that for every z € B = B(0, r), we have B ¢ B(z, 2r) and then

1 1
gl < ” |a23(z)|m dX dE < JI@ZS(Z)|< I m dE) dX = 4nrJ [0:S(2)| dX,
B B(z,2r) B

BxB

which tends to zero by (2.8). Combining (2.10), (2.11), and (2.12), we have
S—hy inL'(B)asp — 0,

and hence, up to subsequences,
S—>hy ae.inBasp — 0,

so that by (2.9),
So(¢) = ho(¢) forall { € B\ {0}.

This completes our proof. O
Finally, we use the following result from [2].
Proposition 2.4 ([2]). For B=B(0, 1) cR", n> 2, the conditions ve WP(B), 1< p < co, and Av=0 in B\ {0}

imply that H = v — €E is harmonic in B, where € is some constant and

X2 ifn> 2,
E(x) =
log|x| ifn=2.
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Now, we are ready to prove Corollary 1.4. By G we denote the Green’s function on the manifold M, defined by

1

-DNgGy(x,y) = 5)/ - M

j Gu(x,y)dx =0.
M
Proof of Corollary 1.4. Assume that p € 8. Let us start by observing that wg in (2.6) is harmonic in B \ {0} by

definition and that wo € W%4(B) forall 1 < g < 2. Hence, also by using Proposition 2.4, we have

1
wo(z) = Llog E + H(2),

where H is harmonic in B and ¢ # 0. Then, using the fact that

9, log|z| = %az log(zz) = (22)71,

we compute
€ €
Woz = _Z_Z +H;, Woz = y +Hy,.
Therefore,
1., ¢ 1/¢ 2 p4-0) e 1.,
0= Woss = W = 55+ Her = 5, ~He) = T g Her S

By Proposition 2.3, we know that Sy is holomorphic. Hence, we can conclude that £ = 4 and H,(0) = 0. Since
1
H=wo-4log — (2.13)
|z]
is harmonic in B, we have

1
Ax(ﬂo —4log E) —coet  inB(O,7)
and, therefore,

8m .
Ag(uo(x) = 8mGu(x, p)) = co - M +hy, inB(p,e)

for some harmonic function hy,. Arguing similarly for each p € 8 = {p1, p2, ..., pm}, we conclude that

m 8mm
A 87y Gulx,pi) ) = co - " in M.
g(uo(X) ﬂ]; m(x p,)) - B

In particular, we obtain

m
uop(x) — 8m Z Gu(x, pj) = constant in M.
j=1

Observing that fM ug = 0, this completes the proof of (1.14). To obtain (1.15) it is sufficient to observe that,
in view of (2.13) and (1.13), we have

1
0= —0-H(X)|x-
o~ 0:HX)lx-0

1
= az[ Y, Gu(¥~(X), ) + - log |X|]
qes 7'[

- [%azK(X)] ‘XZO

_ 1 1 1
= az[gs Gu(¥(X), ) + 5 log|X| Snf(X)]

X=0

Now, Corollary 1.4 is completely established. O
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A The L*°-estimateon M

In this appendix, for the sake of completeness and in order to outline the original arguments in [6], so that
the simplification of our L!-approach may be seen, we check that Proposition 1.2 may be actually extended
to (1.7) on a compact Riemannian 2-manifold (M, g) without boundary with minor modifications. We con-
sider a solution sequence for (1.7). We assume that f satisfies (1.2), (1.4), and (1.5). Moreover, we assume
(1.10), so that ¢, — co as p — 0*. We show the following proposition.

Proposition A.1. Let u be a solution to (1.7). Then,

plvu(f' @) - fu)lreay — 0 asp — 0.
The proof relies on the following relation, due to Obata.
LemmaA.2 ([8]). Let w = w(x) > O be a solution to

_IvwP?

Aw +F(w) onM, (A1)

where F is a C'-function. Then, there holds the identity
divV=J+ %lezw‘z(F(w) +wF' (w)), (A.2)

where, in local coordinates,

ow 10w
;= -1 —_— . —_—— ] —
Vi=w {V<ax,~> vw 2ax,~AW}’ j=1,2,

and

2 2 2
J = W-1{ > (ai.;;_) - %(Aw)z} > 0.
10Xj

ij=1
Lemma A.3. Let u be a solution to (1.7). Then, for every r > 0, there holds
P J e VUl (2rf(u) - £ () < 2rc, J e Vuf?. (A.3)
M M

Proof. Letubeasolutionto(1.7). Denoting w = e~ it is easy to see that Obata’s assumption (A.1) is satisfied
by the function w with
F(w) = re”™(pf(u) - cp).

On the other hand, we have
F(w) + wF'(w) = pe™™ 2rf(u) - f'(w) - 2re "y

In view of Obata’s identity (A.2), we conclude that

2

J WM;' (F(w) + wF(w)) <2 J divV =o0.
w

M M

In particular, since

Vw
— =-rvVu,
w

by the last inequality we obtain

j PVl (F(w) + wF'(w)) = r2p J eIVl 2rfu) - f'(w) - 2r¢, j e "|vul? < 0. O
M M M
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We note that combining (A.3) and (2.1), for J < r < 1, we obtain

p J e ™ |\Vul*flu) < C(l +p J e‘("”)”IVu|2>.

M M

Since y < %, combining (2.1) and (A.4) we obtain

o J e ™ |Vul?f(u) dx < C
M
and then, since u > —C, using (2.1) again we have

1
P J VPl dx < C i S <r< 1.
M
For r > 0, we define

:

t
Gi(t) = je-%s If(s)] ds.
0

Then, (A.5) may be written in the form

C
IVGrWlr2my € —.

ks

Lemma A.4. There holds

)

Gl < %

— 83

(A.4)

(A.5)

(A.6)

(A.7)

Proof. The proof can be easily obtained as in Lemma 2.1. Let us observe that in our assumption, for every

1 <r<1,wehave

1

2 2
G,(u)dx < - j VIf(w)|dx < C( J [fw)] dx> <
M

{xeM:u(x)>0} {u=0}

glo

On the other hand, since —u < C, we have

0
G, (u)] dx < C j dxje% < ce¥|M| < C.
{xeM:u(x)<0} {u<0}

Combining (A.8) and (A.9), we conclude the proof of (A.7).

Reducing (A.6) to
C
IVG,(Wllpy < — forl<p<2,
T b

and using (A.7) and the Sobolev embedding, we obtain

C 1 1
G:lppr oy £ =, — =—
mEMEOD =R pr T p

N =

Moreover, we have
1
If(H)12e < C(G ()] + 1)

for 0 = & (> 2). We choose 1 < r < 1 such that

(v+1)o<2
yr3)7< 3
Arguing as in [6], for every € > 0, we obtain
If)le oy < Cp ™5 5, 1<p<oo,

and, for g > 2,

1,1
"VU"Lq(M) < Cp(_f"'ﬁ)(a—l)—g.

Now, we conclude the proof of Proposition A.1.

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)
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Proof of Proposition A.1. There holds
C
I(F' () = fw)VullLo@n < Cle? Vullzeoan = ;IIVE’Y”IIL«»(M)- (A.13)

Moreover, by (1.7) we have
~Age? = —y?e?|Vul? + pye"f(u) - c,ye’™  in M.
Hence, for p > 2, we have
IVe Il < C(I1Age"  Ilrany + e liran) < C(lle [Vul? ey + ple? fw)llr iy + llce? e an).-

Now, observing that e¥ < C(f(u) + 1), by (A.11) we obtain

pller™ falan < Cole M man = Colle ILygun 4y < CP™° (A.14)
for every € > 0 with
o-1 o-1
T=1+(+1(——0‘)=1+ —o(y+1). (A.15)
y+1) PG+ D) - y+1

Hence, as p | 2, we have
TT1+%(0—1)—0(]/+ 1) > -1 (A.16)

by (A.10). On the other hand, by (2.3), for 1 < p < %, we have
lcoe? lliry < Cp77.
Moreover, if g > %/ (> 2), then

le?IVul® Ly < le¥* llLvaan) ||Vu|||i2,,q: e
where qq' = g + q'. By (A.12), for every £ > 0 and since 2pq’ > 2, we have

“1+-L)(g-1)-
VU2, < GO,

L2rd’'

Using again (A.11), for every € > 0, we have

S
e Isaqay < ClEX [} pgyayy < Co 777+ 5.
Then, for every € > 0, we have
le”|Vul?llany < Cp™¢ (A.17)
with 7 defined by (A.15). Combining (A.13)-(A.14) and (A.16)—(A.17), we complete the proof. O

Funding: The first author acknowledges the support of FP7-MC-2009-IRSES-247486 “MaNEqui”.

References

[1] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices, Progr. Nonlinear Differential Equations Appl. 13,
Birkhduser, Boston, 1994.

[2] H.Brézis and P. L. Lions, A note on isolated singularities for linear elliptic equations, in: Mathematical Analysis and
Applications, Part A, Adv. in Math. Suppl. Stud. 7A, Academic Press, New York (1981), 263-266.

[3] H.Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of —Au = V(x)e" in two dimensions, Comm.
Partial Differential Equations 16 (1991), no. 8-9, 1223-1253.

[4] P.Esposito, M. Grossi and A. Pistoia, On the existence of blowing-up solutions for a mean field equation, Ann. Inst.
H. Poincaré Anal. Non Linéaire 22 (2005), no. 2, 227-257.



DE GRUYTER T. Riccardi and G. Zecca, On the Blow-Up of Solutions to Liouville-Type Equations =— 85

(5]
(6]
(7
(8]
[9]
[10]
[11]
[12]
[13]

[14]

C.-S. Lin, An expository survey on the recent development of mean field equations, Discrete Contin. Dyn. Syst. 19 (2007),
no. 2, 387-410.

K. Nagasaki and T. Suzuki, Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially-
dominated nonlinearities, Asymptot. Anal. 3 (1990), no. 2, 173-188.

C. Neri, Statistical mechanics of the N-point vortex system with random intensities on a bounded domain, Ann. Inst.

H. Poincaré Anal. Non Linéaire 21 (2004), no. 3, 381-399.

M. Obata, The conjectures on conformal transformations of Riemannian manifolds, /. Differential Geom. 6 (1971), no. 2,
247-258.

A. Pistoia and T. Ricciardi, Concentrating solutions for a Liouville type equation with variable intensities in 2D-turbulence,
preprint (2015), http://arxiv.org/abs/1505.05304.

T. Ricciardi and T. Suzuki, Duality and best constant for a Trudinger—Moser inequality involving probability measures,

J. Eur. Math. Soc. (JEMS) 16 (2014), no. 7, 1327-1348.

T. Ricciardi and G. Zecca, Blow-up analysis for some mean field equations involving probability measures from statistical
hydrodynamics, Differential Integral Equations 25 (2012), no. 3-4, 201-222.

T. Ricciardi and G. Zecca, Mean field equations with probability measure in 2D-turbulence, Ric. Mat. 63 (2014), no. 1,
suppl., S255-5264.

T. Ricciardi and G. Zecca, Mass quantization and minimax solutions for Neri’s mean field equation in 2D-turbulence,

J. Differential Equations 260 (2016), no. 1, 339-369.

D. Ye, Une remarque sur le comportement asymptotique des solutions de —Au = Af(u), C. R. Acad. Sci. Paris Sér | Math.
325(1997), no. 12, 1279-1282.



	On the Blow-Up of Solutions to Liouville-Type Equations
	1 Introduction
	2 Proof of Theorem 1.3
	A The $L^\infty$-estimate on $M$


