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1 Introduction
In the article [6], Nagasaki and Suzuki considered the Liouville-type problem

{
−∆u = ρf(u) in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω ⊂ ℝ2 is a smooth bounded domain, ρ > 0, and f : ℝ → ℝ is a smooth function such that

f(t) = et + φ(t) with φ(t) = o(et) as t → +∞. (1.2)

Equations of the form (1.1) are of actual interest in several contexts, including turbulent Euler flows, chemo-
taxis, and the Nirenberg problem in geometry; see, e.g., [5] and the references therein. A recent example is
given by the mean field equation

{{{
{{{
{

−∆u = λ ∫
[−1,1]

αeαu P(dα)
∬[−1,1]×Ω e

αu P(dα)dx
in Ω,

u = 0 on ∂Ω,

(1.3)

which was derived in [7] for turbulent flows with variable intensities, where P ∈ M([−1, 1]) is a probability
measure related to the vortex intensity distribution. In this case, setting

f(t) = ∫
[−1,1]

αeαt P(dα), ρ = λ( ∬
[−1,1]×Ω

eαu P(dα)dx )
−1

,

it is readily seen that if P({1}) > 0, then along a blow-up sequence, (1.3) is of the form (1.1). See [10–13]
for more details, where the existence of solutions by variational arguments and blow-up analysis are also
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considered. Blow-up solution sequences for (1.3) have also been recently constructed in [9] following the
approach introduced in [4].

In [6], Nagasaki and Suzuki derived a concentration-compactness principle for (1.1), mass quantization,
and the location of blow-up points, under some additional technical assumptions for f . More precisely, they
assumed that

|φ(t) − φ�(t)| ≤ G(t) for some G ∈ C1(ℝ,ℝ) satisfying G(t) + |G�(t)| ≤ Ceãt with ã <
1
4 (1.4)

and
f(t) ≥ 0 for all t ≥ 0. (1.5)

By a complex analysis approach, they established the following result.

Theorem 1.1 ([6]). Let f satisfy assumptions (1.2), (1.4), and (1.5). Let un be a solution sequence to (1.1) with
ρ = ρn → 0. Suppose un converges to some nontrivial function u0. Then,

u0(x) = 8π
m
∑
j=1
GΩ(x, pj)

for some p1, . . . , pm ∈ Ω, m ∈ ℕ, where GΩ denotes the Green’s function for the Dirichlet problem on Ω. Fur-
thermore, at each blow-up point pj, j = 1, . . . ,m, there holds that

∇[GΩ(x, pj) +
1
2π log |x − pj|]

!!!!!!!x=pj
+ ∇[∑

i ̸=j
GΩ(pj , pi)] = 0.

The original estimates in [6] are involved and require the technical assumption ã ∈ (0, 14 ). It should be men-
tioned that this assumption was later weakened to the natural assumption ã ∈ (0, 1) in [14], by taking a dif-
ferent viewpoint on the line of [1].

Here, we are interested in revisiting the complex analysis framework introduced in [6]. In particular,
we study the e�ect of the lower-order termswhichnaturally appearwhen the equation is considered ona com-
pact Riemannian 2-manifold. We observe that, although the very elaborate key L∞-estimate obtained in [6],
namely, Proposition 1.2 below, may be extended in a straightforward manner to the case of manifolds (see
Appendix A for the details), the lower-order terms are naturally estimated only in L1. Therefore, we are led to
consider an L1-framework, which turns out to be significantly simpler and which holds under the weaker as-
sumption ã ∈ (0, 12 ). As a byproduct, we obtain a quick proof ofmass quantization andblow-uppoint location
for the case ã ∈ (0, 12 ).

In order to state our results, for a function u ∈ C2(Ω), we define the quantity

S(u) =
u2z
2 − uzz , (1.6)

where
∂z =

∂x − i∂y
2 , ∂ ̄z =

∂x + i∂y
2 .

Then, if u is a solution to (1.1), we have

∂ ̄z[S(u)] = −
ρ
4uz[f(u) − f

�(u)] = ρ
4uz[φ(u) − φ

�(u)].

In particular, in the Liouville case f(u) = eu, the function S(u) is holomorphic. Therefore, the complex deriva-
tive ∂ ̄z[S(u)]may be viewed as an estimate of the “distance” between the equation in (1.1) and the standard
Liouville equation.

We recall that the main technical estimate in [6] is given by the following proposition.

Proposition 1.2 ([6]). Let uρ be a blow-up sequence for (1.1). Assume (1.2), (1.4), and (1.5). Then,

‖∂ ̄zS(u)‖L∞(Ω) =
ρ
4 ‖∇uρ( f

�(uρ) − f(uρ))‖L∞(Ω) → 0.
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It is natural to expect that corresponding results should hold on a compact Riemannian 2-manifold (M, g)
without boundary. We show that, in fact, the L∞-convergence as stated in Proposition 1.2 still holds true
on M (see Proposition A.1 in Appendix A). However, a modified point of view is needed in order to suitably
locally define a function S corresponding to (1.6), such that the lower-order terms may be controlled, as well
as to prove its convergence to a holomorphic function in some suitable norm, so that the mass quantization
and the location of the blow-up points may be derived. As we shall see, our point of view holds under the
weaker assumption ã ∈ (0, 12 ) and is significantly simpler than the original L∞-framework.

More precisely, on a compact Riemannian 2-manifold without boundary (M, g), we consider the problem

{{{
{{{
{

−∆gu = ρf(u) − cρ in M,

∫
M

u dx = 0, (1.7)

where cρ = ρ|M|−1∫M f(u)dx ∈ℝ, dx denotes the volume element onM, and ∆g denotes the Laplace–Beltrami
operator. We assume that f(t) = et + φ(t) satisfies (1.2) and, moreover, that

|φ(t) − φ�(t)| ≤ G(t) for some G ∈ C1(ℝ,ℝ) satisfying G(t) + |G�(t)| ≤ Ceãt with ã <
1
2 (1.8)

and
f(t) ≥ −C for all t ≥ 0. (1.9)

In the spirit of [3], we assume that along a blow-up sequence we have

ρ∫
M

f(u) dx ≤ C. (1.10)

In particular, without loss of generality, we may assume that

cρ → c0 as ρ → 0+. (1.11)

We note that (1.9) implies that u ≥ −C. We now define the modified quantity corresponding to S(u). Let
S = {p1, . . . , pm} denote the blow-up set. Let p ∈ S and denote X = (x1, x2). We consider a local isothermal
chart (Ψ,U) such thatBε(p) ⊂ U, Ψ(p) = 0,Bε(p)∩S = ⌀, g(X) = eξ(X)(dx21+dx

2
2), and ξ(0) = 0. For the sake

of simplicity, we identify here functions onM with their pullback functions to B = B(0, r) = Ψ(Bε(p)). We de-
note by GB(X, Y) the Green’s function of ∆X = ∂2x1 + ∂

2
x2 on B. We set

K(X) = −∫
B

GB(X, Y)eξ(Y)dY + c1z (1.12)

with c1 ∈ ℂ defined by
∂z[ξ(z, z̄) + c0K(z, z̄)]|z=0 = 0, (1.13)

where c0 is defined in (1.11). Let u denote a solution sequence to (1.7). We define w(z) = u − cρK, so that
−∆w = eξ ρf(u) in B. Finally, consider S(w), where S is defined in (1.6). Our main estimate is given in the
following theorem.

Theorem 1.3. Assume that f(t) = et + φ(t) satisfies (1.2), (1.8), and (1.9). Let uρ be a blow-up solution se-
quence for (1.7). Then,
(i) for every 1 ≤ s < (ã+ 1

2 )
−1,

ρ‖∇uρ(f �(uρ) − f(uρ))‖Ls(M) → 0 as ρ → 0+;

(ii) for every blow-up point p ∈ S, the function S(w) → S0 in L1(B) as ρ → 0+, where S0 is holomorphic in B.

Consequently, we derive the following corollary.
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Corollary 1.4. Assume that f(t) = et + φ(t) satisfies (1.2), (1.8), and (1.9). Suppose un converges to some
nontrivial function u0. Then,

u0(x) = 8π
m
∑
j=1
GM(x, pj). (1.14)

Moreover, for all p ∈ S, we have the relation

[∇X( ∑
q∈S\{p}

GM(Ψ−1(X), q) + GM(Ψ−1(X), p) + 1
2π log |X| + 1

8π ξ(X))]
!!!!!!!!!X=0

= 0. (1.15)

We provide the proofs of Theorem 1.3 and Corollary 1.4 in Section 2. For the sake of completeness and in
order to readily allow a comparisonwith the L∞-framework employed in [6], in Appendix Awe extend Propo-
sition 1.2 to the case of Riemannian 2-manifolds without boundary.

Throughout this note, we denote by C > 0 a constant whose actual value may vary from line to line.

2 Proof of Theorem 1.3
We begin by establishing the following result.

Lemma 2.1. Let u be a solution to (1.7). For every r > 0, we have

r∫
M

e−ru|∇u|2 dx ≤ C, (2.1)

where C = C(r,M, φ, c0).

Proof. Wemultiply the equation −∆gu = ρf(u) − cρ by e−ru. Integrating, we have

r∫
M

e−ru|∇u|2 dx = ∫
M

e−ru∆gu dx

= −ρ∫
M

e−ru f(u) dx + cρ ∫
M

e−ru dx

≤ ρ∫
M

e−ru|φ(u)| dx + cρ ∫
M

erC dx

≤ ρ∫
M

e−ru|φ(u)| dx + cρerC|M|,

since u ≥ −C. Using the assumptions on φ, there exists t0 > 0 such that |g(u)| < eu for u > t0, so that

r∫
M

e−ru|∇u|2 dx ≤ C + ρ( ∫
{u>t0}

e(1−r)u dx + ∫
{u≤t0}

e−ru|φ(u)| dx) ≤ C + ρ(∫
M

eu dx + ∫
{u≤t0}

e−ru|φ(u)| dx),

and the claim follows using again the fact that u ≥ −C.

The following proposition proves Theorem 1.3 (i).

Proposition 2.2. Let u be a solution to (1.7). Then, for every 1 ≤ s < (ã + 1
2 )

−1 and for every ε > 0, we have

‖∇u( f �(u) − f(u))‖Ls(M) ≤ Cρ−ã−ε

for 0 < ρ < 1.

Proof. In view of (1.8), we have
0 ≤ |f(u) − f �(u)| ≤ Ceãu .



T. Riccardi and G. Zecca, On the Blow-Up of Solutions to Liouville-Type Equations | 79

Hence,
‖( f(u) − f �(u))∇u‖Ls ≤ C‖eãu∇u‖Ls . (2.2)

Moreover, (1.10) implies that
∫
M

eudx ≤ cρ−1.

Then, for every 1 ≤ q < ã−1, using Hölder’s inequality we have

‖eãu‖Lq(M) ≤ C|M|
1
q −ãρ−ã. (2.3)

Let 0 < r < 1 − s(ã+ 1
2 ). By Lemma 2.1, for

q =
s + r

ã

1 − s
2
<
1
ã ,

using Hölder’s inequality again, we have

‖eãu∇u‖sLs(M) = ∫
M

e(sã+r)u(e−ru|∇u|s) dx ≤ (∫
M

eãuq dx)
1− s

2

(∫
M

e−2ru|∇u|2 dx)
s
2

≤ C‖eãu‖
s+ rã
Lq(M). (2.4)

Then, by (2.3) and (2.4) we have
‖eãu∇u‖Ls(M) ≤ Cρ−ã−

r
s . (2.5)

Combining (2.2) and (2.5), the claim is proved.

Let p ∈ S. We denote by (Ψ,U) an isothermal chart satisfying

Ū ∩ S = {p}, Ψ(U) = O ⊂ ℝ2, Ψ(p) = 0, g(X) = eξ(X)(dx21 + dx
2
2), ξ(0) = 0,

where X = (x1, x2) denotes a coordinate system onO. We consider ε > 0 su�ciently small so thatB(p, ε) ⋐ U
and let B = B(0, r) = Ψ(B(p, ε)). The Laplace–Beltrami operator ∆g is then mapped to the operator e−ξ(X)∆X
on O, where ∆X = ∂2x21 + ∂

2
x22
. By GB(X, Y) we denote the Green’s function of ∆X on B, namely,

{
−∆XGB(X, Y) = δY in B,

GB(X, Y) = 0 on ∂B.

We recall from (1.12) that
K(X) = −∫

B

GB(X, Y)eξ(Y) dY + c1z

with c1 the constant defined by (1.13), namely,

∂z[ξ(z, z̄) + c0K(z, z̄)]|z=0 = 0,

where c0 = limρ→0 cρ. Then, K ∈ C∞(B) and

∆XK = eξ in B̄.

Let uρ be a blow-up solution sequence for (1.7). As ρ → 0, u → u0 in C∞loc(M \ S), u − u0 ∈ W1,q(M) for
1 ≤ q < 2, and f(u) → f(u0) in C∞loc(M \ S), we have ∆gu → ∆gu0 in C∞loc(M \ S), so that

∆gu0 = c0 in M \ S.

We consider the following functions defined in B:

ũ = u ∘ Ψ−1, ũ0 = u0 ∘ Ψ−1,

w(z) = ũ − cρK, w0(z) = ũ0 − c0K,

S(w) = wzz −
1
2w

2
z , S0 = w0zz −

1
2w

2
0z .

(2.6)

The following proposition proves Theorem 1.3 (ii).
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Proposition 2.3. The complex function S0 defined in (2.6) is holomorphic in B and S → S0 in L1(B).

Proof. By (2.6) we have
−∆Xw = ρf(ũ)eξ and wz = ũz − cρKz .

Then, using ∆X = 4∂z ̄z we compute

∂ ̄z[S(w)] =
1
4 (∂z∆Xw − wz∆Xw)

= −
ρ
4 e

ξ ( f(ũ)ξz + ũz f �(ũ)) +
ρ
4 e

ξ f(ũ)(ũz − cρKz)

=
ρ
4 e

ξ ( f(ũ) − f �(ũ))ũz −
ρ
4 e

ξ f(ũ)(ξz + c0Kz) + (c0 − cρ)
ρ
4 e

ξ f(ũ)Kz . (2.7)

Using (2.7) we derive that
∂ ̄zS → 0 in L1(B). (2.8)

Indeed, this follows by Proposition 2.2, (1.13), and by the fact that |ρf(ũ)| ∗
→ aδ0(dx) for some a > 0. On the

other hand, by (2.6), since u → u0 in C∞loc(M \ S), we have

w → w0 in C∞loc(B̄ \ {0})

and then
S → S0 in C∞loc(B̄ \ {0}). (2.9)

At this point, we set Ξ = (ξ1, ξ2) and ζ = ξ1 + iξ2 and we observe that by the Cauchy integral formula we
may write

[S(w)](ζ ) = 1
π ∫
B

∂ ̄zS(z)
ζ − z

dX +
i
2π ∫

+∂B

[S(w)](z)
ζ − z

dz = g(ζ) + h(ζ). (2.10)

We have
h(ζ) → h0(ζ) =

i
2π ∫

+∂B

S0(z)
ζ − z

dz in C0loc(B) (2.11)

and h0 is holomorphic in B. On the other hand, we have

g → 0 in L1(B). (2.12)

To prove (2.12), it is su�cient to observe that for every z ∈ B = B(0, r), we have B ⊂ B(z, 2r) and then

‖g‖L1(B) ≤ ∬
B×B

|∂ ̄zS(z)|
1

|ζ − z|
dX dΞ ≤ ∫

B

|∂ ̄zS(z)|( ∫
B(z,2r)

1
|ζ − z|

dΞ) dX = 4πr∫
B

|∂ ̄zS(z)| dX,

which tends to zero by (2.8). Combining (2.10), (2.11), and (2.12), we have

S → h0 in L1(B) as ρ → 0,

and hence, up to subsequences,
S → h0 a.e. in B as ρ → 0,

so that by (2.9),
S0(ζ ) = h0(ζ ) for all ζ ∈ B \ {0}.

This completes our proof.

Finally, we use the following result from [2].

Proposition 2.4 ([2]). For B = B(0, 1) ⊂ℝn, n ≥ 2, the conditions v ∈W1,p(B), 1< p <∞, and ∆v = 0 in B \ {0}
imply that H = v − ℓE is harmonic in B, where ℓ is some constant and

E(x) =
{
{
{

|x|2−n if n > 2,
log |x| if n = 2.
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Now,we are ready to prove Corollary 1.4. ByGM wedenote theGreen’s function on themanifoldM, defined by

{{{{
{{{{
{

−∆gGM(x, y) = δy −
1
|M|

∫
M

GM(x, y)dx = 0.

Proof of Corollary 1.4. Assume that p ∈ S. Let us start by observing that w0 in (2.6) is harmonic in B \ {0} by
definition and that w0 ∈ W1,q(B) for all 1 < q < 2. Hence, also by using Proposition 2.4, we have

w0(z) = ℓ log 1
|z|

+ H(z),

where H is harmonic in B and ℓ ̸= 0. Then, using the fact that

∂z log |z| =
1
2∂z log(zz̄) = (2z)−1,

we compute
w0z = −

ℓ
2z + Hz , w0zz =

ℓ
2z2

+ Hzz .

Therefore,

S0 = w0zz −
1
2w

2
0z =

ℓ
2z2

+ Hzz −
1
2(

ℓ
2z − Hz)

2
=

ℓ(4 − ℓ)
8z2

+
ℓ
2z Hz + Hzz −

1
2H

2
z .

By Proposition 2.3, we know that S0 is holomorphic. Hence, we can conclude that ℓ = 4 and Hz(0) = 0. Since

H = w0 − 4 log 1
|z|

(2.13)

is harmonic in B, we have
∆X(ũ0 − 4 log 1

|z| )
= c0eξ in B(0, r)

and, therefore,
∆g(u0(x) − 8πGM(x, p)) = c0 −

8π
|M|

+ hp inB(p, ε)

for some harmonic function hp. Arguing similarly for each p ∈ S = {p1, p2, . . . , pm}, we conclude that

∆g(u0(x) − 8π
m
∑
j=1
GM(x, pj)) = c0 −

8πm
|M|

in M.

In particular, we obtain

u0(x) − 8π
m
∑
j=1
GM(x, pj) = constant in M.

Observing that ∫M u0 = 0, this completes the proof of (1.14). To obtain (1.15) it is su�cient to observe that,
in view of (2.13) and (1.13), we have

0 =
1
8π ∂zH(X)|X=0

= ∂z[∑
q∈S

GM(Ψ−1(X), q) + 1
2π log |X|]

!!!!!!!!!X=0
− [

m
|M|

∂zK(X)]
!!!!!!!X=0

= ∂z[∑
q∈S

GM(Ψ−1(X), q) + 1
2π log |X| − 1

8π ξ(X)]
!!!!!!!!!X=0

.

Now, Corollary 1.4 is completely established.
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A The L∞-estimate on M
In this appendix, for the sake of completeness and in order to outline the original arguments in [6], so that
the simplification of our L1-approach may be seen, we check that Proposition 1.2 may be actually extended
to (1.7) on a compact Riemannian 2-manifold (M, g) without boundary with minor modifications. We con-
sider a solution sequence for (1.7). We assume that f satisfies (1.2), (1.4), and (1.5). Moreover, we assume
(1.10), so that cρ → c0 as ρ → 0+. We show the following proposition.

Proposition A.1. Let u be a solution to (1.7). Then,

ρ‖∇u( f �(u) − f(u))‖L∞(M) → 0 as ρ → 0.

The proof relies on the following relation, due to Obata.

Lemma A.2 ([8]). Let w = w(x) > 0 be a solution to

∆w =
|∇w|2

w
+ F(w) on M, (A.1)

where F is a C1-function. Then, there holds the identity

div V = J + 1
2 |∇w|

2w−2(F(w) + wF�(w)), (A.2)

where, in local coordinates,

Vj = w−1{∇(
∂w
∂xi

) ⋅ ∇w −
1
2
∂w
∂xi

∆w}, j = 1, 2,

and

J = w−1{
2
∑
i,j=1

(
∂2w
∂xi∂xj

)
2
−
1
2 (∆w)

2} ≥ 0.

Lemma A.3. Let u be a solution to (1.7). Then, for every r > 0, there holds

ρ∫
M

e−ru|∇u|2(2rf(u) − f �(u)) ≤ 2rcρ ∫
M

e−ru|∇u|2. (A.3)

Proof. Let u be a solution to (1.7). Denotingw = e−ru, it is easy to see thatObata’s assumption (A.1) is satisfied
by the function w with

F(w) = re−ru(ρf(u) − cρ).

On the other hand, we have

F(w) + wF�(w) = ρe−ru(2rf(u) − f �(u)) − 2re−rucρ .

In view of Obata’s identity (A.2), we conclude that

∫
M

|∇w|2

w2 (F(w) + wF(w)) ≤ 2∫
M

div V = 0.

In particular, since
∇w
w

= −r∇u,

by the last inequality we obtain

∫
M

r2|∇u|2(F(w) + wF�(w)) = r2ρ∫
M

e−ru|∇u|2(2rf(u) − f �(u)) − 2r3cρ ∫
M

e−ru|∇u|2 ≤ 0.
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We note that combining (A.3) and (2.1), for 1
2 < r < 1, we obtain

ρ∫
M

e−ru|∇u|2f(u) ≤ C(1 + ρ∫
M

e−(r−ã)u|∇u|2). (A.4)

Since ã < 1
4 , combining (2.1) and (A.4) we obtain

ρ∫
M

e−ru|∇u|2f(u) dx ≤ C

and then, since u ≥ −C, using (2.1) again we have

ρ∫
M

e−ru|∇u|2|f(u)| dx ≤ C if 12 < r < 1. (A.5)

For r > 0, we define

Gr(t) =
t

∫
0

e−
r
2 s√|f(s)| ds.

Then, (A.5) may be written in the form
‖∇Gr(u)‖L2(M) ≤

C
√ρ

. (A.6)

Lemma A.4. There holds
‖Gr(u)‖L1(M) ≤

C
√ρ

. (A.7)

Proof. The proof can be easily obtained as in Lemma 2.1. Let us observe that in our assumption, for every
1
2 < r < 1, we have

∫
{x∈M :u(x)≥0}

Gr(u) dx ≤
2
r ∫
{u≥0}

√|f(u)| dx ≤ C(∫
M

|f(u)| dx)
1
2

≤
C
√ρ

. (A.8)

On the other hand, since −u ≤ C, we have

∫
{x∈M :u(x)≤0}

|Gr(u)| dx ≤ C ∫
{u≤0}

dx
0

∫
u

e
Cr
2 ≤ Ce

Cr
2 |M| ≤ C. (A.9)

Combining (A.8) and (A.9), we conclude the proof of (A.7).

Reducing (A.6) to
‖∇Gr(u)‖Lp(M) ≤

C
√ρ

for 1 < p < 2,

and using (A.7) and the Sobolev embedding, we obtain

‖Gr(u)‖Lp∗ (M) ≤
C
√ρ

, 1
p∗

=
1
p
−
1
2 .

Moreover, we have
|f(t)|

1
2σ ≤ C(|Gr(t)| + 1)

for σ = 1
1−r (> 2). We choose 1

2 < r < 1 such that

(ã+ 1
2)σ <

3
2 . (A.10)

Arguing as in [6], for every ε > 0, we obtain

‖f(u)‖Lp(M) ≤ Cρ−σ+
σ−1
p −ε , 1 < p < ∞, (A.11)

and, for q > 2,
‖∇u‖Lq(M) ≤ Cρ(−

1
2+

1
q )(σ−1)−ε . (A.12)

Now, we conclude the proof of Proposition A.1.
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Proof of Proposition A.1. There holds

‖( f �(u) − f(u))∇u‖L∞(M) ≤ C‖eãu∇u‖L∞(M) =
C
ã‖∇e

ãu‖L∞(M). (A.13)

Moreover, by (1.7) we have

−∆geãu = −ã2eãu|∇u|2 + ρãeãu f(u) − cρãeãu in M.

Hence, for p > 2, we have

‖∇eãu‖L∞(M) ≤ C(‖∆geãu‖Lp(M) + ‖eãu‖L1(M)) ≤ C(‖eãu|∇u|2‖Lp(M) + ρ‖eãu f(u)‖Lp(M) + ‖cρeãu‖Lp(M)).

Now, observing that eu ≤ C(f(u) + 1), by (A.11) we obtain

ρ‖eãu f(u)‖Lp(M) ≤ Cρ‖e(ã+1)u‖Lp(M) = Cρ‖eu‖
ã+1
Lp(ã+1)(M) ≤ Cρ

τ−ε (A.14)

for every ε > 0 with
τ = 1 + (ã+ 1)( σ − 1

p(ã+ 1) − σ) = 1 +
σ − 1
p

− σ(ã+ 1). (A.15)

Hence, as p ↓ 2, we have
τ ↑ 1 +

1
2 (σ − 1) − σ(ã+ 1) > −1 (A.16)

by (A.10). On the other hand, by (2.3), for 1 ≤ p < 1
ã , we have

‖cρeãu‖Lp(M) ≤ Cρ−ã.

Moreover, if q > 1
2ã (> 2), then

‖eãu|∇u|2‖Lp(M) ≤ ‖eãu‖Lpq(M)‖∇u|‖2L2pq� (M)
,

where qq� = q + q�. By (A.12), for every ε > 0 and since 2pq� > 2, we have

‖∇u‖2L2pq� (M)
≤ Cρ(−1+

1
pq� )(σ−1)−ε .

Using again (A.11), for every ε > 0, we have

‖eãu‖Lpq(M) ≤ C‖eu‖
ã
Lpqã(M) ≤ Cρ

−ãσ+ σ−1
pq −ε .

Then, for every ε > 0, we have
‖eãu|∇u|2‖Lp(M) ≤ Cρτ−ε (A.17)

with τ defined by (A.15). Combining (A.13)–(A.14) and (A.16)–(A.17), we complete the proof.
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