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Abstract: The existence of multiple solutions to a Dirichlet problem involving the (p, q)-Laplacian is investi-
gated via variational methods, truncation-comparison techniques, and Morse theory. The involved reaction
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1 Introduction

Let Ω be a bounded domain in ℝN with a smooth boundary ∂Ω, let 1 < q ≤ p < +∞, and let μ ≥ 0. Consider
the Dirichlet problem

{
−∆pu − μ∆qu = f(x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where ∆r, r > 1, denotes the r-Laplacian, namely,

∆ru := div(‖∇u‖r−2∇u) for all u ∈ W1,r
0 (Ω),

the reaction term f : Ω × ℝ → ℝ satisfies Carathéodory’s conditions,while, as usual, p = q if and only if μ = 0.
Elliptic equations involving differential operators of the form

Au := −∆pu − ∆qu,

often called (p, q)-Laplacian, occur in many important concrete situations. For instance, this happens when
one seeks stationary solutions to the reaction-diffusion system

ut + Au = c(x, u),

which exhibits a wide range of applications in physics and related sciences such as biophysics, quantum and
plasma physics, and chemical reaction design; see [3, 6]. Consequently, they have been the subject of numer-
ous investigations, both in bounded domains and on the whole space, mainly concerning the multiplicity of
solutions or bifurcation-type results.

This paper falls within the first framework. We show that if, roughly speaking, f has a subcritical growth
and, moreover,
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(i) lim
|t|→+∞

p
|t|p

t

∫
0

f(x,ξ )dξ = λ1,p uniformly in x ∈Ω,where λ1,p denotes thefirst eigenvalue of (−∆p ,W1,p
0 (Ω)),

(ii) lim
|t|→+∞

[f(x, t)t − p
t

∫
0

f(x, ξ ) dξ] = +∞ uniformly in x ∈ Ω,

(iii) c|t|θ ≤ f(x, t)t ≤ θ
t

∫
0

f(x, ξ ) dξ for all (x, t) ∈ Ω × [−δ, δ], where c > 0, θ ∈ (1, q), while δ > 0,

then (1.1) possesses at least three nontrivial solutions in C10(Ω), one greatest negative v−, another smallest
positive u+, and a third nodal u0, such that v− ≤ u0 ≤ u+; see Theorem 3.9 below.

Assumptions (i)–(ii) directly give

lim
|t|→+∞

[λ1,p|t|p − p
t

∫
0

f(x, ξ ) dξ] = +∞ uniformly in x ∈ Ω; (1.2)

see the proof of Lemma 3.1. Hence, resonance with respect to λ1,p from the left occurs and, a fortiori, the
energy functional φ associated with (1.1) is coercive.

Now, the question of investigating what happens if there is resonance from the right of λ1,p, i.e., the limit
in (1.2) equals −∞, naturally arises. Accordingly, φ turns out to be indefinite and direct methods no longer
work. However, via linking arguments and, in place of (ii), via the hypothesis that
(iv) either μ > 0 and

lim inf
|t|→+∞

1
|t|η [

p
t

∫
0

f(x, ξ ) dξ − f(x, t)t] ≥ C > 0 uniformly in x ∈ Ω,

where η ∈ (q, p], or μ = 0 and

lim
|t|→+∞

[p
t

∫
0

f(x, ξ ) dξ − f(x, t)t] = +∞ uniformly in x ∈ Ω,

we still obtain a nontrivial solution u0 ∈ C10(Ω) of (1.1); cf. Theorem 4.5 below.
It should be also noted that, in both settings, due to (ii), the nonlinearity f(x, ⋅ ) exhibits a concave behav-

ior at the origin. Such a type of growth rate has been widely studied, also combined with further conditions,
provided p = 2 and μ = 0, i.e., the equation is semilinear. As an example, besides the seminal paper [2], let us
mention [8, 16, 21, 22]. A similar comment holds true also when p ̸= 2 but μ = 0, in which case the litera-
ture looks to be daily increasing; see for instance the very recent papers [12, 14, 18, 19] and, concerning the
nonsmooth framework, [13, 17].

Another meaningful feature of (1.1) is the following. If μ > 0, then the differential operator u Ü→ −∆pu
−μ∆qu turns out to be nonhomogeneous. Hence, standard results for the p-Laplacian not always extend in a
simple way to it.

Our approach is variational, based on critical point theory, togetherwith appropriate truncation-compar-
ison arguments and results from Morse theory.

2 Mathematical Background

Let (X, ‖ ⋅ ‖) be a real Banach space. Given a set V ⊆ X, write V for the closure of V and ∂V for the boundary of
V. If x ∈ X, δ > 0, then Bδ(x) := {z ∈ X : ‖z − x‖ < δ}, while Bδ := Bδ(0). The symbol X∗ denotes the dual space
of X, ⟨ ⋅ , ⋅ ⟩ indicates the duality brackets for the pair (X∗, X), and xn → x (respectively, xn ⇀ x) in X means
that ‘the sequence {xn} converges strongly (respectively, weakly) in X’. An operator A : X → X∗ is called of



S. A. Marano et al., Multiple Solutions to (p, q)-Laplacian Problems | 53

type (S)+ provided

xn ⇀ x in X, lim sup
n→+∞

⟨A(xn), xn − x⟩ ≤ 0 imply xn → x in X.

Let φ ∈ C1(X) and let c ∈ ℝ. Put

φc := {x ∈ X : φ(x) ≤ c}, φc := {x ∈ X : φ(x) ≥ c}, Kφ := {x ∈ X : φ�(x) = 0}, Kcφ := {x ∈ Kφ : φ(x) = c}.

We say that φ satisfies the Cerami condition when
(C) every sequence {xn} ⊆ X such that {φ(xn)} is bounded and

lim
n→+∞

(1 + ‖xn‖)φ�(xn) = 0 in X∗

admits a strongly convergent subsequence.
This compactness-type assumption turns out to be weaker than the usual Palais–Smale condition. Neverthe-
less, it suffices to prove a deformation theorem, from which the minimax theory for the critical values of φ
follows. In such a framework, the topological notion of linking sets plays a key role.

Definition 2.1. Suppose Q0, Q, E are three nonempty closed subsets of a Hausdorff topological space Y with
Q0 ⊆ Q. The pair (Q0, Q) links E in Y if Q0 ∩ E = ⌀ and, for every γ ∈ C0(Q, Y) such that γ |Q0 = id|Q0 , one has
γ(Q) ∩ E ̸= ⌀.

The following general minimax principle is well known; see, e.g., [10, Theorem 5.2.5].

Theorem 2.2. Let X be a Banach space, let Q0, Q, and E be such that the pair (Q0, Q) links E in X, and let
φ ∈ C1(X) satisfy condition (C). If, moreover, supQ0 φ < infE φ and

c := inf
γ∈Γ

sup
x∈Q

φ(γ(x)), where Γ := {γ ∈ C0(Q, X) : γ |Q0 = id|Q0},

then c ≥ infE φ and Kcφ ̸= ⌀.

Appropriate choices of linking sets in Theorem 2.2 produce meaningful critical point results. For later use,
we state here the famous Ambrosetti–Rabinowitz mountain pass theorem.

Theorem 2.3. If (X, ‖ ⋅ ‖) is a Banach space, φ ∈ C1(X) fulfills (C), x0, x1 ∈ X, 0 < ρ < ‖x1 − x0‖,

max{φ(x0), φ(x1)} < mρ := inf
∂Bρ(x0)

φ,

and
c := inf

γ∈Γ
max
t∈[−1,1]

φ(γ(t)), where Γ := {γ ∈ C0([0, 1], X) : γ(0) = x0, γ(1) = x1},

then c ≥ mρ and Kcφ ̸= ⌀.

Let (Y1, Y2) be a topological pair such that Y2 ⊆ Y1 ⊆ X and let k be any nonnegative integer. We denote by
Hk(Y1, Y2) the k-th relative singular homology group for the pair (Y1, Y2) with integer coefficients. Given an
isolated critical point x0 ∈ Kcφ,

Ck(φ, x0) := Hk(φc ∩ U, φc ∩ U \ {x0}), k ∈ ℕ0,

is the k-th critical group of φ at x0. Here, U indicates any neighborhood of x0 fulfilling Kφ ∩ φc ∩ U = {x0}.
The excision property of singular homology ensures that this definition does not depend on the choice of U.
The monographs [5, 11] are general references on this subject.

Hereafter, ‖ ⋅ ‖ stands for theℝN -norm,while |A|denotes theN-dimensional Lebesguemeasure ofA ⊆ℝN .
If p ∈ [1, +∞), then p� indicates the conjugate exponent of p and ‖ ⋅ ‖p is the usual norm of the Sobolev space
W1,p

0 (Ω), namely, thanks to the Poincaré inequality,

‖u‖p := ‖∇u‖Lp(Ω) for all u ∈ W1,p
0 (Ω).
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Let u, v : Ω → ℝ and let t ∈ ℝ. The symbol u ≤ v means u(x) ≤ v(x) for almost every x ∈ Ω, t± := max{±t, 0},
as well as u±( ⋅ ) := u( ⋅ )±. It is known that u± ∈ W1,p

0 (Ω) provided u ∈ W1,p
0 (Ω). Next, define

C10(Ω) := {u ∈ C1(Ω) : u|∂Ω = 0}.

With the standard norm of C1(Ω), this set is an ordered Banach space whose positive cone

C+ := {u ∈ C10(Ω) : u(x) ≥ 0 in Ω}

has nonempty interior given by

int(C+) = {u ∈ C+ : u(x) > 0 for all x ∈ Ω, ∂u
∂n

(x) < 0 for all x ∈ ∂Ω},

where n( ⋅ ) denotes the outward unit normal on ∂Ω; see [10, Remark 6.2.10]. If

p ≤ r < p∗ :=
{{
{{
{

Np
N − p

for p < N,

+∞ otherwise,

then, due to the continuous embeddingW1,p
0 (Ω) ⊆ Lr(Ω) and the Poincaré inequality, one has

‖u‖Lr(Ω) ≤ cr,p‖u‖p for all u ∈ W1,p
0 (Ω). (2.1)

LetW−1,p� (Ω)be thedual space ofW1,p
0 (Ω) and letAp : W1,p

0 (Ω) → W−1,p� (Ω)be thenonlinear operator stem-
ming from the negative p-Laplacian, i.e.,

⟨Ap(u), v⟩ := ∫
Ω

‖∇u(x)‖p−2∇u(x) ⋅ ∇v(x) dx for all u, v ∈ W1,p
0 (Ω).

Denote by λ1,p (respectively, λ2,p) the first (respectively, second) eigenvalue of the operator −∆p in W1,p
0 (Ω).

The following properties of λ1,p, λ2,p, and Ap can be found in [7, 15]; see also [10, Section 6.2].
(p1) 0 < λ1,p < λ2,p.

(p2) ‖u‖pLp(Ω) ≤
1
λ1,p

‖u‖pp for all u ∈ W1,p
0 (Ω).

(p3) There is a unique eigenfunction u1,p corresponding to λ1,p such that

u1,p ∈ int(C10(Ω)+), ‖u1,p‖Lp(Ω) = 1.

Any other eigenfunction is a scalar multiple of u1,p.
(p4) If U := {u ∈ W1,p

0 (Ω) : ‖u‖Lp(Ω) = 1} and

Γ0 := {γ ∈ C0([−1, 1], U) : γ(−1) = −u1,r = −γ(1)},

then
λ2,p = inf

γ∈Γ0
max

u∈γ([−1,1])
‖u‖pp .

(p5) The operator Ap is bounded, continuous, strictly monotone, and of type (S)+.
Now, with p, q, μ, and f as in Section 1, suppose that

|f(x, t)| ≤ c(1 + |t|p−1), (x, t) ∈ Ω × ℝ, (2.2)

for appropriate c > 0, put

F(x, t) :=
t

∫
0

f(x, ξ) dξ, (2.3)



S. A. Marano et al., Multiple Solutions to (p, q)-Laplacian Problems | 55

and consider the C1-functional φ : W1,p
0 (Ω) → ℝ given by

φ(u) := 1
p
‖u‖pp +

μ
q
‖u‖qq − ∫

Ω

F(x, u(x)) dx for all u ∈ W1,p
0 (Ω).

The next result establishes a relation between local C10(Ω)-minimizers and localW1,p
0 (Ω)-minimizers of φ. Its

proof is the same as that of [1, Proposition 2], with the (p, q)-Laplacian instead of the differential operator
considered therein. This idea goes back to the pioneering works of Brézis and Nirenberg [4] for p = 2 and
García Azorero, Manfredi, and Peral Alonso [9] when p ̸= 2.

Proposition 2.4. If u0 ∈ W1,p
0 (Ω) is a local C10(Ω)-minimizer of φ, then u0 lies in C

1,α
0 (Ω) for some α ∈ (0, 1)

and u0 turns out to be a local W
1,p
0 (Ω)-minimizer of φ.

Finally, we shall write Nf (u)( ⋅ ) := f( ⋅ , u( ⋅ )) for every u ∈ Lp(Ω). The function

Nf : Lp(Ω) → Lp� (Ω)
is often called the Nemytskii operator associated with f . Moreover, given u : Ω → ℝ and c ∈ ℝ,

Ω(u ≤ c) := {x ∈ Ω : u(x) ≤ c}.

The meaning of Ω(u > c) etc. is analogous.

3 Resonance from the Left

To avoid unnecessary technicalities, ‘for every x ∈ Ω’ will take the place of ‘for almost every x ∈ Ω’ and the
variable x will be omitted when no confusion may arise. Moreover, p = q if and only if μ = 0 and f(x, 0) ≡ 0.
We will posit the following assumptions, where F is given by (2.3).
(h1) For appropriate c > 0, one has

|f(x, t)| ≤ c(1 + |t|p−1) for all (x, t) ∈ Ω × ℝ.

(h2) lim
|t|→+∞

pF(x, t)
|t|p

= λ1,p uniformly in x ∈ Ω.

(h3) lim
|t|→+∞

[f(x, t)t − pF(x, t)] = +∞ uniformly in x ∈ Ω.

(h4) There exist θ ∈ (1, q) and δ0, c0 > 0 such that

c0|t|θ ≤ f(x, t)t ≤ θF(x, t), (x, t) ∈ Ω × [−δ0, δ0].

The energy functional φ : W1,p
0 (Ω) → ℝ stemming from (1.1) is defined by

φ(u) := 1
p
‖u‖pp +

μ
q
‖u‖qq − ∫

Ω

F(x, u(x)) dx for all u ∈ W1,p
0 (Ω).

Clearly, φ ∈ C1(W1,p
0 (Ω)). Moreover, once

f+(x, t) := f(x, t+), f−(x, t) := f(x, −t−), F±(x, t) :=
t

∫
0

f±(x, ξ) dξ,

one has F+(x, t) = F(x, t+), F−(x, t) = F(x, −t−), while the associated truncated functionals

φ±(u) :=
1
p
‖u‖pp +

μ
q
‖u‖qq − ∫

Ω

F±(x, u(x)) dx, u ∈ W1,p
0 (Ω),

turn out to be C1 as well.
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Lemma 3.1. If (h1)–(h3) hold true, then φ, φ+, and φ− are coercive and weakly sequentially lower semicontin-
uous.

Proof. We will verify the conclusion for φ+, the other cases being similar. The spaceW1,p
0 (Ω) compactly em-

beds in Lp(Ω) while the Nemytskii operator Nf+ turns out to be continuous on Lp(Ω). Thus, a standard argu-
ment ensures that φ+ is weakly sequentially lower semicontinuous. In view of (h3), given any K > 0, there
exists δ > 0 such that

f+(x, t)t − pF+(x, t) ≥ K for all (x, t) ∈ Ω × [δ, +∞),

which clearly means that
d
dt
F+(x, t)
tp

≥
K
tp+1

.

After integration, we obtain

F+(x, s)
sp

−
F+(x, t)
tp

≥ −
K
p (

1
sp

−
1
tp )

provided s ≥ t ≥ δ. (3.1)

Thanks to (h2), letting s → +∞ in (3.1) yields

λ1,p
p
tp − F+(x, t) ≥

K
p
, (x, t) ∈ Ω × [δ, +∞).

Therefore,
lim
t→+∞

[
λ1,p
p
tp − F+(x, t)] = +∞ uniformly with respect to x ∈ Ω. (3.2)

Now, suppose by contradiction that there exists a sequence {un} ⊆ W1,p
0 (Ω) such that

lim
n→+∞

‖un‖p = +∞ but φ+(un) ≤ C < +∞ for all n ∈ ℕ. (3.3)

Write vn := u+n/‖u+n‖p. Since ‖vn‖p ≡ 1, passing to a subsequence when necessary, one has

vn ⇀ v inW1,p
0 (Ω), vn → v in Lp(Ω), vn → v ≥ 0 a.e. in Ω.

Fix any ε > 0 and, through (h2), choose δ > 0 fulfilling

F+(x, t) ≤
λ1,p + ε
p

tp , (x, t) ∈ Ω × [δ, +∞).

Moreover, set M := supΩ×[0,δ] F+. From (3.3) it evidently follows that

φ+(u+n) ≤ C for all n ∈ ℕ, (3.4)

because F+(x, un(x)) = 0 as soon as un(x) ≤ 0, while ‖u+n‖r ≤ ‖un‖r.
We claim that {u+n} is bounded inW

1,p
0 (Ω). In fact, if the assertion were false, then, up to subsequences,

‖u+n‖p → +∞. Dividing (3.4) by ‖u+n‖
p
p gives

1
p
‖vn‖

p
p +

μ
q‖u+n‖p−q

‖vn‖
q
q ≤

C
‖u+n‖

p
p
+ ∫
Ω

F(x, u+n(x))
‖u+n‖

p
p

dx

≤
C

‖u+n‖
p
p
+ ∫

Ω(u+n≤δ)
F(x, u+n(x))

‖u+n‖
p
p

dx + ∫

Ω(u+n>δ)
F(x, u+n(x))

‖u+n‖
p
p

dx

≤
C

‖u+n‖
p
p
+M |Ω|

‖u+n‖
p
p
+
λ1,p + ε
p ∫

Ω

|u+n(x)|p

‖u+n‖
p
p
dx. (3.5)

Recall next that p ≥ q, but p = q only when μ = 0. As n → +∞ and ε → 0+, we get

‖v‖pp ≤ λ1,p‖v‖
p
Lp(Ω).
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On account of (p3), this implies that v = ξu1,p for some ξ ≥ 0. If ξ = 0, then vn → 0 in Lp(Ω). Thus, by (3.5),
vn → 0 in W1,p

0 (Ω), which contradicts ‖vn‖p ≡ 1. So, suppose ξ > 0, whence u+n(x) → +∞ for every x ∈ Ω.
Through (p2), Fatou’s lemma, and (3.2), one gets

1
p
‖u+n‖

p
p − ∫

Ω

F+(x, u+n(x)) dx ≥ ∫
Ω

(
λ1,p
p

|u+n(x)|p − F(x, u+n(x))) dx → +∞,

against (3.4). Consequently, the claim holds true.
Finally, also the sequence {un} is bounded inW1,p

0 (Ω), because F+(x, −u−n(x)) ≡ 0 and φ+(un) ≤ C for all
n ∈ ℕ. This completes the proof.

Lemma 3.2. Let (h1)–(h4)be satisfied. Then, (1.1)hasat least twonontrivial constant-sign solutions u0∈ int(C+),
v0 ∈− int(C+), both local minimizers of φ.

Proof. ByLemma3.1, the functionalφ+possesses a globalminimizer u0∈W1,p
0 (Ω). If θ, δ0, c0 come from (h4),

w ∈ int(C+), and ‖w‖L∞(Ω) ≤ 1, then

φ+(tw) ≤
tp

p
‖w‖pp + μ

tq

q
‖w‖qq −

c0
θ
tθ‖w‖θLθ(Ω) for all t ∈ (0, δ0].

Since θ < q ≤ p but q = p if and only if μ = 0, for sufficiently small t > 0, the right-hand side in the above
inequality turns out to be negative, which evidently forces φ+(u0) < 0, namely, u0 ̸= 0. Proceeding as in [20,
Theorem 4.1] then gives u0 ∈ int(C+). Moreover, u0 is a local C10(Ω)-minimizer of φ, because φ|C+ = φ+|C+ .
Now, the conclusion follows from Proposition 2.4. A similar argument yields a function v0 with the as-
serted properties.

To establish the existence of a third nodal solution, we will first show that there exist two extremal constant-
sign solutions, i.e., a smallest positive one and a biggest negative one. In fact, through (h1) and (h4) one has

f(x, t)t ≥ c0|t|θ − c1|t|p in Ω × ℝ, (3.6)

where c1 > 0. Thus, it is quite natural to compare solutions of (1.1) with those of the auxiliary problem

− ∆pu − μ∆qu = c0|u|θ−2u − c1|u|p−2u, (3.7)

which, by [20, Lemma 2.2], possesses a unique positive solution u ∈ int(C+) and a unique negative solu-
tion v = −u. Reasoning as in the proof of [20, Lemma 2.2] yields the next result.

Lemma 3.3. Under (h1)–(h4), any positive (respectively, negative) solution u to (1.1) fulfills u ≥ ū (respec-
tively, u ≤ −ū).

Proof. Let u be a positive solution of (1.1). For every (x, t) ∈ Ω × ℝ, define the functions

j(x, t) :=
{{{
{{{
{

0 if t ≤ 0,
c0tθ−1 − c1tp−1 if 0 < t ≤ u(x),
c0u(x)θ−1 − c1u(x)p−1 otherwise,

(3.8)

J(x, t) := ∫
t
0 j(x, ξ) dξ , as well as

η(w) := 1
p
‖w‖pp +

μ
q
‖w‖qq − ∫

Ω

J(x, w(x)) dx, w ∈ W1,p
0 (Ω).

Obviously, the functional η belongs to C1(W1,p
0 (Ω)), is coercive, and weakly sequentially lower semicontinu-

ous. So, there exists ũ ∈ W1,p
0 (Ω) such that

η(ũ) = min
w∈W1,p

0 (Ω)
η(w). (3.9)
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As in the above proof, for sufficiently small t > 0, we have η(tu) < 0, whence η(ũ) < 0 and, a fortiori, ũ ̸= 0.
Now, from (3.9) it follows that

⟨Ap(ũ), w⟩ + μ⟨Aq(ũ), w⟩ = ∫
Ω

j(x, ũ(x))w(x) dx for all w ∈ W1,p
0 (Ω). (3.10)

Setting w := −ũ− in (3.10), one obtains ũ− = 0, i.e., ũ ≥ 0. Likewise, if w := (ũ − u)+, then, on account of
(3.10), (3.8), (3.6), and the properties of u, one gets

⟨Ap(ũ), (ũ − u)+⟩ + μ⟨Aq(ũ), (ũ − u)+⟩ = ∫
Ω

(c0uθ−1 − c1up−1)(ũ − u)+dx

≤ ∫
Ω

f(x, u)(ũ − u)+ dx

= ⟨Ap(u), (ũ − u)+⟩ + μ⟨Aq(u), (ũ − u)+⟩.

Therefore,
⟨Ap(ũ) − Ap(u), (ũ − u)+⟩ + μ⟨Aq(ũ) − Aq(u), (ũ − u)+⟩ ≤ 0.

By (p5), this evidently forces u ≥ ũ. Through (3.10) and (3.8) we thus see that the function ũ is a nonnegative
nontrivial solution of (3.7). Since, due to [23, Theorem 5.4.1 and Theorem 5.5.1], ũ ∈ int(C+), while (3.7)
possesses a unique positive solution, we get ũ = ū, and the desired inequality follows. A similar argument
works for the other conclusion.

Remark 3.4. Weaker versions of (h4) allow to achieve the last two lemmas, namely,

there exists θ ∈ (1, q) such that lim inf
t→0

F(x, t)
|t|θ

> 0 uniformly in x ∈ Ω

for Lemma 3.2 and (3.6) for Lemma 3.3. So, instead of any comparison between F(x, t) and f(x, t)t, only the
behavior of t Ü→ f(x, t) and t Ü→ F(x, t) for t close to zero needs to be prescribed.

From now on, Σ will denote the set of all solutions to (1.1), while

Σ+ := Σ ∩ int(C+), Σ− := Σ ∩ (− int(C+)).

Proceeding exactly as in the proof of [20, Lemma 4.2], one obtains the next result.

Lemma 3.5. If (h1)–(h4) hold true, then (1.1) has a smallest positive solution u+ ∈ int(C+) and a greatest neg-
ative solution v− ∈ − int(C+).

Amountain pass procedure can now provide a third solution, but in order to exclude that it is the trivial one,
we need further information on the critical groups of φ at zero, which will be achieved as in [21]. This is the
point where (h4) plays a crucial role.

Theorem 3.6. Let (h1), (h4) be satisfied, let φ(u) ≥ 0 for some u ∈ W1,p
0 (Ω) \ {0}, and let zero be an isolated

critical point of φ. Then, Ck(φ, 0) = 0 for all k ∈ ℕ0.

Proof. Observe that

d
dτ
φ(τu)

!!!!!!!τ=1
= ⟨φ�(u), u⟩

= ‖u‖pp + μ‖u‖
q
q − ∫

Ω

f(x, u(x))u(x) dx

≥ (1 −
θ
p)

‖u‖pp + μ(1 −
θ
p)

‖u‖qq + ∫
Ω

[θF(x, u(x)) − f(x, u(x))u(x)] dx.



S. A. Marano et al., Multiple Solutions to (p, q)-Laplacian Problems | 59

By (h1), (h4), and (2.1), one has

∫
Ω

|θF(x, u) − f(x, u)u| dx ≤ c2 ∫
Ω(|u|≥δ0)

|u(x)|p dx ≤ c3 ∫
Ω

|u(x)|r dx ≤ c4‖u‖rp ,

where ci > 0, i = 2, 3, 4, are suitable constants, while p < r < p∗. Consequently,

d
dτ
φ(τu)

!!!!!!!τ=1
≥ (1 −

θ
p)

‖u‖pp − c4‖u‖rp > 0

whenever ‖u‖p is sufficiently small, say u ∈ B̄2ρ \ {0} for some ρ > 0. Thus, inparticular, if τ0 > 0, τ0u ∈ B̄2ρ \ {0},
and φ(τ0u) ≥ 0, then

d
dτ
φ(τu)

!!!!!!!τ=τ0
=

1
τ0

d
dτ
φ(ττ0u)

!!!!!!!τ=1
> 0.

This means that the C1-function τ Ü→ φ(τu), τ ∈ (0, +∞), turns out to be increasing at the point τ provided
τu ∈ (B̄2ρ \ {0}) ∩ φ0. So, it vanishes at most once in the open interval (0, 2ρ/‖u‖p). On the other hand,
(h1) and (h4) force

F(x, t) ≥ c0
θ
|t|θ − c5|t|p , (x, t) ∈ Ω × ℝ,

with appropriate c5 > 0. Hence,

∫
Ω

F(x, τu(x)) dx ≥
c0
θ
τθ‖u‖θLθ(Ω) − c5τ

p‖u‖pLp(Ω) for all τ > 0.

Since θ < q ≤ p, we get
lim
τ→0+ φ(τu)τθ

≤ −
c0
θ
‖u‖θLθ(Ω) < 0, (3.11)

i.e., φ(τu) < 0 for τ > 0 small enough. Summing up, given any u ∈ B̄2ρ \ {0}, either φ(τu) < 0 as soon as
τu ∈ B̄2ρ or

there exists a unique τ̄(u) > 0 such that τ̄(u)u ∈ B̄2ρ \ {0}, φ(τ̄(u)u) = 0. (3.12)

Moreover, if u ∈ (B̄2ρ \ {0}) ∩ φ0, then 0 < τ̄(u) ≤ 1 and

φ(τu) < 0 for all τ ∈ (0, τ̄(u)), φ(τu) > 0 for all τ > τ̄(u) with τu ∈ B̄2ρ . (3.13)

Let τ : B̄ρ \ {0} → (0, +∞) be defined by

τ(u) :=
{
{
{

1 when u ∈ (B̄ρ \ {0}) ∩ φ0,
τ̄(u) when u ∈ (B̄ρ \ {0}) ∩ φ0.

We claim that the function τ(u) is continuous. This immediately follows once one knows that τ̄(u) turns out to
be continuous on (B̄ρ \ {0}) ∩ φ0, because, by uniqueness, u ∈ B̄ρ \ {0} andφ(u) = 0 evidently imply τ̄(u) = 1;
cf. (3.12). Pick û ∈ (B̄ρ \ {0}) ∩ φ0. The function ϕ(t, u) := φ(tu) belongs to C1(ℝ ×W1,p

0 (Ω)) and, on account
of (3.13), we have

ϕ(τ̄(û), û) = 0, ∂ϕ
∂u

(τ̄(û), û) = τ̄(û)φ�(τ̄(û)û).

Since zero turns out to be an isolated critical point for φ, there is no loss of generality in assuming that
Kφ ∩ B̄ρ = {0}. So, the implicit function theorem furnishes σ ∈ C1(Bε(û)), ε > 0, such that

ϕ(σ(u), u) = 0 for all u ∈ Bε(û), σ(û) = τ̄(û).

Through 0 < τ̄(û) ≤ 1, we thus get 0 < σ(u) < 2 for all u ∈ U, where U ⊆ Bε(û) denotes a convenient neigh-
borhood of û. Consequently,

σ(u)u ∈ B̄2ρ \ {0} and φ(σ(u)u) = 0 provided u ∈ (B̄ρ \ {0}) ∩ φ0 ∩ U.
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By (3.12), this results in σ(u) = τ̄(u), from which the continuity of τ̄(u) at û follows. As û was arbitrary, the
function τ̄(u) turns out to be continuous on (B̄ρ \ {0}) ∩ φ0.

Next, observe that τu ∈ B̄ρ ∩ φ0 for all τ ∈ [0, 1], u ∈ B̄ρ ∩ φ0. Hence, if

h(t, u) := (1 − t)u, (t, u) ∈ [0, 1] × (B̄ρ ∩ φ0),

then h([0, 1] × (B̄ρ ∩ φ0)) ⊆ B̄ρ ∩ φ0, namely, B̄ρ ∩ φ0 is contractible in itself. Moreover, the function

g(u) := τ(u)u for all u ∈ B̄ρ \ {0}

is continuous and one has g(B̄ρ \ {0}) ⊆ (B̄ρ ∩ φ0) \ {0}. Since

g|(B̄ρ∩φ0)\{0} = id|(B̄ρ∩φ0)\{0},

the set (B̄ρ ∩ φ0) \ {0} turns out to be a retract of B̄ρ \ {0}. Being B̄ρ \ {0} contractible in itself, becauseW1,p
0 (Ω)

is infinite dimensional, we get (see, e.g., [11, p. 389])

Ck(φ, 0) := Hk(B̄ρ ∩ φ0, (B̄ρ ∩ φ0) \ {0}) = 0, k ∈ ℕ0.

This completes the proof.

Remark 3.7. A careful inspection of the above argument shows that the second inequality in (h4) can be
weakened to achieve the same conclusion, requiring instead

f(x, t)t − θF(x, t) ≤ c6|t|r in Ω × [−δ0, δ0]

for suitable θ < p < r and c6, δ0 > 0.

We are now ready to find a nodal solution of (1.1). Write, provided u, v lie inW1,p
0 (Ω) and v ≤ u,

[v, u] = {w ∈ W1,p
0 (Ω) : v ≤ w ≤ u}.

Theorem 3.8. If (h1)–(h4) hold true, then (1.1) admits a sign-changing solution u0 ∈ C10(Ω) ∩ [v−, u+].

Proof. For every (x, t) ∈ Ω × ℝ, define the function

̂f (x, t) :=
{{{
{{{
{

f(x, v−(x)) if t < v−(x),
f(x, t) if v−(x) ≤ t ≤ u+(x),
f(x, u+(x)) if u+(x) < t,

(3.14)

as well as
̂f+(x, t) := ̂f (x, t+), ̂f−(x, t) := ̂f (x, −t−).

Moreover, provided u ∈ W1,p
0 (Ω), set

φ̂(u) := 1
p
‖u‖pp +

μ
q
‖u‖qq − ∫

Ω

F̂(x, u(x)) dx, φ̂±(u) :=
1
p
‖u‖p + μ

q
‖u‖qq − ∫

Ω

F̂±(x, u(x)) dx,

where

F̂(x, t) :=
t

∫
0

̂f (x, ξ) dξ, F̂±(x, t) :=
t

∫
0

̂f±(x, ξ) dξ.

The same reasoning as in the proof of [20, Theorem 4.3] guarantees here that

Kφ̂ ⊆ [v−, u+], Kφ̂− ⊆ {v−, 0}, Kφ̂+ ⊆ {0, u+}, (3.15)

besides
u+ ∈ int(C+) and v− ∈ − int(C+) are localW1,p

0 (Ω)-minimizers for φ̂. (3.16)
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Since, by (3.15), one has Kφ̂ = Kφ ∩ [v−, u+], it suffices to find a nontrivial critical point of φ̂. Suppose
that φ̂(v−) ≤ φ̂(u+) (the opposite case is analogous). Due to (3.16) there exists ρ ∈ (0, 1) such that

‖v− − u+‖p > ρ, φ̂(u+) < mρ := inf
∂Bρ(u+) φ̂. (3.17)

Furthermore, the functional φ̂ fulfills condition (C), because it is coercive by construction; cf. (3.14). Hence,
Theorem 2.3 applies and we obtain a point u0 ∈ W1,p

0 (Ω) such that

u0 ∈ Kφ̂ , mρ ≤ φ̂(u0).

The strict inequality in (3.17) and (3.15) forces u0 ∈ [v−, u+] \ {v−, u+}. Now, if Kφ̂ possesses infinitely many
elements, then the conclusion follows at once. Otherwise, C1(φ̂, u0) ̸= 0, because u0 is a critical point of
mountain pass type; see [5, p. 89]. Through u+ ∈ int(C+), v− ∈ − int(C+), and φ̂|[v− ,u+] = φ|[v− ,u+], we infer that

Ck(φ̂|C10(Ω), 0) = Ck(φ|C10(Ω), 0), k ∈ ℕ0.

Moreover, recalling that C10(Ω) turns out to be dense inW
1,p
0 (Ω),

Ck(φ̂|C10(Ω), 0) = Ck(φ̂, 0), Ck(φ|C10(Ω), 0) = Ck(φ, 0).

So, thanks to Theorem 3.6, Ck(φ̂, 0) = 0 for all k ∈ ℕ0, whence u0 ̸= 0. The solution u0 is nodal by the ex-
tremality of v− and u+, while standard nonlinear regularity results yield u0 ∈ C10(Ω).

Combining Lemma 3.5 with Theorem 3.8 directly produces the next result.

Theorem 3.9. Let (h1)–(h4) be satisfied. Then, (1.1) admits a smallest positive solution u+ ∈ int(C+), a greatest
negative solution v− ∈ − int(C+), and a nodal solution u0 ∈ C10(Ω) such that v− ≤ u0 ≤ u+.

4 Resonance from the Right

The notation in this section is the same as in Section 3. Conditions (h2) and (h3) furnish that

lim
|t|→+∞

[λ1,p|t|p − pF(x, t)] = +∞ uniformly in x ∈ Ω; (4.1)

cf. (3.2). So, under these hypotheses, resonance with respect to λ1,p from the left occurs and, a fortiori, the
energy functional φ turns out to be coercive (Lemma 3.1). Now, the question of investigating what happens
when there is resonance from the right of λ1,p, i.e., the limit in (4.1) equals −∞, naturally arises. In this case,
φ turns out to be indefinite and direct methods no longer work. However, the linking structure of suitably
defined sets still fits our purpose.

The following assumption will take the place of (h3).
(h�3) If μ > 0, then there exist η ∈ (q, p] and α0 > 0 such that

lim inf
|t|→+∞

pF(x, t) − f(x, t)t
|t|η

≥ α0 > 0 uniformly in x ∈ Ω.

If μ = 0 then,
lim inf
|t|→+∞

[pF(x, t) − f(x, t)t] = +∞ uniformly in x ∈ Ω.

Lemma 4.1. Suppose (h1)–(h�3) hold true. Then, φ satisfies condition (C).

Proof. SinceW1,p
0 (Ω) compactly embeds in Lp(Ω), the Nemytskii operator Nf is continuous on Lp(Ω), and Ap

enjoys property (p5), it suffices to show that every sequence {un} ⊆ W1,p
0 (Ω) fulfilling

|φ(un)| ≤ C for all n ∈ ℕ (4.2)
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and
lim
n→+∞

(1 + ‖un‖p)φ�(un) = 0 (4.3)

turns out to be bounded. If the assertionwere false, then, along a subsequencewhennecessary, ‖un‖p → +∞.
Let vn := un/‖un‖p. We may evidently assume

vn ⇀ v inW1,p
0 (Ω), vn → v in Lp(Ω), vn(x) → v(x) for every x ∈ Ω,

because ‖vn‖p ≡ 1. Inequality (4.2) gives

1
p
‖vn‖

p
p +

μ
q

1
‖un‖p−q

‖vn‖
q
q ≤

C
‖un‖

p
p
+ ∫
Ω

F(x, un(x))
‖un‖

p
p

dx.

Proceeding exactly as in the proof of Lemma 3.1, one obtains ‖v‖pp ≤ λ1,p‖v‖
p
Lp(Ω), which forces v = ξu1,p for

appropriate ξ ∈ ℝ \ {0}. Therefore, |v| > 0 and thus

|un| → +∞ a.e. in Ω. (4.4)

Through (4.3), we easily have ⟨φ�(un), un⟩ → 0, whence

‖un‖
p
p + μ‖un‖

q
q − ∫

Ω

f(x, un(x))un(x) dx ≤ εn , (4.5)

where εn → 0+. From (4.2) it follows that

− ‖un‖
p
p −

μp
q

‖un‖
q
q + ∫

Ω

pF(x, un(x)) dx ≤ C. (4.6)

Combining (4.5) and (4.6) leads to

∫
Ω

[pF(x, un(x)) − f(x, un(x))un(x)] dx ≤ C + εn + μ(
p
q
− 1)‖un‖qq , (4.7)

i.e., after an elementary calculation,

∫
Ω

[pF(x, un(x)) − f(x, un(x))un(x)] dx ≤ c7(1 + ‖un‖
q
p) (4.8)

for all n ∈ ℕ. If μ > 0, then, because of (h�3), Fatou’s lemma, and (4.4),

lim inf
n→+∞

1
‖un‖

η
p
∫
Ω

[pF(x, un) − f(x, un)un] dx = lim inf
n→+∞

∫
Ω

pF(x, un) − f(x, un)un
|un|η

|vn|η dx ≥ α0‖v‖
η
Lη(Ω) > 0. (4.9)

However, since η > q, dividing (4.8) by ‖un‖
η
p and letting n → +∞ produces

lim sup
n→+∞

1
‖un‖

η
p
∫
Ω

[pF(x, un(x)) − f(x, un(x))un(x)] dx ≤ 0,

against (4.9). So, suppose μ = 0. Thanks to (h�3), one has

lim
n→+∞

∫
Ω

[pF(x, un(x)) − f(x, un(x))un(x)] dx = +∞,

which contradicts (4.7). Therefore, the sequence {un} turns out to be bounded inW1,p
0 (Ω), as required.
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Lemma 4.2. Let (h1)–(h�3) be satisfied. Then, limt→±∞ φ(tu1,p) = −∞.

Proof. Consider first the case μ > 0. Without loss of generality, we may suppose η < p in (h�3). Thus, there
exist α1, δ1 > 0 such that

α1|t|η ≤ pF(x, t) − f(x, t)t for every x ∈ Ω, |t| ≥ δ1.

Consequently,
d
dt
F(x, t)
tp

=
f(x, t)t − pF(x, t)

tp+1
≤ −α1tη−p−1, (x, t) ∈ Ω × [δ1, +∞).

After integration, this results in

F(x, t)
tp

−
F(x, s)
sp

≤
α1
p − η (tη−p − sη−p) provided t ≥ s ≥ δ1.

Letting t → +∞, on account of (h2) we have

λ1,p
p
sp − F(x, s) ≤ −

α1
p − η

sη in Ω × [δ1, +∞),

which clearly implies that

λ1,p
p
sp − F(x, s) ≤ −

α1
p − η

sη + c8 for all (x, s) ∈ Ω × [0, +∞).

Hence, for any t > 0,

φ(tu1,p) =
tp

p
λ1,p‖u1,p‖

p
Lp(Ω) +

μtq

q
‖u1,p‖

q
q − ∫

Ω

F(x, tu1,p(x)) dx ≤ −
α1
p − η

tη‖u1,p‖
η
Lη(Ω) +

μtq

q
‖u1,p‖

q
q + c8|Ω|,

namely, φ(tu1,p) → −∞ as t → +∞. The proof for t → −∞ is analogous.
Now, let μ = 0. By (h�3) again, to every K > 0 corresponds δ > 0 such that

pF(x, t) − f(x, t)t > K, (x, t) ∈ Ω × [δ, +∞).

The same argument as before yields here

λ1,p
p
sp − F(x, s) ≤ −

K
p

in Ω × [δ, +∞).

Define
M := sup

Ω×[0,δ]

!!!!!!!
λ1,p
p
sp − F(x, s)

!!!!!!!

and observe that

φ(tu1,p) =
tp

p
λ1,p‖u1,p‖

p
Lp(Ω) − ∫

Ω

F(x, tu1,p(x)) dx

≤ ∫

Ω(u1,p≤ δ
t )

(
λ1,p
p
tpup1,p − F(x, tu1,p)) dx + ∫

Ω(u1,p> δ
t )

(
λ1,p
p
tpup1,p − F(x, tu1,p)) dx

≤ M
!!!!!!!
Ω(u1,p ≤

δ
t )

!!!!!!!
−
K
p
|Ω|

provided t > 0. Since u1,p > 0, letting t → +∞ leads to

lim sup
t→+∞

φ(tu1,p) ≤ −
K
p
|Ω|.

As K > 0 was arbitrary, we actually have limt→+∞ φ(tu1,p) = −∞. The case t → −∞ is quite similar.
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Next, write
E := {u ∈ W1,p

0 (Ω) : ‖u‖pp = λ2,p‖u‖
p
Lp(Ω)}.

Obviously, E turns out to be nonempty and closed.

Lemma 4.3. If (h1)–(h2) hold true, then φ|E is coercive.

Proof. Pick ξ ∈ (λ1,p , λ2,p). The hypotheses give K > 0 such that

F(x, t) ≤ ξ
p
|t|p + K for all (x, t) ∈ Ω × ℝ.

Consequently, for any u ∈ E,

φ(u) ≥ 1
p
‖u‖pp +

μ
q
‖u‖qq −

ξ
p
‖u‖pLp(Ω) − K|Ω| ≥

1
p(

1 −
ξ
λ2,p

)‖u‖pp − K|Ω|.

Since ξ < λ2,p, the assertion follows.

Lemma 4.3 basically ensures that infE φ > −∞. Thanks to Lemma 4.2, we can find τ > 0 fulfilling

φ(±τu1,p) < mE := inf
E
φ. (4.10)

Define
Q0 := {±τu1,p}, Q :={tu1,p : t ∈ [−τ, τ]}.

Lemma 4.4. The pair (Q0, Q) links E in W1,p
0 (Ω).

Proof. One evidently has Q0 ∩ E = ⌀. Moreover, if

U := {u ∈ W1,p
0 (Ω) : ‖u‖pp < λ2,p‖u‖

p
Lp(Ω)},

then Q0 ⊆ U, because λ1,p < λ2,p. Let us verify that −τu1,p and τu1,p lie in different pathwise connected com-
ponents of U. Arguing by contradiction, there exists σ ∈ C0([−1, 1], U) such that σ(−1) = −τu1,p = −σ(1).
On the other hand, (p4) forces

λ2,p ≤ max
t∈[−1,1]

‖σ(t)‖pp
‖σ(t)‖pLp(Ω)

,

which leads to σ(t0) ∉ U for some t0 ∈ (0, 1). However, this is impossible. Hence, any γ ∈ C0(Q,W1,p
0 (Ω)) such

that γ |Q0 = id|Q0 must satisfy the condition γ(Q) ∩ ∂U ̸= ⌀. Since ∂U ⊆ E, the proof is complete.

We are now in a position to treat the existence of solutions to (1.1) when resonance from the right of λ1,p
occurs. To the best of our knowledge,multiplicity is still an open question.

Theorem 4.5. Under assumptions (h1)–(h�3) and (h4), the problem (1.1) has at least one nontrivial solution
u0 ∈ C10(Ω).

Proof. By Lemma 4.1, Lemma 4.4, and (4.10), one can apply Theorem 2.2. Thus, we get a point u0 ∈ W1,p
0 (Ω)

such that
φ�(u0) = 0, inf

E
φ ≤ φ(u0) = inf

γ∈Γ
sup
u∈Q

φ(γ(u)),

where
Γ := {γ ∈ C0(Q,W1,p

0 (Ω)) : γ |Q0 = id|Q0}.

Moreover, C1(φ, u0) ̸= 0, because u0 is a critical point of mountain pass type; see [5, p. 89]. On the other
hand, due to Lemma 4.3 and Theorem 3.6, one has C1(φ, 0) = 0. Therefore, u0 ̸= 0. Standard results from
nonlinear regularity theory then ensure that u0 ∈ C10(Ω).
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