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Abstract: The existence of multiple solutions to a Dirichlet problem involving the (p, g)-Laplacian is investi-
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1 Introduction

Let Q be a bounded domain in RN with a smooth boundary 0Q, let 1 < g < p < +00, and let u > 0. Consider
the Dirichlet problem

{—Apu—ﬂAqu :f(Xy Ll) m Q’ (11)

u=0 on 0Q,
where A,, r > 1, denotes the r-Laplacian, namely,
Avu = div(|Vul2Vu)  forallu e W)'(Q),

thereactiontermf: Q x R — Rsatisfies Carathéodory’s conditions, while, as usual, p = gifand onlyif u = 0.
Elliptic equations involving differential operators of the form

Au := -Apu - Aqu,
often called (p, g)-Laplacian, occur in many important concrete situations. For instance, this happens when
one seeks stationary solutions to the reaction-diffusion system

us + Au = c(x, u),

which exhibits a wide range of applications in physics and related sciences such as biophysics, quantum and
plasma physics, and chemical reaction design; see [3, 6]. Consequently, they have been the subject of numer-
ous investigations, both in bounded domains and on the whole space, mainly concerning the multiplicity of
solutions or bifurcation-type results.

This paper falls within the first framework. We show that if, roughly speaking, f has a subcritical growth
and, moreover,
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t

Itllim % Jf(x, &)dé =M1, uniformlyinx e Q, where A, , denotes the first eigenvalue of (-Ap, Wé’p(Q)),
—+00

(i)

0

(ii) |tllim [f(x, Ht-p | fix, &) d{] =+00 uniformlyinx € Q,

t
J
t

(iii) cltl® < fix, )t < GJf(x, &)d¢  forall (x,t) € Q x [-8, 6], where c > 0, 0 € (1, q), while § > 0,
0
then (1.1) possesses at least three nontrivial solutions in C(l) (Q), one greatest negative v_, another smallest
positive u,, and a third nodal ug, such that v_ < ug < u,; see Theorem 3.9 below.
Assumptions (i)-(ii) directly give

t

mlirgoo[/h,pnw _p j fx, €) d.f] - oo uniformly in x € O; (1.2)
0

see the proof of Lemma 3.1. Hence, resonance with respect to A; , from the left occurs and, a fortiori, the

energy functional ¢ associated with (1.1) is coercive.

Now, the question of investigating what happens if there is resonance from the right of 11 p, i.e., the limit
in (1.2) equals —o0, naturally arises. Accordingly, ¢ turns out to be indefinite and direct methods no longer
work. However, via linking arguments and, in place of (ii), via the hypothesis that
(iv) either y > 0 and

liminfi [p Jf(x, &) dé - f(x, t)t] >C >0 uniformlyinx € Q,
0

|t|—>+00 |t|rl

where 1 € (g, p], or y = 0 and

t

Itll—i>r+r—loo [p If(x, &) dé - f(x, t)t] = +00 uniformlyin x € Q,
0

we still obtain a nontrivial solution ug € C(l)(ﬁ) of (1.1); cf. Theorem 4.5 below.

It should be also noted that, in both settings, due to (ii), the nonlinearity f(x, - ) exhibits a concave behav-
ior at the origin. Such a type of growth rate has been widely studied, also combined with further conditions,
provided p = 2 and u = 0, i.e., the equation is semilinear. As an example, besides the seminal paper [2], let us
mention [8, 16, 21, 22]. A similar comment holds true also when p # 2 but u = 0, in which case the litera-
ture looks to be daily increasing; see for instance the very recent papers [12, 14, 18, 19] and, concerning the
nonsmooth framework, [13, 17].

Another meaningful feature of (1.1) is the following. If u > 0, then the differential operator u — —-Apu
—uAgqu turns out to be nonhomogeneous. Hence, standard results for the p-Laplacian not always extend in a
simple way to it.

Our approach is variational, based on critical point theory, together with appropriate truncation-compar-
ison arguments and results from Morse theory.

2 Mathematical Background

Let (X, || - |)) be a real Banach space. Given a set V < X, write V for the closure of VV and oV for the boundary of
V.Ifx € X,6 > 0,then Bs(x) := {z € X : ||z - x| < 6}, while Bs := Bs(0). The symbol X* denotes the dual space
of X, (-, -) indicates the duality brackets for the pair (X*, X), and x,, — x (respectively, x, — x) in X means
that ‘the sequence {x,} converges strongly (respectively, weakly) in X’. An operator A : X — X* is called of
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type (S), provided

X, —x inX, limsup{A(xy),xn,—-x)<0 imply x, »x inX.
n—+oo

Let ¢ € C1(X) and let ¢ € R. Put
P i={xeX:px)<c}, @ci={xeX:p(x)>c}, Ky:={xeX:¢9'(x)=0}, KZ, i={xeKy: p(x)=c}.

We say that ¢ satisfies the Cerami condition when
(C) every sequence {x,} € X such that {¢(x,)} is bounded and

lim (1+|x,l)¢'(xp) =0 inX*
n—+o0o

admits a strongly convergent subsequence.
This compactness-type assumption turns out to be weaker than the usual Palais—Smale condition. Neverthe-
less, it suffices to prove a deformation theorem, from which the minimax theory for the critical values of ¢
follows. In such a framework, the topological notion of linking sets plays a key role.

Definition 2.1. Suppose Qo, Q, E are three nonempty closed subsets of a Hausdorff topological space Y with
Qo < Q. The pair (Qo, Q) links E in Y if Qo N E = @ and, for every y € C°(Q, Y) such that y|q, = id|q,, one has
Yy(QNE + @.

The following general minimax principle is well known; see, e.g., [10, Theorem 5.2.5].

Theorem 2.2. Let X be a Banach space, let Qo, Q, and E be such that the pair (Qo, Q) links E in X, and let
@ € CY(X) satisfy condition (C). If, moreover, supq, ¢ < infg ¢ and

c := infsup p(y(x)), whereT :={y € C°(Q,X) : ylg, =idlg,}
Y€l xeq

then c > infg ¢ and Ki, + @.

Appropriate choices of linking sets in Theorem 2.2 produce meaningful critical point results. For later use,
we state here the famous Ambrosetti—-Rabinowitz mountain pass theorem.

Theorem 2.3. If (X, | - ||) is @ Banach space, ¢ € C*(X) fulfills (C), xo,x1 € X,0 < p < [x1 - xol,

max{p(xo), (x1)} <m, := inf ¢,
aBp(XO)
and

c:=inf max @(y(t)), whereT :={y e C°([0,1],X):y(0) = xo, y(1) = x1},
yerl te[-1,1]

thenc > my and K # @.

Let (Y7, Y3) be a topological pair such that Y, ¢ Y; € X and let k be any nonnegative integer. We denote by
Hi (Y1, Y>) the k-th relative singular homology group for the pair (Y;, Y>) with integer coefficients. Given an
isolated critical point xq € Kg,,

Ck((P, XO) = Hk((PC n U’ (PC n U\ {XO})’ ke NOa

is the k-th critical group of ¢ at xo. Here, U indicates any neighborhood of xy fulfilling K, n ¢ n U = {xo}.
The excision property of singular homology ensures that this definition does not depend on the choice of U.
The monographs [5, 11] are general references on this subject.

Hereafter, || - || stands for the RN-norm, while |A| denotes the N-dimensional Lebesgue measure of A c RV,
Ifp € [1, +00), then p' indicates the conjugate exponent of p and | - |, is the usual norm of the Sobolev space
Wé PQ), namely, thanks to the Poincaré inequality,

lull, = IVullry forallu e Wi (Q).
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Letu,v: Q — Rand let t € R. The symbol u < v means u(x) < v(x) for almost every x € Q, t* := max{+t, O},
as well as u*(-) := u(-)*. It is known that u* € Wy*(Q) provided u € Wy (Q). Next, define

C3(Q) :={u € CY(Q) : uloq = 0}.
With the standard norm of C1(Q), this set is an ordered Banach space whose positive cone
Cy:={ueCi(Q):ux) =0inQ}

has nonempty interior given by
int(Cy) = {u €Cy:u(x)>0forallx € Q, %(X) <Oforall x € aQ},

where n(-) denotes the outward unit normal on 0Q; see [10, Remark 6.2.10]. If

N|
P forp <N,
p<r<p*:=4N-p

+00 otherwise,

then, due to the continuous embedding Wé P(Q) ¢ L"(Q) and the Poincaré inequality, one has
lullzr) < crpllull, forallu e WoP(Q). (2.1)

Let W-1P'(Q) be the dual space of Wé P(Q)andletA, : Wé P(Q) » W-LP'(Q) be the nonlinear operator stem-
ming from the negative p-Laplacian, i.e.,

(Ap(u),v) := J IVu(OIP~2Vu(x) - Vv(x) dx  forallu, v e Wy (Q).
Q

Denote by Ay, (respectively, A, ,) the first (respectively, second) eigenvalue of the operator —A, in Wé’p Q).
The following properties of A; , A ,, and Ap can be found in [7, 15]; see also [10, Section 6.2].
(pl) 0< /\1’p < Az,p.

1 1,
(p2) ull}, ) < E||u||§ forallu € W,P(Q).
(p3) There is a unique eigenfunction u,, corresponding to A1, , such that
urp € int(C5(Q)s),  lurplir@ = 1.

Any other eigenfunction is a scalar multiple of u; p.
(p4) U := {u e WoP(Q) : Jullzrqy = 1} and

To:={y € C°([-1,1], U) : y(-1) = —u1,, = —-y(1)},
then

Ay =inf max Julb.
P yeTouey(-1,1) P

(ps) The operator A, is bounded, continuous, strictly monotone, and of type (S)...
Now, with p, g, i, and f as in Section 1, suppose that

Ife, Ol < c(@+1tP7h),  (x, ) € AxR, (2.2)
for appropriate ¢ > 0, put

t
F(x, £) := j fix, &) dé, 2.3)
0
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and consider the C!-functional ¢ : Wé’p (Q) — R given by

pu) := %llullg + gllullg - JF(X, u()dx forallu e Wy (Q).

The next result establishes a relation between local Ccl) (Q)-minimizers and local Wé P (Q)-minimizers of @.Its
proof is the same as that of [1, Proposition 2], with the (p, g)-Laplacian instead of the differential operator
considered therein. This idea goes back to the pioneering works of Brézis and Nirenberg [4] for p = 2 and
Garcia Azorero, Manfredi, and Peral Alonso [9] when p # 2.

Proposition 2.4. If ug € Wé’p(Q) is a local C})(ﬁ)-minimizer of @, then ug lies in C(l)’“(ﬁ) for some a € (0, 1)
and ug turns out to be a local Wé’p(Q)-minimizer of .

Finally, we shall write Ng(u)(-) := f(-, u(-)) for every u € L?(Q). The function
Ny : IP(Q) — L (Q)
is often called the Nemytskii operator associated with f. Moreover, given u : Q — Rand c € R,
Qu<c):={xeQ:ux) <ch

The meaning of Q(u > c) etc. is analogous.

3 Resonance from the Left

To avoid unnecessary technicalities, ‘for every x € Q’ will take the place of ‘for almost every x € Q’ and the
variable x will be omitted when no confusion may arise. Moreover, p = g if and only if u = 0 and f(x, 0) = 0.
We will posit the following assumptions, where F is given by (2.3).

(hy) For appropriate ¢ > 0, one has

Ifx, )] < c(1 +[tP~Y) forall (x, t) € Q x R.

" T A1,p uniformlyinx € Q.
t|—>+oo

(h3) |tllim [f(x, )t — pF(x, t)] = +00 uniformlyin x € Q.
—+00
(hs) There exist 0 € (1, q) and 8o, ¢o > O such that
coltl? < fix, )t < OF(x, 1),  (x, 1) € Q x [-80, 8o).

The energy functional ¢ : W(l) Q) > R stemming from (1.1) is defined by

p) := %Ilullﬁ + %nuug - JF(X, u()dx forallu e Wy (Q).
Clearly, ¢ € C1(Wé’p (Q)). Moreover, once

t
folx, ) := fx, t7),  f(x,t) := flx, -t7), Fi(x,t)::jfi(x,é)df,
0

one has F,(x, t) = F(x, t*), F_(x, t) = F(x, —t), while the associated truncated functionals
Lo, Hypoa Lp
ps(u) =l + Kl - | Fxuoax, wew?,

turn out to be C! as well.
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Lemma 3.1. If (hy)-(hs) hold true, then @, ¢, and @_ are coercive and weakly sequentially lower semicontin-
uous.

Proof. We will verify the conclusion for ¢, the other cases being similar. The space Wé’p (Q) compactly em-
beds in LP(Q) while the Nemytskii operator Ny, turns out to be continuous on L?(Q). Thus, a standard argu-
ment ensures that ¢, is weakly sequentially lower semicontinuous. In view of (hs), given any K > 0, there
exists § > 0 such that
fi(x, t)t = pF,(x,t) > K forall (x,t) € Qx [§, +00),

which clearly means that

i F,.(x,t) - K

dt tr T prl’

After integration, we obtain

F+(s);’s) —F+(t);’ b z—g(sip—tlp) provided s > t > 6. (3.1)
Thanks to (h,), letting s — +co in (3.1) yields
}%t” —F.(x,t) > g, (x,t) € QA x[6, +00).
Therefore,
tEIPoo %t” —Fi(x,t)| = +co uniformly with respect to x € Q. (3.2)

Now, suppose by contradiction that there exists a sequence {u,} < Wé *P(Q) such that
nlirpoo lunllp = +00 but ¢.(us) <C<+co forallneN. (3.3)
Write vy, := u;,/[[u}llp. Since |vall, = 1, passing to a subsequence when necessary, one has
vp—v inWeP(@Q), vp—v inI’(Q), v,—-v=0 aeinQ.
Fix any € > 0 and, through (h,), choose § > O fulfilling
/11 pt€
F.(x,t) < ’Ttp, (x,t) € Q x[8, +00).
Moreover, set M := supg.(o,s; F+. From (3.3) it evidently follows that

o)< C forallneN, (3.4)

because F,(x, un(x)) = 0 as soon as u,(x) < 0, while u}[l, < llunll.
We claim that {u};} is bounded in Wé *P(Q). In fact, if the assertion were false, then, up to subsequences,
lugll, — +oo. Dividing (3.4) by l|uj; [}, gives

1 C F(x, ut(x
Wl vl <+ SSLHLDPN
p qllunlP-1 luzllp lunllp
+ +
< E‘p+ J F(X’Ii"f,x)) dx + J F(X’li";(:X)) dx
u u u
[ S IR T
C Q Map+e [ |ur(x)P
<o+ M |+|p+ Lp J' "(+)p| (3.5)
lunlly lunlly b lunlly

Recall next that p > g, but p = g only when y = 0. Asn — +oco and € — 0%, we get

p p
vy < Al,p"v”Lp(Q)'
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On account of (p3), this implies that v = &uy,, for some & > 0.If ¢ = 0, then v,, — 0in L?(Q). Thus, by (3.5),
vp — 0 in Wé’p (Q), which contradicts ||vyll, = 1. So, suppose & > 0, whence u;,(x) — +oo for every x € Q.
Through (p»), Fatou’s lemma, and (3.2), one gets

%Ilu;,rllg - JF+(X, up(x)) dx = J(A;T’plu;(x)w - F(x, uﬁ(x))) dx — +00,

Q
against (3.4). Consequently, the claim holds true.

Finally, also the sequence {uy} is bounded in Wé’p (Q), because F,(x, —uy(x)) = 0 and ¢ (u,) < C for all
n € IN. This completes the proof. O

Lemma 3.2. Let (hy)-(h,) be satisfied. Then, (1.1) has at least two nontrivial constant-sign solutions ug € int(C,),
vo € —int(Cy), both local minimizers of ¢.

Proof. By Lemma 3.1, the functional ¢, possesses a global minimizer ug € Wé P(Q).1f0, 8y, co come from (hy),
w € int(C,), and [|[Wr~(q) < 1, then
tP td c
P, (tw) < Enwuﬁ + ygnwnz - g"t"uwnﬁg(g) forall t € (0, 8.
Since 6 < g < p but g = p if and only if u = 0, for sufficiently small ¢ > O, the right-hand side in the above
inequality turns out to be negative, which evidently forces ¢, (up) < 0, namely, up # 0. Proceeding as in [20,
Theorem 4.1] then gives ug € int(C,). Moreover, ug is a local Cé(ﬁ)—minimizer of ¢, because ¢|c, = ¢.lc,.

Now, the conclusion follows from Proposition 2.4. A similar argument yields a function vy with the as-
serted properties. O

To establish the existence of a third nodal solution, we will first show that there exist two extremal constant-
sign solutions, i.e., a smallest positive one and a biggest negative one. In fact, through (h;) and (h4) one has

o, Ot > coltl? — 1]t inQ xR, (3.6)
where c1 > 0. Thus, it is quite natural to compare solutions of (1.1) with those of the auxiliary problem
— Apu — uhgu = colul®?u - c1|uP~2u, (3.7)

which, by [20, Lemma 2.2], possesses a unique positive solution u € int(C,) and a unique negative solu-
tion v = —u. Reasoning as in the proof of [20, Lemma 2.2] yields the next result.

Lemma 3.3. Under (h,)-(hy), any positive (respectively, negative) solution u to (1.1) fulfills u > u (respec-
tively, u < —u).

Proof. Let u be a positive solution of (1.1). For every (x, t) € Q x R, define the functions

0 ift<o,
jx, t) = { cot? 1t — ¢y tP1 if0 <t <ux), (3.8)

1

cou(x)?1 — ciu(x)?~1  otherwise,

J(x, £) = [ j(x, &) d€, as well as

1
nw) == i + ’a‘nwnz - JJ(x, W) dx, we WhP(Q).
Q

Obviously, the functional 7 belongs to C* (Wé " (Q)), is coercive, and weakly sequentially lower semicontinu-
ous. So, there exists it € W(l)’p (Q) such that

n@) = min n(w). (3.9)
weW P (Q)
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As in the above proof, for sufficiently small ¢ > 0, we have n(tu) < 0, whence n(i1) < 0 and, a fortiori, &t # 0.
Now, from (3.9) it follows that

(Ap(i1), w) + u(Aq(in), wy = jj(x, u(x))w(x)dx forallw e Wé’p(Q). (3.10)
Q
Setting w := -t~ in (3.10), one obtains &~ = 0, i.e., &t > 0. Likewise, if w := (it — u)*, then, on account of

(3.10), (3.8), (3.6), and the properties of u, one gets

(Ap(@), (@t — W)y + p(Aq (@), (@ - w)*) = | (cou®™ - cruP ) (@ - u)*dx

IA

O O t—

fx, u)(@ - u)* dx

Il
—~~

Ap(w), (@t - u)") + u(Aqw), (@ -uw*).

Therefore,
(Ap(@) = Ap(u), (it —u)*) + u(Aq(@) - Ag(u), (it —u)*) < 0.

By (ps), this evidently forces u > ii. Through (3.10) and (3.8) we thus see that the function i is a nonnegative
nontrivial solution of (3.7). Since, due to [23, Theorem 5.4.1 and Theorem 5.5.1], & € int(C,), while (3.7)
possesses a unique positive solution, we get it = i1, and the desired inequality follows. A similar argument
works for the other conclusion. O

Remark 3.4. Weaker versions of (h,) allow to achieve the last two lemmas, namely,

F(x, t)
|¢1°

there exists 8 € (1, q) such that lirtn ionf > 0 uniformly in x € Q

for Lemma 3.2 and (3.6) for Lemma 3.3. So, instead of any comparison between F(x, t) and f(x, t)t, only the
behavior of t — f(x, t) and t — F(x, t) for t close to zero needs to be prescribed.

From now on, X will denote the set of all solutions to (1.1), while
X, :=2Xnint(Cy), X_:=Xn(-int(C,)).

Proceeding exactly as in the proof of [20, Lemma 4.2], one obtains the next result.

Lemma 3.5. If (hy)-(h4) hold true, then (1.1) has a smallest positive solution u, € int(C,) and a greatest neg-
ative solution v_ € —int(C,).

A mountain pass procedure can now provide a third solution, but in order to exclude that it is the trivial one,
we need further information on the critical groups of ¢ at zero, which will be achieved as in [21]. This is the
point where (h,) plays a crucial role.

Theorem 3.6. Let (h), (hy) be satisfied, let p(u) > O for some u € Wé’p(Q) \ {0}, and let zero be an isolated
critical point of ¢. Then, Cx(¢p, 0) = O for all k € Ny.

Proof. Observe that
Lo = @'w,w
dT(p =1 - (p ’

= ullb + plluld - Jf(x, u(x))u(x) dx
Q

> (1= 2 0 o= 5 Y + 180, uto) - fox, uaucol
Q
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By (h;), (hy), and (2.1), one has

[1eF0ew) - fowuldx s e [ o dr < e [ lucor dx < cylul,
Q Q(|ul=6o) Q

where ¢; > 0, i = 2, 3, 4, are suitable constants, while p < r < p*. Consequently,

o] = (1= )l —caly > 0
whenever ||u, is sufficiently small, say u € sz \ {0} for some p > 0. Thus, in particular, if 7o > 0, Tou € sz \ {0},
and ¢(tou) >0, then

> 0.

7=1

1 d
= ——@(TT0U)

4 (Tu)
dr(p =1, To dT

This means that the C!-function T — ¢(tu), T € (0, +00), turns out to be increasing at the point 7 provided
TU € (sz \ {0}) N @o. So, it vanishes at most once in the open interval (0, 2p/[ully). On the other hand,
(hy1) and (h,) force c

F(x,t) > ?°|t|9 —csltlP,  (x,t) € QxR,

with appropriate c; > 0. Hence,

€o_op, 16 DiaP
JF(X, () dx = el g, - estPlull g, forallt > 0.
Q

Since 0 < g < p, we get

lm 27

CO 0
150+ T < _?”u"LQ(Q) < O’ (3'11)

i.e., ¢(tu) < 0 for 7 > 0 small enough. Summing up, given any u ¢ sz \ {0}, either ¢(tu) < 0 as soon as
Tu € B;, or
there exists a unique 7(u) > O such that T(u)u € sz \ {0}, (T (u)u) = 0. (3.12)

Moreover, if u € (B, \ {0}) N @0, then 0 < 7(u) < 1 and
o(tu) <Oforall T € (0,7(u)), ¢(tu)>0forallT > T(u) withtue sz. (3.13)
Let 7 : B, \ {0} — (0, +00) be defined by
) = 1 when u ¢ (?p \ {0} N ¢°,
T(u) whenu e (B, \ {0}) ngo.

We claim that the function 7(u) is continuous. This immediately follows once one knows that T(u) turns out to
be continuous on (Bp \ {0}) N @o, because, by uniqueness, u € Bp \ {0} and ¢(u) = O evidently imply 7(u) = 1;
cf. (3.12). Pick &t € (Bp \ {0}) N @o. The function ¢ (¢, u) := @(tu) belongs to C*(R x Wé’p(Q)) and, on account
of (3.13), we have

e - op _ .
p(T(w), u) =0, %(T(u), ) = T(We' (T(Ww).
Since zero turns out to be an isolated critical point for ¢, there is no loss of generality in assuming that
Ky N Bp = {0}. So, the implicit function theorem furnishes o € C'(B(i1)), € > 0, such that

¢(o(u),u) =0forallu € B.(1), o) =T(11).

Through 0 < 7(i1) < 1, we thus get 0 < a(u) < 2 for all u € U, where U < B.(it) denotes a convenient neigh-
borhood of ii. Consequently,

og(u)u € sz \ {0} and ¢(o(u)u)=0 providedu € (Bp \{Oh) ngpon U.
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By (3.12), this results in o(u) = 7(u), from which the continuity of 7(u) at & follows. As & was arbitrary, the
function 7(u) turns out to be continuous on (Bp \ {0}) N @o.
Next, observe that Tu € B, n ¢° forall 7 € [0, 1], u € B, n ¢°. Hence, if

h(t,u) := (1-tu, (t,u)e[0,1]x(Byn¢?),
then h([0, 1] x (B, N ¢°)) < B, n ¢°, namely, B, n ¢ is contractible in itself. Moreover, the function
gw) :=t(wu forallu e B, \ {0}
is continuous and one has g(B, \ {0}) < (B, n ¢°) \ {0}. Since
8l@,nponi01 = 19l(3,0p0)\ (0}

theset (B, N ¢°) \ {0} turns out to be aretract of B, \ {0}. Being B, \ {0} contractible in itself, because Wé Q)
is infinite dimensional, we get (see, e.g., [11, p. 389])

Ci(, 0) := Hi(Bp N 9°, (B, N 9°)\ {0}) =0,  k € No.
This completes the proof. O

Remark 3.7. A careful inspection of the above argument shows that the second inequality in (hs) can be
weakened to achieve the same conclusion, requiring instead

flx, )t = OF (x, t) < cglt]” in Q x [-8g, 6ol

for suitable 0 < p < rand cg, 69 > O.

We are now ready to find a nodal solution of (1.1). Write, provided u, v lie in W(l)’p (Q)andv < u,
[v,u] = {we WyP(Q):v<w<ul.

Theorem 3.8. If (hq)—(h,) hold true, then (1.1) admits a sign-changing solution ug € C(l)(ﬁ) Nv_, ugl.

Proof. For every (x, t) € Q x R, define the function

fo,vo(x)) ift<v_(x),
fou ) == {fix, ifv_(x) < t < uy (%), (3.14)
fou () ifus(x) <t

as well as

fol, ) = FO, ), Fo(x, 0) == f(x, —t7).

Moreover, provided u € Wé’p (Q), set

R 1 ~ R 1 .
P =l + guunz - jF(x, u)dx, Pl 1=l + gnuuz - jFi(x, u(x)) dx,
Q

where
t t

Fx, £) = J Foo O dE,  Fa(x, t) = I 7. (x, &) dé.

0 0

The same reasoning as in the proof of [20, Theorem 4.3] guarantees here that
Ky clvo,uy], Ky c{v.,0}, Ky, <{0,u.}, (3.15)

besides
u, €int(C;) and v_ e —int(C,) arelocal Wé’p(Q)-minimizers for ¢. (3.16)
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Since, by (3.15), one has K = K, N [v_, u,], it suffices to find a nontrivial critical point of ¢. Suppose
that (v-) < ¢(u,) (the opposite case is analogous). Due to (3.16) there exists p € (0, 1) such that

-~y >p, pu) <mpi= inf §. (3.17)
p\Ut

Furthermore, the functional ¢ fulfills condition (C), because it is coercive by construction; cf. (3.14). Hence,
Theorem 2.3 applies and we obtain a point ug € W(l)’p (Q) such that

uop € Ky, mp < @(uo).

The strict inequality in (3.17) and (3.15) forces uo € [v_, u;] \ {v_, u;}. Now, if K; possesses infinitely many
elements, then the conclusion follows at once. Otherwise, C1(®, up) # 0, because uy is a critical point of
mountain pass type; see [5, p. 89]. Through u, € int(C,), v_ € —int(C,), and @l{y_,u,] = @lv_,u,], We infer that

C(@ley@)» 0) = Cu(@ley@)» 0),  k € No.
Moreover, recalling that C(l) (Q) turns out to be dense in W(l) (),
Ck((plcé(ﬁ)’ O) = Cx(¢,0), Ck(‘p|cé(§)’ 0) = Cx(op, 0).

So, thanks to Theorem 3.6, Ci(p, 0) = O for all k € Ny, whence ug # 0. The solution ug is nodal by the ex-
tremality of v_ and u., while standard nonlinear regularity results yield ug € C(l) Q). O

Combining Lemma 3.5 with Theorem 3.8 directly produces the next result.

Theorem 3.9. Let (hy)—-(h,) be satisfied. Then, (1.1) admits a smallest positive solution u, € int(C,), a greatest
negative solution v_ € —int(C,), and a nodal solution ug € C(l)(ﬁ) such thatv_ < ug < uy.

4 Resonance from the Right

The notation in this section is the same as in Section 3. Conditions (h,) and (h3) furnish that

|t|lir£1 [A1,pltlP — pF(x, )] = +co uniformlyin x € Q; (4.1)
—+00

cf. (3.2). So, under these hypotheses, resonance with respect to A ,, from the left occurs and, a fortiori, the
energy functional ¢ turns out to be coercive (Lemma 3.1). Now, the question of investigating what happens
when there is resonance from the right of A1 p, i.e., the limit in (4.1) equals —oo, naturally arises. In this case,
¢ turns out to be indefinite and direct methods no longer work. However, the linking structure of suitably
defined sets still fits our purpose.

The following assumption will take the place of (hs).
(hg) If u > 0, then there exist n € (g, p] and ag > O such that

lim inf pF(x, t) - fix, O)t

>ap >0 uniformlyin x € Q.
|t|—>+00 |t|'1

If u = O then,
llhm inf[pF(x, t) - f(x, t)t] = +c0 uniformly in x € Q.
—+00

Lemma 4.1. Suppose (hl)—(hg) hold true. Then, @ satisfies condition (C).

Proof. Since Wé PQ) compactly embeds in L?(Q), the Nemytskii operator Ny is continuous on L?(Q), and 4,
enjoys property (ps), it suffices to show that every sequence {u,} € Wé P (Q) fulfilling

lp(uy)| < C foralln e N (4.2)
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and
nl—i»IPoo(l + ||un||p)§0’(un) =0

(4.3)

turns out to be bounded. If the assertion were false, then, along a subsequence when necessary, [[uyll, — +oo.

Let vy := uy/llunllp,. We may evidently assume
Vp — Vv in Wé’p(Q), Vo — Vv inLP(Q), vu(x) - v(x) foreveryxeQ,
because ||[vyll, = 1. Inequality (4.2) gives

1
Sl + R

q lun|P=4

q
vallg <

C +JF(X, Un(x)) dx

lunlly luenlly

Proceeding exactly as in the proof of Lemma 3.1, one obtains ||v||§ <Aip IIVIIf,,(Q), which forces v = u; p, for

appropriate & € R\ {0}. Therefore, |v| > 0 and thus
|[un| — +00 a.e.in Q.

Through (4.3), we easily have (¢’ (un), u,) — 0, whence
P+ bl = [ £, wn C)un () i < 1,
Q
where &, — 0*. From (4.2) it follows that
—llunlh - %Ilunllg + ij(x, Un(x)) dx < C.
Q
Combining (4.5) and (4.6) leads to
j[pF(x, Un (X)) = fX, un(X)up ()] dx < C+ &n + u(g - 1>|IunIIZ,
Q
i.e., after an elementary calculation,
J[pF(x, Un(x)) = fX, un())un (0] dx < c7(1 + lunlp)
)

forall n € N. If u > 0, then, because of (h’3), Fatou’s lemma, and (4.4),

PF(x, up) - f(x, up)uy
[up|"

1 ..
7 j[pF(x, Un) — f(x, up)un] dx = 1rlllll+l(l)lofj [ValTdx > 0l0||V||Zn(Q) > 0.
Q

However, since 1 > g, dividing (4.8) by ||un||;1, and letting n — +co produces

timsup —— [[PF(x, un() = fx, un(0)un(0] dx <O,
wees Tl )

against (4.9). So, suppose u = 0. Thanks to (h’3), one has

dm [ (pFOc n00) = e, G0 (0] dx = 400,
Q

which contradicts (4.7). Therefore, the sequence {u,} turns out to be bounded in Wé (Q), as required.

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)
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Lemma 4.2. Let (hy)-(h}) be satisfied. Then, lim;_,+co 9 (tus, p) = —co.
Proof. Consider first the case u > 0. Without loss of generality, we may suppose 1 < p in (h’3). Thus, there
exist a1, 61 > 0 such that

a1t < pF(x, t) - f(x, )t foreveryx € Q, |t| > 6.

Consequently,
dF(x,0) _ foo t=pFO, )

dt tr tp+l
After integration, this results in

—a TP (x,t) € Q x [81, +00).

Fix,t) F(x,s) _ a
t P p-n

(t"P —s""P)  provided t > s > 6;.

Letting t — +00, on account of (h,) we have

A
ZLpep F(x,s) < —Ls” in Q x [81, +00),
b b-n

which clearly implies that

A1p ay

sP —F(x,s) < - s +cg forall (x,s) € Qx [0, +00).

Hence, forany ¢t > 0,
tP td a1 td
Dt p) = M plitnpll oy + "7uu1,puz - jF(x, tu1p00) dx < =7 sl oy + “TMul,puZ +csl0l,
Q

namely, ¢(tu;,p) — —oo as t — +o0. The proof for t — —co is analogous.
Now, let y = 0. By (h’3) again, to every K > O corresponds § > O such that

PF(x,t) - f(x,t)t > K, (x,t) € Qx[8, +00).
The same argument as before yields here

A
ZLPop _ F(x, s) < K onax [8, +00).
p p

Define

A
M := sup ZLrgp F(x, s)
ax[o,8]! P

and observe that
tv »
Pt p) = Al iy = | Flx, s p(0) dx
Q

A A
J <%f”ulf,p—F(X,l‘u1,p)>dX+ J (%tpuip_F(X’tul’p))dx

Q(”LPS?) Q(“LIP%)
6 K
<M Q( < —)l 20
0w < Sl
provided ¢ > 0. Since uq , > 0, letting t — +o0 leads to
K
lim sup ¢(tuy,p) < -—1QJ.
t—+00 p

As K > 0 was arbitrary, we actually have lim;_,,, @(tu1,p) = —0o. The case t — —oo is quite similar. O
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Next, write

E:={ue WyP(Q) : ullh = Azplullf,q}-
Obviously, E turns out to be nonempty and closed.
Lemma 4.3. If (hy)—(hy) hold true, then @| is coercive.

Proof. Pick & € (A1,p, A3 p). The hypotheses give K > 0 such that
F(x,t) < gltlp +K forall (x,t) € QxR.

Consequently, for any u € E,

s
p

1
Il gy - K10 > 5 (1 - 2 1wl - ki
P

1 By
) > =llulh + =luld -
@ piip T e
Since ¢ < A, p, the assertion follows. O

Lemma 4.3 basically ensures that infg ¢ > —co. Thanks to Lemma 4.2, we can find 7 > O fulfilling
@(xTULp) < ME := ilgf(p. (4.10)

Define
Qo :={t1urp}, Q:={turp:tel-1, 7]}k

Lemma 4.4. The pair (Qo, Q) links E in Wy? (Q).

Proof. One evidently has Qo N E = @. Moreover, if
U= {u e WoP(Q) : ullh < Az plulfy g

then Qg € U, because A1, < A, p. Let us verify that —tuq , and Tu; p lie in different pathwise connected com-
ponents of U. Arguing by contradiction, there exists o € C°([-1, 1], U) such that o(-1) = —-Tuy,p = —o(1).
On the other hand, (p,) forces
al)|®
Ay p £ max %,
te[-1,1] ||0(t)I|LD(Q)
which leads to o(to) ¢ U for some t( € (0, 1). However, this is impossible. Hence, any y € C°(Q, Wé’p (Q)) such
that y|q, = id|q, must satisfy the condition y(Q) N oU # &. Since oU < E, the proof is complete. O

We are now in a position to treat the existence of solutions to (1.1) when resonance from the right of A, ,,
occurs. To the best of our knowledge, multiplicity is still an open question.

Theorem 4.5. Under assumptions (hl)—(h;) and (hy), the problem (1.1) has at least one nontrivial solution

uo € C3(Q).

Proof. By Lemma 4.1, Lemma 4.4, and (4.10), one can apply Theorem 2.2. Thus, we get a point ug € Wé Q)
such that

®'(uo) =0, infe < @(uo) = infsup p(y(u)),
E yel ueQ
where
T:={y e C°(Q, Wi (Q)) : ylg, = idlg, }-

Moreover, C1(¢, up) # 0, because ug is a critical point of mountain pass type; see [5, p. 89]. On the other
hand, due to Lemma 4.3 and Theorem 3.6, one has C;(¢p, 0) = 0. Therefore, up # 0. Standard results from
nonlinear regularity theory then ensure that ug € C(l) Q). O
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