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Abstract: This article is about the weak 16th Hilbert problem, i.e. we analyze how many limit cycles can
bifurcate from the periodic orbits of a given polynomial differential center when it is perturbed inside a class
of polynomial differential systems. More precisely, we consider the uniform isochronous centers

X =y + X2y +y)", Y= x+xy (¢ + yA)n,

of degree 2n + 3 and we perturb them inside the class of all polynomial differential systems of degree 2n + 3.
For n = 0, 1 we provide the maximum number of limit cycles, 3 and 8 respectively, that can bifurcate from
the periodic orbits of these centers using averaging theory of first order, or equivalently Abelian integrals. For
n = 2 we show that at least 12 limit cycles can bifurcate from the periodic orbits of the center.
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1 Introduction and Statement of the Main Results

The second part of the 16th Hilbert’s problem asks for the maximum number H(n) of limit cycles that planar
polynomial differential systems of degree n can have, see for instance [7, 8, 11], and the references quoted
therein. The problem on the number H(n) remains open, even for n = 2.

A weaker problem than the 16th Hilbert’s problem, known now as the weak 16th Hilbert’s problem was
proposed by Arnold [2], who asked for the maximum number Z(im, n) of isolated zeros of Abelian integrals
of all polynomial 1-forms of degree n over algebraic ovals of degree m, for more details on the weak 16th
Hilbert’s problem see [4, 9, 19] and the hundreds of references quoted in these articles. Unfortunately the
weak 16th Hilbert’s problem is also extremely hard to study. On the other hand, the weak 16th Hilbert’s
problem is a particular case of the problem of studying the maximum number of limit cycles that can bifurcate
from the periodic orbits of a center of a polynomial differential system of degree m — 1 when it is perturbed
inside the class of all polynomial differential systems of degree n. Of course Z(m, n) < H(max(n, m — 1)).

In this paper we provide lower bounds for the maximum number of limit cycles that can bifurcate from
the periodic solutions of a polynomial differential uniform isochronous center of degree 3, 5 and 7 when it its
perturbed inside the class of all polynomial differential systems of the same degree. The main result is based
on the averaging theory of first order. But here the main work is to study the maximum number of simple zeros
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Figure 1. Phase portrait of the uniform isochronous center (1.1) forn = 0, n = 1, and n = 2, respectively.

of the obtained averaged functions, because not always the standard study of Extended Chebyshev systems
(ET-systems) can be applied (see Appendix B). The study is based on some new results that can be applied
when the family of functions that define JF is not an ET-system. Some delicate study using qualitative theory
on some differential equations is also needed to complete the study.

More precisely, we consider the polynomial differential system

X = -y + X’y + y2)",
{ y+ X7y’ +y?) w1

V=x+x203 +yHh,

of degree 2n + 3 with n > 0, having a uniform isochronous center at the origin of coordinates, which in polar
coordinates (r, 8), where x = rsin 8 and y = r cos 6, becomes

i =123 cosfsin b,
0=1.

Since § = 1, the origin of equation (1.1) is a uniform isochronous center, which taking as independent vari-
able the variable 6 writes
—=r =7 cosBsin 6.

An easy computation shows that the periodic solutions r(6, ryp) surrounding the center r = O such that
r(0, rg) = rg are )
r0,r0) =r0(1 - (n+ 1)r(2)("+1) sin’ §)" 77, (1.2)

withO <rg < (n+ 1)‘ﬁ. The global phase portraits, in the Poincaré disc, of system (1.1) for n = 0, 1, 2 are
shown in Figure 1.

Our purpose is to provide a lower bound for the maximum number of limit cycles that can bifurcate from
the periodic solutions r(6, ry) surrounding the uniform isochronous center at r = 0 of degree 3, 5, 7 when we
perturb it inside the class of all polynomial differential systems of degree 3, 5, 7, respectively. In other words,
we study the number of limit cycles of the following three polynomial differential systems:

3
X=-y+x’y+e Y ayx'y,
=
] Y (1.3)
y=x+xy’+e Z byx'yl,
i+j=0

5
X=-y+ X’y +y*) +e Y agx'y,

i+j=0
1 H] (1.4)

5
y=x+xy’ (02 +y)+e Y byx'y,
i+j=0
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7
X=-y+ X2y +y?)? +e ) agx'y,
Nt
7 (1.5)
V=x+xy?°(x* +y*)? +¢ Z byx'yl,
i+j=0
where ¢ is a small parameter.
Our main result is the following.

Theorem 1.1. For |g| + O sufficiently small using averaging theory of first order we obtain that
(@) system (1.3) can have up to 3 limit cycles and there are perturbations that only 0, 1, 2 and 3 limit cycles
bifurcate from the center;

(b) system (1.4) can have up to 8 limit cycles and there are perturbations that only 0, 1, 2, ..., 7 and 8 limit
cycles bifurcate from the center;

(c) there are perturbations that only 0,1, 2, ...,11 and 12 limit cycles bifurcate from the center of system
(1.5).

In fact, in the plane R? the averaging theory of first order, or the generalized Abelian integrals, or the Melnikov
function provide the same information because all these methods are based on the study of the first term in
¢ of the Poincaré return map. Some concrete applications of that theory to planar differential systems of low
degree can be seen in [6, 16]. In higher dimension, the averaging theory can be also used, for example, for
the study of the Hopf bifurcation, see [12, 13].

As we will see, by using the averaging theory of first order, the limit cycles of the perturbed system, which
emerge from the period annulus of the isochronous center of system (1.1), correspond to the zeros of a linear
combination of the functions fo, f1, . .., f2+7n+6)/2, 1 = 0, 1, 2. The proof of Theorem 1.1 for the casen = 0is
easy and it is done in Section 2. But the difficulty arises evidently as n increases. For n = 1, as the collection of
functions fo, . . ., f7 is not an ET-system, part of our efforts have been focused on determining the numbers of
simple zeros of Wronskian determinants W¢(s) and W5(s), which have the expressions Zf-‘:o a;i(s)E(s)K*i(s)
(k = 2, 3), where q; is a polynomial of high degree, E and K are respectively the elliptic integrals of the first
kind and second kind:

/2

/2
E(x) = J V1 -xsin?0df, K(x) = J _ de.
0 0

1-xsin% 0

The proof is done using qualitative analysis and algebraic calculations. It turns out that all the Wronskian
determinants but W¢(s) do not vanish and the later has a unique zero which is simple. So the conditions of
the classic Chebyshev criterion are not satisfied. According to the result of the recent paper [15], the maximum
number of zeros of the linear combination of fy, . . ., f7 is less than or equal to 8. Consequently, another part
of our efforts has been focused on proving that the possible upper bound 8 can be reached. To show this, we
construct a function which has a zero of multiplicity 7 as well as an extra simple zero. Then, under suitable
perturbation this function possesses 8 simple zeros. This is done in Section 3. For n = 2, the corresponding
functions fo, f1, . . . , f12, which contain several hypergeometric functions, is neither an Extended Complete
Chebyshev system, nor a system satisfying the condition of [15]. We do not know how to find out the maximum
number of zeros of all the possible linear combination of fy, fi, . . ., fi2. Instead, we provide a lower bound
for this number or zeros. This is done in Section 4.

2 Proof of Theorem 1.1 (a)

This section is devoted to the proof of statement (a) of Theorem 1.1 by using Theorem A.1 (see Appendix A).
First, we make the polar coordinate transformation and change system (1.3) to

% = Ro(0,7) + £R1(6, 1) + O(e), 2.1)
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where Ro(0, 1) = 13 cos sin 6 and
R1(6) =aooC + booS + rlaioC? + (ao1 + b10)CS + bo15°] + r*[azo C*
+(a11 - boo + b20)C?S + (aoo + doz + b11)CS? + b0 S
+72[azoC* + (az1 — b1o + b30)C?S + (@10 + 12 — bor + b21)C*S?
+(ao1 + aos3 + b12)CS> + bo3S*] + r*[~b20C*S + (az0 — b11)C>S?
+(a11 — bo2)C2S + apa CS*] + 1’ [~b30C>S + (azo — b21)C*S?
+(az1 - b12)CS? + (a12 - bo3)C*S a3 CS°] (2.2)
with C = cos8and S = sin 6.
Since equation (2.1).-o has the periodic solutions r(, ro) satisfying ro = r(0, ro) for 0 < ro < 1 given in

(1.2), according to the averaging theory described in Appendix A, we solve the variational differential equa-

tion dM 9
e $R0(9, (0, ro))M,

with M,,(0) = 1 and get the fundamental solution
M, (0) = (1 - rdsin? 6) /2.

Next we go to study the maximum number of zeros of the function
2n
T(r0) = [ M1 (OR: (6, 6. 70)) 6
0

with rg € (0, 1). Using expression (2.2), we perform the computation and obtain

n
F(ro) = %((010 — a1 +3as0 + bo1 + bo3 — 3b21)r3 + (ba1 + bos — bo1)r;,

+2(ayz — azo — bos + b21)(1 -\1- I’(Z)) - 2(aso - b21)ré \[1 - r%)

We denote
ag = n(aip — a1z + 3azg + bor + bos — 3b21),
a1 = m(ba1 + bo3 — bo1),
a; =2n(ay; — asp — bos + ba1),
as = -2n(aso — bz1),
and

fo(s)=1-5s%, fi(s)=(1-s?% fals)=1-s, f3(s)=s(1-5?),
where s = (1 - r3)1/? € (0, 1). Then

r0F(ro) = aofo(s) + a1f1(s) + axf2(s) + azf3(s)

=(1-8)(a + a1 + a2 + (&g + a1 + a3)s + (a3 — a1)s> — a;s°). (2.3)

It is not hard to check that ag, a1, a» and a3 are independent constants and hence the four numbers
Qo + a1 + a2, ®p + a1 + a3, a3 — a; and a; can be chosen freely. Thus it follows from (2.3) that F(ro) can have
0, 1, 2, 3 (and no more) simple zeros in the interval (0, 1).

Using Theorem A.1, statement (a) of Theorem 1.1 is proved.

3 Proof of Theorem 1.1 (b)

In this section we will study the number of limit cycles of system (1.4) by using averaging theory of first order.
We will only prove that this maximum number is 8 because according to the proof, the reader can easily see
that system (1.4) can have 0, 1, 2, .. ., 8 limit cycles. First, let us state and prove the following lemma.
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Lemma 3.1. The maximum number of limit cycles of system (1.4) which emerge from the period annulus around
the center of system (1.4).—o, by using averaging theory of first order, is equal to the maximum number of simple
zeros of the function

G(s) = bofo(s) + b1fi(s) +---+ b7f7(s), s¢€(0,1), (3.1

where by, b1, ..., by are independent arbitrary constants and

fo(s) = (1 -5)%,

fi(s) = (1-s)(1-5?),

fa(s) = (1 -s%)%,

f3(8) = (1-s)(1 -5%)?,

1f4s) = (1 -7, (3.2)
fs(s) = (1 -5%)°"g1(s),

fo(s) = (1 —s2)Y%(g1(s) - ga(s)) - %(1 - 5%)ga(s),
f1(s) = (1 - s2)%%(g1(s) - g2(s)),

with
g1(s) =2E(1-s%), ga(s) = 2s°K(1 - s?). (3.3)

Proof. Under the polar coordinate transformation, system (1.4) can be changed to

% = Ro(6, 1) + €R1(0, 1) + O(£2), (3.4)

where Ry (0, r) = r® cos §sin 8 and

R1(0) = (a0oC + booS) + r(a10C? + (ao1 + b10)CS + bo1S?)

+ 1 [az0C> + (ay1 + b20)C?S + (b11 + a02)CS? + bo2)S?] + r’[aszoC*
+(a21 +b30)C?S + (a12 + b21)C*S? + (ao3 + b12)CS’ + b3S
+1*[a40C° — booC?S + (az1 + byo)C*S + apoCS? + (azy + b31)C>S?
+(ay3 + b22)C%S? + (ags + b13)CS* + b0y S°] + 1’ [as0C® — b1oC>S
+(ag1 + bso)C°S + (a10 — bo1)C?S? + (azz + by1)C*S? + ap: CS?
+ (a3 + b32)C3S? + (@14 + b23)C*S* + (aps + b14)CS® + bosS°]
+1%[=b20C*S + (a0 — b11)C3S? + (a11 — bo2)C?S® + ag, CS*)
+77[=b30C°S + (aso — b21)C*S? + (a1 — b12)C?S? + (a12 — bo3)C*S*
+a3CS°] + r8[~b40C®S + (aso — b31)C°S? + (azy — by)C*S®
+ (a2 = b13)C>S" + (@13 — bo4)C*S® + a4 CS®]
+72[=bs5oC7 S + (aso — by1)C®S* + (a1 — b32)C°S? + (asz - ba3)C*S*
+(az3 = b14)C’S® + (@14 — bos)C*S® + aps CS7],

with C = cos 8, S = sin 6.

Equation (3.4)s-o has the periodic solutions (6, ro) = ro(1 - 2rg sin® 6)
0 < rg < 2~1/%, We solve the variational differential equation

~1/4 satisfying ro = r(0, ro) for

dM o
d_G = §R0(63 r(95 rO))M)

with M,,(0) = 1 and get the fundamental solution

M, (0) = (1 - 2r4 sin® §)7>/,
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Next, a straightforward calculation leads to

2m
F(ro) = j M;1(0)R1 (6, 1(6, 10))

do

0
2n

= J’ ro(1 - 2raS%)(coo + €028 + €ouS™ + €06S® + c40C* + coC®
0

DE GRUYTER

+€22C%8% + ¢c42C"S? + c62C8S? + €24 C*S™ + €44 C*S™ + €26C*S® +Y(C, 8))dO,  (3.5)

for rg € (0, 271/%), where Y(C, S) = ¥ a;,;C'S is a polynomial in C, S with i or j being an odd number, which

leads to

and

It is not hard to check that the constants eg, e1, . .

where

with

2
0

Coo = A10 = €o,

Coz2 = —ayo + bo1 := ey,

ro(1-2r3S)Y(C, $)do =0

o4 = bo3r* (0, ro) := €21 (0, o),

Coe = bosr*(0, ro) := e3r*(0, ro),

2 2
C40 = azor (0, ro) := e4r°(0, 1),

4 4
Ceo = asor(0, ro) := esr*(6, ro),

€22 = (@12 + b21)r’(0, ro) + (@10 — bo1)r*(6, ro) := ecr* (6, ro) — e1r*(6, ro),

Cas = (@14 + b23)r*(0, ro) + (ar2 — bo3)r°(0, ro) := e7r*(6, ro) + esr®(8, 1o),

26 = (@14 — bos)r®(6, ro)

a2 = (asz + ba1)r*(0, ro) + (azo — b21)r(8, 1o) := e10r*(0, ro) + e117°(, 1o),

cay = (a3 — b23)r3(0, 10)

ce2 = (aso — b41)r®(6, ro)

F(ro) =

Ii(ro) = ayro + a1,

:= eqr®(6, ro),

:= e127%(0, 19),

:= e137%(0, 10).

I1(ro) + I2(ro) + I3(ro) + I4(ro),

1 _ _
I(ro) = F((Ula +aury + asr§)gi(ro) — (as + (a3 + as)rg)g2(ro)),

o

m
I3(rg) = -
3(r0) T6r]

1 i )
Iy(ro) = —3(?((4&9 +a1org — (Tag + a10)13)g1(r0) — (4ag + (4ag + a10)r3)g2(r0)),

0

a1 =n(2ep + e1),

Qa3 = —€) — ey + eg,

as = 16e;, + 6e,4 + 4eg,
a7 = 2e1z - 4eys,

9 = —€g + €11,

a = g(-16e0 —14eq1 + 5e3 + 5e5 + e7 + e10),
a; = -3e; +7e4 - 2eg,

Qg = €9 — €12 + €13,

ag = €13,

ayo = 3eg —13e11,

., 13 are independent. Computing (3.5), we get

((2ag +2a773 + agrd)gs(ro) + 2agrhy + (ag + 2a7)rs + (a6 + a7 + ag)ry?)),
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and
g1(ro) = EQrl) + \/1 - 2r E(1 - 1/(1 - 2r%)),
82(ro) = (1 - 2r)K(2rg) + \1 - 2rg K(1 - 1/(1 - 2r3)),

g3(ro) = \1-2r3 - 1.

Using the expression of each a;, one can easily check that a, a, ..., @10 are independent constants.
To simplify the computation, we let s = (1 - 2r3)¥/2, s € (0, 1). Using the definition of the elliptic func-
tions, we have

SE(1-1/s?) + E(1 -s?) = 2E(1 - s?),
sK(1-1/s%) + s*K(1 - s%) = 2s2K(1 - s?).
Hence we obtain

2401, F(ro) = G(s) = bofo(s) + b1fi(s) + -+ + bf7(s), s €(0,1),

where fi(s),i=0,1,...,7, are the functions defined in (3.2), and the constants bg, b1, ..., b7 in (3.1) are
independent constants each of which is a linear combination of a1, ay, ..., aio.

By Theorem A.1, the lemma is proved. O
Next, we denote by W;(s) the Wronskian determinant for the functions fy, f1, . . ., fi depending on s:

Wi(s) = W(fo, ..., fi)(s), i=0,1,...,7.

In what follows we will show that all the Wronskian determinants have no zeros except Wy which vanishes
at a unique zero, which is simple.
By direct calculation we obtain
Wo(s) = (1 -5)%,
Wi(s) = (1-s)*,
Wa(s) = 2(1 -5)°,
Ws(s) = -12(1 - s)8,
| W =120, 56
Wy4(s) =288(1-s)"",
W5(s) = Y5(5)(Z50(5)82(5) + Z51(5)g1(5)),
We(s) = Y6(5)(Z60(5)85(5) + Z61(5)82(5)81(S) + Z62(5)81(5)),
[ W7(s) = Y7(5)(Z70(5)83(S) + Z71(5)85(5)81(5) + Z72(5)82(5)87(5) + Z73(5)81(5)),

where

Ys(s) = 288s73(1 - 5)15/2(1 + )72,
Zs0(s) = 1 - 20s — 33s% - 20s> + s*,
Zs1(s) = -2(1 — 55 + 1052 + 55° + 10s* — 55° + s°),
Ye(s) = 43257%(1 - 5)%(1 +5)78,
Zeo(s) = V1 - s2(-330 - 761s + 3720s2 + 2503653 + 63490s* + 100713s°
+102410s% + 6614557 + 2380058 + 3760s° — 77050 — 269s'1)
- 2(210 + 6375 — 2490s% — 22210s> - 67910s* - 129477s° — 160950s°
—135498s” — 7489058 — 257155° — 2910510 + 7285 + 240s'2),
Ze1(s) = V1 - s2(660 + 1544s — 2430s% — 6587s> + 18350s" + 65033s° + 107880s°
+106430s” + 643508 + 11893s” — 4790510 — 217751t + 158052 + 53651%)
+4(210 + 6445 — 150s% — 2133s> + 1670s* + 9718s” + 23630s° + 298055’
+27970s% + 1482257 + 3430510 — 287751 — 30052 + 736513 + 240s14),
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Ze2(s) = sV1 — s2(~44 — 1410s + 40552 + 6880s> — 6789s* — 63230s° — 1119465°
—111330s” - 577355% — 6880s° + 7555510 — 270s!! — 114652 — 80s13 + 451%)
—25(28 + 1590s + 1873s% - 8750s> — 4018s* + 81350s° + 209051s° + 273750s’
+2085945% + 80650s° — 430751 - 80505 + 171252 + 156051 + 32514),

Y7(s) = —3888s72(1 - s)7/2(1 +5)727/2,

Z70(s) = V1 — s2(12600 + 126840s + 317850s2 + 52804s> — 990100s* — 148041155
+1111220s% + 6912788s” + 119636205 + 12059608s° + 7333520s°
+1499322s' — 151004052 — 11340685 + 73250s'* + 3399165'° + 124820s1°
+1536157 + 60s8) — 8v1 - s2(1 - s2)3s%(1 + 5)1°(3150 + 31710s + 95130s>
+77561s° —209720s* — 6184255 — 351890s° + 11206125’ + 310756058
+41152355” + 33509905 + 14073685 - 195310512 - 611035513 — 2525805
+65059s'° + 1033205 + 3624057 + 3600s8),

Z71(s) = 3V1 - s2(~-8400 — 85120s — 232660s> — 173008s> + 4374505 + 81146355
—2067190s° — 10578234s” — 22263600s® — 30680904s° — 30782260s°
— 224741505 - 1089034051 — 2297236513 + 7987405 + 530744s1°
— 1746305 - 24983357 - 826305 — 1028251° — 8052°) - 24(2100 + 21280s
+69900s? + 984375 - 32560s" — 271689s” + 257650s° + 2845680s’
+7627330s% + 125614915 + 14784900s° + 128470245t + 8032670s'2
+31461155% + 3650005 - 2804615 — 5819051° + 9462857 + 76050518
+ 243205 + 24005%°),

Z75(s) = 3sV1 - s2(1120 + 43540s + 29839652 + 428670s> — 487118s* — 1615600s°
+1598463s° + 14431800 + 34113716s% + 48793180s° + 4857494450
+ 341900005 + 1508742651 +1926380s' — 17976165 - 499770s'°
+4708825° + 2851605 + 486635 — 104051 + 84520 + 80s21)
+245(280 + 135305 + 9879952 + 200770s> — 31141s* — 611730s° + 35248s°
+4717630s” +13875311s% + 23495150s° + 27804240s° + 2406340051
+ 1457449952 + 515702051 + 1496575 — 65877051 — 6664451°
+208280s'7 + 10875658 + 149705 + 3205%9),

Z73(s) = s2V1 - s2(480 - 10712s — 17782052 - 762730s> — 87610s* + 2806841s°
+909430s° — 1440904657 — 407944405 — 628866165° — 6391434050
- 42197910s' - 142851005 + 1389476513 + 24477405 — 2337145
- 6918505 - 19693157 + 707058 + 199051’ - 760520 — 8s21)

—85%(270 + 538s + 4988052 + 295952s> + 3202705 - 754291s°
—1276480s° + 413216557 + 18820380s® + 36641394s° + 451165505 °
+37467621s' + 1991697052 + 48096205 — 1224770s'* - 907079s1°
+291730s° + 32443357 + 5827058 + 14725 + 1805%°).

Lemma 3.2. Let g, and g, be the two functions defined in (3.3) and let h(s) = g1(s)/g>(s). Then h(s) > 0O,
h'(s) <0,s €(0,1) and

lim h(s) = +c0, lim h(s)=1, lim h'(s)=-oco, lim h'(s) = -1. (3.7)
s—0* s—1- s—0* s—1-
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Proof. It follows directly from the definition of the elliptic integral that g;j(s) >0 (i=1, 2), s € (0, 1) and
hence h(s) > 0, s € (0, 1). A direct computation shows that

1 1
gi1(s)=1- zsz logs + Zsz(ltlogz - 1)+ 0(s%),
g2(s) = —s?logs + 2s%log 2 + o(s?),

where s — 0. Thus the first and the third equalities of (3.7) hold.
Similarly, we find that

s 1 1
g19)= 3(1- 30 -9)+ 71 -5 + 0((1 - 5)),
(3.8)
7 3 5 5 o3
g2(9)=3(1- 31 -9+ =1 -9 + 0((1-5)),
as s — 17. This verifies the second and the fourth equalities of (3.7).
Next we go to prove that h'(s) < 0, s € (0, 1). By straightforward calculation we find
dh/ds = (1 - 2h + h%s%)/(s - s%).
Hence h(s) is a solution of system
h=sh?-2h+1, $=s-5. (3.9)

System (3.9) has two invariant straight lines s = 0 and s = 1 as well as two singularities at S;(0, 1/2)
and S,(1, 1), where S; is a saddle and S, is a saddle-node of system (3.9). Moreover, system (3.9) has two
horizontal isocline curves

1

1
hi(s) = ———— d h(s)= ——, 3.10
O e M MY 010
satisfying
h'(s)<0, h'(s)>0, h,(0)=+c0, h_(0)= %, he(1)=h_(1) = 1.
Obviously,
H(s) = s2(h(s) - hy(s)) MEL =), (3.11)
S—s
In view of (3.8) and (3.10), it follows that
h_(s) < h(s) < hy(s), s—1". (3.12)
We assert that
h_(s) < h(s) < h,(s), se(0,1). (3.13)

Indeed, if there exists some point sg € (0, 1) such that h(sg) = h,(so), then by (3.11) we find h’(so) = 0.
By the monotonicity of h,(s) we know that h(s) > h,(s) for all sg < s < 1. This contradicts (3.12). Hence
h(s) < h,(s) for s € (0, 1). If there exists some point sg € (0, 1) such that h(sg) = h_(sg), then by (3.11) we
know that h'(so) = 0. Since h' (so) > 0, it follows h(s) < h_(s) for s — s§. Using this fact, we find that the
curve h = h(s) cannot go across the curve h = h_(s) at any point s; > sg because once h(s;) = h_(sy), it must
hold that h(s) < h_(s) for s — s}. This also contradicts (3.12). Hence h(s) > h_(s), s € (0, 1).

Finally, combining (3.13) and (3.11), we conclude that dh/ds < 0, s € (0, 1). O

Lemma 3.3. The function Ws(s) does not vanish in the open interval (0, 1).

Proof. Using Sturm’s theorem (see [18]) and Z51(0) = -2, we find that Z5;(s) < O for all s € (0, 1). Hence we

have
Zso(s)  g1(s)

Z51(5) | 82(5)

Ws(s) = Ys(5)Z51()g2(5) ), se©). (3.14)
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A direct computation leads to Z5o(sg) = 0, where

So=5+3V15/2 - {231 +60V15/2 ~ 0.0463551.

Again, by Sturm’s theorem we find that Z5¢(s) > 0 for s € (0, sp) and Z5o(s) < O for s € (Sg, 1). Further,

i(zso(s)) _ 2p9(s)
ds\Zs1(s)/  Z2,(s)’

where
Po(s) = 15 + 865 — 290s% — 364s> — 5755 — 274s° + 190s® + 68s” — 655° + 25°.

Using Sturm’s theorem, we get that po(s) > 0, s € (0, 1/5). This fact, combined with Z5,(0)/Z51(0) = -1/2,
yields that

Zs50(S) Zs50(S) 1
>0fors € (sg,1) and €l-=,0)fors € (0, sp). 3.15
7 (50, 1) 7o) (-5:0) (0, 50) (3.15)
Since by Lemma 3.2 we have g1(s)/g2(s) > 1, it follows from (3.14) and (3.15) that W5(s) # O forall s € (0, 1).

O

Next, we will determine the sign of the functions Wg(s) and W (s). In order to make the computation easier
we need to make the transformation of variable r = ((1 - s)/(1 + s))'/2 or equivalently, s = (1 - r2)/(1 + r?).
We also need the following lemma. Let

_ 51(8)

- ’ re 0, 1 . (3.16)
82(8) ls=a1=r2)141?) ©0.1)

h(r)

Lemma 3.4. The function h = h(r) is the solution of the differential system
h=(r-1*h-r*-1)((r+1)*h-r*-1), i=r0"-1), (3.17)

satisfying h'(r) > 0 for r € (0, 1), h(0) = 1, and lim,_,1- h(r) = +oo0.

Proof. The conclusion follows from the proof of Lemma 3.2 by direct calculation. O

Lemma 3.5. The function W¢(s) has a unique zero in (0, 1) and this zero is simple.

Proof. Lets = (1 -r%)/(1 +r?) for O < r < 1. Then it follows from the definition of W(s) that

1-1r2
1+7r?

We(r) = We( ) = VoM (Coo(r) + Cer (DA + Coa(NR2(1),

where h(r) is the function defined in (3.16) and

O
82(n) = 82(9)|s=(1-r2) /1412y

Coo(r) = —(1 + r*)*(-620235 — 3869441 + 63082r% + 4352r> + 1114260r*
+747808r° — 136770r° — 2128017 + 349425r® + 201312r° — 5852r1°
+97568r'1 + 90000712 + 59232r'3 + 2969214 - 3939211 — 39225716
- 6880r'7 —10350r'® + 18912r'7 + 24540r*° - 1152r*1 — 1242r%?
+ 2304123 +2835r%%),

Ce1(r) = 2(1 + r*)>(107415 + 1811367 — 33728r% + 11072r> - 399945r* - 731304r°
+1495361° — 473841 + 1468275r% + 17179841r° - 340256110 + 125584711
+ 2454435112 1+ 1436304113 - 95680r1* + 1880167 + 156165r1°
—122704r'7 + 10009678 — 61184r'° — 145275r?° - 30376r*! — 2313612
+33384r% +39345r% — 1632r%° - 2592r?° + 44641>7 + 5985r28),

s=(1-r2)/(1+r2) ’
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Ce2(r) =(1 - ?)(~835065 — 3460167 — 836827r> — 363808r° + 3987923r"
+1598928r° + 4009041r° + 16992961r" — 87648691 — 34044641°
-8875247r'% —3660192r'1 + 1910023112 + 319232r + 20547491
+561472r'® +3501349r'° + 142323217 +3542143r'® + 1373728
-275927r*° + 31056r*! - 405789r*% — 82241 +15321r°* + 43728r%°
+ 4404317 + 4512r%7 + 249318 + 6624r%° + 91351°),
Define
We(r, h) = Ceo(r) + Ce1(r)h + Coa(r)h.

We will show that on the curve C := {(r, h) | wg(r, h) = 0, r € (0, 1)}, there is a unique point P at which vector
field (3.17) is tangent to C. We call P the contact point with the vector field (3.17). In fact, by direct computa-
tion we obtain

D(r, h) := (0W¢/dr, OW/Oh) - (i, h) = -2 i di(r)h!,
i=0
where

do(r) = (1 + r*)*(=107415 + 123367 + 2451586r* + 15301761> — 4561843r*
~2896872r° — 3880856r° — 284543217 + 4366665r% + 2321984r° — 1985574110
-1627056r! —175627r'2 - 500432r'% - 524832r'* + 797392r + 938867r°
+960688r'7 + 476566r'8 — 5439681 — 529425r?° — 119176r*! - 19591212
+200040r?3 + 275163r** - 24288r%° — 27378r° + 31248r%” +39375r%8),

di(r) = =(1 +r*)?(-1049895 — 889424r — 726170r* — 1522240r° + 770907 41"
+7536696r° + 1889478r° + 6432616r" — 31052618r® — 28741640r° — 6577218r'°
- 16058648r'! — 6172022r'% + 32801673 - 22042946r** - 12811872r%°
+33763160r'° + 232335687 - 474132678 + 5413264r"° + 1388182r2°
~ 2485928r?! +3589522r?2 — 19157367 - 3612822r%* — 869704r*° - 7687261%°
+678984r*7 +822606r*8 — 7766417 —113814r°° + 122832r%! + 1704151°2),

dy(r) = —(1 - r*) (1777545 + 10461767 + 3311818r% + 1457408r> — 16459052r*
~8289520r° — 15874018r° — 700619217 + 62475516r% + 288265441° + 35342330r'°
+15708784r! - 49795012r'% - 1946601673 — 8698050r!* —3515776r'°
— 249832661 — 1285337617 - 1425835418 — 5372832r%° + 31346828r%°
+11380816r°! + 2668682r?% + 500624123 — 40877641%% — 691664r°° — 471570r%°
+4040161*7 + 455268r*8 — 51264r%° — 12029410 + 84960r>! + 121905r°2),

ds(r) = —(1 - r?)*(-835065 — 3460167 — 836827r> — 363808r> + 3987923r*
+ 15989281 + 4009041r° + 16992961 — 8764869r% — 34044641° — 8875247r1°
-3660192r'! +1910023r'2 + 319232r13 + 20547491 + 561472r'° + 3501349r1°
+1423232r'7 +3542143r'8 + 1373728r1% - 275927r%° + 31056721 - 405789r%2
— 82247 + 15321 + 43728r%° + 44043r%° + 4512r*7 + 249318 + 66241r*° + 9135r°°).

Using Sturm’s theorem, we find ds(r) > O, r € (0, 1). Further, the resultant of w¢(r, h) and D(r, h) with respect

to h is a polynomial in the variable r of degree 166, which, applying again Sturm’s theorem, can be proved
to have a unique simple zero rg € (0, 1) with 9/10 < rg < 91/100. Hence there exists a unique hg such that

We(ro, ho) = D(ro, ho) = 0.

This confirms that on the curve C there is a unique point (rg, ho) at which the vector field (3.17) is tangent
to C.
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By direct computation we have
C2, - 4Ce0Co2 = 3600(1 + r?)*pse (1),

where ps¢(r) is a polynomial of degree 56. Again, we can apply Sturm’s theorem to prove that ps¢(r) > 0 and

Ce2(r) <0inr e (0,1). Let
- ~Ce1 - \/C%, — 4C60Cé2
c - {h —h(r)= }

2Cs2
and
c W —Co1 + \lCél —4Ce0Cé2
+ = { =h.(r) = 2Ce, }
be the two branches of the curve C in the (r, h)-plane. A calculation shows that
S 179 o o 64 o 96160 o,
h—(O) - 17 h+(0) - 241 3 h(O) - 13 h—(O) - 231 ’ h+(0) - 1916673 ) h (O) - 0)
h,(1)=1/2 andwhenr — 1-,
_ 15 - 1
ho(r)=—+---, h@r = .-,
S 1-r * ) (log4 —log(1 —r))(r-1)2 *

where the dots denote the terms which are infinitesimal being compared to the former one.
It follows that

h.() < h(r) < h_(r) asr— 0%,
ho(r) <h_(r)<h(r) asr—1".

Obviously, the curve T = {h = h(r)} intersects C_ in at least one point (r*, h*). By an observation on the di-
rection of vector field (3.17) at the two endpoints of the segment of curve {(r, h) | h = h_(r), r € (0, r*]}, we
find that there exists a point P at which the vector field (3.17) is tangent to the curve C_ (see Figure 2). Since
the contact point P is unique, the curve I' cannot intersect C_ in other points. Moreover, the curve I' has no
common point with C,, otherwise a second contact point would emerge. Therefore the function We(r, h(r))
has a unique zero in the interval (0, 1). This yield that We(r) has a unique zero in the interval (0, 1).

Finally, since ro < 91/100and h(91/100) = 30.54045135 < h_(91/100) ~ 35.81140037, it follows that
ro < r*.This means that (r*, h*) is not the contact point of C_ with the vector field. Therefore, the unique zero
of We(r) is simple and thus the required conclusion holds. O

Figure 2. The curve I has a unique common point with C_.
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Lemma 3.6. The function W(s) does not vanish in the open interval (0, 1).

Proof. By taking transformation s = (1 — r2)/(1 + r?), 0 < r < 1, we obtain from

g1(s) g1(s) g1(s)
Wr(s) = Y7(983(8)(Zro(s) + Zna(9) g 5+ PO ) (s))
that
W7(r) = W7 (S)|s_1opoyjaary = Y7(NE (W7 (1),
with

w7(r) = C70(r) + C71(n)h(r) + C72(r)R*(r) + C73(NR3 (1),
where h(r) is the function defined in (3.16) and

161Y7(s)

(1+T)45 S=(1fr2)/(1+r2)’

82(1) = 82(8)|so(1_r2y 1472

C70(r) = 41(2301810 + 597017401 + 727558755r* — 364073500959r°
+3428595727383r% - 10544549722741r'° + 3730074158113r2
+49576965802069r — 40961684822285r'% - 396767446632771r'8
+1609108209115716r%° — 32038741128684861%% + 4488939441796380r%
- 4090928490421940r%° + 3532364976473268r*® — 5531791081099161°°
+10131506210566641°% + 19603139906347641>* + 589939846153370r°°
+162021074308600612 + 485382645874034r*° + 531165876327274r*
+41364680501774r* — 94823180435898r*¢ — 1777723674199661*8
~169241753304026r°° — 122994867094516r°2 — 753471971098161°*

- 38883154071124r°% — 17219939255972r°8 - 64207815468761°°
-1958359101836r% — 448781050130r%* - 536256288641r%° + 1258212463578
+10801790529r7° + 4279675055172 + 1249653091r"* + 292463001r7°
+55639117r78 + 8432979r%° + 963045182 + 73560r%* + 2790r%°),

C71(r) = =3(1 + r*)?3(62214075 + 326180401 + 57649725r* + 31801560r°
~311083290r* — 161979460r° — 2840452781° — 15666793617
+1118662427r% + 566796672r + 1015532421r'° + 54526496811
+1483781736r? + 882038312r1 + 1421172920r'* + 856116840r"°
+32362070r'% — 26403192r'7 + 175436346718 + 24968536r1°
- 2404284r%° — 55354400r*! + 3142596412 — 122819896723
—129246866r%% — 82418248r*° — 147649550r2° — 83415400r%7
- 50931800r* — 40785832r%° — 662842961°° — 5366728r°1
-2020081r°2 - 3163552r>% - 1758167r>* + 617456r>° + 624838r°°
+127460r°7 + 489090738 + 19640r°° + 50775r%° + 14760r*! + 40425r%%),

C72(r) = 3(=1 + r*)(1 + r*)*1(-113149575 — 48972840r — 21941955012
~ 968940007 + 5249037151* + 226248140r° + 12163816287°
+542101276r" — 144799946918 — 6287268961 — 388863400610
—-1779992536r! - 2876628303r'% - 125909126413 - 2141852592r'4
~ 754743200r"° + 1112715114r'° + 58339824017 + 4296755236118
+1852262832r"° +2357760878r*° + 907216248r*! + 687064168r%*

Y7(r) =
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+ 2342540081 + 208154838r% + 151069392r?° — 302393084r2°
- 153692000r%7 - 210572686r*% — 204720480r*° — 215766192r>°
- 104223744131 —131334803r3? - 417651761 — 20357126r>*
— 1175449613 — 11547809r°° + 7294367°7 + 90450818 + 33740r°°
+ 4446151 + 42400r*t + 114450r*? + 18360r*3 + 50925r%4),

C73(r) = —(-1 +r%)%(1 + r*)2°(164085075 + 58271640r + 31897530012
+115256400r> — 920074365r* — 320089980r° — 20793068881°
— 7466167561 + 272874498918 + 9412200961° + 71725328841r1°
+2616432392r'! + 779348149112 + 54688532811 - 49955121607
— 13852043681 - 4685978914r'% — 1569573552r'7 - 452568312878
— 2222726784 + 166924638r*° — 650651016r>! + 4249280720r%?
+ 14458866961 + 2224407802r* + 10653941441r° + 814165128r%°
+244092272r* +320088074r*8 - 95701872r%° — 346329440r°°
~166958928r>! — 18057180912 — 99999912133 — 423947641
- 27896336r>° —30911889r°° + 4627561°7 + 365688r>8 — 212820r>°
+107865r*° + 50400r*! + 137700r*? + 21960r*3 + 61425r*).

The number of zeros of W;(r) in (0, 1) equals the number of intersection points of the curve
C = {C70(r) + C71(h + C72(n)h* + C73(r)h° = 0}

with the curve T = {h = h(r)} in the (r, h)-plane. In what follows we will study the relative positions of C and T.
To this end, since I' is not an algebraic curve, we need to establish another auxiliary algebraic curve which is
easier for computation.
First, using Sturm’s theorem, we find that C;3(r) # O, r € (0, 1). This means that
W7(r, h) == C70(r) + C71(Nh + C72(Nh? + C73(NK
is a cubic polynomial of h for each fixed r € (0, 1). Let

A=C2%,-3C;1C73, B=C71C72-9C70C73, C=C3; -3C70Cr2,

and A = B2 — 4AC. It is not hard to see that A has exactly two zeros r1, r» in (0, 1) with 39/50 < r; < 79/100,
91/100 < ry < 23/25.1f r € (0, 1) U (r2, 1) then A > 0; if r € (r1, 1) then A < 0. Therefore, the curve C has
three branches C; (the lower branch), C, (the middle branch) and C5 (the upper branch) with the property
that C, and C3 have the same endpoints E; (71, h1) and E,(r,, h;). See Figure 3.

Second, we claim that C, U C3 lies over the curve I'. To show this we introduce an auxiliary algebraic
curve Y = {h = ®©(r)} with

D(r) = %(5 +4r7 + 6r* +8r° + 1018 + 12110 + 13712 + 157 + 1611
+18r18 + 20720 + 21722 + 22724 +38r2% + 25128 + 26130 + 28732 + 3017

+30r%6 + 32138 4 341%0 1 347%2 + 360" + 38r% + 3818 + 40r°0),
where r € (0, 1). By direct computations as well as by applying Sturm’s theorem we obtain
wr(r, ©(r)) = p23s(r) <0,

where p,3s(r) is a polynomial of degree 238. Thus the curve C does not intersect Y. Moreover, since the
straight line r = 9/10 intersects the curve C and Y at the points (9/10, c}), (9/10, ¢3), (9/10, c3) € C and
(9/10, ¢]) € Y, respectively, where

¢ =0.1592878, 3 =30.7373179, 5 =40.3056908, ¢ =~26.9337561,

we conclude that C, U C3 lies over the curve Y, and C; lies below the curve Y. See Figure 3.
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h

0,1

Figure 3. The relative positions of the curve 'and C.

On the other hand, using (3.17), we obtain by computation that

(h- (D'(r)i’)|h=q)(r) = %(—9 +42r% +3r% —4r8 — 8r10 + 18112 — 2r'% + 1411 — 618 — 36120 + 10122
+43r%% — 82612 + 280r%8 + 748r°° - 23132 — 82174 + 7013 + 62138
13210 +102r%2 + 9r* — 1241%¢ + 10378 + 42r°° + 4248r°? + 44467
—81r°% + 82r°8 + 115r%° + 184r%2 — 20r%* + 124r%° + 10878 + 72r7°
+128r72 + 11617 + 1308’8 - 1056r%° + 64182 + 136784 + 15218 — 12/88
+144r°° + 1567°% - 8r°% + 152r°% + 160r°8 — 4r1%° + 160r'°2 — 1600r1%4),

which has a unique zero in the interval rg € (0, 1) with O < ry < 1/2. Therefore, there exists a unique contact
point on the curve Y with the vector field (3.17). Taking this into account and noting the fact that

®0)-h(0) >0, @(1/2)-h(1/2)>1>0, @(23/25)-h(23/25)>2/5>0,

it is clear that the curve Yl,¢(0,23/25) lies over I'l,¢(0,23/25), otherwise there would exist at least two contact
points on Ylye(0,23/25) with the vector field (3.17), which leads to a contradiction.
In summary, according to the relative positions of Y and T' as well as the relative positions of Y and
C, U C3, we find that the claim is true.
Third, we claim that C; lies below the curve I'. This claim is easy to confirm due to the following facts:
o T'lies over the straight line h = 1 (by Lemma 3.4);
o (7 does not intersect the line h(r) = 1 because C7¢(r) + C71(r) + C72(r) + C73(r) # 0, r € (0, 1) (by apply-
ing Sturm’s theorem);
« (; is a continuous curve passing through the point (0, 0) (because C70(0) + C71(0)h + C72(0)h? +
C73(0)h3 = 0 implies h = 0).
Finally, taking into account the above results, we conclude that the curve C has no common points with
the curve I'. Thus W-(r) # 0, i.e., W(s) # 0. O

Proof of Theorem 1.1 (b). It follows from equation (3.6), Lemma 3.3, Lemma 3.5 and Lemma 3.6 that
wi(s) #0,i=0,1,2,3,4,5,7 and wg(s) has a simple zero in (0, 1). Very recently, Novaes and Torregrosa
[15] proved that if the analytical functions fo, fi, ..., fn : I — R satisfy

o all Wronskian determinants W;j(s) = W(fy, ..., fi)(s) but W,,_1 have no zero in the interval I, and

o Wy_1 has a unique simple zero in I,
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then any linear combination of fy, f1, . . ., fn can possess at most n + 1 zeros in I, counting with multiplicities.
But Novaes and Torregrosa do not prove that the upper bound can be reached in the general cases.

In what follows we will show that the upper bound 8 can be reached in our system.

Let so = 200/10001, Eo = E(1 - s3), Ko = K(1 - s%) and

k = 4224932006353520086857838671137556(AE] + BEoK, + CKY),
where

A =162632756824646343526934358039550191813769181219039360950399,
B =-26652192151547736499563618692313149392412558977363562257000,
C =5303055781903243156556160927943006794119698485540000000.

Consider the function
G(s) = aofo(s) + aifi(s) + -+ asfe(s) + kfz(s), s €(0,1). (3.18)
By direct calculation we get the power series of G around the point sg:
G(s) = eq+e1(S—So) +--+ee(s—50)° +e7(s—s0) +--+,
where e; is the linear combination of a, ai, ..., as. We solve the equations
ep=0, e1=0, ..., eg=0,

and find the values of ag, a1, . . ., ag which have the form

3 . .
ai=Y qyEpKy’, 1=0,1,...,6,
j=0
where each gjj is an integer which occupies many digits. We will not write down here the explicit expression
of a; for the sake of brevity. By the way, we would like to point out that our purpose of choosing such a k in
(3.18) is to make the expression of a; to be relative simple. It turns out that

G(s) = e7(s — s0)” + O((s - 50)®), s — so, (3.19)
where 1000600150020001500060001
= AoE> — A1E2Ko + A,EoK2 — AsK3),
€7 364828047171937480000  A0F0 ~A1EoKo + A2 EoKg — A3Ko)
with

Ao =9434365215900096702757086133640555232723441933485420521056595192874
214200423786458280868229,

Aq =1732705885903853693884640417850773768026603157714652167368522666300
981344222008726672767200,

A; =1550165493805896510978302557036974594023078666779498920543561841897
54798606490809063800000,

A3 =3092940994614887237716575160316676355701108658523634572794702093798
4340166396000000000,

and
e; ~ -8.7875569 x 1077,

On the other hand, at the endpoint s = 1 we have

G(s) = B(1-s)+o0((1-15s)), (3.20)
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where

B =128002638248532407465929332484294400005327
-(5792157212337693345948517518844704378216313299609167E3
-1020168724968577415929102393676106281813032946881000EK0
+203589533638142582450403592018967753470820000000K3)

~ 1.6008470 x 1071,

Equations (3.19) and (3.20) mean that (i) G has a zero at so with multiplicity 7, (ii) there exists an g¢ with
So < & < 1 such that G(s) is negative in (sq, £9], and (iii) G(s) is positive near the endpoint s = 1.

Fixing the numbers aq, a1, ..., ag and k, we consider the function
7
Ge(s) = G(s) + ) &ifi(s), s €(0,1). (3.21)
i=0

We note that f; can be extended analytically to (0, 1]. Thus there exists an M > 0 such that
1 1
Ge(gg) < EG(SQ) <0, Gg(s)> EB(l -S), whens— 17,

forall |gj| < M,i=0,1,...,7. Moreover, near s, we find

7
Y. €ifi(s) = Ho+ H1(s = S0) + -+ H7(s = 50)  +++-
i=0
where u; = ui(€o, €1, . . . , €7) is linear combination of €y, €1, . . . , £7. One can directly check that the matrix
of the coefficients of ug, p1, . . . , 47 with respect to €, €1, . . . , €7 has rank 8, and hence o, p1, - .., 47 are
independent.

Consequently, since f; is analytic at so and G has a zero at sy with multiplicity 7, it follows that there
exists some small |e;| <« M (i =0, 1,...,7) (and hence y; is small) such that G, has exactly 7 simple zeros
in a neighborhood of sg. In view of (3.21) G has an extra zero in (g9, 1). According to the result of [15], this
zero is simple. That is to say, G, has 8 simple zeros.

Finally, using Lemma 3.1 and averaging theory of first order, we see that systems (1.4) have at most 8
limit cycles, and the upper bound can be reached. The proof is finished. O

4 Proof of Theorem 1.1 (c)

The goal of this section is to investigate the number of limit cycles of system (1.5) which bifurcate from the
period annulus of the isochronous center. Before we prove our result, we should first recall the concept of
hypergeometric function.

Let H(a, b, c, z) be the ordinary hypergeometric function which is defined for |z| < 1 by the power series

S (@k(b)i 2*

H(a, b, c,z) = 1;) O L (4.1)
where
1, k=0,
(@)k = {
a(a+1)---(a+k-1), k>0.

It is undefined (or infinite) if ¢ equals a non-positive integer. Many of the common mathematical functions
can be expressed in terms of the hypergeometric function. For example, (1 - z)™% = H(a, 1, 1, z) and

2K(m) 2E(m)
H(3,3,1,m)= P H(-%,3,1,m) = p

N|—

For more information on hypergeometric functions, the reader is refereed to [1, Chapter 15].
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Lemma 4.1. The maximum number of limit cycles of system (1.5) which emerge from the period annulus of
center of system (1.5).—9, by using averaging theory of first order, is equal to the maximum number of the simple
zeros of the function

G(s) = cogo(s) + €181(S) + -+~ + €12812(5),

where co, C1, . . ., C12 are independent arbitrary constants, and
8o(s) = s,
g1(s) = 82,

82(s) =sVl-s,

gs3(s) =sH(1,1/2,2,5s),

g4(s) =sH(1,5/2,4,s),

gs(s) =sH(1,3/2,3,s),

g6(s) =s*?H(-2/3,1/2,1,s),

g7(s) =s°?H(-1/3,1/2,1, s),

gs(s) =s°?H(-1/3,3/2,2, ),

g9(s) =s°?H(-1/3,5/2, 3, s),
g10(s) = s"PH(-2/3,3/2, 2, 5),

gll(s) = 54/3(_(1 - S)H(%y %y 33 S) - 2H(_%y %) 3) S))’
g12(s) = 52/3((4 -95)H(%,3,3,s) - (1 -s)(4+33s)H(3, 3,3, s)).

Proof. As usual we take the polar coordinate transformation to change system (1.5) to

% =Ro(0, 1) +€R1(6, 1) + O(£), (4.2)

where Ry(0, r) = r’ cos @sinf and R1(0, r) = R11(0, 1) + R12(0, r) with

R11(6, 1) = 1(@10C* + bo15?) + r’[az0C* + (a12 + b21)C2S* + b3 5]
+7°[asoC® + (a3 + bg1)C*S? + (@14 + b23)C*S" + bosS°]
+17[azoc® + (@10 — bo1)C*S? + (asy + be1)C®S? + (asy + by3)C*S*
+(a16 + b25)C2S® + bo7S®] + r’[(as0 — b21)C*s” + (a12 — bo3)C>S*]

+ 1M (a@so — ba1)C®S? + (azz = b23)C*S* + (14 — bos)CS°]
+1P[(a70 — be1)C®S? + (asz = ba3)COS* + (azq — b2s)C*S° + (@16 — bo7)C*S°],
and R12(0, r) is a polynomial of degree 13 in r of the form Zu,k d,-,j,kCiSj rk where i or j are odd numbers. As
before, here C = cos 8, S = sin 6. We do not write down the explicit expression of R1,(8, r) because it is too
long and, as we will see, it does not play any role in further calculation.
The equation (4.2).-o has the periodic solutions r(8, ro) = ro(1 - 3r5 sin” )~

for 0 < ry < 3716, The corresponding variational differential equation
dM o
A = _R il }) M’
a0 " o 0(0, r(0, 10))

with M;,(0) = 1 has the fundamental solution

1/6 satisfying ro = r(0, o)

M,,(6) = (1 - 3r§sin® 0)77/°.

Next we go to study the maximum number of zeros of the function

2n 2n
F(ro) = j M;1(0)Ry(0, r(0, 1)) d = 1’ j r7(6, 1)R1(6, 1(6, 10)) d6,
0 0

when rg € (0, 371/6),
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One can check directly that

2m
j r7(8, ro)R12(6, (6, 10)) d6 = 0.
0

It turns out that
2

F(ro) = 1] j r7(8, r)R11(6, (6, 10)) d6, 1o € (0,37V/6),

0
Further, taking the transformation rq = (s/3)/¢, we have

2n

F(s) := F(ro) = I(1 —ssin? 6)"/°R,,(0, 7(0,s))dO, s e (0,1),

0
where 7(0, s) = 371/¢(s/(1 - s sin? 9))1/®.
Using an algebraic manipulator, we obtain after a long calculation that

Cofo(s) + C1f1(S) + -+ + C15f15(8)
517/6(1 _ 5)2/3 ’

F(s) =

where

fols) =s*(1 - 9)*3,

fi(s) = s*(1-9)?3,

fals) =s>(1-s)"®,

f3(s) =5%((1 - 5)"/% = (1 - 5)*3),

fa(s) = 8(1—5)%+ (1 -5)23(s? + 45 - 8),
fs(s) =2s5(1-5)"/% - (1-5)*3(2s - s?),

fo(s) = s'°P (1 - 5)*PH(-3, 3,1, 5),

fr(s) = s"P(1 -5)*PH(-3, 3,1, ),

fa(s) =P -5)*PH(-1,3,2,5),

fols) =s"P(1-5)*PH(-1,3,3,59),

fro(s) = s"P((1 - $2PH(3,3,3,5) + H(3, 3,3, %)),
3 ) 3

fia(s) = sP (1 -9PH(3, 3,3,5) + (1 -9 H(3, 3,3, 25)),
Fra(s) = s"P(2H(3. 3.3, &) + 1= 9PH(3. 5, 4,5) - H(3, 3
P ) )

1
fis(s) = s1P(1 - ) (or(-2

(5
~10V3m/2H(-2, 3,2,s) + 18(1 - 5)"°T(-)r($)H(3, &,

Fra(s) = s'°P(1 - 9)'2(243(1 - ) PT(-2)T(2)H(-3, 3, -4, 1-9)

(4.3)

2,1-9)),

-360V3m/2(1 - 5)3H(-2, 3,3,s) +40V3m*/?sH(3, 3,3, &)

+20\/§n3/zs( -s)3H(3, 5,4,5)—H(%,%,4,S%1))
+324(1 - )T (-Hr(3)HG, &, 2,1 - s)),

fis(s) = s11(-240(1 - 2P H(-1, 1, 4,5) + s(16H(2, 3,3, 2%;)

~16H(, 3,4 557) + 5092 H(3, 3.5,9) +5H(. 3.5,

3 2

S—

Here I'(z) is the Gamma function defined by I'(z) = f(;m t#“letdtandc;, fori=0,1,2,...,15,is the linear

combination of a;; and b;j. We do not give the explicit expressions of ¢; (i = 0, 1, 2, .. .,
too long. We can check by direct calculation that ¢4, C», ..., C15 are independent.

15) because they are
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From (4.1) we have

s)2/3 vVi-s-1

f(s) =51~ =—ls3(1—s)2/3H(1,%,2,s),

8)2/38\/ S+s%+4s-8
_33/2

)2/33 2+2V1-5 _
2/4

fals) = —533(1 - 153(1 s)??H(1, % ,s),

Fo(s) = 75701~ (-9 H(1, 3,3, 5)

Using Pfaff transformation (see [1, Chapter 15])
(1-z%H(a, b,c,z)=H(a,c-b,c,z/(z-1)),

as well as Gauss’ contiguous relation

a—bZH(a+1 b+1,c+1,z)=a(H(a+1,b,c,z)-H(a,b,c, z))

=b(H(a+1,b,c,z)-H(a, b, c, 2))
=(c-1)(H(a,b,c~1,2) - H(a, b, ¢, 2))
_ (c-a)H(a-1,b,c,z)+(a-c+bz)H(a, b, c, z)

1-z
B (c-b)H(a,b-1,c,z)+(b-c+az)H(a, b, c, 2)
- 1-z
(c a)(c-b)H(a,b,c+1,z)+c(a+b-c)H(a, b, c,z)
, (4.4)
c(1-2)
we obtain that

fro(s) = 2531 - 5)*PH(Z, 3,3, 5),
fir(s) =2sBP1-5)PH(3, 3,3, ),
fra(s) = 2831 - s)*PH(Z, 3, 4,5),
fia(s) = 35131 - 5)2/3(81r(—§)r DH(-%,3,-1,1-5)

Fus(s) = 8/3(1 9P((4-99)H(2,3,3,5) - (1-5)(4+339)H(%, 3,3, 5)).

Further, applying the formula

I'(c)['(c-a-b)

I'(c-a)'(c-b)
L) pr(c)'(a+b-c)

[(a)L'(b)

H(a,b,c,z) = H(a,b,a+b-c+1,1-2)

H(c-a,c-b,c-a-b+1,1-2),

for |arg(1 - z)| < 71, we obtain that
fis(s) = s1P(1 - )*2(9r(-)r($)r(2) - 10V37°2)H(-2, 3, 2, 5)
= V7s'P(1 - 5P (9r(-2)r(§) - 10V37)H(-%, 3, 2, 5)

) -
=-20V3m/2s1%83(1 - 5)?PH(-2, 3, 2,5),
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_ 3\/5 10/3 2/3 2 11
= =51 -s) ((81r(-2)r(
+160V37(s - DH(L, 3,3, 5))
= —240\3m3/2s10/3(1 - 5)2/3((1 -5)H(3,3,3,s)+2H(-3, 3,3, s))
By the above equalities, we obtain from (4.3) that
F(s) = s7/8(Cofo(s) + E1fi(s) + -+ + E15f15(S)), (4.5)

where the functions f; modulo a nonzero constant are f;/(s2(1 — 5)2/3):

fo(s) =s,
fi(s) = s2,
fa(s) =sVl-s,

f3(s) =sH(1, 1,2,s),
fa(s) =sH(1, 3, 4,s),
fs(s) =sH(1,3,3,s),
fo(s) =s"*H
fa(s)=s°PH
fa(s) =s°PH
fo(s) = s*H
fio(s) = s¥3H
fi1(s) =s’PH
fia(s) = s8PH(Z, 3,
fi3(s) = s*PH(-3,3,2,5),

fra(s) = —54/3<(1 -$)H(3,3,3,s)+2H(-3, 3,3, s))
3

fis(s) = s ((4 - 99)H(2, 3,3,5) - (1 - 5)(4 + 339)H(2, 3, 3,5)),

>

s

2
3
1
3
1
3
1
3

[NT[C N WO TSN NN
w N [ -
0

NI DWW
N WoWwo
7]

N N N

S

>

i)

2
3
1
3
2
3

It is also not hard to see that in (4.5), ¢, €1, . . . , C15 are independent constants.
Further, applying repeatedly Gauss’ contiguous relation (4.4), we find that

fio =12f7 - 12fs, f11 = 6f6 — 6f13, f12 = 36fs — 36f9. (4.6)

It follows from (4.5) and (4.6) that

12
F(ro) = F(s) =s7/° Y cigi(s) = s°/°G(s),

i=0
where
go=fo, 81=h, ..., 89=fo, 8o=fi3, 8u=fis, 812=fis5,
and co, c1, ..., C12 are independent constants.
Finally, by Theorem A.1, we obtain the required conclusion. O

Proof of Theorem 1.1 (c). First, we claim that the functions go, g1, . . . , g12 in Lemma 4.1 are linear indepen-
dent. To show this, we write

G(u) = dogo(®) + d1g1(W?) + -+ + d12812(3), u > 0.
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Then, near the point u = O we have

%5326(11) =8957952(dg + dy + d3 + dy + ds) + 8957952(d1g — 3dq11 + dg)u
— (348364800d1, — 8957952(dy + dg + d9))u?
+1119744(8d1 — 4d; + 2d5 + 5d, + 4ds)u’
—1492992(3d1o — 11d11 + 2de))u” + 82944(1400d1,
- 3(6d7 + 9dg + 10do))u® - 559872(2d; — 2d3 — 7dy — 5d5)u®
~124416(5d10 - 20d11 + 3de)u’
+6912(5390d, — 3(18d7 + 30dsg + 35do))u’
-139968(4d; — 5d3 — 7(3d4 + 2ds))u’ — 6912(35d10 — 147d11
+20dg)u'® + 2880(6860d1, — 3(20d7 + 35dg + 42dg))u'!
- 69984(5d, — 7d3 — 33d, — 21ds)u*? — 14112(9d;0 - 39d11
+5dg)u’® + 6720(1870d1, — 3(5d7 + 9ds + 11do))u'*
—4374(56d, — 3(28d5 + 143d, + 88ds))u’> — 1008(77d10
- 341dq; + 42dg)u*® + 176(50050d1, — 378d; — 693ds
- 858dq)ul’ — 2187(84d, — 11(12d3 + 65d, + 39ds))u'® + 0(u*®)
=g+ A U+ -+ argu e + 0(u?).
If G(u) = 0, then we have ag = a1 =--- = aig = O. By direct calculation, we get dg = d; =--- = dq2 = 0. (By
the way, it is remarkable that we cannot get from ag = @1 = --- = @1 = O that dg = --- = d1 = 0.) This shows
that our claim holds.
Since g; is an analytic function on (0, 1) fori = 0, 1, ..., 12, we know that, by applying [5, Lemma 4.5],

by suitable choice of cg, c1, ..., C12, C080(S) + €181(S) +-- -+ C12812(s) can have 0, 1, 2, ..., 12 simple zeros
in (0, 1).

Consequently, according to Theorem A.1, there exist some coefficients ajj, b;j (i+j=0,1,...,7) such
that system (1.5) has 0, 1, 2, ..., 12 limit cycles. This completes the proof. O

Remark 4.2. It seems very hard to find the smallest upper bound of the number of limit cycles of system (1.5)
which emerge from the period annulus of the isochronous center for the case n = 2. In fact, the expressions
of the Wronskian determinants Wy for k > 9 are too complicated to determine the number of simple zeros
of them. On the other hand, by using the same method as the one in the proof of case n = 1, we can find
some coefficients cg, c1, ..., c12 such that cogo(s) + ¢181(S) +--- + c12812(S) has 12 simple zeros in a small
interval (sg — €, So + €) and has extra zero in (0, so — €) with s = 7/10. However, we cannot prove that the
extra zero is simple.

A The Averaging Theory of First Order

In this appendix we present the basic results from the averaging theory that we shall need for proving the
main results of this paper.
We consider the problem of the bifurcation of T-periodic solutions from differential systems of the form

x' = Fo(t, X) + eF1(t, X) + €2F>(t, X, €), (A.1)

with € = 0to € # O sufficiently small. Here the functions Fy, F1 : Rx Q —» R"and F; : R x Q x (-&g, &) — R"
are G2 functions, T-periodic in the first variable, and Q is an open subset of R". The main assumption is that
the unperturbed system

x' = Fo(t, X) (A.2)
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has a submanifold of dimension n of periodic solutions. A solution of this problem is given using the averaging
theory.

Let x(t, z, €) be the solution of the system (A.2) such that x(0, z, €) = z. We write the linearization of the
unperturbed system along the periodic solution x(t, z, 0) as

v' = DxFo(t, x(t, z,0))y. (A.3)

In what follows we denote by M,(t) some fundamental matrix of the linear differential system (A.3).

We assume that there exists an open set V with Cl(V) c Q such that for each z € CI(V), x(¢, z, 0) is T-
periodic. The set CI(V) is isochronous for the system (A.1); i.e. it is a set formed only by periodic orbits, all of
them having the same period. Then, an answer to the problem of the bifurcation of T-periodic solutions from
the periodic solutions x(t, z, 0) contained in C1(V) is given in the following result.

Theorem A.1 (Perturbations of an isochronous set). Assume that there exists an open and bounded set V with
CI(V) c Q such that for each z € CI(V), the solution x(t, z, 0) is T-periodic. Consider the function

T
F:CV) > R", F(z)= JM;l(t)Fl(t, x(t, z,0)) dt.
0

If there exists a € V with F(a) = 0 and det((dF/dz)(a)) # 0, then there exists a T-periodic solution x(t, €) of
system (A.1) such that x(0, &) - aase — 0.

Theorem A.1 goes back to Malkin [14] and Roseau [17], for a shorter proof see Buica et al. [3].

B Extended Complete Chebyshev System

We say that the functions (fy, ..., fy) defined on the interval I form an Extended Chebyshev system or ET-
system on [ if and only if any nontrivial linear combination of these functions has at most n zeros counting

their multiplicities and this number is reached. The functions (fo, . . ., fy) are an Extended Complete Cheby-
shev system or an ECT-system on [ if and only if, for any k € {0, 1, ..., n}, (fo, .. ., fx) form an ET-system.
Theorem B.1. Let fy, ..., fn be analytic functions defined on an open interval I c R. Then (fo, ..., fn) iS an

ECT-system on I if and only if for each k € {0, 1, ...,n}and all y € I the Wronskian

foy)  fiy) - fiy)

iy Ay - R
W(fo,---,fk)(y)= : . .. :

Py Py - Py

is different from zero.

For a proof of Theorem B.1 see [10].
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