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1 Introduction
The aim of the present paper is to weaken the assumptions of a global implicit function theorem which was

obtained in [5] and to show that such changes are essential.

Using the same method of proof as in [6] (cf. also [5]), based on the mountain pass theorem, we derive

a generalized version of a global implicit function theorem obtained in [5] for the equation

F(x, y) = 0,
where F : X × Y → H with X, Y real Banach spaces and H a real Hilbert space. More precisely, the global im-

plicit function theorem obtained in [5] has been split in the present paper into three parts: the existence of

a global implicit function, its uniqueness, and its continuous di�erentiability. We show that the conditions

for the existence of a global implicit function can be weakened in relation to the assumptions given in [5]

(the assumptions in [5] are simply assumptions guarantying the existence, uniqueness, and continuous dif-

ferentiability of a global implicit function). Namely, we assume the following:∙ The Gâteaux di�erentiability of F in one variable x instead of the continuous Gâteaux di�erentiability in

both variables (x, y).∙ The weak (PS) condition and the boundedness of a minimizing sequence instead of the (PS) condition.∙ A “non-orthogonality” condition F(x, y) ∉ (Im F�x(x, y))⊥ instead of the condition F(x, y) ∈ Im F�x(x, y) for
points (x, y) ∈ X × Y such that F(x, y) ̸= 0, see [5, Remark 1]; we omit the bijectivity of F�x(x, y) for points(x, y) ∈ X × Y such that F(x, y) = 0.
In Section 2.1, we give an example of an operator that satisfies the new assumptions and does not satisfy

the assumptions from [5] (including the assumptions given in [5, Remark 1]).

Similarly, we show that the conditions for the uniqueness of a global implicit function can be weakened

in relation to the assumptions given in [5]. Namely, we assume the following:∙ The continuous Gâteaux di�erentiability of F in one variable x instead of the continuous Gâteaux di�er-

entiability in both variables (x, y).∙ The non-orthogonality condition instead of the condition that F(x, y) ∈ Im F�x(x, y) for points (x, y) ∈ X×Y
such that F(x, y) ̸= 0.
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The new theoremon the continuous di�erentiability of a global implicit function is a simple consequence

of the above two theorems and the classical local implicit function theorem. In this new theorem, we assume:∙ The non-orthogonality condition instead of the condition that F(x, y) ∈ Im F�x(x, y) for points (x, y) ∈ X×Y
such that F(x, y) ̸= 0.
In Section 4.1, we give an example of a two-dimensional problem showing that the new assumptions

of the global implicit function theorem are satisfied whereas the assumptions of such a theorem from [5]

(including the assumptions given in [5, Remark 1]) are not satisfied.

In Remark 2.5,we discuss the non-orthogonality condition F(x, y) ∉ (Im F�x(x, y))⊥ and give some tools to

check it in concrete situations. In a particular case, it can be replaced by the condition F(x, y) ∉ Ker F�x(x, y).
The method of proof of the theorem on existence is the same as in [5] (and [6]) but we use [10, Corol-

lary 3.4] instead of [10, Corollary 2.5] because of the weak (PS) condition. Similarly, the proof of the unique-

ness of a global implicit function is the same as in [5] (and [6]) (we give here this proof to show that it allows

us to weaken the assumptions in relation to [5]).

2 Existence of a Global Implicit Function
Let X be a real Banach space and I : X→ℝ a functional di�erentiable in the Gâteaux sense. We say that I sat-
isfies the Palais–Smale condition (shortly, (PS) condition) if any sequence (xm) satisfying the conditions∙ |I(xm)| ≤ M for all m ∈ ℕ and some M > 0,∙ I�(xm) → 0,

admits a convergent subsequence (here, I�(xm) denotes the Gâteaux di�erential of I at xm). A sequence (xm)
satisfying the above conditions is called a (PS) sequence. We say that I satisfies theweak (PS) condition if any

bounded (PS) sequence (xm) admits a convergent subsequence.

A point x∗ ∈ X is called a critical point of I if I�(x∗) = 0. In such a case, I(x∗) is called a critical value of I.
By inf I we denote the value infx∈X I(x) and by a minimizing sequence we mean any sequence (xn) such that

I(xn) → inf I. In [8, Corollary 3.4], the following result is deduced.

Lemma 2.1. Let X be a real Banach space. If I : X → ℝ has a bounded minimizing sequence and it is a lower
semi-continuous, bounded from below, and di�erentiable in the Gâteaux sense functional satisfying the weak
(PS) condition, then inf I is the critical value of I.

Remark 2.2. Let us observe that if I : X → ℝ is a lower semi-continuous, bounded from below, and di�er-

entiable in the Gâteaux sense functional that satisfies the (PS) condition, then it has a bounded minimizing

sequence and satisfies the weak (PS) condition. Indeed, let (xn) be a minimizing sequence. Then, from the

theorem on almost critical points¹ it follows that there exists a minimizing sequence (yn) which is a (PS)

sequence for I. Since I satisfies the (PS) condition, (yn) has a convergent and, consequently, bounded subse-

quence. The fact that I satisfies the weak (PS) condition is obvious.

Using the above lemma, we obtain the following theorem.

Theorem 2.3. Let X be a real Banach space and H a real Hilbert space. If G : X → H is di�erentiable in the
Gâteaux sense and∙ the functional

φ : X ∋ x Ü→ 1

2

‖G(x)‖2 ∈ ℝ (2.1)

is lower semi-continuous, has a bounded minimizing sequence, and satisfies the weak (PS) condition,∙ G(x) ∉ (ImG�(x))⊥ for any x ∈ X such that G(x) ̸= 0,
then there exists x ∈ X such that G(x) = 0.
1 In [8, Corollary 3.2], the following theorem is proved: If X is a real Banach space and I : X → ℝ is a lower semi-continuous,

bounded from below, and di�erentiable in the Gâteaux sense functional, then, for any minimizing sequence (xn), there exists a

minimizing sequence (yn) such that I(yn) ≤ I(xn) for n ∈ ℕ, ‖yn − xn‖ → 0, and ‖I�(yn)‖ → 0.
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Proof. The functional φ, being a superposition of the mapping

1

2

‖ ⋅ ‖2, which is di�erentiable in the Fréchet

sense on H, and the mapping G, which is di�erentiable in the Gâteaux sense on X, is di�erentiable in the

Gâteaux sense on X and its Gâteaux di�erential φ�(x) at x ∈ X is given by

φ�(x)h = ⟨G(x), G�(x)h⟩
for h ∈ X. Moreover, φ is bounded from below and, by assumption, lower semi-continuous, has a bounded

minimizing sequence, and satisfies the weak (PS) condition. So, by Lemma 2.1, there exists a point x ∈ X
such that φ(x) = inf φ and ⟨G(x), G�(x)h⟩ = 0
for h ∈ X, i.e., G(x) ∈ (ImG�(x))⊥. So, G(x) = 0.
Remark 2.4. The assumption on the lower semi-continuity of φ can be replaced by amore restrictive one but

concerning directly G, namely, the continuity of G.

Remark 2.5. It is known that in the case of a densely defined linear (not necessarily continuous) operator

A : D(A) ⊂ H → H in a Hilbert space H, the orthogonal decomposition

Im A ⊕ Ker A∗ = H
of this space holds true, where A∗

: D(A∗) → H is the adjoint operator of A defined on

D(A∗) = {x ∈ H !!!! there exists z ∈ H such that for all y ∈ D(A) there holds ⟨Ay, x⟩ = ⟨y, z⟩}
by A∗x = z. The above decomposition implies the equality(Im A)⊥ = Ker A∗

and, consequently, (Im A)⊥ = Ker A∗
.

So, if X is a dense linear subspace of H, then the non-orthogonality condition G(x) ∉ (ImG�(x))⊥ in Theo-

rem 2.3 can be replaced by the condition

G(x) ∉ KerG�(x)∗.
When, for some x ∈ X, G�(x) is self-adjoint, then the non-orthogonality condition takes the form

G(x) ∉ KerG�(x). (2.2)

The non-orthogonality condition takes the above form also in the case of G�(x) : X ⊂ H → H being a densely

defined closed linear operator with closed range ImG�(x) and such that

ImG�(x) = (KerG�(x))⊥.
Examples of elliptic, parabolic, and hyperbolic operators A with the property Im A = (Ker A)⊥ can be found

in [3].

In [7], the following lemma is proved: If U, V are Banach spaces and Λ : U → V is a linear continuous

operator such that Im Λ = V, then (Ker Λ)⊣ = Im Λ

⊛
, where (Ker Λ)⊣ = {f ∈ U∗ | f(u) = 0 for u ∈ Ker Λ} and

Λ

⊛
: V∗→ U∗

is given by (Λ⊛g)(u) = g(Λu) for g ∈ V∗
, u ∈ U. If U = V = H, then the operators Λ

∗
: H → H

and Λ

⊛
: H∗→ H∗

are connected in the following way:

Λ

∗h = h
Λ
⊛h∗ ,

where h∗ : H ∋ z Ü→ ⟨h, z⟩ ∈ ℝ and h
Λ
⊛h∗ ∈ H is such that (Λ⊛h∗)z = ⟨h

Λ
⊛h∗ , z⟩ (cf. [4, Examples VI.2.3.3]).

It is easy to see that in the case of aHilbert space U = V = H and a linear continuous operator Λ : H → H such

that ImΛ =H, the equality (KerΛ)⊣ = ImΛ⊛ implies that (KerΛ)⊥ = ImΛ∗
and, consequently, KerΛ = (ImΛ∗)⊥.
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Thus, if in Theorem 2.3, for some x ∈H such that G(x) ̸= 0, the operator G�(x) :H→H is the adjoint of a linear

continuous operator Λ : H → H with Im Λ = H, then the “non-orthogonality” condition G(x) ∉ (ImG�(x))⊥
can be replaced by

G(x) ∉ Ker Λ.
Denoting the above operator Λ by

∗G�(x), we can write the above condition in the form

G(x) ∉ Ker ∗G�(x).
If Λ is self-adjoint, then G�(x) has the same property and the above condition reduces to (2.2).

From Theorem 2.3 we obtain the following corollary.

Corollary 2.6. Let X be a real Banach space, Y a non-empty set, and H a real Hilbert space. If F : X × Y → H
is di�erentiable with respect to x ∈ X in the Gâteaux sense and∙ for any y ∈ Y, the functional

φy : X ∋ x Ü→ 1

2

‖F(x, y)‖2 ∈ ℝ (2.3)

is lower semi-continuous, has a bounded minimizing sequence, and satisfies the weak (PS) condition,∙ F(x, y) ∉ (Im F�x(x, y))⊥ for any (x, y) ∈ X × Y such that F(x, y) ̸= 0 (here, F�x(x, y) denotes the Gâteaux dif-
ferential of F at (x, y) with respect to x),

then, for any y ∈ Y, there exists xy ∈ X such that F(xy , y) = 0.
2.1 Example

Let us consider the operator

F : W × S⊥ ∋ (x, g) Ü→ x�� + x − g ∈ L2,
where

W = {x : [0, π] → ℝ !!!! x, x� are absolutely continuous, x�� ∈ L2, x(0) = x(π) = 0}
and S = {a sin( ⋅ ) | a ∈ ℝ} (here, S⊥ denotes the orthogonal subspace to S in L2 = L2([0, π],ℝ)). We consider

the spaceW with the scalar product⟨x, y⟩ = ⟨x, y⟩L2 + ⟨x��, y��⟩L2 , x, y ∈ W.
The norm ‖x‖2 = ‖x‖2L2 + ‖x��‖2L2 (2.4)

generated by this product is equivalent to the norm (see [2, Part VIII.2])‖x‖2W = ‖x‖2L2 + ‖x�‖2L2 + ‖x��‖2L2 . (2.5)

Of course, the spaceW with the norm ‖ ⋅ ‖ is complete.

We shall show that F satisfies the assumptions of Corollary 2.6 and that it does not satisfy the assump-

tions of the global implicit function theorem proved in [5, Theorem 4.1 and Remark 1], i.e., it does not satisfy

the (PS) condition and its di�erential is not bijective for all (x, g) ∈ W × S⊥ satisfying F(x, g) = 0.
It is well known (see [8]) that the range Im F�x(x, g) of the operator

F�x(x, g) : W ∋ h Ü→ h�� + h ∈ L2
is equal to S⊥ for any (x, g) ∈ W × S⊥. So, the assumption on the bijectivity of F�x(x, g) is not satisfied but it is

clear that

F(x, g) = x�� + x − g ∈ Im F�x(x, g)
for any (x, g) ∈W ×S⊥ and, consequently, F(x, g) ∉ (Im F�x(x, g))⊥ for any (x, g) ∈W ×S⊥ such that F(x, g) ̸= 0.
Alternatively, using Remark 2.5, one can show that F(x, g) ∉ Ker F�x(x, g) for any (x, g) ∈ W × S⊥ such that

F(x, g) ̸= 0. It follows from the equality Ker F�x(x, g) = S.
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Now, let us fix g ∈ S⊥ and consider the functional

φg : W ∋ x Ü→ 1

2

‖x�� + x − g‖2 ∈ ℝ.
Of course, the di�erential φ�

g(x) : W → ℝ is given by

φ�
g(x)h = π∫

0

(x��(t) + x(t) − g(t))(h��(t) + h(t)) dt.
It is clear that (xn), where xn(t) = n sin t, is a (PS) sequence for φ

0
(in fact, φ

0
(xn) = 1

2

‖0‖2L2 = 0 and φ�
0

(xn) = 0
for n ∈ℕ) and it does not contain any subsequence which is converging in L2. So, φ

0
does not satisfy the (PS)

condition (we see that φ
0
is not coercive, too).

But, for any g ∈ S⊥, we have infx∈W φg(x) = 0 and a constant sequence (xn), where xn ∈ W is a fixed so-

lution to the equation

x�� + x = g
for any n ∈ ℕ, is minimizing for φg, and, of course, it is bounded.

Now, we shall show that φg satisfies theweak (PS) condition. Let (xn) be a bounded (PS) sequence for φg.
Since W is a Hilbert space, we may assume, without loss of generality, that there exists x

0
∈ W such that

xn ⇀ x
0
weakly inW. Using the Arzelà–Ascoli theorem and the equivalence of the norms (2.4) and (2.5), one

can show that there exists a subsequence (xnk ) such that xnk Â± x0 uniformly on [0, π] and x��nk ⇀ x��
0

weakly

in L2. Consequently, from the identity(φ�
g(xnk ) − φ�

g(x0))(xnk − x0) = ‖xnk − x0‖2W + 2⟨x��nk − x��0 , xnk − x0⟩L2
it follows that xnk → x

0
inW (with respect to the norm).

3 Uniqueness of a Global Implicit Function
We have the following celebrated result due to Ambrosetti and Rabinowitz (see [1, 9]).

Theorem 3.1 (Mountain Pass Theorem). Let I : X → ℝ be a functional which is continuously di�erentiable in
the Gâteaux sense (equivalently, in the Fréchet sense), satisfies the (PS) condition, and I(0) = 0. If there exist
constants ρ, α > 0 such that I|∂B(0,ρ) ≥ α and I(e) ≤ 0 for some e ∈ X \ B(0, ρ), then

b := sup

U∈We

inf

u∈∂U
I(u)

is the critical value of I and b ≥ α, where

We = {U ⊂ X !!!! U is open, 0 ∈ U, and e ∉ U}.
Using the above theorem and the method of proof applied in [5, 6], we can prove the following theorem

(we give here the proof to show that the method allows us to weaken the assumptions with relation to [5]).

Theorem 3.2. Let X be a real Banach space and H a real Hilbert space. If G : X → H is continuously di�eren-
tiable and∙ the functional

φ : X ∋ x Ü→ 1

2

‖G(x)‖2 ∈ ℝ
satisfies the (PS) condition,∙ G�(x) : X → H is bijective for any x ∈ X such that G(x) = 0 and G(x) ∉ (ImG�(x))⊥ for any x ∈ X such
that G(x) ̸= 0,

then there exists a unique point x ∈ X such that G(x) = 0.
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Proof. From Theorem 2.3 and Remark 2.2 it follows that there exists a point x ∈ X such that G(x) = 0. Let us
suppose that there exist x

1
, x

2
∈ X, x

1
̸= x
2
, such that G(x

1
) = G(x

2
) = 0. Put e = x

2
− x

1
and

g(x) = G(x + x
1
)

for x ∈ X. Of course,
g(x) = g�(0)x + o(x) = G�(x

1
)x + o(x)

for x ∈ X, where

o(x)‖x‖X → 0

in H when x → 0 in X. So,

β‖x‖X ≤ ‖G�(x
1
)x‖H ≤ ‖g(x)‖H + ‖o(x)‖H ≤ ‖g(x)‖H + 1

2

β‖x‖X
for su�ciently small ‖x‖X and some β > 0 (the existence of such a β follows from the bijectivity of G�(x

1
)).

Thus, there exists ρ > 0 such that

1

2

β‖x‖X ≤ ‖g(x)‖H
for x ∈ B(0, ρ). Without loss of generality one may assume that ρ < ‖e‖X. Put

ψ(x) = 1
2

‖g(x)‖2H = 1
2

‖G(x + x
1
)‖2H = φ(x + x1)

for x ∈ X. Of course, ψ is continuously di�erentiable on X and

ψ�(x) = φ�(x + x
1
).

Consequently, since φ satisfies the (PS) condition, ψ has this property, too. Moreover, ψ(0) = ψ(e) = 0,
e ∉ B(0, ρ), and ψ(x) ≥ α for x ∈ ∂B(0, ρ) with α = 1

8

β2ρ2 > 0.
Thus, themountain pass theorem implies that b = supU∈We infx∈∂U ψ(x) is a critical value ofψ and b ≥ α,

i.e., there exists a point x∗ ∈ X such that ψ(x∗) = b > 0 and

0 = ψ�(x∗)h = φ�(x∗+ x
1
)h = ⟨G(x∗+ x

1
), G�(x∗+ x

1
)h⟩

for h ∈ X. The first condition means that G(x∗+ x
1
) ̸= 0 and the second condition means that G(x∗+ x

1
) ∈(ImG�(x∗+ x

1
))⊥. The obtained contradiction completes the proof.

As we remarked in [5], if X = ℝn, then the (PS) condition imposed on φ can be replaced by the coercivity of φ.

Corollary 3.3. Let X be a real Banach space, Y a non-empty set, and H a real Hilbert space. If F : X × Y → H
is continuously di�erentiable with respect to x ∈ X and∙ for any y ∈ Y, the functional

φy : X ∋ x Ü→ 1

2

‖F(x, y)‖2 ∈ ℝ
satisfies the (PS) condition,∙ F�x(x, y) : X → Y is bijective for any (x, y) ∈ X × Y such that F(x, y) = 0 and F(x, y) ∉ (Im F�x(x, y))⊥ for any(x, y) ∈ X × Y such that F(x, y) ̸= 0,

then, for any y ∈ Y, there exists a unique xy ∈ X such that F(xy , y) = 0.
4 A Global Implicit Function Theorem
From Corollary 3.3 and the classical local implicit function theorem we immediately obtain the following

global implicit function theorem.
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Theorem 4.1. Let X, Y be real Banach spaces and H a real Hilbert space. If F : X × Y → H is continuously
di�erentiable with respect to (x, y) ∈ X × Y and∙ for any y ∈ Y, the functional

φy : X ∋ x Ü→ 1

2

‖F(x, y)‖2 ∈ ℝ
satisfies the (PS) condition∙ F�x(x, y) : X → H is bijective for any (x, y) ∈ X × Y such that F(x, y) = 0 and F(x, y) ∉ (Im F�x(x, y))⊥ for any(x, y) ∈ X × Y such that F(x, y) ̸= 0,

then there exists a unique function λ : Y → X such that F(λ(y), y) = 0 for any y ∈ Y and this function is contin-
uously di�erentiable with di�erential λ�(y) at y given by

λ�(y) = −[F�x(λ(y), y)]−1 ∘ F�y(λ(y), y). (4.1)

Proof. Of course, it is su�cient to put λ(y) = xy, where xy is a solution to F(x, y) = 0, as described in Corol-

lary 3.3.

Remark 4.2. The assumption that F�x(x, y) : X → H is bijective for any (x, y) ∈ X × Y such that F(x, y) = 0
canbe replacedby the equivalent assumption that F(x, y) ̸= 0 for any (x, y) ∈ X × Y such that F�x(x, y) : X → H
is not bijective, which may be more convenient in practice.

4.1 Example

Now, we shall give an example of a function which satisfies the assumptions of Theorem 4.1 and does not

satisfy the assumptions of the global implicit function theoremderived in [5].Namely, let us consider the func-

tion

F : ℝ2 × ℝ ∋ (x
1
, x

2
, y) Ü→ (x

1
− y + sin(x

2
− y), x

2
− y + cos(x

1
− y)) ∈ ℝ2.

The Jacobi matrix [F�x(x1, x2, y)] of F with respect to x = (x
1
, x

2
) ∈ ℝ2 has the form[F�x(x1, x2, y)] = [ 1 cos(x

2
− y)− sin(x

1
− y) 1

] .
So, F�x(x1, x2, y) : ℝ2→ ℝ2 is not bijective if and only if(x

1
, x

2
, y) ∈ {(π

2

+y+2kπ, π+y+2lπ, y) !!!!!!! k, l ∈ ℤ, y ∈ ℝ}∪{(−π2 +y+2kπ, 0+y+2lπ, y) !!!!!!! k, l ∈ ℤ, y ∈ ℝ},
whereℤ is the set of all integers. Thus, it is clear (cf. Remark 4.2) that the first part of the second assumption

of Theorem 4.1 is satisfied.

To check the second part of the second assumption, we first observe that (in general) if F(x
1
, x

2
, y) ̸= 0

and F�x(x1, x2, y) is bijective, then F(x1, x2, y) ∉ (Im F�x(x1, x2, y))⊥ (in such a case, (Im F�x(x1, x2, y))⊥ = {0}).
So, it remains to show that if a point (x

1
, x

2
, y) is such that F(x

1
, x

2
, y) ̸= 0 and F�x(x1, x2, y) is not bijec-

tive, then ⟨F(x
1
, x

2
, y), F�x(x1, x2, y)(h1, h2)⟩ ̸= 0

for some (h
1
, h

2
) ∈ ℝ2. Indeed, for points (x

1
, x

2
, y) = ( π

2

+ y + 2kπ, π + y + 2lπ, y), we have⟨F(x
1
,x

2
, y), F�x(x1, x2, y)(h1, h2)⟩= ⟨(π

2

+ 2kπ + sin(π + 2lπ), π + 2lπ + cos(π
2

+ 2kπ)), [ 1 cos(π + 2lπ)− sin( π
2

+ 2kπ) 1

] (h
1
, h

2
)⟩= ⟨(π

2

+ 2kπ, π + 2lπ), [ 1 −1−1 1

] (h
1
, h

2
)⟩= (π

2

+ 2kπ)(h
1
− h

2
) + (π + 2lπ)(h

2
− h

1
)= (−π

2

+ 2(k − l)π)(h
1
− h

2
).
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Of course, the last value is di�erent from zero for h
1
− h

2
̸= 0. Similarly, for points (x

1
, x

2
, y) = (− π

2

+ y + 2kπ,
0 + y + 2lπ, y), we have⟨F(x

1
,x

2
, y), F�x(x1, x2, y)(h1, h2)⟩= ⟨(−π

2

+ 2kπ + sin(2lπ), 2lπ + cos(−π
2

+ 2kπ)), [ 1 cos(2lπ)− sin(− π
2

+ 2kπ) 1

] (h
1
, h

2
)⟩= ⟨(−π

2

+ 2kπ, 2lπ), [1 1

1 1

] (h
1
, h

2
)⟩= (−π

2

+ 2kπ)(h
1
+ h

2
) + 2lπ(h

1
+ h

2
)= (−π

2

+ 2(k + l)π)(h
1
+ h

2
)

and this value is di�erent from zero for h
1
+ h

2
̸= 0. Let us point out that we did not use the condition

F(x
1
, x

2
, y) ̸= 0.

To check the first assumption of Theorem 4.1, we observe that

φ(x
1
, x

2
, y) = 1

2

‖F(x
1
, x

2
, y)‖2= 1

2

((x
1
− y)2 + 2(x

1
− y) sin(x

2
− y) + sin2(x

2
− y) + (x

2
− y)2 + 2(x

2
− y) cos(x

1
− y) + cos2(x

1
− y))

and this value converges to +∞ whereas ‖(x
1
, x

2
)‖ = (x2

1

+ x2
2

) 12 → +∞. So, φ is coercive with respect to(x
1
, x

2
) and, consequently, satisfies the (PS) condition.

It is easy to see that F does not satisfy the assumptions of the global implicit function theorem derived

in [5] because F�x(x1, x2, y) is not bijective for all points (x
1
, x

2
, y) ∈ ℝ2 × ℝ. Moreover, F does not satisfy the

assumptions given in [5, Remark 1], namely, that the di�erential F�x(x, y) : X → H is bijective for any (x, y) ∈
X × Y such that F(x, y) = 0 and F(x, y) ∈ F�x(x, y)X for any (x, y) ∈ X × Y such that F(x, y) ̸= 0. Indeed, e.g.,
the point ( π

2

, π, 0) is such that F( π
2

, π, 0) = ( π
2

, π) ̸= (0, 0) and, of course, there is no point (h
1
, h

2
) such that(π

2

, π) = F�x(π
2

, π, 0)(h
1
, h

2
) = [ 1 −1−1 1

] (h
1
, h

2
) = (h

1
− h

2
, −h

1
+ h

2
).
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