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1 Introduction and Main Results

A closed curve on a Finsler manifold is a closed geodesic if it is locally the shortest path connecting any two
nearby points on this curve. As usual, on any Finsler manifold (M, F), a closed geodesic c : S! = R/Z — M
is prime if it is not a multiple covering (i.e., iteration) of any other closed geodesics. Here, the m-th iteration
c™ of c is defined by ¢™(t) = c(mt). The inverse curve ¢! of c is defined by c¢™1(¢t) = ¢(1 - t) for t € R. Note
that unlike on Riemannian manifolds, the inverse curve ¢! of a closed geodesic ¢ on an irreversible Finsler
manifold need not be a geodesic. We call two prime closed geodesics ¢ and d distinct if there isno 6 € (0, 1)
such that c(t) = d(t + 6) for all t € R. On a reversible Finsler (or Riemannian) manifold, two closed geodesics
c and d are called geometrically distinct if c(S') + d(S1), i.e., if their image sets in M are distinct. We shall
omit the word distinct when we talk about more than one prime closed geodesic.

For a closed geodesic ¢ on an n-dimensional manifold (M, F), denote by P, the linearized Poincaré map
of c. Then, P, € Sp(2n - 2) is symplectic. For any M € Sp(2k), we define the elliptic height e(M) of M to be
the total algebraic multiplicity of all eigenvalues of M on the unit circle U = {z € C | |z| = 1} in the com-
plex plane C. Since M is symplectic, e(M) is even and O < e(M) < 2k. A closed geodesic c is called elliptic
ife(P.) = 2(n - 1), i.e., if all the eigenvalues of P. are located on U, irrationally elliptic if it is elliptic and P is
suitably homotopic to the ¢-product of n — 1 rotation (2 x 2) matrices with rotation angles being irrational
multiples of 71, hyperbolicif e(P.) = 0, i.e., all the eigenvalues of P are located away from U, infinitely degener-
ateif 1 is an eigenvalue of P~ for infinitely many m € N, and, finally, non-degenerate if 1 is not an eigenvalue
of P.. A Finsler manifold (M, F) is called bumpy if all the closed geodesics on it are non-degenerate.

There is a famous conjecture in Riemannian geometry which claims that there exist infinitely many closed
geodesics on any compact Riemannian manifold. This conjecture has been proved except for compact rank-
one symmetric spaces. The results of Franks [15] and Bangert [4] imply that this conjecture is true for any
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Riemannian 2-sphere (cf. [17, 18]). But once one moves to the Finsler case, the conjecture becomes false.
It was quite surprising when Katok [19] found some irreversible Finsler metrics on spheres with only finitely
many closed geodesics and all closed geodesics being non-degenerate and elliptic (cf. [37]).

Recently, index iteration theory of closed geodesics (cf. [6, 22—24]) has been applied to study the closed
geodesic problem on Finsler manifolds. For example, Bangert and Long show in [5] that there exist at least two
closed geodesics on every (S2, F). After that, a great number of multiplicity and stability results has appeared
(cf.[10-14, 25, 26, 31-36] and the references therein).

In [30], Rademacher has introduced the reversibility A = A(M, F) of a compact Finsler manifold as

A = max{F(-X) | X e TM, F(X) = 1} > 1.

Then, in [31], he obtained some results on the multiplicity and the length of closed geodesics and their
stability properties. For example, letting F be a Finsler metric on S" with reversibility A and flag cur-
vature K satisfying (1/(1 + 1)) < K < 1, there exist at least n/2 — 1 closed geodesics with length < 2nm.
If (9/4)(A/(1 +A))? < K < 1 with A < 2, then there exists an elliptic-parabolic closed geodesic, i.e., its lin-
earized Poincaré map is split into two-dimensional rotations and a part whose eigenvalues are +1. Some
similar results in the Riemannian case are obtained in [2, 3].

Recently, Wang proved in [33] that for every Finsler n-dimensional sphere S™ with reversibility A and flag
curvature K satisfying (A/(1 + A))? < K < 1, either there exist infinitely many prime closed geodesics or there
exists one elliptic closed geodesic whose linearized Poincaré map has at least one eigenvalue which is of the
form exp(v/~1mu) with an irrational u. The same author proved in [36] that for every Finsler n-dimensional
sphere S™ for n > 6 with reversibility A and flag curvature K satisfying (A/(1 + 1)) < K < 1, either there exist
infinitely many prime closed geodesics or there exist [n/2] — 2 closed geodesics possessing irrational mean
indices. Furthermore, assuming that the metric F is bumpy, he showed in [35] that there exist 2[(n + 1)/2]
closed geodesics on (S™, F). Also, in [35], he showed that for every bumpy Finsler metric F on S" satisfy-
ing (9/4)(A/(1 + A))? < K < 1, there exist two prime elliptic closed geodesics provided the number of closed
geodesics on (S™, F) is finite.

Very recently, Duan proved in [9] that for every Finsler n-dimensional sphere (S", F), n > 2, with re-
versibility A and flag curvature K satisfying (A/(1 + A))?> < K < 1, either there exist infinitely many closed
geodesics or there exist at least two elliptic closed geodesics and each linearized Poincaré map has at least
one eigenvalue of the form exp(f+v/-1) with 8 being an irrational multiple of 77. Furthermore, in [8], he proved
that for every Finsler metric F on the n-dimensional sphere S", n > 3, with reversibility A and flag curvature K
satisfying (A/(1 + A))? < K < 1, either there exist infinitely many closed geodesics or there exist always three
prime closed geodesics and at least two of them are elliptic; when n > 6, these three distinct closed geodesics
are non-hyperbolic. If the metric is bumpy, Duan and Long proved in [11] that on every bumpy Finsler three-
dimensional sphere (S3, F), either there exist two non-hyperbolic prime closed geodesics or there exist at
least three prime closed geodesics.

Note that Wang proved in [33, Theorem 1.5] that there exist at least three distinct closed geodesics on
(§3, F) with flag curvature K satisfying (1/(1 + A))? < K < 1. Motivated by the results mentioned above, in this
paper, we prove the following theorem.

Theorem 1.1. For every Finsler metric F on the three-dimensional sphere S3 with reversibility A and flag curva-
ture K satisfying (9/4)(A/(1 + A))? < K < 1 with A < 2, if there exist exactly three prime closed geodesics, then
two of them are irrationally elliptic and the third one is infinitely degenerate.

Remark 1.2. Note that Anosov conjectured in [1] that the lower bound of the number of distinct closed
geodesics on a Finsler three-dimensional sphere (S3, F) is four, where Katok’s examples in [19] show that
this lower bound can be attained. However, Ziller in [37, pp. 155-156] conjectured that the lower bound of
the number of distinct closed geodesics on a Finsler three-dimensional sphere (S3, F) is three. To our knowl-
edge, it is not clear whether there exist some irreversible Finsler metrics on S> with exactly three distinct
closed geodesics. This is an interesting problem.
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Our proof of Theorem 1.1 in Section 3 contains mainly three ingredients: the common index jump theorem
of [27], Morse theory, and some new symmetric information about the index jump. In addition, we also follow
some ideas from our recent preprints [8, 9, 13].

In this paper, let N, Ny, Z, Q, R, and C denote the sets of natural integers, non-negative integers, inte-
gers, rational numbers, real numbers, and complex numbers, respectively. We use only singular homology
modules with Q-coefficients. For an S'-space X, we denote by X the quotient space X/S!. We define the func-
tions

lal =max{k € Z | k<a}, E(a)=min{keZ|k>a}, ¢(a)=E(a)-[al, {a}=a-][al. (1.1)

In particular, we have ¢(a) = 0ifa € Zand p(a) =1ifa ¢ Z.

2 Morse Theory and Morse Index of Closed Geodesics

2.1 Morse Theory for Closed Geodesics

Let M = (M, F) be a compact Finsler manifold. Then, the space A = AM of H'-maps y : S — M has a natural
structure of Riemannian Hilbert manifolds on which the group S' = R/Z acts continuously by isometries
(cf. [20]). This action is defined by (s-y)(t) = y(t +s) forally € A and s, t € S'. For any y € A, the energy
functional is defined by

E0) = 5 [ Fy, 702 at @)

Sl

and is C>! and invariant under the S'-action. The critical points of E of positive energies are precisely the
closed geodesics y : St — M. The index form of the functional E is well-defined along any closed geodesic ¢
on M, which we denote by E”(c). As usual, we denote by i(c) and v(c) - 1 the Morse index and the nullity
of E at c, respectively. In the following, we denote

AN={deN|E@d)<x}, N ={del|Ed)<x}

for all x > 0. For a closed geodesic ¢, we set A(c) = {y € A | E(y) < E(c)}.
Recall that the mean index i(c) and the S*-critical modules of c™ are defined by

(0 = Jim "0 Tk o = B (e Ut eyst, At @),

respectively.
We say that a closed geodesic satisfies the isolation condition if

the orbit S! - ¢™ is an isolated critical orbit of E for all m € N. (Iso)

Note that if the number of prime closed geodesics on a Finsler manifold is finite, then all closed geodesics
satisfy (Iso).

If ¢ has multiplicity m, then the subgroup Z,, = {n/m | 0 < n < m} of S! acts on C.(E, ¢). As studied
in [29, p.59], forallm € N, let H, (X, A)*%» = {[{] € H.(X, A) | T.[£] = +[£]}, where T is a generator of the
Z.m-action. On S*-critical modules of ¢™, the following lemma holds (cf. [29, Satz 6.11], [5]).

Lemma 2.1. Suppose c is a prime closed geodesic on a Finsler manifold M satisfying (Iso). Then, there exist Ucm
and N¢m, the so-called local negative disk and the local characteristic manifold at c™, respectively, such that
v(c™) = dim N.» and

Cy(E, c™ = Hy((AC™) U S* - c™)/ST, A(c™)/S1)
= (Hi(c"’)(Ugm U {Cm}’ U;m) ®Hq—i(c'")(NEm U {Cm}3 N;m))+Zm’

where Ugn = Uen N A(c™), Now = Nem 0 A(C™).
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(i) Whenv(c™) = 0, there holds

Q ifi(c™ -i(c) e 2Z and q = i(c™),

0 otherwise.

C4(E, c™) = {

(ii) Whenv(c™) > 0, there holds
Cy(E, ™) = Hy_i(cmy(Ngn U {c™}, N) <€D %m,
where e(c™) = (=1)ic™-i(c),

Define
kj(c™) = dim Hj(Ng U{c™}, Ngn),  kE1(c™) = dim Hj(Ngy U {c™}, Ngn)*2m.
Then, we have the following lemma (cf. [26, 29, 33]).

Lemma 2.2. Let c be a prime closed geodesic on a Finsler manifold (M, F). Then, we have the following.

(i) For any m €, there holds k;j(c™) =0 for j # [0, v(c™)].

(ii) Foranym €N, there holds ko(c™) + ky(cmy(c™) < 1 and if ko(c™) + ky(cm) (c™) = 1, then there holds kj(c™) =0
forj e (0,v(c™)).

(iii) For any m € N, there holds kgl(cm) =ko(c™) and kal(cm) =0. In particular, if c™ is non-degenerate, then
there holds k' (c™) = ko(c™) =1 and kgt (c™) = kfl(c”‘) =0forallj+0.

(iv) Suppose that the nullities satisfy v(c™) = v(c") for some integer m = np > 2 with n, p € N. Then, there holds
kj(c™) =kj(c") and k].ﬂ(c'") = k}.ﬂ(c")for any integer j.

Let (M, F) be a compact simply connected Finsler manifold with finitely many closed geodesics. Denote those
prime closed geodesics on (M, F) with positive mean indices by {c;j}1<j<x. Rademacher established in [28, 29]
a celebrated mean index identity relating all ¢; with the global homology of M (cf. [29, Section 7], especially
Satz 7.9 therein) for compact simply connected Finsler manifolds. Here, we give a brief review on this identity
(cf. [29, Satz 7.9] and also [12, 26, 33]).

Theorem 2.3. Assume that there exist finitely many closed geodesics on (S3, F) and denote the prime closed
geodesics with positive mean indices by {cj}1<j<k for some k € IN. Then, we have the identity

k o~
y Xy, (22)
= ()
where 1 1 _
X)) = —— x(c" = (-1 (M) € Q (2.3)
7 n(g) 1sm§z(q) 77 n(e) 1gm§1(c,-) : !
0<l<2(n-1) 0<i<4

and the analytical period n(c;) of c; is defined by (cf. [26])
n(cj) = min{l €N | v(c}’.) = max v(c}") with i(c™!) — i(c™") € 2Z for allm € ]N}. (2.4)
m>1 J J
Set
A° = A°S? = {constant point curves in $*} = S°.

Let (X, Y) be a space pair such that the Betti numbers b; = b;(X, Y) = dim H;(X, Y; Q) are finite for all i € Z.
As usual, the Poincaré series of (X, Y) is defined by the formal power series P(X, Y) = Y15, bit'. We need the
following well-known version of results on Betti numbers and the Morse inequality. For Lemma 2.4 below,
see [28, Theorem 2.4 and Remark 2.5], [16], and also [12, Lemma 2.5]), and for Theorem 2.5, see [7, Theo-
rem 1.4.3].

Lemma 2.4. Let (S°, F) be a three-dimensional Finsler sphere. Then, the Betti numbers are given by

2 ifj=2kz>4,
bj = rank Hj(AS?/S*, A°S?/S1;Q) = 11 ifj =2, (2.5)

0 otherwise.
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Theorem 2.5. Let (M, F) be a Finsler manifold with finitely many closed geodesics, denoted by {cj}1<j<k. Set
Mg = Z dim C4(E, M, qez.

1<j<k
m>1
Then, for every integer q > 0, there holds
Mq - Mq—l + -0+ (—1)qM() > bq - bqfl + e+ (_1)61b0 (26)
Mg = by. (2.7

2.2 Index Iteration Theory of Closed Geodesics

In [22], Long established the basic normal form decomposition of symplectic matrices. Based on this result,
he further established the precise iteration formulae of indices of symplectic paths in [23]. Note that this
index iteration formulae works for Morse indices of iterated closed geodesics (cf. [21] and [24, Chapter 12]).
Since every closed geodesic on a sphere must be orientable, then, by [21, Theorem 1.1], the initial Morse
index of a closed geodesic on a Finsler S" coincides with the index of a corresponding symplectic path.

As in [23], we denote

A b
Nl(/l,b)—<0 /\)’ A=+1, b e R,

A0
H(/\):<O )l_l)’ A e R\ {0, +1},

RO) = (59 TSN g (0, myu(m, 2m),
sinf@ cos@

and
RO B

Nz(exp(H\/—_l),B):< o RO

), 0 € (0,m) U (m, 2m),

where

b1 by
B= , bieR, b bs.
(b3 b4> j € 2 # b3

Here, N,(exp(8v/-1), B) is non-trivial if (b, — b3) sin 8 < 0 and trivial if (b, — b3)sin 8 > 0.
As in [23], the ¢-sum (direct sum) of any two real matrices is defined by

A1 0 By O
(A1 Bl> o (Az Bz) | 0 A 0 B
Ci D1/, ¢ D 2jx2j ¢t 0 D1 O
0O C; 0 Dy
For every M € Sp(2n), the homotopy set Q(M) of M in Sp(2n) is defined by
QM) ={N € Sp(2n) | o(N) N U = 6(M) N U =T and v (N) = v, (M) forall w € T},

where (M) denotes the spectrum of M, v, (M) = dim¢ kerc(M — wl) for w € U. The component Q°(M) of P
in Sp(2n) is defined by the path-connected component of Q(M) containing M.

For Theorem 2.6 below, cf. [22, Theorem 7.8], [23, Theorems 1.2 and 1.3] and also [24, Theorem 1.8.10,
Lemma 2.3.5, and Theorem 8.3.1].

Theorem 2.6. For every P € Sp(2n — 2), there exists a continuous path f € Q°(P) such that f(0) = P and
f(1) = N1(1, 1)°P- © Ip, © N1(1, -1)°P+ & N1 (-1, 1)° - 0(=Ig,) © N1 (-1, 1) %
© Ny (exp(arV-1), A1) & - & Na(exp(a,,V-1), A;,)
o Na(exp(B1V-1), B1) &+~ & Na(exp(Br, V1), Br,)
OR(61) 0+ OR(6r) OR(Br141) &+ R(6,) © H(x2)*", (2.8)
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where 6;/2m € QN (0,1) for1 <j <r'and0;/2m ¢ Qn (0, 1) forr' + 1 <j <r. The terms Nz(exp(a,-\/j),A,-)
are non-trivial and N, (exp(f; \/—_1),B,-) aretrivial, and the non-negative integers p_,Po,P+>q-»qo>q+,1, T+, 1o, h
satisfy the equality

P_+Po+Ps+q_+qo+qy+r+2r,+2rg+h=n-1. (2.9)

Let
y € Pr(2n-2) ={y € C([0, 7], Sp(2n - 2)) | y(0) = I}

and denote the basic normal form decomposition of P = y(t) by (2.8). Then, we have
: . ! m@,-
i(y™) = m(i(y) + p- +po—1) +2 ZE<7) .

—p-—po—M(qo+q+)+ZZ<p(ma )—Zr*, (2.10)

1+ (-1)™

5 (g- +2q0 + q4) + 2¢(m, y (1)), (2.11)

viy™) =v(y) +

where )
s -r- o) or.-So( 52 o= 5 ()

We have that i(y, 1) is odd if f(1) = N1(1, 1), I, N1(-1, 1), -1, N1(-1,-1) and R(0); i(y, 1) is even if f(1) =
N1(1,-1) and N»(w, b); i(y, 1) can be any integer if o(f(1)) N U = @.

The following is the common index jump theorem of Long and Zhu [27] (cf. [27, Theorems 4.1-4.3] and [24]).

Theorem 2.7. Let yx, k=1, ..., q, be a finite collection of symplectic paths and My = yx(tk) € Sp(2n - 2).
Supposei(yk,1) > Oforallk =1, ..., q.Then,foreveryk = 1, ..., q, there existinfinitely many (N, my, ..., my) €
N9*1 such that

V(Yi, 2my = 1) = v(yk, 1),
V(Vks 2myic + 1) = v(yk, 1),

i(yk, 2mic = 1) + V(yk, 2mi = 1) = 2N = (i(yk, 1) + 28y, (1) = v(yk, 1)),
i(Yk, 2mg + 1) = 2N +i(yx, 1),

e(Mk),

2
e(My)
2 9

i(yk, 2my) = 2N -

i(yx, 2my) + v(yx, 2my) < 2N +

where S;[,Ik(l) is the splitting number of My.
More precisely, by [27, (4.10) and (4.40)] , we have

mk:([ﬁ]ﬂ(}()M, 1<k<gq, (2.12)

where yi =0 or 1 for 1 < k < q and my0/n € Z whenever exp(0V-1) € (My) and 8/m € Q for some 1 < k < q.
Furthermore, given Mg € N, by the proof of [27, Theorem 4.1], we may further require My|N (since the closure
of the set {{Nv} | N € N, Mo|N} is still a closed additive subgroup of T" for some h € N, where we use notation
asin[27, (4.21)]. Then, we can use the proof of [27, Theorem 4.1, Step 2] to get N).

We also have the following properties in the index iteration theory (cf. [27, Theorem 2.2] or [24, Theo-
rem 10.2.3]).

Theorem 2.8. Let y € P;(2n). Then, for any m € N, there holds
e(M) . . , e(M)
2 2’

<i(y,m+1)—i(y,m) -i(y, 1) sv(y, 1) —v(y, m+ 1) +

V(ya m) -

where e(M) is the elliptic height defined in Section 1.
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3 Proof of Theorem 1.1

In this section, we prove our main theorem by using the mean index equality in Theorem 2.3, the Morse
inequality in Theorem 2.5, and the index iteration theory developed by Long and his coworkers, especially
a new observation on a symmetric property for closed geodesics in the common index jump intervals, i.e.,
Lemma 3.2.

First, we make the assumption that

there exist only finitely many closed geodesics ¢y, k=1,...,q,0on (S3, F) with reversibility A (FCG)
and flag curvature K satisfying (9/4)(A/(1 + )% < K < 1withA < 2.
Then, we have an estimate on the index and on the mean index of cy.
Lemma 3.1. We havei(cyx) =2 andi(cx) >3 fork=1,...,q.

Proof. By assumption, since the flag curvature K satisfies (9/4)(A/(1 + A))? < K < 1, we can choosea § in [31,
Lemma 2] to satisfy
9 ( A )2
4\1+A

A

and

i(cr) = 26

1
; > 3.
The claim i(cy) > 2 follows from [30, Theorem 3 and Lemma 3]. O
Combining Lemma 3.1 with Theorem 2.8, it follows that

e(Pe,)
— >0

for all m € IN. Here, the last inequality holds by the fact that e(P,) < 4.
It follows from Lemma 3.1 and Theorem 2.7 that there exist infinitely many (g + 1)-tuples of the form

i(cm™ ) — (el - v(el) = i(cr) - 3.1)

(N,my, ..., mg) € N9"1 such that, forany 1 < k < g, there holds
i(c™ ) + v(c™ ) = 2N - (i(cx) + 253, (1) - v(cr)), (3.2)
i(c;™) > 2N - @, 3.3)
i(c;™) +v(cy™) < 2N + @, (3.4)
i(c;™ ) = 2N + i(cx). 3.5)
Note that by [24, List 9.1.12] and the fact that v(ck) = px_ + 2Pk, + Pk, We obtain
28y, (D) = v(ck) = 2(Pk_ + Pry) = Pk + 2Pk, + Pk,) = Pk_ = Pk, - (3.6)
So, by (3.1)—(3.6) and the fact that e(P,,) < 4, we have
i(cg) +v(cy) < 2N —i(ck) - pr_ + Pr,, foralll <m < 2my, 3.7)
i(c,z(mk) + v(cimk) <2N+ @ <2N+2, (3.8)
2N +2 <i(c), forall m > 2my. (3.9)
In addition, the precise formulae of i(cim" ) and i(cim" ) + v(cimk) for k=1,...,q can be computed as
follows (cf. [9, (3.16) and (3.21)] for the details):
i(cy™) = 2N - Sy (1) = C(My) + 24, (3.10)

i(c;™) +v(cy™) = 2N + P, + Pi, + di_ + G
+2r§(0 = 2rk, =1y ) + 21—+ 20y (3.11)
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where ry, 1, , and ry, denote the number of normal forms R(6), N (exp(av-1), A), and N;(exp(8v-1), B)
in (2.8) of Theorem 2.6 with P = P, k = 1, 2, respectively, and r, r;_, and rLO denote the number of normal
forms R(0), N, (exp(av/-1), A), and N, (exp(8v-1), B) with 6, a, B being the rational multiples of r in (2.8)
of Theorem 2.6 with P = P, k = 1, 2, respectively, and

M= Y Sy (exp(0V-1) <ri-ri+ri -1, CMp)= Y Sy (exp(6V-1)), (3.12)
0<{m0/m}<é 6¢(0,2m)

where 6 > 0 is a small enough number (cf. [27, (4.43)]) and the estimate of Ay follows from the inequality [9,
(3.18)].

Under the assumption (FCG), using [9, Theorem 1.1], we have that there exist at least two elliptic closed
geodesics ¢; and ¢, on (S3, F) whose flag curvature satisfies (1/(1 + 1))? < K < 1. The next lemma (cf. [9, Sec-
tion 3]) lists some properties of these two closed geodesics which will be useful in the proof of Theorem 1.1.

Lemma 3.2. Under the assumption (FCG), there exist at least two elliptic closed geodesics c1 and c, on (S, F)
whose flag curvature satisfies (A/(1 + A))? < K < 1. Moreover, there exist infinitely many pairs of (q + 1)-tuples

of the form (N, m1, ma, ..., mg) € N and (N', m}, m), ..., my) € IN9+1 such that
(™) +v(c™)=2N+2, Counn(E,ci™)=Q, (3.13)
i)+ v(c™) = 2N' +2, Cawra(E, 2™ = Q, (3.14)
and
Pk =Gk, =Tk, =Tky— T} =hk =0, k=1,2, (3.15)
rn-ri=0M021, r-ry=A>1, (3.16)
A+ Dy =ri—-1y, k=1,2, (3.17)

where we can require 2|N or 2|N' as remarked in Theorem 2.7 and

A=Y Sy (exp(BV-1)), k=1,2. (3.18)
0<{m, 6/m}<6

Proof. In fact, all these properties have already been obtained in [9, Section 3] and here we only list refer-
ences. More precisely, (3.13) follows from [9, Claim 1] and the arguments between [9, (3.25) and (3.26)],
(3.14) follows from [9, Claim 3] and similar arguments as those for ¢, between [9, (3.25) and (3.26)], (3.15)
and (3.16) follow from [9, (3.25), Claim 2, and Claim 3], and, finally, (3.17) follows from [9, (3.31)] and
(3.15). In one word, the properties of ¢; and ¢, are symmetric. O

Lemma 3.3. Under the assumption (FCG), for the two elliptic closed geodesics c1, c, found in Lemma 3.2, there
holds

E(C:(Ck)
v(c:(c")

n(cg)
e -1, gl

A R (3.19)

forallo<j < v(cz(ck)), k=1,2,andthenj(ck) <1fork=1,2.

Proof. We only give the proof for c;. The proof for c; is identical.
First, by (3.13) and Lemma 2.1, we have

1 =dim Consa(E, c;™)

. 2my e(Ciml )Zom
= 1
dim H2N+2—i(cim1)(Ncim1 ufci '), Nciml)

. 2m e(c>™)Zom
= dlmHv(ciml)(chml U {(;1 1, Nciml) 1 2my

2m
e(c;™)

2m
vic;™)

=k, (cf™),
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which implies that

2mq
k;(cl )(Ciml) =0

for any 0 < j < v(c2™) by Lemma 2.2 (ii). In addition, note that since n(c1)[2m; and v(c2™) = v(c}”) by
(2.4) and (2.12), there holds
(™

kj

forany 0 <j < v(ciml) by Lemma 2.2 (iv). Thus, (3.19) holds.
Note that by (3.16), the linearized Poincaré map P, of the elliptic closed geodesic c is conjugate to
R(61) © R(B,) or R(61) © N1(A, b) for some 61/2m € (0,1)\Q, A = +1,and b = 0, 1. Then,

n(cq)
)(Ciml) _ kj€(C1 )(C;l(cl))

v(cg) =0 (3.20)

forall m < n(cy). In fact, when P, is conjugate to R(61) © N1(1, b), we have n(ck) = 1. By (2.4), (3.20) holds.
When P, is conjugate to R(61) ¢ N1(-1, b), we have n(ck) = 2. By (2.4), (3.20) also holds. When P, is con-
jugate to R(61) © R(6>), (3.20) holds by (2.4).
Then, (3.20) yields
e(cy

) ()
ko Fe =1, k(=0
forall 0 < j < 4 and for 1 < m < n(cg), which together with (2.3) and (3.19) gives

vy (—1)““2"’)31. O

1<m<n(cyk)

n(cy)

1 . n(ck)
v(ch) = ((_1)1(ck )+v(c
X = e
Proof of Theorem 1.1. In order to prove Theorem 1.1, based on [33, Theorem 1.5] (cf. also [8, Theorem 1.1]),
we make the assumption that

there exist exactly two elliptic distinct closed geodesics c1, ¢, possessing all properties listed
in Lemmas 3.2 and 3.3 and a third closed geodesic c3 on (3, F) with reversibility A and (TCG)
flag curvature K satisfying (9/4)(A/(1 + A))? < K < 1 with A < 2.

Claim 1. cT' has no contribution to the Morse-type numbers Myn.1, Moy, and Myn—1 for any m € N, ¢3! has
possible contribution to the Morse-type numbers Man.1, Moy, or Man—1 only when m = 2m,, and this time
cﬁmz has no contribution to M,n.1 and M,n_1, but contributes at most one to My.

In fact, by (3.16), for k = 1, 2, the linearized Poincaré map P, of the elliptic closed geodesic ci is conjugate to
R(61) © R(0,) or R(61) © N1(A, b) for some 0,/2m € (0, 1)\Q, A = +1, and b = 0, 1. Combining this fact with
Lemma 3.1 and (3.7), we have

i(cy) +v(cy) < 2N —i(cx) - pr_ +pr, <2N -1 (3.21)

for m < 2my, k = 1, 2, where the equality in (3.21) holds if and only if P, is conjugate to R(61) ¢ N1(1,-1)
and i(ck) = 2, buti(ck) € 2N — 1 when P, is conjugate to R(61) ¢ N1(1, —-1), thus the equality in (3.21) does
not hold. Then,

i(cg) +v(cy) <2N -2 (3.22)

for m < 2my, k = 1, 2. Combining Lemma 2.2 (i) with (3.9) and (3.22), we know that ¢} has no contribution
to the Morse-type numbers Mayy1, Moy, and Mpy_1 for m # 2my, where k = 1, 2. Note that by (3.13) and
(3.19), cfml has also no contribution to Myy.1, Moy, and Moy_1.
On one hand, there holds
v(c%mz) = v(cimz)
by the choices of m, and m’2 in (2.12) of Theorem 2.7. On the other hand, it yields

i(c2™) = i(c2™) (mod 2)

by (2.10) of Theorem 2.6. So, i(c3™) + v(c3™) is even since i(cimz) + v(cimz) is even by (3.14) of Lemma 3.2,
and then c§m2 has no contribution to M,y,1 and M,y_1 by (3.19). If c%mz has contribution to M5y, then C%mz

contributes exactly one to M,y by (3.19). Hence, Claim 1 holds.
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Claim 2. c' has no contribution to the Morse-type numbers Moy .1, Moy, and May_1 for any m # 2ms.

First, by (3.9) and Lemma 2.2 (i), we know that %' has no contribution to the Morse-type numbers My, 1,
My, and M,y_q for m > 2ms.
On the other hand, from Lemma 3.1 and (3.1)-(3.2) along with the fact that v(c§m3_1) = v(c3), we have

i(c]) +v(ch) < i(c5™ 1) = 2N - (i(c3) + 28}, (1)) < 2N - 2

forall1 < m < 2ms3 - 1, which, together with Lemma 2.2 (i), implies that c%' has no contribution to the Morse-
type numbers Man+1, Moy, and Moy-1 for any m < 2ms — 1.

Now, we prove Claim 2 by contradiction. We can assume that cgmrl has contribution to the Morse-type
numbers Mons1, Moy, or Mon_1, i.e.,

2N+1 _
Y dim Cy(E, ¢*™) 2 1. (3.23)
q=2N-1

Note that, by (3.2) and (3.6), we have

i(c3™ ) +v(cd™ ) = 2N —i(c3) - p3_ +p3, <2N-2+2=2N, (3.24)

2ms-1 2ms—

which, together with Lemma 2.2 (i) and the assumption (3.23), gives i(c5 )+ v(cs 1) =2Nor2N -1.
We continue the proof by distinguishing two cases.

Case 1. i(c§m3_1) + v(c§m3_1) = 2N. In this case, by (3.24), P, is conjugate to N1(1,-1)°? and i(c3) = 2,
v(cg") = 2 for all m > 1. Then, using Theorem 2.6, we obtain

i(c5) +v(cq) - 2 = i(c§) = mi(c3) = m(i(c3) + v(c3) - 2) = 2m (3.25)

forallm > 1.
Now, by (2.5) and (2.7), we obtain M,y > b,y = 2, which, together with Claim 1, implies that cJ' must
have contribution to M,y for some m € N, i.e.,

Y dim Con(E, c§) 2 1. (3.26)

m>1

Thus, c§m3_1 has contribution to My and ky(,)(c3) = 1, since otherwise c§m3_1 contributes to M,n_1 and
ki(c3) # 0, and then c5' has no contribution to My for any m € N by (3.25), which contradicts (3.26). Now,
kv(c;)(c3) = 1 and (3.25) imply that c5 satisfies the condition of Hingston’s result (cf. [17, Proposition 1] and
[33, Theorem 4.2]), which yields the existence of infinitely many closed geodesics which contradicts the as-
sumption (TCG).

Case 2. i(c§m3_1) + v(c§m3_1) = 2N - 1. In this case, by (3.24), one of the following cases may happen.

() i(c3) =3 andps, = 2.
(ii) i(c3) =2andps, =1.

For (i), we have that P, is conjugate to N1 (1, -1)°2, which implies that i(c3) is even, thus case (i) cannot
happen.

Noticing that i(c3) = 2 is even in case (ii), we have that P, is conjugate to N1(1, -1) ¢ H(2). So, by The-
orem 2.6, we have

i(ch) +v(c§) = mi(c3) +v(cf) =2m+ 1 (3.27)
for m > 1. Now, in this case it follows from (3.23) that c%mrl has contribution to M,y-1 and then ky¢,)(c3) =1,

which together with (3.27) implies that cg" has no contribution to M,y for any m € N, which in turn contra-
dicts (3.26). This completes the proof of Claim 2.
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Claim 3. c§m2 has no contribution to My.
ZTYQ

In fact, ¢; " contributes otherwise exactly one to M,y by Claim 1. By (2.5) and (2.7), Moy = boy = 2, and

then c§m3 must have contribution to M,y by Claims 1 and 2. Thus, c§m3 has no contribution to M,y,> and

M>,n_> by (3.3)-(3.4) and Lemma 2.2 (ii). So, we obtain that
m3
— Mons1 + Moy — Man-q = z (- 1)’“3 3)er(c3 )(C§m3) +1. (3.28)
0<i<4

On the other hand, by (2.6) and Lemma 2.4, we have
MjNn+1 — Moy + Mon-1 = bansr — bon + ban-1 = -2. (3.29)

Combining (3.28) and (3.29), we get

m3
Y@My = 3 (DS 2my g, (3.30)
0<l<4

Note that since n(c3)|2ms and v(c%"”) v(c3(c3)) by (2.4) and (2.12), there holds

™), 2 e(c5)
k] 3 (C3m3)=kj 3 (C;l(CB))

forany0 <j < v(c%"”) by Lemma 2.2 (iv). Then, it follows from (2.4) and (3.30) that
XX = x(c2™) < 1. (3.31)

Now, we can obtain that
xch <1 (3.32)

forall1 < m < n(c3).

In fact, if 3 is totally degenerate, i.e., if 1 is the unique eigenvalue of P, then n(c3) = 1 and (3.32) holds
by (3.31).

If c3 is not totally degenerate, by (2.4), either v(c}') < 2for1 < m < n(c3) or v(c§"°) =2for1 < mg < n(c3)
with PC;"O conjugating to I & R(0) for some 6/2m € Q and i(c;"") € 2IN. In any case, (3.32) follows from
Lemma 2.2 (ii).

Now, we combine (3.31) and (3.32) to get y(c3) < 1, which, together with Lemma 3.1 and Lemma 3.3,
implies that

:1’

~>‘><>
+
W=

UJlb—\
le

R
which contradicts the identity (2.2) in Theorem 2.3. Hence, Claim 3 holds.

Claim 4. ¢, and c; are irrationally elliptic.

By (3.16) and (3.17), there holds A, = 0. Then, together with the fact that r,, = 0 from (3.15), it follows from
(3.16) and (3.11) that

2N > i(c3™) + v(c3™) (3.33)
= 2N + (D2, + D2+ + Qo +qa, + 215 +15) = (r2 = 1)
>2N -2, (3.34)

where (3.33) holds by the fact that p,, + pa+ + g2_ + g2, + 2r'20 +r, <1from(2.9)and (3.16) and r, -1} > 1
from (3.16), and the equality in (3.34) holds if and only if r, - r'2 = 2. On the other hand, by Claim 3, we have
i(c3™) +v(c3™) # 2N and by (3.14), we have that

i(c3™) +v(cA™)
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is even since it has the same parity with i(cgm; )+ v(cim; ). Thus, by (3.33), we obtain i(c%mz) + v(c%mz) <2N-2,
which together with (3.34) implies r, — 1 = 2, i.e., ¢ is irrationally elliptic. By the symmetry of ¢; and c2,
we also obtain that c; is irrationally elliptic. Thus, Claim 4 is true.

To conclude with the proof of Theorem 1.1, first note that if 1 is an eigenvalue of P, mo for some mp € N,
then 1 must be an eigenvalue of P 2imo forany ! € N by (2.11) of Theorem 2.6. So, if c3 is not infinitely degener-
ate, then all iterates cJ' of c3 with m ¢ Narenon- degenerate and then all closed geodesics ck, k = 1, 2, 3, and
their iterates are non-degenerate by Claim 4. Using [35, Theorem 1.2], we get four prime closed geodesics,
which contradicts the assumption (TCG). Hence, c3 is infinitely degenerate. O
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