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1 Introduction

In [14, 16), for any p > 1 and C? function u on R", n > 2, global and local Gagliardo-Nirenberg inequalities
of the form
J [Dul?*? dx < C(n, p)lullgyo j |Du|?~2|D?u|? dx (1.1)
R" R
were established and applied to the solvability of scalar elliptic equations.
In this paper, we provide global and local versions of the above inequality with the Lebesgue measure
dx replaced by wdx where w is some A, weight. The purpose of such generalization becomes clear when we
apply the results to the study of local/global existence of strong solutions to the following nonlinear strongly
coupled and nonregular but uniform parabolic system:

ue = div(A(x, t, u, D)) + f(x, t,u, Du), (x,1) € Q= Qx (0, To),
u(x,0) =Up(x), x€Q, (1.2)
u=0 onoQx (0, Typ).

Here, and throughout this paper, Q is a bounded domain with smooth boundary 0Q in R". A typical point

in R" is denoted by x and a point in R" x [0, co) is denoted by z = (x, t). The temporal and k-order spatial
derivatives of a vector-valued function

UG t) = (W6 8), .. U )7, m>1

are denoted by u; and Dku, respectively. A(x, t, u, Du) is a full m x n matrix, andf O X RxRM™x R — R™,
The initial data Uy is given in W17 (Q, R™) for some ro > n. As usual, W&P(Q, R™), where k is an integer and
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p > 1, denotes the standard Sobolev spaces whose elements are vector-valued functions u : Q — R™ with
finite norm
k
Mullwer @,rmy = Iullzo,mmy + Y 1D ullLo 0, mm)-
i=1

By a strong solution of (1.2) we mean a vector-valued function u that solves (1.2) a.e. in Q x (0, Tp) and
continuously assumes the initial value Uy at t = 0 and boundary data on 0Q x (0, Ty). Moreover, for some
a>0andall t € (0, Tp) we have Du(-, t) € C“’%(Q) and D?u(-, t) € L?(Q) fora.e. t € (0, Tp) and all p > 1.

The strongly coupled system (1.2) appears in many physical applications, for instance, Maxwell-Stephan
systems describing the diffusive transport of multicomponent mixtures, models in reaction and diffusion in
electrolysis, flows in porous media, diffusion of polymers, or population dynamics. We refer the reader to
the recent work [10] and the references therein for the models and the existence of their weak solutions.
Besides the question whether a strong solution of (1.2) can exist locally near t = 0, we face with a fundamental
problem in the theory of PDEs to establish that this local solution exists globally. Unlike the well-established
theory for scalar parabolic equations (i.e. m = 1), where bounded solutions usually exist globally, there are
counter examples for systems (m > 1) which exhibit solutions that start smoothly and remain bounded but
develop singularities in higher norms in finite times (see [8]). Even more, bounded solutions to (1.2) may not
be even Holder continuous everywhere.

We will impose the following structural conditions on (1.2). In this paper, for a vector- or matrix-valued
function f(u, {), u e R™and { € RY, its partial derivatives will be denoted by f, fr.
(A) A(x, t,u,isClinx € R, u € R™ and { € R™*. Moreover, there are constants C., C, Ag > 0 and a scalar

C! function A(x, t, u) such that, for any (x, t) € R™1, u ¢ R™ and ¢, £ € R"™,

A, L wld? < (Agx, tu, 08,8 and  Ag(x, t, u, {)] < CLAKX, t, u). (1.3)

We also assume A(x, t, u) > Ag and |A,(x, t, u, {)| < C|A,[{].

If A(x, t, u) is also bounded from above by a constant, we say that A is regular elliptic. Otherwise, A is
uniformly elliptic. The constant C, in (1.3) concerns the ratio between the largest and smallest eigenvalues
of A;. We assume that these constants are not too far apart in the following sense.

(SG) (The spectral gap condition) (n — 2)/n < C;1.

We note that if this condition is somewhat violated then examples of blowing up in finite time can occur
(see [1]).

Concerning f , we will assume the following.

(F) There exist a constant C and a function f(x, t, u) which is C! in x, u such that, for any C! functions
u:Q—->Rm"andp: Q —» R™,

F(x, t,u, p)l < CAZ(x, t, wip| + f(x, t, u),
[Au(x, t, w)]
%(x, t,u
Ifu(x, t,u)| < CA(x, t, u). (1.5)

IDF(x, t, u, p)| < CA? (x, t, u)|Dp| + C [Dullp| + |fu(x, t, w)|[Dul, (1.4)

For simplicity in our statements and proof, as the presence of x, t can be treated similarly, we will mostly
assume that A, f are independent of x, ¢ in this paper.

In the last decades, papers concerning strongly coupled parabolic systems like (1.2), with A(x, t, u, Du)
being linear in Du, i.e. A(x, t, u, Du) = A(x, t, u)Du, usually relied on the results of Amann [2, 3] who showed
that a solution to (4.1) exists globally if its W'"0(Q) norm for some ro > n, where n is the dimension of Q,
does not blow up in finite time. This requires the existence of a continuous function € on (0, co) such that

luC, Ollwroqrmy < Ct) forallt e (0, To) and some rg > n. (1.6)

The verification of (1.6) is very difficult and equivalently requires Holder continuity of the solution u.
This is a very hard problem in the theory of PDEs as known techniques for the regularity of solutions to scalar
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equations could not be extended to systems, and counterexamples were available. Maximum or comparison
principles for systems generally do not hold so that the boundedness of solutions to (4.1) is unknown. Even
if the solutions are bounded, only partial regularity results are known (see [6]).

Furthermore, the assumption (1.6) gives the boundedness of u so that the ellipticity constants for the
matrix A(x, t, u) are bounded. Thus A is regular elliptic. Without this assumption, one has to consider the case
A(x, t, u) being uniformly elliptic when the smallest and largest eigenvalues of A(x, t, u) can be unbounded
but comparable as in (1.3).

In this paper, we will replace (1.6) by a much weaker condition. Namely, we will show that it suffices to
control the BMO norm of u and the uniform continuity of this norm in small balls. Roughly speaking, we will
replace condition (1.6) by the following:

for any € > O there is R > O such that sup [lu(:, t)Bmo(ss,) < € forall t € (0, To). (1.7)

BRSCQ

By the Poincaré-Sobolev inequality, it is clear that (1.6) implies (1.7), even when rg = n.

On the other hand, since we will consider nonregular parabolic systems with A being nonlinear in Du,
Amann’s results are not applicable here to give the solvability of (1.2). We will then provide an alternative
approach to establish local/global existence results for (1.2) via Leray—Schauder fixed point theories. The
existence results will be proven under a set of general and practical structural conditions on A4, f. Roughly
speaking, we will embed (1.2) in a family of nonlinear systems which satisfy the same set of assumptions for
(1.2). The strong solutions of these systems are fixed points of a family of compact vector fields in some appro-
priate Banach space. The key step in the argument is the establishment of a uniform bound for such solutions.
We obtain the desired bound by using the local weighted Gagliardo—Nirenberg inequalities in Section 2 to
deduce a decay estimate for local norms of the solutions so that an iteration argument can apply.

Though (1.7) will be required to hold uniformly for all strong solutions of the systems in the family, but,
as these systems assume the same hypotheses for (4.1), we practically need only verify (1.7) for (1.2).

The techniques in this paper also give higher regularity of solutions to other systems where (1.7) yields
that u is Holder continuous. We thus devote Section 3 to the a-priori estimates and the regularity of solutions
to the following system:

u; = div(A(x, t, W, Du)) + f(x, t, W, Du),

where W, u are related in some way. Later, the case W = ou for some ¢ € (0, 1] will be used in our fixed point
argument to obtain local and global existence results.

We conclude this paper with Section 4 where we apply the estimates in Section 3 to study the solvability
of (1.2) under the assumption (1.7).

2 Weighted Gagliardo—Nirenberg Inequalities

In this section we will establish global and local weighted Gagliardo—Nirenberg interpolation inequalities
which allow us to control the LP norm of the derivatives of the solutions in the proof of our main theorems.
These inequalities generalize those in [14, 16], where no weight versions were proved (see Remark 2.2).

Here and throughout this paper, we write Bgr(x) for a ball centered at x with radius R and will omit x if
no ambiguity can arise. In our statements and proofs, we use C, C1, . .. to denote various constants which
can change from line to line but depend only on the parameters of the hypotheses in an obvious way. We will
write C(a, b, . ..) when the dependence of a constant C on its parameters a, b, . .. is needed to emphasize
that C is bounded in terms of its parameters.

For any measurable subset A of Q and any locally integrable function U : Q — R™ we denote by |A| the
Lebesgue measure of A and by U, the average of U over A. That is,

1

WJ U(x) dx.

U, = ][ UG) dx =
A A
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In order to state the assumption for this type of inequalities, we recall some well-known notions from
Harmonic Analysis.
For y € (1, oo) we say that a nonnegative locally integrable function w belongs to the class A, or w is an

A, weight if the quantity
’ y-1
[w], := sup ( ][ wdx)( } wlY dx)
Br(y)cQ

Br(y) Br(y)

is finite. Here, y' = y/(y — 1). The A, and A classes are defined by A, = Uy>1 AyandA; = ﬂy>1 A,.Formore
details on these classes we refer the reader to [4, 13, 15]. Clearly, the above implies

u
( ][ wdx)( ][ w_% dx) < [wlysr forallu > 0.
Br(y) Br(y)

A locally integrable function U : Q — R™ is said to be BMO if the quantity

[Ul« := sup J’r |U = Uyl dx
Br(y)cQ
Br(y)

is finite.
The Banach space BMO(Q, R™) consists of functions with finite norm
IUllsmoca,rm) := [Ul« + 1UllL1q,mm)-

When no ambiguity can arise, we simply say U is BMO and omit Q or R™ from the above notations.
We first have the following global weighted Gagliardo—-Nirenberg inequality.

Lemma 2.1. Let u, U: Q — R™ be vector-valued functions with u € C1(Q), U € C2(Q) and ® : R™ — R be a
C! function. Suppose that either U or (Dz(u)% vanish on the boundary 0Q of Q. We set

I ::j %) DUPPPH dx, L :=J @2 (u)|Du|??*? dx, (2.1)
Q Q

I i= [ 10, (DU + IDuP?*?) dx,
Q

I := J @%(u)|DU|*P~2|D?U)? dx. (2.2)
Q

Suppose that
(GN) @(u)r+2 belongs to the App+2)+1 class.

Then for any € > O there is a constant C,, ¢ depending on € and [d)zﬂ% (W)]p/p+2)+1 for which
I < ely + Ce 0l Ulgyoq T + 2] (2.3)

In the proof of this lemma we will make use of the following well-known facts from Harmonic Analysis. We first
recall the definition of the centered and uncentered Hardy-Littlewood maximal operators acting on function
FelLl (Q):

loc
MF)(y) = sup{ j F(x)dx : € > 0and Be(y) ¢ Q}
&
Be(y)
M*(F)(z) = sup { J F(x)dx : £ > 0 and Be(y) ¢ Q}
z€Be(y),e B.(y)

We also note here the Hardy-Littlewood theorem: for any F € L9(Q) we have

J M(F)?dx < C(q)l Fldx, gq>1. (2.4)
Q Q
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More generally, the Muckenhoupt theorem [12] states that if w is an A, weight then, for any F € L9(Q),

j M(FYiw dx < j M (F)Tw dx < C([w]q)J Fiw dx. 2.5)
Q Q Q

We also make use of Hardy spaces H*. For any y € Q and € > 0, let ¢ be any function in C3°(B1(y)) with
ID@| < C1. Let dpe(x) = e (%) (then [Dgpe| < Cre71™). From [15], a function g is in H*(Q) if

supg * ¢ € L'(Q) and |glac = lIgllLicq) + Isup g * Pelli(o)-
>0 >0

We are now ready to give the proof of Lemma 2.1.

Proof. We can assume that m = 1 because the proof for the vectorial case is similar. Integrating by parts, we
have
I = J ®(u)|DUIP*? dx = —I U div(®(u)|DUIP DU) dx. (2.6)
0 Q

We will show that g = div(®?(u)|DU|?? DU) belongs to the Hardy space 7! and

2 11 L1 11
Iglzc = | suplg « el dx < CUDF Wlyyeen)[1F (1 + 1) 4 LT3 . 2.7)
0
Once this is established, (2.6) and the Fefferman—Stein theorem on the duality of the BMO and Hardy spaces
yield
2 11 L1 11

I < |Ullswolighser < CUPP2 )]y )N Ulwo [T (17 +17) + 713 |.

A simple use of Young’s inequality to the right-hand side then gives (2.3).

Therefore, in the rest of the proof we need only establish (2.7). We then write g = g1 + g, with g; = div V;,
setting

Vy = c1>(u)|DU|P+1(cp(u)|DU|P-1DU— ][ ®(u)|DUP DU dx),
B:
V, = ®(u)|DUPH } ®w)|DUP~DU dx.
Bs

Let us consider g first and define h = ®(u)|DUP~1DU. For any y € Q and B, = B.(y) c Q, we use inte-
gration by parts, the property of ¢, and then Holder’s inequality for any s > 1 to get

g1+ 9l =| | D(*2 )~ hap)@@IDUP d

&
B:(y)
C1 +1
<2 { I~ R, )| D) DU dxl
B:(y)
g%( ][ = g, 1° dx) { @ )DU* dx)".
Be(y) Be(y)

There is a constant C such that |Dh| < |®, (u)||Du||DUP + p®|DU|P~1|D2U|. Poincaré-Sobolev’s inequal-
ity, with s. = ns/(n + s), then gives

c 1 E
?1<][ h - hp,|* dx) < c(f DA’ dx) :

B B

1
< c[ ][ ®,, ()| |Dul** |DUPS* dx + } 5 [ DUIP-VsD2U dx | . (2.8)
B, B.
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Using the above estimates in (2.8), we get

%( :[ |h - hp,|° dx)% < C[Wy + Vs,
Be
where
Yi(y) = (M(Iq)u(u)ls*IDUlps*IDMIS*)()’))i,
¥a(y) = (M@ DUI®~D% [D2UF) ()™
Setting

W5 (y) = (M@ ()| DU|PDs+) ()5

and putting these estimates together, we thus have

Su(Plgl * P < C[W1 + V2 ]¥s. (2.9
>0,
In the sequel, we will denote

F=®DUP*, F=|®,/IDUP*, f=®DulP*', f=|®,/Dul’**. (2.10)

Take s = 2n/(n - 1), then s, = s’ = 2n/(n + 1). With these notations and the definition of I;, we can use
Young’s inequality and then (2.4), because 2 > 2n/(n + 1) = s., to get

3 1 i _ _ 1
(] waax)" < c(mmEns «IMENT) < CUFLa + 17212) < ;.
Q

Similarly,
1

(I ¥2dx)’ < ClO2DURP* I, < CT}
Q
Furthermore, (2.4) also gives

1
(J ¥3dx)" = [M(@* DU DU )
Q

1
5 < CI|@?|DUP~D?U||l,.

Therefore, by Holder’s inequality, the above estimates and the notations (2.1) and (2.2), we get

1_1 11
J suplgy * ¢l dx < C[IfIl2 +Ilz122]. (2.11)
&
Q

We now turn to g, and note that |div V| < C(J; + J») for some constant C and
J1 := @, )|IDUP*|Dulf3, ], := ®DUI|D*UJ3,

with
Js = | { ®|DUP dx|.
Be(y)
We will estimate [|¢¢ * J1ll11(q) and ||¢e * J2ll11(q). The calculations for these estimates are similar, we

consider J; first and denote
K =|®,(w)||DUP*, L =|Dul.

We first observe that
J3(y) < M*(®|DUP)(x) for x € Be(y).
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Here, M* is the uncentered Hardy-Littlewood maximal operator. We then have
Pe * J1(x) < e * K)L(X)M* (®|DUP)(x).
Therefore,

J Ipe * J1(X)] dx < j KGOL(X)M* (®|DUP)(x) dx = J K(L®#T)(M*(®|DUP)®#1) dx.
Q Q Q
We then apply Holder’s inequality to the last integral to get

1 -1
j Ibe * J1ldx < IKlz2@) LLO7 20+ oy |M7 (PIDUP)OF | 2 . (2.12)
Q

Concerning the last term on the right-hand side of (2.12), we note that w := 7 is an A, weight for
q =2(p +1)/p.Indeed, because 1 — q' = -p/(p +2)and g — 1 = (p + 2)/p, we see easily that

' q-1 =2 2 P’%Z 2 pr%z
{ WdX(:l: wl™d dx) = J: oxy dx(:‘t Or2 dx) < ([@m]p/@+2)+l> .
B B B B

Therefore, [w], is bounded by a constant depending on [Cl)ﬁ Ip/(p+2)+1-
By Muckenhoupt’s theorem (2.5), we can find a constant C([w]y) ~ [w], such that

|M* (@|DUP)D | 2(;;31) - j (M*(®|DUIP))w dx < C([W]q)J @I DUPw dx.
@
Q Q

Note that from the definition of g = 2(p + 1)/p and w := @7, we have @I DUPIw = |D2DU|?P+2.
Hence, using the above estimate for the last integral in (2.12), we derive

1 P
J e * J1l dx < ColKll2(@) LD |20+ IFI;™ (2.13)
Q

where Cg is a constant depending on [w], or [(Dﬁ Ip/(p+2)+1-
Recalling the definition of K = F (see (2.10)) and L = |Du|, we see that

LD l20v0(q) = ||ﬂ|

Therefore, Young’s inequality yields

=
[N

-1 -
J Sup|¢s « J1ldx < CcpIIFIIzII}‘]I”’+1 IIFII”’+1 Colf (I +17). (2.14)

Q

Next, for J, = ®|DUP-1|D2U||DU|J; we repeat the calculation for J;, using
= |®w)|IDUIP-ID*U|, L =|DU|.

We then obtain an estimate similar to (2.13) for || * J2ll11(q). Now, with the new definitions of K, L, we have

1 1 +
IKl2 @) = It ILOPT 200 (a) = Il g n

We then obtain the inequality
J suplee * Jol dx < Ccpll%lz%- (2.15)
o &
Combining the estimates (2.14), (2.15), we derive

1 1 A1 11
jsup|g2*¢g|dx<cq,[ HIEES SRS (2.16)
Q
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The above and (2.11) yield
_1 1 A1 11
j suplg * ¢l dx < Cq;[If(If +17) +If122].
2 €
We thus proved (2.7) and the proof of Lemma 2.1 is complete. O

Remark 2.2. By approximation (see [16]), Lemma 2.1 also holds for u € W2(Q) and U € W?2(Q) provided
that the quantities Iy, I, and 1, defined in (2.1) and (2.2) are finite. Furthermore, if @ is a constant then I; = 0
on the right-hand side of (2.3). Thus if u = U and @ is a constant then Lemma 2.1, with small &, clearly gives

I [DUI?P*? dx < C|| U||§MO(Q)J |DUI*P~?|D*U* dx.
Q Q
This is the Gagliardo—Nirenberg inequality (1.1) established in [16].

Remark 2.3. In other applications, we may need a similar version of the lemma with the usual gradient oper-
ator D being replaced by a general differential operator D, e.g. a weighted linear combination of D,,. One can
easily see that the proof is virtually unchanged if a certain Poincaré—Sobolev inequality used in (2.8) holds.

Namely,
1 § &
- ][ -y, * dx)” < ¢ ][ [DAI* dx)

Be Be
holds for some s.., depending on s, such that s’, s. < 2. Of course, DU, Du will be accordingly replaced by
DU, Du.

To study the regularity of solutions, assuming that their BMO norms in small balls are small, we have the
following local version of Lemma 2.1.

Lemma 2.4. Letu, U: Q — R™ be vector-valued functions withu € C1(Q), U € C%(Q), and let ® : R™ — R be
a C* function such that the condition (GN) in Lemma 2.1 holds. For any ball B; in Q we set

L(t) ::j 2| DU dx, 11(0) ::J @2 ()| Dul?P*? dx,

B B
1) o= j DL WIZ(DUPP* + |Dul?P*?) dx,
B

L(t) = J ®%(u)|DUI*P~2|D*U|? dx.
B¢
Consider any ball B concentric with B, 0 < s < t, and any nonnegative C* function i such that y = 1in Bs and
Y = O outside B;. Then, for any € > O there are positive constants Ce, o, Ce such that
L(s) < el () + 11(O] + Ce, ol UlZyoqp, T2 (6) + L2 ()]

+ C£||U"BMO(B[)SUEP|D¢(X)|ZJ |®|%(w)|DU|? dx. (2.17)
x€B;
B;

Proof. We revisit the proof of Lemma 2.1. Integrating by parts, noting that i) = 0 on 0Q, we have
J 2wy |DUIP* dx = _J U div(®>(u)y?|DUIP DU) dx.
Q Q
Again, we will show that g = div(®?y?|DU|?*? DU) belongs to the Hardy space J('. We write g = g1 + &>
with g; = div Vj, setting
v, = (D(u)l/)lDUI””((D(u)l,leUlp‘lDU - ][ W)Y DUP-DU dx),
B,

V, = )| DUPH ][ D)y DUP-'DU dx.
B,
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In estimating V; we follow the proof of Lemma 2.1 and replace @(u) by ®@(u)y(x). There will be some
extra terms in the proof in computing D(®(u)). In particular, in estimating Dh in the right-hand side of (2.8)
we have the following term and it can be estimated as follows:

1

({ @ ()| D[ | DUPS dx)K < sup|sz|(][ @5 ()| DUP* dx)g.
X€B;
B, B:

We then use the following inequality, via Young’s inequality, in the right-hand side of (2.9) (with Q = B;):
1 2
supIDl,bIJ Y M(D5 (u)|DUIPS*)5+ dx < C“ ‘P% dx + supIDlplzJ M(®3 (u)|DUPS+)s+ dx].
B, B, Xx€B; B,
The last integral can be bounded via (2.4) by
SuplDll)Izj @2 (u)|DU|? dx.
Xx€B;

t

Using the fact that || < 1 and taking Q to be B; and omitting the obvious parameter ¢ in the sequel, the
previous proof can go on and (2.11) now becomes

j suplg: * peldx < C[I}I; + I} I3 | + C(e) sup|sz|Zj @ ()| DU dx. (2.18)
B B B,
Similarly, in considering g, = div V,, we will have an extra term ®(u)|Dy|[DUIP*1J3 in J;. We then use

the estimate
supl¢e * @W)|[DY|IDUP*]; < sEpIDl/JIM(CD(u)IDUlp“)M(CD(u)IDUI"),

and, via Young’s inequality and (2.4),

J suplge * DQ)|IDYIDUPY; dx < el1(£) + C(e) sup|sz|2J ®2(u)|DUI dx.
B¢ ‘ B B¢
Therefore estimate (2.16) is now (2.18) with g; being replaced by g,. Combining the estimates for g1, g2
and using Young’s inequality, we get

_1 1 A1 11
j suplg * el dx < L1 (0) + C(e) Sgp|D¢|zj [@PIDUPP dx + Co|T; (I + I{) + T I3 ].
B ! B¢

The above gives an estimate for the (! norm of g. By the Fefferman-Stein theorem, we obtain

1

J ©2 Y2 DUPP*2 dx < el () + CollUlamors, 17
B¢

1 1 1 1
(I + 1)+ 1|
+ C(&)UllsmocB,) sgplDlPIZJ ®%(u)|DU|? dx.
t B

As before, we can use Young’s inequality and then the fact that i = 1 in B to obtain (2.17) and complete
the proof. O

3 A-Priori Estimates in W'-(Q) forp > n

In this section we will establish the key estimate for the proof of our main theorem. As we mentioned in the
Introduction, for simplicity we will assume that A, f are independent of x, t. The general case can be treated
similarly. Throughout this section, for some fixed Ty > O we consider two vector-valued functions U, W from
Q x (0, Tp) into R™ and solve the system

U, = div(A(W, DU)) + f(W, DU). (3.1)
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We will consider the following assumptions on U, W and (3.1):
(U.0) A, f satisfy 1, (F) and (SG) with u = W and { = DU.
(U.1) U e LY(0, Ty), W22(Q)) and W(, t) e WH2(Q) for a.e. t € (0, Tp). On the lateral boundary 0Q x
(0, To), U satisfies Neumann or Dirichlet boundary conditions.
(U.2) There is a constant C such that [DW| < C|DU| and |W¢| < C|Uy|.
The following assumption seems to be technical but we will see in many applications that it is easy to be
verified when W is a BMO function, a condition will be assumed in the main result of this section.
(U.3) There is a positive C! function  : R™ — R such that the following number is finite:

{MW(W)I |BW(VV)|}
Aw) T pw) I

Moreover, B~1(W) and A(W)B(W) belong to L'(Q) for sufficiently large r > 1; (/\(W)ﬁ(W))% is an Ag
weight. Namely, there is a continuous function C on (0, T() such that, for a.e. t € (0, Top),

1B~ (W)llLray, IAW)BW)IILr (0 [(/1(W)B(W))%]g < C(0).

(U.4) There is a constant C such that

A =sup
w

AW)B(W)|DU|* dz < C. (3.2)
Qx[0,To)
To continue, we introduce the quantities
[Bw (W) Aw (W)
r =AW)V——-— LALLASASA NN,
(W) = A(W) i) +B(W) )

For any fixed to > O we consider T € (2tq, To) and xo € Q. For t > 0 we will denote
Qt(xo, T, to) = Be(x0) N Q x [T - 2to, To).

For g > 1 we introduce the following quantities:

Agt.xo.Tto) = sup [ pOWIDUPY dx, (3.3)
TE[T—tO,TO)
Bi(x0)NQ
Bylt.xo Tto) = || TWIDUPT? dz, (3.4)
Q¢(xo,T,to)
etxo. Tto) = [ AmpwIDUR dz, (3.5)
Q¢(x0,T,to)
Hotxo T = || AWBWIDUPT DU dz. (3.6)
Q¢(xo,T,to)
Sut.xo. Tto) = || AwpaniDUP dz, (3.7)
Q¢(x0,T,to)
Jq(x0, T to) = ” B(W)|DUI dz. (3.8)
Q:(xo,T,t0)
We also denote, for R, t > 0,
D(R, t, x0) := U, t)IBMO(Bg (xo)nQ) - (3.9
By (SG), there is go > n/2 such that
2‘]20(1_2 =84,C;' forsome g, € (0, 1). (3.10)
)

The main result of this section shows that if D(R, ¢, x¢) is uniformly small for sufficiently small R, then
IDUl1»q) can be controlled for some p > n.
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Proposition 3.1. Suppose that (U.0)—(U.4) hold. Assume that there exist to > 0 and ug € (0, 1), which is suffi-
ciently small, in terms of the constants in 1, (F) such that the following holds:
(D) Thereis a positive R, which may also depend on to, To, for which

A? sup D?(Ryo, t, X0) < po  forall T € [2to, To).
Xo€Q,te[T-2ty,To)

Suppose also that for xo € Q and T > ty > O the quantities (3.3)-(3.8) are finite for q € [1, qol, qo is fixed in
(3.10). Then there are q > n/2 and a constant C depending on the constants in (U.0)-(U.4), q, Ry, to, To and
the geometry of Q such that

sup J IDUJ? dx < C. (3.11)
fE[to,To)Q

The dependence of C in (3.11) on the geometry of Q means: C depends on a number Ny, of balls Bg, (xi),

x; € Q, such that
Ny

Qc Bg,, (xi). (3.12)

S

Il
—_

The proof of Proposition 3.1 relies on local estimates for the integral of | DU]| in finitely many balls Bg(x;)
with sufficiently small radius R to be determined by the geometry of Q, namely the number Ny, and the
continuity of the function D defined in (3.9). We will establish local estimates for DU in these balls and then
add up the results to obtain its global estimate (3.11). In the proof, we will only consider the case when
Br(x;) ¢ Q. The boundary case (x; € 0Q) is similar, invoking a reflection argument and using the fact that 0Q
is smooth to extend the function U outside Q, see Remarks 3.7 and 3.8.

In the rest of this section, let us fix a point xo in Q and T > 2t¢. We will drop xo, T, to in the notations
(3.3)-(3.8) and (3.9).

For any s, t such that 0 < s < t < R let Y be a cutoff function for two balls Bs, B; centered at xo. That is,
Y is nonnegative, i = 1 in Bs and Y = 0 outside B; with |Dy| < 1/(t - s). We also fix a cutoff function 7 for ¢
for [T - 2to, Tol and [T - to, Tol. Thatis n(t) = 0 for t < T - 2to, n(t) = 1 fort € (T - to, Tol and |1’ (t)| < 1/to
for all t.

We first have the following local energy estimate result.

Lemma 3.2. Assume (U.0)-(U.2). Assume that q > 1 satisfies condition (3.10) and that the quantities (3.3)—
(3.8) are finite. There is a constant C1(q) depending also on the constants in 1 and (F) such that

1

Aq(s) + Hq(s) < Cl(Q)[Bq(t) T E=s)?

Ga(6) + tlgq(t)], O<s<t<R. (3.13)
0

Proof. By the assumption (U.1), we can formally differentiate (3.1) with respect to x, more precisely we can
use difference quotients (see Remark 3.3), to get the weak form of

(DU); = div(A¢(W, DU)D*U + Aw (W, DU)DWDU) + Df (W, DU). (3.14)

For simplicity, we will assume in the proof that f = 0. The presence of f will be discussed later in Re-
mark 3.4. Testing (3.14) with ¢ = B(W)|DU|?9~2DUy?n, which is legitimate since ¥, is finite, integrating by
parts in x and rearranging, we have, for Q = Q x [T — 2tg, T] with7 > T,

U (¢, DU))YP*ndz = —” (A¢(W, DU)D*U + Aw(W, DU)DWDU, D¢h) dz. (3.15)
Q Q

Firstly, we observe that

244, (DU = S (BANIDUPn) ~ DU By (W) Wer ~ BOW)IDUP s,
D¢ = B(W)D(IDUI*-2DU)Y? + |DUI*?2DUBwDW?* + 2B(W)|DU|*"> DU D.
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Hence, we can rewrite (3.15) as

2 | BowIDURH? dx- [ pawagw, puypu, DADURT2DUY ) dz
Qr Q
—” [(A¢(W, DU)D*U, I1) + (Aw(W, DU)DW, I,)]?*n dz + ” I; dz, (3.16)
Q Q

where QT = Q x {1}.
We will discuss the terms I, I, I3 later. Let us consider the second integral on the left-hand side. By (U.0)
and the uniform ellipticity of A¢(W, DU), we can find a constant C. such that |A;(W, DU){| < C.A(W)|{]. By

(3.10), a = 2q - 2 satisfies
AW)

c.aamwy’

By [1, Lemma 2.1] or [11, Lemma 6.2], for such a, g there is a positive constant C(q) such that

a 2q -2 1
=22 S -6,C1=6
2+a 2q

(A¢(W, DU)D*U, D(IDUI*?"?DU)) > C(q)A(W)|DU|*1~2|D*UJ*. (3.17)

We then obtain from (3.16)

j B(W)DUI*y? dx + CO(Q)” B(WMA(W)|DUI*42|D?U*p?n dz
Q Q

—” [(Ag(W, DU)D*U, I)) + (Aw(W, DU)DW, I,)]n dz + U I; dz. (3.18)
Q Q

The terms I, I, in the integrands on the right-hand side of (3.18) result from the calculation of D¢ and
they will be handled by Young’s inequality as follows, noting that the assumption 1 gives |A¢(W, DU)| <
CIA(W)| and |Aw(W, DU)| < ClAw(W)||DUI.

Concerning I, for any € > 0 we can find a constant C(¢) such that

[(A¢(W, DU)D?U, |DUI**"2DUBwDW?)|

< eA(W)B(W)IDUI*2|D*U*? + C()AW)
[(A¢(W, DU)D*U, B(W)|DUI**->DUYDp)|

< eA(W)B(W)IDUI*2|D* UI*p? + A(W)B(W)|DUI*? D).

1Bw(W)I*

2 2q.1,2
B IDW||DUI~=,

Similarly, for I, we have
[(Aw (W, DUYDW, B(W)|DU|*1-D? Uyp?)|
A
< eAWBINIDUPS DUy + fn M

[(Aw(W, DU)DW, |DUI*?2DUBwDW*)| < ClAw(W)||Bw (W)|IDW|*|DU|*1y?,
[(Aw(W, DU)DW, B(W)|DU|*9->DUypD)|

A
Cﬁ(W)l Z((MV\/’))I

Finally, for I3, which results from the calculation of (¢, (DU))n, we have

IDW|?|DUI*7y?,

IDW|?|DUI*%p? + CA(W)B(W)|DU|*?| D>

1
B(W)IDU*|n,| < EB(W)IDUIZ‘J-
As we assume that |W¢| < C|U¢|, we have, from the equation of U,

|We| < C|A((W,DU)||D2U| + C|Aw (W, DU)||DW].
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Hence,

1Bw (W)
BW)
Aw (W)

IDUI|Bw (W)||Weln < eA(W)B(W)IDUI*?~?|D*U|? + C(e)A(W) IDU|*9+?

|ﬁW(VV)|2 2 2 2
———_"_|DU|*Y|DW|* + CB(W)——-—|DU|"1.
BW) T
We then use the fact that |[DW| < C|DU|, choose ¢ sufficiently small and put the above estimates for the
termsin I, I, I5 in (3.18) to obtain a number C; depending on g, C(q) (see (3.17)) such that, for B = Bg x {1}
and 1 € [T - to, To),

+ CA(W)

j B(W)\DU9y dx + jj AW)B(W)|DUI42|D2 Uy dz

BE Qs
< ¢ || ramipupetyidz+ caa | ﬁ(m[ﬁummmm + Lipups) dz.
Q¢ Q¢ 0
Here, we used the definition of i and I'(W). As the above holds for all T € [T - ty, To), from the notations
(3.3) and (3.4), the above gives the lemma. O
Remark 3.3. Fori=1,...,nand h + 0 we denote by §; , the difference quotient operator

8inut = ™ (u(x + he;) — u(x)),

with e; being the unit vector of the i-th axis in R". We then apply 6; , to the system for U and then test the
result with |6; » U242 Oin Uy?. The proof then continues to give the desired energy estimate by letting h tend
to 0.

Remark 3.4. If f # O then there is an extra term |Df(W, DU)||DUJ24~14? in (3.18). This term will give rise to
similar terms in the proof. Indeed, by (1.4) in (F) withu = W and p = DU,

IDF(W, DU)| < CA} (W)ID?U] + CliW(W)l

IDWIIDU| + |fw(W)||IDW].

2w
Therefore, by Young’s inequality and (1.5), |fw(W)| < CA(W), we get
[Aw(W)]

1
2

IDF(W, DU)|B(W)IDUI*T™" < C[A*(W)ID?U| + C |DWI||DU]| + IfW(W)IIDWI]ﬁ(W)IDUlz"_1

< eA(W)B(W)|DUI*?2|D?U|* + C(e)A(W)B(W)|DU|*
+ CT(W)|DU|?7+2 + CB(W)|DUI* + CA(W)B(W)|DU|*.

Choosing € > 0 sufficiently small, we then see that the proof can continue to obtain the energy estimate
(3.13).

Remark 3.5. The energy estimate of the lemma can be established by the same argument if A and f depend
on x and t. We can assume that |Ax(¢, x, u, Du)| and |fy(t, x, u, Du)| satisfy the same growth as |A| and |f].

Remark 3.6. Inspecting our proof here and the proof of [11, Lemma 6.2], we can see that the constant C(q)
in (3.17) is decreasing in g and hence C;(q) is increasing in ¢q. Note also that this is the only place we need
(3.10).

Remark 3.7. We discuss the case when the centers of By, Bg are on the boundary 0Q. We assume that U
satisfies the Neumann boundary condition on 0Q. By flattening the boundary we can assume that Bg N Q is
the set

B*={x:x=(x1,...,xn) withx, > 0and |x| < R}.

For any point x = (x1, . . ., x,) we denote by x its reflection across the plane x, = 0,i.e., X = (x1, ..., —Xp).
Accordingly, we denote by B~ the reflection of B*. For a function u given on B, x (0, T) we denote its even
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reflection by ui(x, t) = u(x, t) for x € B~. We then consider the even extension of it in B= B* UB™:

. u(x,t) ifxe B*,
ux,t) =
u(x,t) ifxeB.

With these notations, for x € Bt we observe that
U[ = Ut, diVx(DX U) = leg(D)‘(U), DXWDXU = D)‘(WD;‘( U
Therefore, it is easy to see that U satisfies in B a system similar to the one for U in B*. Thus, the proof can

apply to U to obtain the same energy estimate near the boundary.

Remark 3.8. For the Dirichlet boundary condition we make use of the odd reflection u(x, t) = —u(x, t) and
then define @ as in Remark 3.7. Since D,,U = 0 on 0Q if i # n, we can test the system (3.14), obtained by dif-
ferentiating the system of U with respect to x;, with [Dy, U IZ‘I‘ZDXI, Ui? and the proof goes as before because
no boundary integral terms appear in the calculation. We need only consider the case i = n. We observe that
Dy, U is the even extension of Dy, U in B therefore U satisfies a system similar to (3.14). The proof then con-
tinues.

We now apply the local Gagliardo—Nirenberg inequality in the previous section to the functions W, U.

Lemma 3.9. Let Bg, B; be two concentric balls in Q with radii t >s >0 and ¥ be a C' cutoff function for
two balls Bs, B;. Let W € C1(Q) and U € C%(Q) such that there is a constant C such that |DW| < C|DU|. Fur-
thermore, assume that [A( W)B(W)]F% belongs to the Apjp+2)+1 class. There is a constant Cy g depending on
[AW)B(W)) 77 1/(p+2)41 Such that

1
Bp(s) + A’Cp(s) < eA’Cp(t) + C(e)A*Cap  sup  UC, Dlgyoes,)| Bp(t) + Hp(t) + ——
T€[T-2t0,To) (t-s)

Proof. Let u = W and the function ®(W) in Lemma 2.4 be [A(W)B(W)] 2. The assumption that
[O(W)]77 = [AW)B(W)] 7=

belongs to the Ap/(p+2)+1 class makes the lemma applicable here.
We now redefine

L) = j ®XW)DUP*2 dx, Ty(t) := j |Dw(W)IDU*2 dx,
B B;

9p(t)]. (3.19)

and note that, since |DW| < C|DU]|, the quantities 1:(t), I (t) in Lemma 2.4 are majorized respectively by the
above I (t), I, (t). Hence, we can choose ¢ sufficiently small in Lemma 2.4 to obtain a constant Co ~ C 2,8 Such
that

L(s) < el (6) + C(©) Col Ulyo s, 11 (0 + L (0)]

+ C(S)CCD"U"BMO(Bt)SuEI;)|Dlp(X)|ZJ A(W)|DUJ?* dx.
x€B;
By

It is clear that | Dy (W)|2 ~ T(W) so that

Li(t) + L(t) ~ j (AW)B(W)IDUI*P=?[D*U|? + [T(W)||DUJ*P*?) dx.

B
We then have
j @2(W)|DU|PP+? dx < ej @2(W)|DU|?P+? dx
Bs B¢

+A*Capll U||§Mo(3t,j (AW)B(W)|IDUI*P=?|D>U* + |T(W)||DUJ***?) dx
B;

+ A% Cy gl UlIBmo(s,) SUEIDIP(X)IZJ A(W)B(W)IDUI? dx.
Xeb¢
B¢
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Multiplying the above inequality with Azq, integrating the result over [T - 2t,, To) and using the nota-
tions (3.3)—(3.8) (with Q; = B¢ x [T - 2tg, Ty)), we see that the above implies
1
A2€y(s) < eA2Cp(6) + C(©)A2Chg  sup UG, Dlidyosy | Bo(®) + Hp(t) + ——=Gp(0)|.
re[T-2t0,To) (t-s)
Because I'(W) < A?®%(W), we have B, (s) < A*Cp(s). We see that the above gives (3.19). O
Let us recall the following elementary iteration result (e.g., see [7, Lemma 6.1, p.192]).

Lemma 3.10. Let f, g, h be bounded nonnegative functions in the interval [p, R] with g, h being increasing. As-
sume that for p < s < t < R we have

f(s) < eof () + [(t - $)™"g(t) + h()]
witha > 0and 0 < €9 < 1. Then
flp) < c(a, €0)[(R - p)™“g(R) + h(R)].
The constant c(a, o) can be taken to be (1 — v)™%(1 — v-%v,)~! for any v satisfying v-%vq < 1.
We then have another lemma for the main proof of this section.

Lemma 3.11. Let F, G, g, h be bounded nonnegative functions in the interval [p, R] with g, h being increasing.
Assume that for p < s < t < R we have

F(s) < €[F(t) + G(O)] + [(t - s)"%g(t) + h(t)], (3.20)
G(s) < C[F(t) + (t — s)™%g(t) + h(t)] (3.21)

with C > 0, a, € > 0. If 2Ce < 1 then there is constant c(C, a, &) such that
F(s) + G(s) < c(C, a, e)[(t —s)%g(t) + h(t)], p<s<t<R. (3.22)
Proof. Let gy = 2Ce. We obtain from (3.20)
CF(s) < %[F(t) +G(B)] + C[(t - s)"“g(t) + h(D)]. (3.23)
Let t; = (s + t)/2 and use (3.23) with s being ¢; and (3.21) with t being t; to obtain a constant C; such that
G(s) < 82—0[F(t) + G()] + C1[(t - s)™%g(t) + h(1)]. (3.24)
Of course, we can assume that C > 1 so that (3.23) and (3.24) give
F(s) + G(s) < go[F(t) + G(t)] + C1[(t — s)"“g(t) + h(D)].
Thus, if £g < 1 or 2Ce < 1 then Lemma 3.10 applies with f(t) = F(t) + G(t) to give
F(p) + G(p) < c(a, &)[(R - p)~“g(R) + h(R)].

Obviously, the above argument holds if we replace the interval [p, R] by any subinterval [s, t]. The above
inequality then gives (3.22). O

Proof of Proposition 3.1. For any R > 0 we denote (Cy g is defined in Lemma 3.9)

eo(R) = A’Cap sup UG, Dllgyos)- (3.25)
T€(to,To)

Fix some go > n/2 as in the proposition and let pg, R := Ro > 0 in (D) be such that

1
C1(g0)€0(Ro) = C1(qo)Ca,pA*> sup IIU(-,T)II]%MO(BRO) <3 (3.26)

T€[to,To)
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where C1(qo) is the constant in (3.13). We recall that (see Remark 3.6) C1(q) is increasing in g so that if (3.26)
holds then there is u.. € (0, 1) such that

« 1
Cu@eo® <5 <3, 1<q<q0, Re(0,Rol.

N

By (3.19) and the notation (3.25), we have, for any T > 2t > 0,

B (s) + A2€p(s) < £O(R0)(J-Cq(t) + By(t) + ——— Sq(t)>

()2

forall s, t such that 0 < s < t < Ryp.
On the other hand, if g satisfies (3.10), then (3.13) gives (from now on C; = C1(q))

Hq(s) < C1By(t) + ———=Gq(0) + C1 Hq(t), 0<s<t<Rp.

Cq
(t-s)?
Itis clear that the above two estimates imply (3.20) and (3.21) of Lemma 3.11 with F(t) = Bp(t) + A? Cp(t),
G(t) = Hy(t), g(t) = Gq(t) and h(t) = t(‘)lz]q(t). Thus, the assumption (3.26) on &y and (3.22) of Lemma 3.11
provide a constant C, depending on y., C; such that

J—Cq(s)+Bp(s)+A Cp(s) < Sq(t)+C2 Hq(t), 0<s<t<Rp,

G
T (t-5)?
or

Hq(s) + Bp(s) < Ggq(t) + Cz—aq(t), 0<s<t<Ryp.

C,
(t-s)?
For t = 2s the above gives (if g satisfies (3.10))

THy(5) + By(s) < C3” (Sle(W)wUPq " tl|DU|2‘J) dz, 0<s< %.
0
QZs

Using this estimate for B,(t) in (3.13), with s = Ro/4 and t = Ro/2, respectively, we derive

Aa( 52+ 30, (F2) < cu [ (RL%AW|DU|24+%|DU|“)dz. (3.27)
Qry/2

Now, we will argue by induction to obtain a bound for A, for some g > n/2.1f some g with g > 1 satisfies
(3.10), then we can find a constant C4 and t; > to such that

(A(W)B(W)|DU|*? + B(W)|DU|*) dz < Cq4 (3.28)

Qx[T=2t,,To)

and that (3.26) holds. Then (3.27) implies a similar bound for A4(R1), H4(R1), R1 = R—lf’. We now can cover Q
by Ng, balls Bg,, see (3.12), and add up the estimates for A4(R1), H4(R1) to obtain (¢4 is to)

sup [ pwipurtaxs [ AWBINIDUPTADUP dz < C. 62
te[T-tq,To) b Qx[T-2t4,To)

For some a € (0, 1) to be determined later let p = aq. By Young’s inequality and (3.29), we obtain a con-
stant C such that

” \DUIP2|D2UP dz < C(a) ” (1+ [DUIP92)|D2UP dz < C. (3.30)
Qx[T-2t,,To) Qx[T-2t,,To)

Here, we have used the fact that A(W)B(W) is bounded from below so that the second integral in the left-hand
side of (3.30) is bounded by the second integral on the left-hand side of (3.29), which also holds for g = 1
thanks to our assumption (3.2).
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Using Holder’s inequality, the assumption that (W) belongs to L'(Q) for r sufficiently large and the
bound in (3.29), we obtain

J DU dx < (J B(W) ™ dx)l_a(J B(W)|DUJ2 dx)a <C.

Q Q Q
By Sobolev’s inequality, setting Q; = Q x [T - t4, To), we get
2
” DU gz < ( sup j DU dx) " ” \DUP2|D2U)? dz.

te[T-t,, T
[ q O)B

Q i 2

We derive from the above three estimates that

ﬂ DU+ dz < C.
Q

2 : 2 . 9 s .
Forp. € (1,1 + 3) we write p. =y + (1 - y)(1 + #) and use Holder’s inequality to get

1-y
LV(Qq)(JJ IDUPPED dz) ’ (3.31)
Qq Qq

” A(W)B(W)[DUIPP* dz < [AWBW)

Since A(W) is bounded from below and A(W)B(W) belongs to L"(Q) for r sufficiently large, the above
estimate yields

” B(W)|DU|?PP+ dz < C. (3.32)
Q

We now choose and fix a, y such that pp. = qq. for some g. > 1. This is the case if a is close to 1 and
y is close to 0, so that

q. :a[y+(1—y)(1+%>] > 1.

From (3.31) and (3.32), we see that (3.28) holds again with the exponent g and the interval [T — 2¢4, To)
being gq. and [T - tg4, To), respectively.

By our assumption (3.2), estimate (3.28) holds for g = 1. For integers k = 0, 1, 2, ... we define Ly = g*
and repeat the argument finitely many times, with the same choice of a, y, as long as Ly satisfies (3.10),
gk < qo and (A(W)B(W))Y/Lx+2) is an A, weight with p = % + 1. The last condition holds because Ly > 1
and because of the assumption that (A(W)f (W))% isan Ag weight (see Remark 3.12). We then find an integer
ko such that

sup J BW)DUPH dx < C(Cq, Ro, to, Nz,), k=0, ..., ko.
te[T-27%t4,To)
Q

Obviously, we can choose a, y such that Ly, € (3, go]. Now, let po € (%, Li,) and write po = aoLg, for

some g € (0, 1). By Holder’s inequality and the above estimate, if 7 > T - 2-ko tg, then
-ag 1—0(() Qo
| ipuec o ax < ([ pon™ ax) ([ panipupto ax)” < c.
Q Q

Q

It is clear from the proof that the integer ko does not depend on t; so that we can divide the interval
[T - 2ty, T - to] into ko equal length subintervals and repeat the argument to see that the above estimate
holds for 7 > T — tg and T > 2t,. This gives (3.11) and the proof is complete. O

Remark 3.12. By Holder’s inequality and the definition of A, weights it is easy to see that if w is an A, weight
for some p > 1 then w¥ is an A, weight forany 6 € (0, 1) and g € (1, p).
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4 Local and Global Existence of Strong Solutions

In this section, we consider the system

{ u; = div(A(x, t, u, Du)) +f(x, t,u,Du) inQ=Qx(0,Ty), 4.1)

u(x,0) = Up(x) inQ,

and u satisfies homogeneous Dirichlet or Neumann boundary conditions on 0Q x (0, Ty).

Throughout this section we will assume that A, f satisfy 1, (F) and (SG).

We first apply our estimates in the previous section to show that Amann’s conditions in [2, 3] can be
weakened under some mild extra assumptions which naturally occur in applications. We consider the case
when A(t, x, u, Du) is linear in Du and (4.1) satisfies the assumptions in Amann’s works (we refer the reader
to [2, 3] for the precise statements) so that local existence results hold. We have the following global existence
result.

Theorem 4.1. Assume that A(t, x, u, Du) = A(t, x, u)Du for some full m x m matrix A(t, x, u) satisfying the
assumptions in [2, 3]. Let (0, To) be the maximal existence time interval for the solution u of (4.1). Assume
further that there is a positive C! function B : R™ — R such that the following number is finite:

Aw(x, t, W)| |ﬁW(W)|}
Ax, 6, W) 7 pw) I

Suppose that there is a sufficiently large r > 1 and a continuous function C(t) such that for a.e. t € (0, Tp) and
u as a function in x the following estimates hold:

(4.2)

A= sup {
(x,£)eQx(0,To)

1B~ Wz, 1A, t, WBILr @y, [(AX, t, u)ﬁ(u))%]g < C(O). (4.3)

In addition, we assume that
(M) for any given uo > O there is a positive Ry,,, which may also depend on ty, To, for which

A?  sup  uC, Oligyogs,,) < Ho-
XoEO,tE(O,To)

Then u exists globally, i.e. Ty = co.

Proof. 1tis clear that the assumptions of the theorem imply those of Proposition 3.1. The bound (3.11) then
shows that the W9 norm, with some g > n, of u(-, t) does not blow up in (0, To) so that Amann’s results can
apply here to give the global existence of u. O

On the other hand, if A is nonlinear in Du, Amann’s results can not apply here and we can alternatively
establish local and global existence results for (4.1) using fixed point theories. To this end, we embed the
systems (4.1) in the following family of systems with ¢ € [0, 1]:

Us = div(Aq(x, t, U, DU)) + Fs(x, t, U, DU) in Q = Q x (0, Tp),
U(x,0) = Up(x) inQ, (4.4)
U satisfies homogeneous Dirichlet or Neumann BC on 0Q x (0, Tp).
We will introduce a family of maps T(o, -), 0 € [0, 1], acting in some suitable Banach space X such that
strong solutions to (4.4) are their fixed points.
In order to define the maps T(a, -), we will use the notations 01g(x, ¢, u, {), 028(x, t, u, ¢) to denote the
partial derivatives of a function g(x, t, u, {) with respect to its variables u, {.
To begin, let Q = Q x (0, Tp) and up be the strong solution to the linear parabolic system
(uo); = div(d,A(x, t, 0, 0)Dug) + 02f(x, t, 0, 0)Dug + 01f(x, t, 0, 0)uy in Q,
Up(x,0) = Up(x) inQ,

Uo satisfies homogeneous Dirichlet or Neumann BC on 0Q x (0, To).
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It is well known that ug is in C((0, To), C*(Q)) and (ug); € C(Q). Furthermore, for any 7o > 0 and
a € (0, 1), ug is Holder continuous in t and Dug is Holder continuous in x with any exponent a € (0, 1)
in Q x (19, Tp) for any 79 > O.

Fixing some ag € (0, 1) and 7 > 0 as in (M), we consider the Banach spaces

X1 = L2((0, To), WH2(Q)), Xz = C(Qx [0, To]), X3 = CF (Qx (7o, To)),

and
X={v:veXinX,, Dve X3}

with norm
IVl = Vi, + VI, + 1DVl

Since the dependence of 4, f on x, t is not important in what follows, we will omit them in the notations
and calculation below for the simplicity of our presentation.
Foreachv € X and o € [0, 1], we denote w = v + ug and define

1 1 1
Ag(w) = J d,A(ow, taDw)dt, Fi q(w) = J o1f(tow, 0)dt, Fy q(w) = J d>f(ow, taDw)dt.
0 0 0

Forany given v € X and w = v + ug let u = (o, v) be the weak solution u to the linear parabolic system
ur = div(Ag(w)D(u + uo)) + F2,6(W)D(u + uo) + F1,6(W)(u + uo) — (Uo)s (4.5)
in Q = Q x (0, Tp) and u satisfies the initial and boundary condition
u=0 onoQx]|0,Ty).
Clearly, if u(® is a fixed point of (o, -) for some o € (0, 1], i.e. u® = T(o, u'?), then U = u'® + ug solves
U; = div(A4(U)DU) + F,,,(U)DU + F; 4(U)U. (4.6)

We will assume that A4, f satisfy 1 and (F) so that A(¢U, 0) = 0 and f (0, 0) = 0. Hence,

1
As(U)DU = J 9,A(0U, toDU)dtDU = o' A(oU, oDU) (4.7)
0
and
1 1
F2.50)DU + F1,,(U)U = j 92f(aU, toDU)dtDU + J 91f(taU, 0)dtU = o~ 'f(oU, oDU). (4.8)
0 0

Therefore, for o € (0, 1] we will define
Ag(U, ) = 07*A(0U, 00), Fo(U,Q =07 f(aU, a9,
Ao(U, ) = 024(0,0),  Fo(U, ) = 02f(0,0) + 01f(0, 0)U. (4.9)
We then consider the following family of systems for o € [0, 1]:

U; = div(A4(U, DU)) + F4(U, DU) inQ = Q x (0, Tp),
U(x,0) = Ug(x) inQ, (4.10)
Ux,t) =0 inoQ x (0, Tp).

By (4.9), we can see that uq solves (4.10) for 0 = 0.
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Theorem 4.2. We assume that A, f satisfy 1, (F) and (SG). For some Ty > O we assume that there is to € (0, To)
such that A(t, u) is bounded for t € (0, ty). As in Theorem 4.1, we suppose that the conditions (4.2), (4.3) and
(M) uniformly hold for o € [0, 1] with u being a solution U of (4.10). Namely, there is a sufficiently large r > 1
and a continuous function C(t) such that for a.e. t € (0, To) and U as a function in x the following hold:

1B (Dlr, 1A t, DB,  [AX t, U),B(U))%]g < C(0),

and
(M*)  for any given uo > O there is a positive Ry, which may also depend on To, for which

A’ sup UG, Olgyos, ) < Ho- 4.11)
x0€Q,t€(0,To) 0

Proof. We will use Leray—Schauder’s fixed point index theory to establish the existence of a fixed point of
T(1, ), which is a strong solution to (4.1) and the above theorem then follows. The main ingredient of the
proof is to establish a uniform estimate for the fixed points of J(o, -) in X. To this end, we need a crucial
Holder regularity for these fixed points in Q x (0, To). We will make use of Proposition 3.1 which provides
such regularity for these fixed points. However, this estimate holds for ¢ > ty if we have some information
on their spatial derivatives in early time, namely [to/2, to], so that the quantities in the energy estimate of
Lemma 3.2 are finite. This is the main reason for the assumption that A(x, t, u) is bounded when ¢ is near 0
which together with (M’) and the results in [6] will give the needed boundedness of the spatial derivatives
neart = 0.

We will establish the following facts:
(i) J(o,-) : X — Xis compact for o € (0, 1].
(ii) 7(0,-) : X — X is a constant map.
(iii) A fixed point u = T(0, u) is a solution to (4.10). For o = 1, such fixed points are solutions to (4.1).
(iv) There is M > 0 such that any fixed point u'® ¢ X of 7(o, -), 0 € [0, 1], satisfies [|[u®|x < M.

Once (i)—(iv) are established, the theorem follows from the Leray—Schauder index theory. Indeed, we let
B be the ball centered at 0 with radius M of X and consider the Leray—Schauder indices

i(‘I(U) ')y B) :X:) = deg(ld —‘I(O-, ')) B) O)a

where the right-hand side denotes the Leray-Schauder degree with respect to zero of the vector field
Id -J(o, -). This degree is well defined on the closure of the open set B ¢ X because T(0, -) is compact
(see (i)) and Id =T (o, -) does not have zero on 0B (see (iv)).

By the homotopy invariance of the indices and (ii), we have

1'(7(0', ')9 B’ :X:) = 1(7(09 ')a B! x) =1.

Thus, T(o, -) has a fixed point in B for all ¢ € [0, 1]. Our theorem then follows from (iii).

Using regularity properties of solutions to linear parabolic systems with continuous coefficients (see, e.g.,
[5]), we see that (i) holds. Checking (ii) and (iii) is fairly standard and straightforward.

To check (iv), let u'® € X be a fixed point of (o, -), o € [0, 1]. We need only consider the case ¢ > 0.
We now denote W = o(u'® + ug) and U = u'® + ug and need to show that |U|x is uniformly bounded for
o € [0, 1]. First of all, the uniform boundedness for |U||x,, or equivalently |[DUl|;2(q), is fairly standard. We
multiply the systems (4.6) with U and integrate over Q. A simple use of integration by parts and Young’s
inequality shows that [|[DU|12¢g) can be estimated by the integrals over Q of f(W)|U]. By (F), |f.(u)| < CA(u)
so that f(W)|U| < CA(W)|U|?. By our assumptions, A(W)B(W) and B~(W) are in L"(Q) for some large r > 1
with its norms being uniformly bounded, a simple use of Holder’s inequality then shows that A(W) satisfies
the same properties. Similarly, U is BMO so that it is in L9(Q) for all g > 1. Holder’s inequality then gives a
uniform bound for the integral of A(W)|U|? and then of | DU||.2(q).

Next, as we assume that A(t, W) is bounded and U is VMO in Q x (0, 7o), the argument in [6] applies here
to show that U(x, t) is uniformly H6lder continuous in Q x (0, 7¢]. Therefore, || U||x, is uniformly bounded.
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Concerning || U]|x,, we will show that Proposition 3.1 can be applied to the systems (4.10). As U = u‘?) + ug
and W = oU, with u'® € X, the conditions (U.1) and (U.2) are clearly verified.

From (4.7), (4.8) and the assumption that A, f satisfy 1 and (F) we see that (U.0) is verified. Indeed, we
will show that A, (U, ¢) and Fu(U, {) satisfy the structural conditions 1 and (F). Firstly,

(As(U, 0,0 = (07 tA(oU, 60), O) = (072A(0U, 60), 0{) = A(aU)|{1%,
1Aq(U, Ol = 07 |A(0U, 0l < C.A(CD)I{],

”%AU(U, 0| = 1014(0U, Ol ~ @),

Therefore A, satisfies 1 with u = oU.
Secondly,
[Fo(U, §)| < 07 (A2 (0U)|0¢] + floU)) < AoU)I{] + 07 (o),

and |9y (o~ f(oU))| = |fu(cU)| < A(aU). Here, f,(u) denotes the derivative of f(u) with respect to its variable
u. Also,

MO b gyog) + |fu(oU)||D(oU)|)
Az (oU)

RO puig + utov)iiDLY).
o

A3 (oU)

IDEL(U, ) < CU—l(A%(oUnD(om +

< c(A%(aU)wa N

Hence, F,(U, {) satisfies (F). We see that (U.0) is verified for U and W = oU.

In addition, since u® ¢ X, u® is bounded and VMO near ¢ = 0, the results in [6] show that u(® is Holder
continuous in Q and Du‘® e CP2(Q x (t1, To)) for any t; > 0 and some f8 € (0, 1). Hence, u® = 7(o, u'?) is
the solution to the linear system (4.5), whose coefficients with v being u(® are in C[. (Q x (0, To)), so that
U = u'® + ug belongs to WIZO’CZ(Q). Therefore, because W(., t), U(:, t) belong to C1(Q) for ¢ > 0, the quantities
in the energy estimate of Lemma 3.2 are finite for all g > 1.

Finally, it is clear that (4.11) in the assumption (M’) of our theorem gives the condition (D) of the propo-
sition. More importantly, the uniform bound in (4.11) then gives some positive constants ug, R(uo) such that
the proposition applies to all W, U.

Therefore, Proposition 3.1 applies to W = o(u'? + ug), U = u® + ug and gives a uniform estimate for
lu@y., t)llw1.24(q) for some g > n/2 and all ¢ € (ty, To) and o € [0, 1]. By Sobolev’s imbedding theorems this
shows that U is Hoélder continuous with its norm uniformly bounded with respect to o € [0, 1]. Again, the
results in [6] imply that Du‘® € C*%(Q x (1o, To)) for any a € (0, 1) and its norm is uniformly bounded. We
then obtain a uniform estimate for [|u‘? |y, and (iv) is verified. The proof of Theorem 4.2 is complete. O

Remark 4.3. We applied Proposition 3.1 to strong solutions in the space X so that U, DU are bounded and the
key quantities B, H are finite. However, the bound provided by the proposition did not involve the supremum
norms of U, DU but the BMO norm of U in (M’) and the constants in 1 and (F).

We conclude this paper by considering the case when A(x, t, u) ~ (Ao + |u|)™ for some Ag, M > O when ¢ is
large. We will first show that the conditions, with the exception of (M’), are easily verifiable if the solutions
are uniformly BMO. Condition (M”) will be discussed in Remark 4.5.

We then recall the following result from [9, Theorem 6] on the connection between BMO functions and
weights: Let ¥ be a positive function such that ¥, ¥ =" are BMO. Then ¥ belongs to(,,; Ay and [¥]y is bounded
by a constant depending on [¥]gmo and [¥~1gmo.

Theorem 4.4. Assume that A(x, t, u) is bounded in (0, to] for some to > 0 and A(x, t, u) ~ (Ao + [u)M for t > to
and some Ao, M > 0. Suppose that |U(-, t)llsmo(q) is bounded on (0, Ty) and for any € > O there is R > O such
that

AU, Ollemoe,) < € forall B, ¢ Qand t € (0, To).

Then there is a strong solution in Q x (0, Ty).
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Proof. As in the proof of Theorem 4.2, we need only to show that Proposition 3.1 can apply for ¢ > ty. For
W = oU with ¢ € [0, 1] assumptions (U.0)-(U.2) are clearly satisfied. We will show that the condition (U.3)
holds here. To this end, we choose B(W) ~ (Ao + |W|)~M*2¢ with &¢ € (0, 1). If M < 2, we can take (W) = 1.
It is clear that the constant A ~ Aj.

Let w := ()l(W)B(W))%. Since w ~ (Ap + |W])%0, with ¢ € (0, 1), the assumption that W is BMO implies
that w is BMO. Also, w™! is BMO because w is bounded from below. By the aforementioned result in [9], w
is an A, weight for all p > 1. Therefore, w = (A(VV)B(W))% isin A% class. On the other hand, it is well known
that if W belongs to the BMO space then it belongs to L?(Q) for any p > 1. Here, B~1(W) and A(W)B(W) have
polynomial growth in W so that they also belong to LP(Q) for any p > 1. We have shown that (U.3) is verified.

Moreover, it is easy to see that (3.28) holds for g = 1 by testing the system with U and then using the fact
that S(W) is bounded from above. The proof of Theorem 4.4 is complete. O

Remark 4.5. To establish the uniform continuity condition (M’) one can try to establish a uniform bound-
edness of |DUl| 1) and apply Poincaré’s inequality to see that U is VMO. If this can be done then one can
argue by contradiction to obtain (M’). We sketch the idea of the proof here. If (M’) is not true then along a
sequence Oy, tn, n, 'n > 0, Un() = U(:, t,) converge weakly to some U in W2(Q) and strongly in L?(Q) but
[ UnlBmo(B,,) > €0 for some r, g9 > 0. We then have |Uy|g, — |IUlp, for any given R > 0. It is not difficult to
see that DU € L" so that U satisfies (M’). Furthermore, if r, < R then |Uyllemocs,) < |UnllBMo(Bg)- Choosing R
sufficiently small and letting n tend to infinity, we obtain a contradiction.
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