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1 Introduction

In [14, 16], for any p ≥ 1 and C2 function u on ℝn, n ≥ 2, global and local Gagliardo–Nirenberg inequalities
of the form

∫
ℝn

|Du|2p+2 dx ≤ C(n, p)‖u‖2BMO∫
ℝn

|Du|2p−2|D2u|2 dx (1.1)

were established and applied to the solvability of scalar elliptic equations.
In this paper, we provide global and local versions of the above inequality with the Lebesgue measure

dx replaced by wdx where w is some Ap weight. The purpose of such generalization becomes clear when we
apply the results to the study of local/global existence of strong solutions to the following nonlinear strongly
coupled and nonregular but uniform parabolic system:

{{{
{{{
{

ut = div(A(x, t, u, Du)) + ̂f (x, t, u, Du), (x, t) ∈ Q = Ω × (0, T0),
u(x, 0) = U0(x), x ∈ Ω,
u = 0 on ∂Ω × (0, T0).

(1.2)

Here, and throughout this paper, Ω is a bounded domain with smooth boundary ∂Ω in ℝn. A typical point
in ℝn is denoted by x and a point in ℝn × [0,∞) is denoted by z = (x, t). The temporal and k-order spatial
derivatives of a vector-valued function

u(x, t) = (u1(x, t), . . . , um(x, t))T , m > 1

are denoted by ut andDku, respectively.A(x, t, u, Du) is a full m × nmatrix, and ̂f : Ω × ℝ × ℝm × ℝnm → ℝm.
The initial data U0 is given inW1,r0 (Ω,ℝm) for some r0 > n. As usual,Wk,p(Ω,ℝm), where k is an integer and
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p ≥ 1, denotes the standard Sobolev spaces whose elements are vector-valued functions u : Ω → ℝm with
finite norm

‖u‖Wk,p(Ω,ℝm) = ‖u‖Lp(Ω,ℝm) +
k
∑
i=1

‖Dku‖Lp(Ω,ℝm).

By a strong solution of (1.2) we mean a vector-valued function u that solves (1.2) a.e. in Ω × (0, T0) and
continuously assumes the initial value U0 at t = 0 and boundary data on ∂Ω × (0, T0). Moreover, for some
α > 0 and all t ∈ (0, T0) we have Du(⋅, t) ∈ Cα,

α
2 (Ω) and D2u(⋅, t) ∈ Lp(Ω) for a.e. t ∈ (0, T0) and all p > 1.

The strongly coupled system (1.2) appears inmanyphysical applications, for instance,Maxwell–Stephan
systems describing the diffusive transport of multicomponent mixtures, models in reaction and diffusion in
electrolysis, flows in porous media, diffusion of polymers, or population dynamics. We refer the reader to
the recent work [10] and the references therein for the models and the existence of their weak solutions.
Besides thequestionwhether a strong solutionof (1.2) can exist locally near t = 0,we facewith a fundamental
problem in the theory of PDEs to establish that this local solution exists globally. Unlike the well-established
theory for scalar parabolic equations (i.e. m = 1), where bounded solutions usually exist globally, there are
counter examples for systems (m > 1) which exhibit solutions that start smoothly and remain bounded but
develop singularities in higher norms in finite times (see [8]). Even more, bounded solutions to (1.2) may not
be even Hölder continuous everywhere.

We will impose the following structural conditions on (1.2). In this paper, for a vector- or matrix-valued
function f(u, ζ), u ∈ ℝm and ζ ∈ ℝd, its partial derivatives will be denoted by fu , fζ .
(A) A(x, t, u, ζ) is C1 in x ∈ ℝn, u ∈ ℝm and ζ ∈ ℝmn. Moreover, there are constants C∗, C, λ0 > 0 and a scalar

C1 function λ(x, t, u) such that, for any (x, t) ∈ ℝn+1, u ∈ ℝm and ζ, ξ ∈ ℝnm,

λ(x, t, u)|ζ|2 ≤ ⟨Aζ (x, t, u, ζ)ξ, ξ⟩ and |Aζ (x, t, u, ζ)| ≤ C∗λ(x, t, u). (1.3)

We also assume λ(x, t, u) ≥ λ0 and |Au(x, t, u, ζ)| ≤ C|λu||ζ|.
If λ(x, t, u) is also bounded from above by a constant, we say that A is regular elliptic. Otherwise, A is

uniformly elliptic. The constant C∗ in (1.3) concerns the ratio between the largest and smallest eigenvalues
of Aζ . We assume that these constants are not too far apart in the following sense.
(SG) (The spectral gap condition) (n − 2)/n < C−1∗ .

We note that if this condition is somewhat violated then examples of blowing up in finite time can occur
(see [1]).

Concerning ̂f , we will assume the following.
(F) There exist a constant C and a function f(x, t, u) which is C1 in x, u such that, for any C1 functions

u : Ω → ℝm and p : Ω → ℝmn,

| ̂f (x, t, u, p)| ≤ Cλ
1
2 (x, t, u)|p| + f(x, t, u),

|D ̂f (x, t, u, p)| ≤ Cλ
1
2 (x, t, u)|Dp| + C |λu(x, t, u)|

λ 1
2 (x, t, u)

|Du||p| + |fu(x, t, u)||Du|, (1.4)

|fu(x, t, u)| ≤ Cλ(x, t, u). (1.5)

For simplicity in our statements and proof, as the presence of x, t can be treated similarly, we will mostly
assume that A, ̂f are independent of x, t in this paper.

In the last decades, papers concerning strongly coupled parabolic systems like (1.2), with A(x, t, u, Du)
being linear in Du, i.e. A(x, t, u, Du) = A(x, t, u)Du, usually relied on the results of Amann [2, 3] who showed
that a solution to (4.1) exists globally if its W1,r0 (Ω) norm for some r0 > n, where n is the dimension of Ω,
does not blow up in finite time. This requires the existence of a continuous function C on (0,∞) such that

‖u(⋅, t)‖W1,r0 (Ω,ℝm) ≤ C(t) for all t ∈ (0, T0) and some r0 > n. (1.6)

The verification of (1.6) is very difficult and equivalently requires Hölder continuity of the solution u.
This is a very hard problem in the theory of PDEs as known techniques for the regularity of solutions to scalar
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equations could not be extended to systems, and counterexamples were available. Maximum or comparison
principles for systems generally do not hold so that the boundedness of solutions to (4.1) is unknown. Even
if the solutions are bounded, only partial regularity results are known (see [6]).

Furthermore, the assumption (1.6) gives the boundedness of u so that the ellipticity constants for the
matrixA(x, t, u) are bounded. ThusA is regular elliptic.Without this assumption, onehas to consider the case
A(x, t, u) being uniformly elliptic when the smallest and largest eigenvalues of A(x, t, u) can be unbounded
but comparable as in (1.3).

In this paper, we will replace (1.6) by a much weaker condition. Namely, we will show that it suffices to
control the BMO norm of u and the uniform continuity of this norm in small balls. Roughly speaking, we will
replace condition (1.6) by the following:

for any ε > 0 there is Rε > 0 such that sup
BRε⊂Ω

‖u(⋅, t)‖BMO(BRε ) ≤ ε for all t ∈ (0, T0). (1.7)

By the Poincaré–Sobolev inequality, it is clear that (1.6) implies (1.7), even when r0 = n.
On the other hand, since we will consider nonregular parabolic systems with A being nonlinear in Du,

Amann’s results are not applicable here to give the solvability of (1.2). We will then provide an alternative
approach to establish local/global existence results for (1.2) via Leray–Schauder fixed point theories. The
existence results will be proven under a set of general and practical structural conditions on A, ̂f . Roughly
speaking, we will embed (1.2) in a family of nonlinear systems which satisfy the same set of assumptions for
(1.2). The strong solutions of these systems are fixed points of a family of compact vector fields in some appro-
priate Banach space. The key step in the argument is the establishment of a uniformbound for such solutions.
We obtain the desired bound by using the local weighted Gagliardo–Nirenberg inequalities in Section 2 to
deduce a decay estimate for local norms of the solutions so that an iteration argument can apply.

Though (1.7) will be required to hold uniformly for all strong solutions of the systems in the family, but,
as these systems assume the same hypotheses for (4.1), we practically need only verify (1.7) for (1.2).

The techniques in this paper also give higher regularity of solutions to other systems where (1.7) yields
that u is Hölder continuous. We thus devote Section 3 to the a-priori estimates and the regularity of solutions
to the following system:

ut = div(A(x, t,W, Du)) + ̂f (x, t,W, Du),

whereW, u are related in some way. Later, the caseW = σu for some σ ∈ (0, 1]will be used in our fixed point
argument to obtain local and global existence results.

We conclude this paper with Section 4 where we apply the estimates in Section 3 to study the solvability
of (1.2) under the assumption (1.7).

2 Weighted Gagliardo–Nirenberg Inequalities

In this section we will establish global and local weighted Gagliardo–Nirenberg interpolation inequalities
which allow us to control the Lp norm of the derivatives of the solutions in the proof of our main theorems.
These inequalities generalize those in [14, 16], where no weight versions were proved (see Remark 2.2).

Here and throughout this paper, we write BR(x) for a ball centered at x with radius R and will omit x if
no ambiguity can arise. In our statements and proofs, we use C, C1, . . . to denote various constants which
can change from line to line but depend only on the parameters of the hypotheses in an obvious way. We will
write C(a, b, . . .) when the dependence of a constant C on its parameters a, b, . . . is needed to emphasize
that C is bounded in terms of its parameters.

For any measurable subset A of Ω and any locally integrable function U : Ω → ℝm we denote by |A| the
Lebesgue measure of A and by UA the average of U over A. That is,

UA = −∫
A

U(x) dx =
1
|A|∫

A

U(x) dx.
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In order to state the assumption for this type of inequalities, we recall some well-known notions from
Harmonic Analysis.

For γ ∈ (1,∞) we say that a nonnegative locally integrable function w belongs to the class Aγ or w is an
Aγ weight if the quantity

[w]γ := sup
BR(y)⊂Ω

( −∫
BR(y)

w dx)( −∫
BR(y)

w1−γ� dx)γ−1

is finite. Here, γ� = γ/(γ − 1). The A∞ and A1 classes are defined by A∞ = ⋃γ>1 Aγ and A1 = ⋂γ>1 Aγ. Formore
details on these classes we refer the reader to [4, 13, 15]. Clearly, the above implies

( −∫
BR(y)

w dx)( −∫
BR(y)

w− 1
μ dx)

μ
≤ [w]μ+1 for all μ > 0.

A locally integrable function U : Ω → ℝm is said to be BMO if the quantity

[U]∗ := sup
BR(y)⊂Ω

−∫
BR(y)

|U − UBR(y)| dx

is finite.
The Banach space BMO(Ω,ℝm) consists of functions with finite norm

‖U‖BMO(Ω,ℝm) := [U]∗ + ‖U‖L1(Ω,ℝm).

When no ambiguity can arise, we simply say U is BMO and omit Ω orℝm from the above notations.
We first have the following global weighted Gagliardo–Nirenberg inequality.

Lemma 2.1. Let u, U : Ω → ℝm be vector-valued functions with u ∈ C1(Ω), U ∈ C2(Ω) and Φ : ℝm → ℝ be a
C1 function. Suppose that either U or Φ2(u) ∂U∂ν vanish on the boundary ∂Ω of Ω. We set

I1 := ∫
Ω

Φ2(u)|DU|2p+2 dx, ̂I1 := ∫
Ω

Φ2(u)|Du|2p+2 dx, (2.1)

̄I1 := ∫
Ω

|Φu(u)|2(|DU|2p+2 + |Du|2p+2) dx,

I2 := ∫
Ω

Φ2(u)|DU|2p−2|D2U|2 dx. (2.2)

Suppose that
(GN) Φ(u)

2
p+2 belongs to the Ap/(p+2)+1 class.

Then for any ε > 0 there is a constant Cε,Φ depending on ε and [Φ
2
p+2 (u)]p/(p+2)+1 for which

I1 ≤ ε ̂I1 + Cε,Φ‖U‖2BMO(Ω)[ ̄I1 + I2]. (2.3)

In theproof of this lemmawewillmakeuseof the followingwell-known facts fromHarmonicAnalysis.Wefirst
recall the definition of the centered and uncentered Hardy–Littlewood maximal operators acting on function
F ∈ L1loc(Ω):

M(F)(y) = sup
ε

{ ∫
Bε(y)

F(x) dx : ε > 0 and Bε(y) ⊂ Ω},

M∗(F)(z) = sup
z∈Bε(y),ε

{ ∫
Bε(y)

F(x) dx : ε > 0 and Bε(y) ⊂ Ω}.

We also note here the Hardy–Littlewood theorem: for any F ∈ Lq(Ω) we have

∫
Ω

M(F)q dx ≤ C(q)∫
Ω

Fq dx, q > 1. (2.4)
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More generally, the Muckenhoupt theorem [12] states that if w is an Aq weight then, for any F ∈ Lq(Ω),

∫
Ω

M(F)qw dx ≤ ∫
Ω

M∗(F)qw dx ≤ C([w]q)∫
Ω

Fqw dx. (2.5)

We also make use of Hardy spacesH1. For any y ∈ Ω and ε > 0, let ϕ be any function in C∞0 (B1(y)) with
|Dϕ| ≤ C1. Let ϕε(x) = ε−nϕ( xε ) (then |Dϕε| ≤ C1ε−1−n). From [15], a function g is inH1(Ω) if

sup
ε>0

g ∗ ϕε ∈ L1(Ω) and ‖g‖H1 = ‖g‖L1(Ω) + ‖sup
ε>0

g ∗ ϕε‖L1(Ω).

We are now ready to give the proof of Lemma 2.1.

Proof. We can assume that m = 1 because the proof for the vectorial case is similar. Integrating by parts, we
have

I1 = ∫
Ω

Φ2(u)|DU|2p+2 dx = −∫
Ω

U div(Φ2(u)|DU|2pDU) dx. (2.6)

We will show that g = div(Φ2(u)|DU|2pDU) belongs to the Hardy spaceH1 and

‖g‖H1 = ∫
Ω

sup
ε
|g ∗ ϕε| dx ≤ C([Φ

2
p+2 (u)]p/(p+2)+1)[ ̄I

1
2
1 (I

1
2
1 + ̂I

1
2
1 ) + I

1
2
1 I

1
2
2 ]. (2.7)

Once this is established, (2.6) and the Fefferman–Stein theorem on the duality of the BMO and Hardy spaces
yield

I1 ≤ ‖U‖BMO‖g‖H1 ≤ C([Φ
2
p+2 (u)]p/(p+2)+1)‖U‖BMO[ ̄I

1
2
1 (I

1
2
1 + ̂I

1
2
1 ) + I

1
2
1 I

1
2
2 ].

A simple use of Young’s inequality to the right-hand side then gives (2.3).
Therefore, in the rest of the proof we need only establish (2.7). We thenwrite g = g1 + g2 with gi = div Vi,

setting

V1 = Φ(u)|DU|p+1(Φ(u)|DU|p−1DU − −∫
Bε

Φ(u)|DU|p−1DU dx),

V2 = Φ(u)|DU|p+1 −∫
Bε

Φ(u)|DU|p−1DU dx.

Let us consider g1 first and define h = Φ(u)|DU|p−1DU. For any y ∈ Ω and Bε = Bε(y) ⊂ Ω, we use inte-
gration by parts, the property of ϕε and then Hölder’s inequality for any s > 1 to get

|g1 ∗ ϕε(y)| =
!!!!!!!
∫

Bε(y)

Dϕ( x − yε )(h − hBε(y))Φ(u)|DU|p+1 dx
!!!!!!!

≤
C1
ε
!!!!!!!
−∫

Bε(y)

|h − hBε(y)|Φ(u)|DU|p+1 dx
!!!!!!!

≤
C1
ε ( −∫

Bε(y)

|h − hBε(y)|s dx)
1
s
( −∫
Bε(y)

Φs� (u)|DU|(p+1)s� dx) 1
s� .

There is a constant C such that |Dh| ≤ |Φu(u)||Du||DU|p + pΦ|DU|p−1|D2U|. Poincaré–Sobolev’s inequal-
ity, with s∗ = ns/(n + s), then gives

C1
ε ( −∫

Bε

|h − hBε |s dx)
1
s
≤ C( −∫

Bε

|Dh|s∗ dx) 1
s∗

≤ C[ −∫
Bε

|Φu(u)|s∗ |Du|s∗ |DU|ps∗ dx + −∫
Bε

Φs∗ |DU|(p−1)s∗ |D2U|s∗ dx] 1
s∗ . (2.8)
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Using the above estimates in (2.8), we get

C1
ε ( −∫

Bε

|h − hBε |s dx)
1
s
≤ C[Ψ1 + Ψ2],

where

Ψ1(y) = (M(|Φu(u)|s∗ |DU|ps∗ |Du|s∗ )(y)) 1
s∗ ,

Ψ2(y) = (M(Φs∗ |DU|(p−1)s∗ |D2U|s∗ )(y)) 1
s∗ .

Setting
Ψ3(y) = (M(Φs∗ (u)|DU|(p+1)s∗ )(y)) 1

s∗
and putting these estimates together, we thus have

sup
ε>0,

|g1 ∗ ϕε| ≤ C[Ψ1 + Ψ2]Ψ3. (2.9)

In the sequel, we will denote

F = Φ|DU|p+1, F̄ = |Φu||DU|p+1, f = Φ|Du|p+1, ̄f = |Φu||Du|p+1. (2.10)

Take s = 2n/(n − 1), then s∗ = s� = 2n/(n + 1). With these notations and the definition of ̄I1, we can use
Young’s inequality and then (2.4), because 2 > 2n/(n + 1) = s∗, to get

(∫
Ω

Ψ2
1 dx)

1
2
≤ C(‖M(F̄s∗ )‖ 1

s∗
2
s∗ + ‖M( ̄f s∗ )‖ 1

s∗
2
s∗ ) ≤ C(‖F̄2‖2 + ‖ ̄f 2‖2) ≤ C ̄I

1
2
1 .

Similarly,

(∫
Ω

Ψ2
3 dx)

1
2
≤ C‖Φ2|DU|2(p+1)‖2 ≤ CI

1
2
1 .

Furthermore, (2.4) also gives

(∫
Ω

Ψ2
2 dx)

1
2
= """"M(Φs∗ |DU|(p−1)s∗ |D2U|s∗)"""" 1

s∗
2
s∗ ≤ C‖Φ2|DU|p−1|D2U|‖2.

Therefore, by Holder’s inequality, the above estimates and the notations (2.1) and (2.2), we get

∫
Ω

sup
ε
|g1 ∗ ϕε| dx ≤ C[I

1
2
1

̄I
1
2
1 + I

1
2
1 I

1
2
2 ]. (2.11)

We now turn to g2 and note that |div V2| ≤ C(J1 + J2) for some constant C and

J1 := |Φu(u)||DU|p+1|Du|J3, J2 := Φ|DU|p|D2U|J3,

with
J3 :=

!!!!!!!
−∫

Bε(y)

Φ|DU|p dx
!!!!!!!
.

We will estimate ‖ϕε ∗ J1‖L1(Ω) and ‖ϕε ∗ J2‖L1(Ω). The calculations for these estimates are similar, we
consider J1 first and denote

K = |Φu(u)||DU|p+1, L = |Du|.

We first observe that
J3(y) ≤ M∗(Φ|DU|p)(x) for x ∈ Bε(y).
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Here, M∗ is the uncentered Hardy–Littlewood maximal operator. We then have

ϕε ∗ J1(x) ≤ ϕε ∗ K(x)L(x)M∗(Φ|DU|p)(x).

Therefore,

∫
Ω

|ϕε ∗ J1(x)| dx ≤ ∫
Ω

K(x)L(x)M∗(Φ|DU|p)(x) dx = ∫
Ω

K(LΦ
1
p+1 )(M∗(Φ|DU|p)Φ

−1
p+1 ) dx.

We then apply Hölder’s inequality to the last integral to get

∫
Ω

|ϕε ∗ J1| dx ≤ ‖K‖L2(Ω)‖LΦ
1
p+1 ‖L2(p+1)(Ω)""""M∗(Φ|DU|p)Φ

−1
p+1 """"L 2(p+1)

p (Ω)
. (2.12)

Concerning the last term on the right-hand side of (2.12), we note that w := Φ
−2
p is an Aq weight for

q = 2(p + 1)/p. Indeed, because 1 − q� = −p/(p + 2) and q − 1 = (p + 2)/p, we see easily that

−∫
B

w dx(−∫
B

w1−q� dx)q−1 = −∫
B

Φ
−2
p dx(−∫

B

Φ
2
p+2 dx) p+2

p
≤ ([Φ

2
p+2 ]p/(p+2)+1) p+2

p
.

Therefore, [w]q is bounded by a constant depending on [Φ
2
p+2 ]p/(p+2)+1.

By Muckenhoupt’s theorem (2.5), we can find a constant C([w]q) ∼ [w]q such that

""""M
∗(Φ|DU|p)Φ

−1
p+1 """" p

2(p+1)
L
2(p+1)
p (Ω)

= ∫
Ω

(M∗(Φ|DU|p))qw dx ≤ C([w]q)∫
Ω

Φq|DU|pqw dx.

Note that from the definition of q = 2(p + 1)/p and w := Φ
−2
p , we have Φq|DU|pqw = |Φ2DU|2p+2.

Hence, using the above estimate for the last integral in (2.12), we derive

∫
Ω

|ϕε ∗ J1| dx ≤ CΦ‖K‖L2(Ω)‖LΦ
1
p+1 ‖L2(p+1)(Ω)‖F‖ p

p+1
2 , (2.13)

where CΦ is a constant depending on [w]q or [Φ
2
p+2 ]p/(p+2)+1.

Recalling the definition of K = F̄ (see (2.10)) and L = |Du|, we see that

‖LΦ
1
p+1 ‖L2(p+1)(Ω) = ‖f‖

1
p+1
L2(Ω).

Therefore, Young’s inequality yields

∫
Ω

sup
ε
|ϕε ∗ J1| dx ≤ CΦ‖F̄‖2‖f‖

1
p+1
2 ‖F‖

p
p+1
2 ≤ CΦ ̄I

1
2
1 (I

1
2
1 + ̂I

1
2
1 ). (2.14)

Next, for J2 = Φ|DU|p−1|D2U||DU|J3 we repeat the calculation for J1, using

K = |Φ(u)||DU|p−1|D2U|, L = |DU|.

We then obtain an estimate similar to (2.13) for ‖ϕε ∗ J2‖L1(Ω). Now, with the new definitions of K, L, we have

‖K‖L2(Ω) = I
1
2
1 , ‖LΦ

1
p+1 ‖L2(p+1)(Ω) = ‖F‖

1
p+1
L2(Ω).

We then obtain the inequality
∫
Ω

sup
ε
|ϕε ∗ J2| dx ≤ CΦ I

1
2
1 I

1
2
2 . (2.15)

Combining the estimates (2.14), (2.15), we derive

∫
Ω

sup
ε
|g2 ∗ ϕε| dx ≤ CΦ[ ̄I

1
2
1 (I

1
2
1 + ̂I

1
2
1 ) + I

1
2
1 I

1
2
2 ]. (2.16)
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The above and (2.11) yield

∫
Ω

sup
ε
|g ∗ ϕε| dx ≤ CΦ[ ̄I

1
2
1 (I

1
2
1 + ̂I

1
2
1 ) + I

1
2
1 I

1
2
2 ].

We thus proved (2.7) and the proof of Lemma 2.1 is complete.

Remark 2.2. By approximation (see [16]), Lemma 2.1 also holds for u ∈ W1,2(Ω) and U ∈ W2,2(Ω) provided
that the quantities I1, I2 and ̂I1 defined in (2.1) and (2.2) are finite. Furthermore, if Φ is a constant then ̄I1 = 0
on the right-hand side of (2.3). Thus if u = U and Φ is a constant then Lemma 2.1, with small ε, clearly gives

∫
Ω

|DU|2p+2 dx ≤ C‖U‖2BMO(Ω)∫
Ω

|DU|2p−2|D2U|2 dx.

This is the Gagliardo–Nirenberg inequality (1.1) established in [16].

Remark 2.3. In other applications, wemay need a similar version of the lemmawith the usual gradient oper-
ator D being replaced by a general differential operatorD, e.g. a weighted linear combination of Dxi . One can
easily see that the proof is virtually unchanged if a certain Poincaré–Sobolev inequality used in (2.8) holds.
Namely,

1
ε (
−∫
Bε

|h − hBε |s dx)
1
s
≤ C( −∫

Bε

|Dh|s∗ dx) 1
s∗

holds for some s∗, depending on s, such that s�, s∗ < 2. Of course, DU, Du will be accordingly replaced by
DU,Du.

To study the regularity of solutions, assuming that their BMO norms in small balls are small, we have the
following local version of Lemma 2.1.

Lemma 2.4. Let u, U : Ω → ℝm be vector-valued functions with u ∈ C1(Ω), U ∈ C2(Ω), and letΦ : ℝm → ℝ be
a C1 function such that the condition (GN) in Lemma 2.1 holds. For any ball Bt in Ω we set

I1(t) := ∫
Bt

Φ2(u)|DU|2p+2 dx, ̂I1(t) := ∫
Bt

Φ2(u)|Du|2p+2 dx,

̄I1(t) := ∫
Bt

|Φu(u)|2(|DU|2p+2 + |Du|2p+2) dx,

I2(t) := ∫
Bt

Φ2(u)|DU|2p−2|D2U|2 dx.

Consider any ball Bs concentric with Bt, 0 < s < t, and any nonnegative C1 function ψ such that ψ = 1 in Bs and
ψ = 0 outside Bt. Then, for any ε > 0 there are positive constants Cε,Φ , Cε such that

I1(s) ≤ ε[I1(t) + ̂I1(t)] + Cε,Φ‖U‖2BMO(Bt)[ ̄I1(t) + I2(t)]

+ Cε‖U‖BMO(Bt) sup
x∈Bt

|Dψ(x)|2∫
Bt

|Φ|2(u)|DU|2p dx. (2.17)

Proof. We revisit the proof of Lemma 2.1. Integrating by parts, noting that ψ = 0 on ∂Ω, we have

∫
Ω

Φ2(u)ψ2|DU|2p+2 dx = −∫
Ω

U div(Φ2(u)ψ2|DU|2pDU) dx.

Again, we will show that g = div(Φ2ψ2|DU|2pDU) belongs to the Hardy spaceH1. We write g = g1 + g2
with gi = div Vi, setting

V1 = Φ(u)ψ|DU|p+1(Φ(u)ψ|DU|p−1DU − −∫
Bε

Φ(u)ψ|DU|p−1DU dx),

V2 = Φ(u)ψ|DU|p+1 −∫
Bε

Φ(u)ψ|DU|p−1DU dx.
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In estimating V1 we follow the proof of Lemma 2.1 and replace Φ(u) by Φ(u)ψ(x). There will be some
extra terms in the proof in computing D(Φ(u)ψ). In particular, in estimating Dh in the right-hand side of (2.8)
we have the following term and it can be estimated as follows:

( −∫
Bε

Φs∗ (u)|Dψ|s∗ |DU|ps∗ dx) 1
s∗

≤ sup
x∈Bt

|Dψ|( −∫
Bε

Φs∗ (u)|DU|ps∗ dx) 1
s∗ .

We then use the following inequality, via Young’s inequality, in the right-hand side of (2.9) (with Ω = Bt):

sup|Dψ|∫
Bt

Ψ1M(Φs∗ (u)|DU|ps∗ ) 1
s∗ dx ≤ C[∫

Bt

Ψ2
1 dx + sup

x∈Bt
|Dψ|2∫

Bt

M(Φs∗ (u)|DU|ps∗ ) 2
s∗ dx].

The last integral can be bounded via (2.4) by

sup
x∈Bt

|Dψ|2∫
Bt

Φ2(u)|DU|2p dx.

Using the fact that |ψ| ≤ 1 and taking Ω to be Bt and omitting the obvious parameter t in the sequel, the
previous proof can go on and (2.11) now becomes

∫
Bt

sup
ε
|g1 ∗ ϕε| dx ≤ C[I

1
2
1

̄I
1
2
1 + I

1
2
1 I

1
2
2 ] + C(ε) sup

Bt
|Dψ|2∫

Bt

Φ2(u)|DU|2p dx. (2.18)

Similarly, in considering g2 = div V2, we will have an extra term Φ(u)|Dψ||DU|p+1J3 in J1. We then use
the estimate

sup
ε
|ϕε ∗ Φ(u)||Dψ||DU|p+1J3 ≤ sup

Bt
|Dψ|M(Φ(u)|DU|p+1)M(Φ(u)|DU|p),

and, via Young’s inequality and (2.4),

∫
Bt

sup
ε
|ϕε ∗ Φ(u)||Dψ||DU|p+1J3 dx ≤ εI1(t) + C(ε) sup

Bt
|Dψ|2∫

Bt

Φ2(u)|DU|2p dx.

Therefore estimate (2.16) is now (2.18) with g1 being replaced by g2. Combining the estimates for g1, g2
and using Young’s inequality, we get

∫
Bt

sup
ε
|g ∗ ϕε| dx ≤ εI1(t) + C(ε) sup

Bt
|Dψ|2∫

Bt

|Φ|2|DU|2p dx + CΦ[ ̄I
1
2
1 (I

1
2
1 + ̂I

1
2
1 ) + I

1
2
1 I

1
2
2 ].

The above gives an estimate for theH1 norm of g. By the Fefferman–Stein theorem, we obtain

∫
Bt

Φ2(u)ψ2|DU|2p+2 dx ≤ εI1(t) + CΦ‖U‖BMO(Bt)[ ̄I
1
2
1 (I

1
2
1 + ̂I

1
2
1 ) + I

1
2
1 I

1
2
2 ]

+ C(ε)‖U‖BMO(Bt) sup
Bt

|Dψ|2∫
Bt

Φ2(u)|DU|2p dx.

As before, we can use Young’s inequality and then the fact that ψ = 1 in Bs to obtain (2.17) and complete
the proof.

3 A-Priori Estimates in W1,p(Ω) for p > n
In this section we will establish the key estimate for the proof of our main theorem. As we mentioned in the
Introduction, for simplicity we will assume that A, ̂f are independent of x, t. The general case can be treated
similarly. Throughout this section, for some fixed T0 > 0 we consider two vector-valued functions U,W from
Ω × (0, T0) intoℝm and solve the system

Ut = div(A(W, DU)) + ̂f (W, DU). (3.1)
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We will consider the following assumptions on U,W and (3.1):
(U.0) A, ̂f satisfy 1, (F) and (SG) with u = W and ζ = DU.
(U.1) U ∈ L1((0, T0),W2,2(Ω)) and W(⋅, t) ∈ W1,2(Ω) for a.e. t ∈ (0, T0). On the lateral boundary ∂Ω ×

(0, T0), U satisfies Neumann or Dirichlet boundary conditions.
(U.2) There is a constant C such that |DW| ≤ C|DU| and |Wt| ≤ C|Ut|.

The following assumption seems to be technical but we will see in many applications that it is easy to be
verified whenW is a BMO function, a condition will be assumed in the main result of this section.
(U.3) There is a positive C1 function β : ℝm → ℝ such that the following number is finite:

Λ = sup
W

{
|λW (W)|
λ(W)

, |βW (W)|
β(W)

}.

Moreover, β−1(W) and λ(W)β(W) belong to Lr(Ω) for sufficiently large r > 1; (λ(W)β(W))
1
2 is an A 4

3
weight. Namely, there is a continuous function C on (0, T0) such that, for a.e. t ∈ (0, T0),

‖β−1(W)‖Lr(Ω), ‖λ(W)β(W)‖Lr(Ω), [(λ(W)β(W))
1
2 ] 4

3
≤ C(t).

(U.4) There is a constant C such that

∬
Ω×[0,T0)

λ(W)β(W)|DU|2 dz ≤ C. (3.2)

To continue, we introduce the quantities

Γ(W) = λ(W)
|βW (W)|2

β(W)
+ β(W)

|λW (W)|2

λ(W)
.

For any fixed t0 > 0 we consider T ∈ (2t0, T0) and x0 ∈ Ω̄. For t > 0 we will denote

Qt(x0, T, t0) = Bt(x0) ∩ Ω × [T − 2t0, T0).

For q ≥ 1 we introduce the following quantities:

Aq(t, x0, T, t0) = sup
τ∈[T−t0 ,T0)

∫
Bt(x0)∩Ω

β(W)|DU|2q dx, (3.3)

Bq(t, x0, T, t0) = ∬
Qt(x0 ,T,t0)

Γ(W)|DU|2q+2 dz, (3.4)

Cq(t, x0, T, t0) = ∬
Qt(x0 ,T,t0)

λ(W)β(W)|DU|2q+2 dz, (3.5)

Hq(t, x0, T, t0) = ∬
Qt(x0 ,T,t0)

λ(W)β(W)|DU|2q−2|D2U|2 dz, (3.6)

Gq(t, x0, T, t0) = ∬
Qt(x0 ,T,t0)

λ(W)β(W)|DU|2q dz, (3.7)

Jq(x0, T, t0) = ∬
Qt(x0 ,T,t0)

β(W)|DU|2q dz. (3.8)

We also denote, for R, t > 0,
D(R, t, x0) := ‖U(⋅, t)‖BMO(BR(x0)∩Ω). (3.9)

By (SG), there is q0 > n/2 such that

2q0 − 2
2q0

= δq0C−1∗ for some δq0 ∈ (0, 1). (3.10)

The main result of this section shows that if D(R, t, x0) is uniformly small for sufficiently small R, then
‖DU‖Lp(Ω) can be controlled for some p > n.
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Proposition 3.1. Suppose that (U.0)–(U.4) hold. Assume that there exist t0 > 0 and μ0 ∈ (0, 1), which is suffi-
ciently small, in terms of the constants in 1, (F) such that the following holds:
(D) There is a positive Rμ0 , which may also depend on t0, T0, for which

Λ2 sup
x0∈Ω̄,t∈[T−2t0 ,T0)

D2(Rμ0 , t, x0) ≤ μ0 for all T ∈ [2t0, T0).

Suppose also that for x0 ∈ Ω̄ and T ≥ t0 > 0 the quantities (3.3)–(3.8) are finite for q ∈ [1, q0], q0 is fixed in
(3.10). Then there are q > n/2 and a constant C depending on the constants in (U.0)–(U.4), q, Rμ0 , t0, T0 and
the geometry of Ω such that

sup
t∈[t0 ,T0)

∫
Ω

|DU|2q dx ≤ C. (3.11)

The dependence of C in (3.11) on the geometry of Ω means: C depends on a number Nμ0 of balls BRμ0 (xi),
xi ∈ Ω̄, such that

Ω̄ ⊂
Nμ0
⋃
i=1
BRμ0 (xi). (3.12)

The proof of Proposition 3.1 relies on local estimates for the integral of |DU| in finitely many balls BR(xi)
with sufficiently small radius R to be determined by the geometry of Ω, namely the number Nμ0 and the
continuity of the functionD defined in (3.9). We will establish local estimates for DU in these balls and then
add up the results to obtain its global estimate (3.11). In the proof, we will only consider the case when
BR(xi) ⊂ Ω. The boundary case (xi ∈ ∂Ω) is similar, invoking a reflection argument and using the fact that ∂Ω
is smooth to extend the function U outside Ω, see Remarks 3.7 and 3.8.

In the rest of this section, let us fix a point x0 in Ω and T ≥ 2t0. We will drop x0, T, t0 in the notations
(3.3)–(3.8) and (3.9).

For any s, t such that 0 < s < t ≤ R let ψ be a cutoff function for two balls Bs , Bt centered at x0. That is,
ψ is nonnegative, ψ ≡ 1 in Bs and ψ ≡ 0 outside Bt with |Dψ| ≤ 1/(t − s). We also fix a cutoff function η for t
for [T − 2t0, T0] and [T − t0, T0]. That is η(t) = 0 for t ≤ T − 2t0, η(t) = 1 for t ∈ (T − t0, T0] and |η�(t)| ≤ 1/t0
for all t.

We first have the following local energy estimate result.

Lemma 3.2. Assume (U.0)–(U.2). Assume that q ≥ 1 satisfies condition (3.10) and that the quantities (3.3)–
(3.8) are finite. There is a constant C1(q) depending also on the constants in 1 and (F) such that

Aq(s) +Hq(s) ≤ C1(q)[Bq(t) +
1

(t − s)2
Gq(t) +

1
t0
Jq(t)], 0 < s < t ≤ R. (3.13)

Proof. By the assumption (U.1), we can formally differentiate (3.1) with respect to x, more precisely we can
use difference quotients (see Remark 3.3), to get the weak form of

(DU)t = div(Aζ (W, DU)D2U + AW (W, DU)DWDU) + D ̂f (W, DU). (3.14)

For simplicity, we will assume in the proof that ̂f ≡ 0. The presence of ̂f will be discussed later in Re-
mark 3.4. Testing (3.14) with ϕ = β(W)|DU|2q−2DUψ2η, which is legitimate sinceHq is finite, integrating by
parts in x and rearranging, we have, for Q = Ω × [T − 2t0, τ] with τ ≥ T,

∬
Q

⟨ϕ, (DU)t⟩ψ2η dz = −∬
Q

⟨Aζ (W, DU)D2U + AW (W, DU)DWDU, Dϕ⟩ dz. (3.15)

Firstly, we observe that

2q⟨ϕ, (DU)t⟩η =
d
dt

(β(W)|DU|2qη) − |DU|2qβW (W)Wtη − β(W)|DU|2qηt ,

Dϕ = β(W)D(|DU|2q−2DU)ψ2 + |DU|2q−2DUβWDWψ2 + 2β(W)|DU|2q−2DUψDψ.
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Hence, we can rewrite (3.15) as

1
2q ∫

Ωτ
β(W)|DU|2qψ2 dx +∬

Q

β(W)⟨Aζ (W, DU)D2U, D(|DU|2q−2DU)ψ2η⟩ dz

= −∬
Q

[⟨Aζ (W, DU)D2U, I1⟩ + ⟨AW (W, DU)DW, I2⟩]ψ2η dz +∬
Q

I3 dz, (3.16)

where Ωτ = Ω × {τ}.
Wewill discuss the terms I1, I2, I3 later. Let us consider the second integral on the left-hand side. By (U.0)

and the uniform ellipticity of Aζ (W, DU), we can find a constant C∗ such that |Aζ (W, DU)ζ| ≤ C∗λ(W)|ζ|. By
(3.10), α = 2q − 2 satisfies

α
2 + α

=
2q − 2
2q = δqC−1∗ = δq

λ(W)
C∗λ(W)

.

By [1, Lemma 2.1] or [11, Lemma 6.2], for such α, q there is a positive constant C(q) such that

⟨Aζ (W, DU)D2U, D(|DU|2q−2DU)⟩ ≥ C(q)λ(W)|DU|2q−2|D2U|2. (3.17)

We then obtain from (3.16)

∫
Ω

β(W)|DU|2qψ2 dx + C0(q)∬
Q

β(W)λ(W)|DU|2q−2|D2U|2ψ2η dz

≤ −∬
Q

[⟨Aζ (W, DU)D2U, I1⟩ + ⟨AW (W, DU)DW, I2⟩]η dz +∬
Q

I3 dz. (3.18)

The terms I1, I2 in the integrands on the right-hand side of (3.18) result from the calculation of Dϕ and
they will be handled by Young’s inequality as follows, noting that the assumption 1 gives |Aζ (W, DU)| ≤
C|λ(W)| and |AW (W, DU)| ≤ C|λW (W)||DU|.

Concerning I1, for any ε > 0 we can find a constant C(ε) such that

!!!!⟨Aζ (W, DU)D
2U, |DU|2q−2DUβWDWψ2⟩!!!!

≤ ελ(W)β(W)|DU|2q−2|D2U|2ψ2 + C(ε)λ(W)
|βW (W)|2

β(W)
|DW|2|DU|2qψ2,

!!!!⟨Aζ (W, DU)D
2U, β(W)|DU|2q−2DUψDψ⟩!!!!

≤ ελ(W)β(W)|DU|2q−2|D2U|2ψ2 + λ(W)β(W)|DU|2q|Dψ|2.

Similarly, for I2 we have

!!!!⟨AW (W, DU)DW, β(W)|DU|2q−2D2Uψ2⟩!!!!

≤ ελ(W)β(W)|DU|2q−2|D2U|2ψ2 + β(W)
|λW (W)|2

λ(W)
|DW|2|DU|2qψ2,

!!!!⟨AW (W, DU)DW, |DU|2q−2DUβWDWψ2⟩!!!! ≤ C|λW (W)||βW (W)||DW|2|DU|2qψ2,
!!!!⟨AW (W, DU)DW, β(W)|DU|2q−2DUψDψ⟩!!!!

≤ Cβ(W)
|λW (W)|2

λ(W)
|DW|2|DU|2qψ2 + Cλ(W)β(W)|DU|2q|Dψ|2.

Finally, for I3, which results from the calculation of ⟨ϕ, (DU)t⟩η, we have

β(W)|DU|2q|ηt| ≤
1
t0
β(W)|DU|2q .

As we assume that |Wt| ≤ C|Ut|, we have, from the equation of U,

|Wt| ≤ C|Aζ (W, DU)||D2U| + C|AW (W, DU)||DW|.
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Hence,

|DU|2q|βW (W)||Wt|η ≤ ελ(W)β(W)|DU|2q−2|D2U|2 + C(ε)λ(W)
|βW (W)|2

β(W)
|DU|2q+2

+ Cλ(W)
|βW (W)|2

β(W)
|DU|2q|DW|2 + Cβ(W)

|λW (W)|2

λ(W)
|DU|2q .

We then use the fact that |DW| ≤ C|DU|, choose ε sufficiently small and put the above estimates for the
terms in I1, I2, I3 in (3.18) to obtain anumber C1 depending on q, C(q) (see (3.17)) such that, for Bτs = Bs × {τ}
and τ ∈ [T − t0, T0),

∫
Bτs

β(W)|DU|2qη dx +∬
Qs

λ(W)β(W)|DU|2q−2|D2U|2η dz

≤ C1∬
Qt

Γ(W)|DU|2q+2ψ2η dz + C1Λ∬
Qt

β(W)[
1

(t − s)2
λ(W)|DU|2q + 1

t0
|DU|2q] dz.

Here, we used the definition of ψ and Γ(W). As the above holds for all τ ∈ [T − t0, T0), from the notations
(3.3) and (3.4), the above gives the lemma.

Remark 3.3. For i = 1, . . . , n and h ̸= 0 we denote by δi,h the difference quotient operator

δi,hu = h−1(u(x + hei) − u(x)),

with ei being the unit vector of the i-th axis in ℝn. We then apply δi,h to the system for U and then test the
result with |δi,hU|2q−2δi,hUψ2. The proof then continues to give the desired energy estimate by letting h tend
to 0.

Remark 3.4. If ̂f ̸= 0 then there is an extra term |D ̂f (W, DU)||DU|2q−1ψ2 in (3.18). This term will give rise to
similar terms in the proof. Indeed, by (1.4) in (F) with u = W and p = DU,

|D ̂f (W, DU)| ≤ Cλ
1
2 (W)|D2U| + C |λW (W)|

λ 1
2 (W)

|DW||DU| + |fW (W)||DW|.

Therefore, by Young’s inequality and (1.5), |fW (W)| ≤ Cλ(W), we get

|D ̂f (W, DU)|β(W)|DU|2q−1 ≤ C[λ
1
2 (W)|D2U| + C |λW (W)|

λ 1
2 (W)

|DW||DU| + |fW (W)||DW|]β(W)|DU|2q−1

≤ ελ(W)β(W)|DU|2q−2|D2U|2 + C(ε)λ(W)β(W)|DU|2q

+ CΓ(W)|DU|2q+2 + Cβ(W)|DU|2q + Cλ(W)β(W)|DU|2q .

Choosing ε > 0 sufficiently small, we then see that the proof can continue to obtain the energy estimate
(3.13).

Remark 3.5. The energy estimate of the lemma can be established by the same argument if A and ̂f depend
on x and t. We can assume that |Ax(t, x, u, Du)| and | ̂fx(t, x, u, Du)| satisfy the same growth as |A| and | ̂f |.

Remark 3.6. Inspecting our proof here and the proof of [11, Lemma 6.2], we can see that the constant C(q)
in (3.17) is decreasing in q and hence C1(q) is increasing in q. Note also that this is the only place we need
(3.10).

Remark 3.7. We discuss the case when the centers of Bρ , BR are on the boundary ∂Ω. We assume that U
satisfies the Neumann boundary condition on ∂Ω. By flattening the boundary we can assume that BR ∩ Ω is
the set

B+ = {x : x = (x1, . . . , xn) with xn ≥ 0 and |x| < R}.

For anypoint x = (x1, . . . , xn)wedenote by x̄ its reflection across the plane xn = 0, i.e., x̄ = (x1, . . . , −xn).
Accordingly, we denote by B− the reflection of B+. For a function u given on B+ × (0, T) we denote its even
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reflection by ū(x, t) = u(x̄, t) for x ∈ B−. We then consider the even extension of û in B = B+ ∪ B−:

û(x, t) =
{
{
{

u(x, t) if x ∈ B+,
ū(x, t) if x ∈ B−.

With these notations, for x ∈ B+ we observe that

Ut = Ūt , divx(DxU) = divx̄(Dx̄Ū), DxWDxU = Dx̄W̄Dx̄Ū .

Therefore, it is easy to see that Û satisfies in B a system similar to the one for U in B+. Thus, the proof can
apply to Û to obtain the same energy estimate near the boundary.

Remark 3.8. For the Dirichlet boundary condition we make use of the odd reflection ū(x, t) = −u(x̄, t) and
then define û as in Remark 3.7. Since DxiU = 0 on ∂Ω if i ̸= n, we can test the system (3.14), obtained by dif-
ferentiating the system of U with respect to xi, with |DxiU|2q−2DxiUψ2 and the proof goes as before because
no boundary integral terms appear in the calculation. We need only consider the case i = n. We observe that
Dxn Û is the even extension of DxnU in B therefore Û satisfies a system similar to (3.14). The proof then con-
tinues.

We now apply the local Gagliardo–Nirenberg inequality in the previous section to the functionsW, U.

Lemma 3.9. Let Bs , Bt be two concentric balls in Ω with radii t > s > 0 and ψ be a C1 cutoff function for
two balls Bs , Bt. Let W ∈ C1(Ω) and U ∈ C2(Ω) such that there is a constant C such that |DW| ≤ C|DU|. Fur-
thermore, assume that [λ(W)β(W)]

1
p+2 belongs to the Ap/(p+2)+1 class. There is a constant Cλ,β depending on

[(λ(W)β(W))
1
p+2 ]p/(p+2)+1 such that

Bp(s) + Λ2Cp(s) ≤ εΛ2Cp(t) + C(ε)Λ2Cλ,β sup
τ∈[T−2t0 ,T0)

‖U(⋅, τ)‖2BMO(Bt)[Bp(t) +Hp(t) +
1

(t − s)2
Gp(t)]. (3.19)

Proof. Let u = W and the function Φ(W) in Lemma 2.4 be [λ(W)β(W)]
1
2 . The assumption that

[Φ(W)]
2
p+2 = [λ(W)β(W)]

1
p+2

belongs to the Ap/(p+2)+1 class makes the lemma applicable here.
We now redefine

I1(t) := ∫
Bt

Φ2(W)|DU|2p+2 dx, ̄I1(t) := ∫
Bt

|ΦW (W)|2|DU|2p+2 dx,

and note that, since |DW| ≤ C|DU|, the quantities ̂I1(t), ̄I1(t) in Lemma 2.4 are majorized respectively by the
above I1(t), ̄I1(t). Hence, we can choose ε sufficiently small in Lemma2.4 to obtain a constant CΦ ∼ Cλ,β such
that

I1(s) ≤ εI1(t) + C(ε)CΦ‖U‖2BMO(Bt)[ ̄I1(t) + I2(t)]

+ C(ε)CΦ‖U‖BMO(Bt) sup
x∈Bt

|Dψ(x)|2∫
Bt

λ(W)|DU|2p dx.

It is clear that |ΦW (W)|2 ∼ Γ(W) so that

̄I1(t) + I2(t) ∼ ∫
Bt

(λ(W)β(W)|DU|2p−2|D2U|2 + |Γ(W)||DU|2p+2) dx.

We then have

∫
Bs

Φ2(W)|DU|2p+2 dx ≤ ε∫
Bt

Φ2(W)|DU|2p+2 dx

+ Λ2Cλ,β‖U‖2BMO(Bt)∫
Bt

(λ(W)β(W)|DU|2p−2|D2U|2 + |Γ(W)||DU|2p+2) dx

+ Λ2Cλ,β‖U‖BMO(Bt) sup
x∈Bt

|Dψ(x)|2∫
Bt

λ(W)β(W)|DU|2p dx.
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Multiplying the above inequality with Λ2η, integrating the result over [T − 2t0, T0) and using the nota-
tions (3.3)–(3.8) (with Qt = Bt × [T − 2t0, T0)), we see that the above implies

Λ2Cp(s) ≤ εΛ2Cp(t) + C(ε)Λ2Cλ,β sup
τ∈[T−2t0 ,T0)

‖U(⋅, τ)‖2BMO(Bt)[Bp(t) +Hp(t) +
1

(t − s)2
Gp(t)].

Because Γ(W) ≤ Λ2Φ2(W), we haveBp(s) ≤ Λ2Cp(s). We see that the above gives (3.19).

Let us recall the following elementary iteration result (e.g., see [7, Lemma 6.1, p.192]).

Lemma 3.10. Let f, g, h be bounded nonnegative functions in the interval [ρ, R] with g, h being increasing. As-
sume that for ρ ≤ s < t ≤ R we have

f(s) ≤ ε0f(t) + [(t − s)−αg(t) + h(t)]

with α > 0 and 0 ≤ ε0 < 1. Then

f(ρ) ≤ c(α, ε0)[(R − ρ)−αg(R) + h(R)].

The constant c(α, ε0) can be taken to be (1 − ν)−α(1 − ν−αν0)−1 for any ν satisfying ν−αν0 < 1.

We then have another lemma for the main proof of this section.

Lemma 3.11. Let F, G, g, h be bounded nonnegative functions in the interval [ρ, R] with g, h being increasing.
Assume that for ρ ≤ s < t ≤ R we have

F(s) ≤ ε[F(t) + G(t)] + [(t − s)−αg(t) + h(t)], (3.20)
G(s) ≤ C[F(t) + (t − s)−αg(t) + h(t)] (3.21)

with C ≥ 0, α, ε > 0. If 2Cε < 1 then there is constant c(C, α, ε) such that

F(s) + G(s) ≤ c(C, α, ε)[(t − s)−αg(t) + h(t)], ρ ≤ s < t ≤ R. (3.22)

Proof. Let ε0 = 2Cε. We obtain from (3.20)

CF(s) ≤ ε0
2 [F(t) + G(t)] + C[(t − s)−αg(t) + h(t)]. (3.23)

Let t1 = (s + t)/2 and use (3.23) with s being t1 and (3.21) with t being t1 to obtain a constant C1 such that

G(s) ≤ ε0
2 [F(t) + G(t)] + C1[(t − s)−αg(t) + h(t)]. (3.24)

Of course, we can assume that C ≥ 1 so that (3.23) and (3.24) give

F(s) + G(s) ≤ ε0[F(t) + G(t)] + C1[(t − s)−αg(t) + h(t)].

Thus, if ε0 < 1 or 2Cε < 1 then Lemma 3.10 applies with f(t) = F(t) + G(t) to give

F(ρ) + G(ρ) ≤ c(α, ε)[(R − ρ)−αg(R) + h(R)].

Obviously, the above argument holds if we replace the interval [ρ, R] by any subinterval [s, t]. The above
inequality then gives (3.22).

Proof of Proposition 3.1. For any R > 0 we denote (Cλ,β is defined in Lemma 3.9)

ε0(R) = Λ2Cλ,β sup
τ∈[t0 ,T0)

‖U(⋅, τ)‖2BMO(BR). (3.25)

Fix some q0 > n/2 as in the proposition and let μ0, R0 := R0 > 0 in (D) be such that

C1(q0)ε0(R0) = C1(q0)Cλ,βΛ2 sup
τ∈[t0 ,T0)

‖U(⋅, τ)‖2BMO(BR0 ) <
1
2 , (3.26)
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where C1(q0) is the constant in (3.13).We recall that (see Remark 3.6) C1(q) is increasing in q so that if (3.26)
holds then there is μ∗ ∈ (0, 1) such that

C1(q)ε0(R) <
μ∗
2 <

1
2 , 1 ≤ q ≤ q0, R ∈ (0, R0].

By (3.19) and the notation (3.25), we have, for any T ≥ 2t0 > 0,

Bp(s) + Λ2Cp(s) ≤ ε0(R0)(Hq(t) +Bq(t) +
1

(t − s)2
Gq(t))

for all s, t such that 0 < s < t ≤ R0.
On the other hand, if q satisfies (3.10), then (3.13) gives (from now on C1 = C1(q))

Hq(s) ≤ C1Bq(t) +
C1

(t − s)2
Gq(t) + C1

1
t0
Jq(t), 0 < s < t ≤ R0.

It is clear that the above twoestimates imply (3.20) and (3.21) of Lemma3.11with F(t) = Bp(t) + Λ2Cp(t),
G(t) = Hq(t), g(t) = Gq(t) and h(t) = t−10 Jq(t). Thus, the assumption (3.26) on ε0 and (3.22) of Lemma 3.11
provide a constant C2 depending on μ∗, C1 such that

Hq(s) +Bp(s) + Λ2Cp(s) ≤
C2

(t − s)2
Gq(t) + C2

1
t0
Jq(t), 0 < s < t ≤ R0,

or
Hq(s) +Bp(s) ≤

C2
(t − s)2

Gq(t) + C2
1
t0
Jq(t), 0 < s < t ≤ R0.

For t = 2s the above gives (if q satisfies (3.10))

Hq(s) +Bq(s) ≤ C3∬
Q2s

(
1
s2
λ(W)|DU|2q + 1

t0
|DU|2q) dz, 0 < s ≤ R0

2 .

Using this estimate forBq(t) in (3.13), with s = R0/4 and t = R0/2, respectively, we derive

Aq(
R0
4 ) +Hq(

R0
4 ) ≤ C4 ∬

QR0/2
(
1
R20
λ(W)|DU|2q + 1

t0
|DU|2q) dz. (3.27)

Now, we will argue by induction to obtain a bound forAq for some q > n/2. If some q with q ≥ 1 satisfies
(3.10), then we can find a constant Cq and tq ≥ t0 such that

∬
Ω×[T−2tq ,T0)

(λ(W)β(W)|DU|2q + β(W)|DU|2q) dz ≤ Cq (3.28)

and that (3.26) holds. Then (3.27) implies a similar bound forAq(R1),Hq(R1), R1 = R0
4 . We now can cover Ω

by NR1 balls BR1 , see (3.12), and add up the estimates forAq(R1),Hq(R1) to obtain (tq is t0)

sup
t∈[T−tq ,T0)

∫
Ω

β(W)|DU|2q dx + ∬
Ω×[T−2tq ,T0)

λ(W)β(W)|DU|2q−2|D2U|2 dz ≤ C. (3.29)

For some α ∈ (0, 1) to be determined later let p = αq. By Young’s inequality and (3.29), we obtain a con-
stant C such that

∬
Ω×[T−2tq ,T0)

|DU|2p−2|D2U|2 dz ≤ C(α) ∬
Ω×[T−2tq ,T0)

(1 + |DU|2q−2)|D2U|2 dz ≤ C. (3.30)

Here, we have used the fact that λ(W)β(W) is bounded from below so that the second integral in the left-hand
side of (3.30) is bounded by the second integral on the left-hand side of (3.29), which also holds for q = 1
thanks to our assumption (3.2).
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Using Hölder’s inequality, the assumption that β(W) belongs to Lr(Ω) for r sufficiently large and the
bound in (3.29), we obtain

∫
Ω

|DU|2p dx ≤ (∫
Ω

β(W)
−α
1−α dx)1−α(∫

Ω

β(W)|DU|2q dx)
α
≤ C.

By Sobolev’s inequality, setting Qq = Ω × [T − tq , T0), we get

∬
Qq

|DU|2p(1+
2
n ) dz ≤ ( sup

t∈[T−tq ,T0)
∫
BR1

|DU|2p dx)
2
n
∬
Qq

|DU|2p−2|D2U|2 dz.

We derive from the above three estimates that

∬
Qq

|DU|2p(1+
2
n ) dz ≤ C.

For p∗ ∈ (1, 1 + 2
n ) we write p∗ = γ + (1 − γ)(1 + 2

n ) and use Hölder’s inequality to get

∬
Qq

λ(W)β(W)|DU|2pp∗ dz ≤ ‖λ(W)β(W)‖
L
1
γ (Qq)

(∬
Qq

|DU|2p(1+
2
n ) dz)

1−γ
. (3.31)

Since λ(W) is bounded from below and λ(W)β(W) belongs to Lr(Ω) for r sufficiently large, the above
estimate yields

∬
Qq

β(W)|DU|2pp∗ dz ≤ C. (3.32)

We now choose and fix α, γ such that pp∗ = qq∗ for some q∗ > 1. This is the case if α is close to 1 and
γ is close to 0, so that

q∗ = α[γ + (1 − γ)(1 +
2
n )]

> 1.

From (3.31) and (3.32), we see that (3.28) holds again with the exponent q and the interval [T − 2tq , T0)
being qq∗ and [T − tq , T0), respectively.

By our assumption (3.2), estimate (3.28) holds for q = 1. For integers k = 0, 1, 2, . . . we define Lk = qk∗
and repeat the argument finitely many times, with the same choice of α, γ, as long as Lk satisfies (3.10),
qk ≤ q0 and (λ(W)β(W))1/(Lk+2) is an Ap weight with p = Lk

Lk+2 + 1. The last condition holds because Lk ≥ 1
and because of the assumption that (λ(W)β(W))

1
3 is an A 4

3
weight (see Remark 3.12). We then find an integer

k0 such that
sup

t∈[T−2−k tq ,T0)∫Ω β(W)|DU|2Lk dx ≤ C(Cq , R0, t0, NR1 ), k = 0, . . . , k0.

Obviously, we can choose α, γ such that Lk0 ∈ ( n2 , q0]. Now, let p0 ∈ ( n2 , Lk0 ) and write p0 = α0Lk0 for
some α0 ∈ (0, 1). By Hölder’s inequality and the above estimate, if τ ≥ T − 2−k0 tq, then

∫
Ω

|DU(x, τ)|2p0 dx ≤ (∫
Ω

β(W)
−α0
1−α0 dx)1−α0(∫

Ω

β(W)|DU|2Lk0 dx)
α0

≤ C.

It is clear from the proof that the integer k0 does not depend on t0 so that we can divide the interval
[T − 2t0, T − t0] into k0 equal length subintervals and repeat the argument to see that the above estimate
holds for τ ≥ T − t0 and T ≥ 2t0. This gives (3.11) and the proof is complete.

Remark 3.12. ByHölder’s inequality and the definition of Ap weights it is easy to see that ifw is an Ap weight
for some p > 1 then wδ is an Aq weight for any δ ∈ (0, 1) and q ∈ (1, p).
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4 Local and Global Existence of Strong Solutions

In this section, we consider the system

{
ut = div(A(x, t, u, Du)) + ̂f (x, t, u, Du) in Q = Ω × (0, T0),
u(x, 0) = U0(x) in Ω,

(4.1)

and u satisfies homogeneous Dirichlet or Neumann boundary conditions on ∂Ω × (0, T0).
Throughout this section we will assume that A, ̂f satisfy 1, (F) and (SG).
We first apply our estimates in the previous section to show that Amann’s conditions in [2, 3] can be

weakened under some mild extra assumptions which naturally occur in applications. We consider the case
when A(t, x, u, Du) is linear in Du and (4.1) satisfies the assumptions in Amann’s works (we refer the reader
to [2, 3] for the precise statements) so that local existence results hold.We have the following global existence
result.

Theorem 4.1. Assume that A(t, x, u, Du) = A(t, x, u)Du for some full m × m matrix A(t, x, u) satisfying the
assumptions in [2, 3]. Let (0, T0) be the maximal existence time interval for the solution u of (4.1). Assume
further that there is a positive C1 function β : ℝm → ℝ such that the following number is finite:

Λ = sup
(x,t)∈Ω×(0,T0)

{
|λW (x, t,W)|
λ(x, t,W)

, |βW (W)|
β(W)

}. (4.2)

Suppose that there is a sufficiently large r > 1 and a continuous function C(t) such that for a.e. t ∈ (0, T0) and
u as a function in x the following estimates hold:

‖β−1(u)‖Lr(Ω), ‖λ(x, t, u)β(u)‖Lr(Ω), [(λ(x, t, u)β(u))
1
2 ] 4

3
≤ C(t). (4.3)

In addition, we assume that
(M) for any given μ0 > 0 there is a positive Rμ0 , which may also depend on t0, T0, for which

Λ2 sup
x0∈Ω̄,t∈(0,T0)

‖u(⋅, t)‖2BMO(Bx0 ) ≤ μ0.

Then u exists globally, i.e. T0 = ∞.

Proof. It is clear that the assumptions of the theorem imply those of Proposition 3.1. The bound (3.11) then
shows that theW1,q norm, with some q > n, of u(⋅, t) does not blow up in (0, T0) so that Amann’s results can
apply here to give the global existence of u.

On the other hand, if A is nonlinear in Du, Amann’s results can not apply here and we can alternatively
establish local and global existence results for (4.1) using fixed point theories. To this end, we embed the
systems (4.1) in the following family of systems with σ ∈ [0, 1]:

{{{
{{{
{

Ut = div(Âσ(x, t, U, DU)) + F̂σ(x, t, U, DU) in Q = Ω × (0, T0),
U(x, 0) = U0(x) in Ω,
U satisfies homogeneous Dirichlet or Neumann BC on ∂Ω × (0, T0).

(4.4)

We will introduce a family of maps T(σ, ⋅), σ ∈ [0, 1], acting in some suitable Banach space X such that
strong solutions to (4.4) are their fixed points.

In order to define the maps T(σ, ⋅), we will use the notations ∂1g(x, t, u, ζ), ∂2g(x, t, u, ζ) to denote the
partial derivatives of a function g(x, t, u, ζ) with respect to its variables u, ζ .

To begin, let Q = Ω × (0, T0) and u0 be the strong solution to the linear parabolic system

{{{
{{{
{

(u0)t = div(∂2A(x, t, 0, 0)Du0) + ∂2 ̂f (x, t, 0, 0)Du0 + ∂1 ̂f (x, t, 0, 0)u0 in Q,
u0(x, 0) = U0(x) in Ω,
u0 satisfies homogeneous Dirichlet or Neumann BC on ∂Ω × (0, T0).
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It is well known that u0 is in C((0, T0), C2(Ω)) and (u0)t ∈ C(Q). Furthermore, for any τ0 > 0 and
α ∈ (0, 1), u0 is Hölder continuous in t and Du0 is Hölder continuous in x with any exponent α ∈ (0, 1)
in Ω × (τ0, T0) for any τ0 > 0.

Fixing some α0 ∈ (0, 1) and τ0 > 0 as in (M), we consider the Banach spaces

X1 = L2((0, T0),W1,2(Ω)), X2 = C(Ω × [0, τ0]), X3 = Cα0 ,
α0
2 (Ω × (τ0, T0)),

and
X = {v : v ∈ X1 ∩ X2, Dv ∈ X3}

with norm
‖v‖X = ‖v‖X1 + ‖v‖X2 + ‖Dv‖X3 .

Since the dependence of A, ̂f on x, t is not important in what follows, we will omit them in the notations
and calculation below for the simplicity of our presentation.

For each v ∈ X and σ ∈ [0, 1], we denote w = v + u0 and define

Aσ(w) =
1

∫
0

∂2A(σw, tσDw)dt, F1,σ(w) =
1

∫
0

∂1 ̂f (tσw, 0)dt, F2,σ(w) =
1

∫
0

∂2 ̂f (σw, tσDw)dt.

For any given v ∈ X and w = v + u0 let u = T(σ, v) be the weak solution u to the linear parabolic system

ut = div(Aσ(w)D(u + u0)) + F2,σ(w)D(u + u0) + F1,σ(w)(u + u0) − (u0)t (4.5)

in Q = Ω × (0, T0) and u satisfies the initial and boundary condition

u = 0 on ∂Ω × [0, T0).

Clearly, if u(σ) is a fixed point of T(σ, ⋅) for some σ ∈ (0, 1], i.e. u(σ) = T(σ, u(σ)), then U = u(σ) + u0 solves

Ut = div(Aσ(U)DU) + F2,σ(U)DU + F1,σ(U)U. (4.6)

We will assume that A, ̂f satisfy 1 and (F) so that A(σU, 0) = 0 and ̂f (0, 0) = 0. Hence,

Aσ(U)DU =
1

∫
0

∂2A(σU, tσDU)dtDU = σ−1A(σU, σDU) (4.7)

and

F2,σ(U)DU + F1,σ(U)U =
1

∫
0

∂2 ̂f (σU, tσDU)dtDU +
1

∫
0

∂1 ̂f (tσU, 0)dtU = σ−1 ̂f (σU, σDU). (4.8)

Therefore, for σ ∈ (0, 1] we will define

Âσ(U, ζ) = σ−1A(σU, σζ), F̂σ(U, ζ) = σ−1 ̂f (σU, σζ),

Â0(U, ζ) = ∂2A(0, 0)ζ, F̂0(U, ζ) = ∂2 ̂f (0, 0)ζ + ∂1 ̂f (0, 0)U. (4.9)

We then consider the following family of systems for σ ∈ [0, 1]:

{{{
{{{
{

Ut = div(Âσ(U, DU)) + F̂σ(U, DU) in Q = Ω × (0, T0),
U(x, 0) = U0(x) in Ω,
U(x, t) = 0 in ∂Ω × (0, T0).

(4.10)

By (4.9), we can see that u0 solves (4.10) for σ = 0.
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Theorem 4.2. We assume that A, ̂f satisfy 1, (F) and (SG). For some T0 > 0we assume that there is t0 ∈ (0, T0)
such that λ(t, u) is bounded for t ∈ (0, t0). As in Theorem 4.1, we suppose that the conditions (4.2), (4.3) and
(M) uniformly hold for σ ∈ [0, 1] with u being a solution U of (4.10). Namely, there is a sufficiently large r > 1
and a continuous function C(t) such that for a.e. t ∈ (0, T0) and U as a function in x the following hold:

‖β−1(U)‖Lr(Ω), ‖λ(x, t, U)β(U)‖Lr(Ω), [(λ(x, t, U)β(U))
1
2 ] 4

3
≤ C(t),

and
(M’) for any given μ0 > 0 there is a positive Rμ0 , which may also depend on T0, for which

Λ2 sup
x0∈Ω̄,t∈(0,T0)

‖U(⋅, t)‖2BMO(Bx0 ) ≤ μ0. (4.11)

Proof. We will use Leray–Schauder’s fixed point index theory to establish the existence of a fixed point of
T(1, ⋅), which is a strong solution to (4.1) and the above theorem then follows. The main ingredient of the
proof is to establish a uniform estimate for the fixed points of T(σ, ⋅) in X. To this end, we need a crucial
Hölder regularity for these fixed points in Ω × (0, T0). We will make use of Proposition 3.1 which provides
such regularity for these fixed points. However, this estimate holds for t ≥ t0 if we have some information
on their spatial derivatives in early time, namely [t0/2, t0], so that the quantities in the energy estimate of
Lemma 3.2 are finite. This is the main reason for the assumption that λ(x, t, u) is bounded when t is near 0
which together with (M’) and the results in [6] will give the needed boundedness of the spatial derivatives
near t = 0.

We will establish the following facts:
(i) T(σ, ⋅) : X → X is compact for σ ∈ (0, 1].
(ii) T(0, ⋅) : X → X is a constant map.
(iii) A fixed point u = T(σ, u) is a solution to (4.10). For σ = 1, such fixed points are solutions to (4.1).
(iv) There is M > 0 such that any fixed point u(σ) ∈ X of T(σ, ⋅), σ ∈ [0, 1], satisfies ‖u(σ)‖X < M.

Once (i)–(iv) are established, the theorem follows from the Leray–Schauder index theory. Indeed, we let
B be the ball centered at 0 with radius M of X and consider the Leray–Schauder indices

i(T(σ, ⋅), B,X) := deg(Id−T(σ, ⋅), B, 0),

where the right-hand side denotes the Leray–Schauder degree with respect to zero of the vector field
Id−T(σ, ⋅). This degree is well defined on the closure of the open set B ⊂ X because T(σ, ⋅) is compact
(see (i)) and Id−T(σ, ⋅) does not have zero on ∂B (see (iv)).

By the homotopy invariance of the indices and (ii), we have

i(T(σ, ⋅), B,X) = i(T(0, ⋅), B,X) = 1.

Thus, T(σ, ⋅) has a fixed point in B for all σ ∈ [0, 1]. Our theorem then follows from (iii).
Using regularity properties of solutions to linear parabolic systemswith continuous coefficients (see, e.g.,

[5]), we see that (i) holds. Checking (ii) and (iii) is fairly standard and straightforward.
To check (iv), let u(σ) ∈ X be a fixed point of T(σ, ⋅), σ ∈ [0, 1]. We need only consider the case σ > 0.

We now denote W = σ(u(σ) + u0) and U = u(σ) + u0 and need to show that ‖U‖X is uniformly bounded for
σ ∈ [0, 1]. First of all, the uniform boundedness for ‖U‖X1 , or equivalently ‖DU‖L2(Q), is fairly standard. We
multiply the systems (4.6) with U and integrate over Q. A simple use of integration by parts and Young’s
inequality shows that ‖DU‖L2(Q) can be estimated by the integrals over Q of f(W)|U|. By (F), |fu(u)| ≤ Cλ(u)
so that f(W)|U| ≤ Cλ(W)|U|2. By our assumptions, λ(W)β(W) and β−1(W) are in Lr(Ω) for some large r ≥ 1
with its norms being uniformly bounded, a simple use of Hölder’s inequality then shows that λ(W) satisfies
the same properties. Similarly, U is BMO so that it is in Lq(Ω) for all q ≥ 1. Hölder’s inequality then gives a
uniform bound for the integral of λ(W)|U|2 and then of ‖DU‖L2(Q).

Next, as we assume that λ(t,W) is bounded and U is VMO in Ω × (0, τ0], the argument in [6] applies here
to show that U(x, t) is uniformly Hölder continuous in Ω × (0, τ0]. Therefore, ‖U‖X2 is uniformly bounded.
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Concerning ‖U‖X3 ,wewill show that Proposition3.1 canbeapplied to the systems (4.10). AsU = u(σ) + u0
andW = σU, with u(σ) ∈ X, the conditions (U.1) and (U.2) are clearly verified.

From (4.7), (4.8) and the assumption that A, ̂f satisfy 1 and (F) we see that (U.0) is verified. Indeed, we
will show that Âσ(U, ζ) and F̂σ(U, ζ) satisfy the structural conditions 1 and (F). Firstly,

⟨Âσ(U, ζ), ζ⟩ = ⟨σ−1A(σU, σζ), ζ⟩ = ⟨σ−2A(σU, σζ), σζ⟩ ≥ λ(σU)|ζ|2,

‖Âσ(U, ζ)‖ = σ−1‖A(σU, σζ)‖ ≤ C∗λ(σU)|ζ|,
""""""
∂
∂U

Âσ(U, ζ)
"""""" = ‖∂1A(σU, ζ)‖ ∼ λ(σU)|ζ|.

Therefore Âσ satisfies 1 with u = σU.
Secondly,

|F̂σ(U, ζ)| ≤ σ−1(λ
1
2 (σU)|σζ| + f(σU)) ≤ λ(σU)|ζ| + σ−1f(σU),

and |∂U(σ−1f(σU))| = |fu(σU)| ≤ λ(σU). Here, fu(u) denotes the derivative of f(u) with respect to its variable
u. Also,

|DF̂σ(U, ζ)| ≤ Cσ−1(λ
1
2 (σU)|D(σζ)| + λu(σU)

λ 1
2 (σU)

|D(σU)||σζ| + |fu(σU)||D(σU)|)

≤ C(λ
1
2 (σU)|Dζ| + λu(σU)

λ 1
2 (σU)

|DU||ζ| + |fu(σU)||DU|).

Hence, F̂σ(U, ζ) satisfies (F). We see that (U.0) is verified for U andW = σU.
In addition, since u(σ) ∈ X, u(σ) is bounded and VMO near t = 0, the results in [6] show that u(σ) is Hölder

continuous in Q and Du(σ) ∈ Cβ,
β
2 (Ω × (t1, T0)) for any t1 > 0 and some β ∈ (0, 1). Hence, u(σ) = T(σ, u(σ)) is

the solution to the linear system (4.5), whose coefficients with v being u(σ) are in C1loc(Ω × (0, T0)), so that
U = u(σ) + u0 belongs to W2,2

loc (Q). Therefore, because W(⋅, t), U(⋅, t) belong to C1(Ω) for t > 0, the quantities
in the energy estimate of Lemma 3.2 are finite for all q ≥ 1.

Finally, it is clear that (4.11) in the assumption (M’) of our theorem gives the condition (D) of the propo-
sition. More importantly, the uniform bound in (4.11) then gives some positive constants μ0, R(μ0) such that
the proposition applies to allW, U.

Therefore, Proposition 3.1 applies to W = σ(u(σ) + u0), U = u(σ) + u0 and gives a uniform estimate for
‖u(σ)(⋅, t)‖W1,2q(Ω) for some q > n/2 and all t ∈ (t0, T0) and σ ∈ [0, 1]. By Sobolev’s imbedding theorems this
shows that U is Hölder continuous with its norm uniformly bounded with respect to σ ∈ [0, 1]. Again, the
results in [6] imply that Du(σ) ∈ Cα, α2 (Ω × (τ0, T0)) for any α ∈ (0, 1) and its norm is uniformly bounded. We
then obtain a uniform estimate for ‖u(σ)‖X3 and (iv) is verified. The proof of Theorem 4.2 is complete.

Remark 4.3. Weapplied Proposition 3.1 to strong solutions in the spaceX so thatU, DU are bounded and the
key quantitiesB,H are finite. However, the bound provided by the proposition did not involve the supremum
norms of U, DU but the BMO norm of U in (M’) and the constants in 1 and (F).

We conclude this paper by considering the case when λ(x, t, u) ∼ (λ0 + |u|)M for some λ0,M > 0 when t is
large. We will first show that the conditions, with the exception of (M’), are easily verifiable if the solutions
are uniformly BMO. Condition (M’) will be discussed in Remark 4.5.

We then recall the following result from [9, Theorem 6] on the connection between BMO functions and
weights: LetΨ be a positive function such thatΨ, Ψ−1 are BMO. ThenΨ belongs to⋂γ>1 Aγ and [Ψ]γ is bounded
by a constant depending on [Ψ]BMO and [Ψ−1]BMO.

Theorem 4.4. Assume that λ(x, t, u) is bounded in (0, t0] for some t0 > 0 and λ(x, t, u) ∼ (λ0 + |u|)M for t ≥ t0
and some λ0,M > 0. Suppose that ‖U(⋅, t)‖BMO(Ω) is bounded on (0, T0) and for any ε > 0 there is Rε > 0 such
that

λ−10 ‖U(⋅, t)‖BMO(BRε ) ≤ ε for all BRε ⊂ Ω and t ∈ (0, T0).

Then there is a strong solution in Ω × (0, T0).
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Proof. As in the proof of Theorem 4.2, we need only to show that Proposition 3.1 can apply for t ≥ t0. For
W = σU with σ ∈ [0, 1] assumptions (U.0)–(U.2) are clearly satisfied. We will show that the condition (U.3)
holds here. To this end, we choose β(W) ∼ (λ0 + |W|)−M+2ε0 with ε0 ∈ (0, 1). If M ≤ 2, we can take β(W) ≡ 1.
It is clear that the constant Λ ∼ λ−10 .

Let w := (λ(W)β(W))
1
2 . Since w ∼ (λ0 + |W|)ε0 , with ε0 ∈ (0, 1), the assumption that W is BMO implies

that w is BMO. Also, w−1 is BMO because w is bounded from below. By the aforementioned result in [9], w
is an Ap weight for all p > 1. Therefore, w = (λ(W)β(W))

1
2 is in A 4

3
class. On the other hand, it is well known

that ifW belongs to the BMO space then it belongs to Lp(Ω) for any p > 1. Here, β−1(W) and λ(W)β(W) have
polynomial growth inW so that they also belong to Lp(Ω) for any p > 1. We have shown that (U.3) is verified.

Moreover, it is easy to see that (3.28) holds for q = 1 by testing the systemwith U and then using the fact
that β(W) is bounded from above. The proof of Theorem 4.4 is complete.

Remark 4.5. To establish the uniform continuity condition (M’) one can try to establish a uniform bound-
edness of ‖DU‖Ln(Ω) and apply Poincaré’s inequality to see that U is VMO. If this can be done then one can
argue by contradiction to obtain (M’). We sketch the idea of the proof here. If (M’) is not true then along a
sequence σn , tn , rn, rn > 0, Un(⋅) = U(⋅, tn) converge weakly to some U in W1,2(Ω) and strongly in L2(Ω) but
‖Un‖BMO(Brn ) > ε0 for some r, ε0 > 0. We then have ‖Un‖BR → ‖U‖BR for any given R > 0. It is not difficult to
see that DU ∈ Ln so that U satisfies (M’). Furthermore, if rn < R then ‖Un‖BMO(Br) ≤ ‖Un‖BMO(BR). Choosing R
sufficiently small and letting n tend to infinity, we obtain a contradiction.
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