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Abstract: The Burgers-af8 equation, which was first introduced by Holm and Staley [4], is considered in the
special case where v = 0 and b = 3. Traveling wave solutions are classified to the Burgers-aff equation con-
taining four parameters b, a, v, and 8, which is a nonintegrable nonlinear partial differential equation that
coincides with the usual Burgers equation and viscous b-family of peakon equation, respectively, for two spe-
cific choices of the parameter f = 0 and § = 1. Under the decay condition, it is shown that there are smooth,
peaked and cusped traveling wave solutions of the Burgers-aff equation with v = 0 and b = 3 depending on
the parameter . Moreover, all traveling wave solutions without the decay condition are parametrized by the
integration constant k; € R. In an appropriate limit § = 1, the previously known traveling wave solutions of
the Degasperis—Procesi equation are recovered.
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1 Introduction

Consider the Burgers-af equation [4] withv =0and b = 3:
Up — Uy + (1 + 3B uuy = @2 GUyllyy + Ullyxy), X ER, t>0, (1.1)

where the subscripts denote the partial derivatives with respect to the spatial coordinate x and temporal
coordinate t, and a, 8 are real parameters. Indeed, using the transformations t — %t and x — %x, we can
rewrite (1.1) as

Up — Upxx + (1 4 3B)utty = Suylyy + Ulxxx, X ER, t>0. (1.2)

It is easy to see that (1.2) is the more general case compared to the Degasperis—Procesi equation. The
Degasperis—Procesi equation is a special case of (1.2) with 8 = 1. The formal integrability of the Degasperis—
Procesi equation was obtained in [2] by constructing a Lax pair. It has a bi-Hamiltonian structure with an
infinite sequence of conserved quantities and admits exact peakon solutions which are analogous to the
Camassa—Holm peakons [2]. The Degasperis—Procesi equation can be regarded as a model for nonlinear
shallow water dynamics and its asymptotic accuracy is the same as for the Camassa—Holm shallow water
equation [1, 3]. An inverse scattering approach for computing N-peakon solutions of the Degasperis—Procesi
equation was presented in [8]. Its traveling wave solutions were investigated in [6, 9].
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Note that if p(x) := 3e™™, x € R, then u = (1 - 02)"'m = p * m, where m := u — Uy, and = denotes the
convolution product on R, given by

(f * )(x) = jf(y)g(x ~y)dy.

R

This formulation allows us to define a weak form of (1.2) as follows:
1, 38 o\ _
ut+ax(§u +p*(7u ))-O, xeR, t>0. (1.3)

We also note that the peaked solitons are not classical solutions of (1.2) with 8 = 1. They satisfy the
Degasperis—Procesi equation in the weak form (1.3) with 8 = 1.

Recently, Holm and Staley in [4] studied traveling wave solutions of the Burgers-a8 equation with
(3-b)B =1 and v = 0. The aim of the present paper is to classify all weak traveling wave solutions of the
Burgers-af equation with b = 3 and v = 0 by the idea used in [5, 7].

Our main results of this paper are Theorem 2.3 (traveling wave solution with decay; Figures 1 and 2) and
Theorems 3.1-3.4 (traveling wave solution without decay; Figures 3, 4 and 5)

This paper is organized as follows. In Section 2, we classify the traveling wave solutions of (1.2) under
the decay condition. In particular, we show the existence of peaked traveling wave solutions for = 1. In Sec-
tion 3, we categorize the traveling wave solutions of (1.2) without the decay condition, by using an analogous
analysis in [6]. Finally, we give our concluding remarks in Section 4.

2 Traveling Wave Solutions With the Decay Condition

In this section, we study all weak traveling wave solutions of (1.2), i.e. solutions of the form
u(t,x)=@(x-ct), ceR (2.1)

for some ¢ : R — R such that ¢ — 0 as |x|] — co. Note that if ¢(x — ct) is a traveling wave solution of (1.2),
then —@(x + ct) is also a traveling wave solution of (1.2). Substituting (2.1) into (1.2) and integrating it, we

have
1+38

2
5 -, (2.2)

(€= Q)Pxx — P = Cp ~
We rewrite (2.2) as

%[(so ~Ola=—co+ 1+2—3B¢2.
Now we give the definition of a traveling wave solution of (1.2).

Definition 2.1. A function @(x - ct) € H'(R) is a nontrivial traveling wave solution of (1.2) with ¢ € R and
@ — 0as x| — oco.

The following lemma deals with the regularity of the traveling wave solutions. The idea is inspired by the
study of the traveling waves of the Camassa—Holm equation [5].

Lemma 2.2. Let ¢(x — ct) be a traveling wave solutions of (1.2). Then
(@-0f e TR\ o), k=2 (2.3)

Therefore
@ € CXR\ ¢ (0)).

Proof. Let v = ¢ - c and denote P(v) = -2c(v + ¢) + (1 + 3B)(v + ¢)?. So P(v) is a polynomial in v. Then v
satisfies
(Vz)xx = P(v).
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1

Joc(R). Hence (v?), is absolutely continuous and v? € C'(R). Then

Since v € H(RR), we know that (v2),, € L
v e CI(R\ v'1(0)). Moreover, we have

- ki - k
(Vo = v Tvi)e = S (V202 = kil = V203 + SV (v
= k(k - 2vF2v2 + gvk‘zP(v). (2.4)

For k = 3, the right-hand side of (2.4) isin L] (R). Thus we conclude thatv> € C}(R). For k > 2% = 4 we know
that (2.4) implies
k k
(VF)xx = k- 2V (V)] + zv“P(v) e CH(R).

Therefore vk € C1(R) for k > 22 = 4.
For k > 23 = 8 we see from the above that v*, vk=4, vk=2 yk=2p(y) e C2(R). Moreover, we have

- 1 1
vke2y2 = Z(VA)XH(VI( )y € CLR).

Hence from (2.4) we deduce that
vke CR\vY0), k=2°=8.

Applying the same argument to higher values of k we prove that vk € C/(R \ v-1(0)) for k > 2/, and hence
(2.3). This completes the proof of Lemma 2.2. O

Let ¢y = G. Then (2.2) becomes

(6%)p - c—2<p62 _ 2(C€0C—_?<P2). (2.5)
Solving the first-order ordinary differential equation (2.5), we have
143
07 - ‘pz[Tﬁq’z«; ArPeor e r) 2.6
Consider the polynomial
P(p) = <pz[#<p2 -1+ By +c? .7)

with a double root at ¢ = 0. Then we can classify all traveling wave solutions of (1.2) depending on the dif-
ferent behaviors of this polynomial.
Ifg = —%, then we know that P(¢) is the third-degree polynomial with a double zero at ¢ = 0 and a simple
zero at ¢ = 3¢ such that P(¢) = -3cp?(p - 30).
Ifg+ —%, then P(¢) is the fourth-degree polynomial with a double zero at ¢ = 0 and there are the three
cases
i A<O,
(i) A=0,
(iii) A > 0,
where A := ¢2B(B - 1) is the determinant of #(pz ~(1+pB)ce + ¢
(i) A < 0: For 0 < 8 < 1, we have that P(¢) is the fourth-degree polynomial with a double zero at ¢ = 0.
(i)A=0:
« Forf=0,Pp)= (pz(%(p - ¢)? is the fourth-degree polynomial with a double zero at ¢ = 0 and ¢ = 2c.
o ForfB =1, P(p) = p>(¢ — c)? is the fourth-degree polynomial with a double zero at ¢ = 0 and ¢ = c.
(iii) A > O0: For B < 0orB > 1, P(p) = #(pz(c —1l; = @)(c -1, — @) is the fourth-degree polynomial with
a double zero at ¢ = 0 and a simple zero at ¢ = ¢ — I; or ¢ = ¢ — I, where

_ Bt B-1y, B-1 _c| A1 B-1y B-1
Il_c[l+3ﬁ+\j<1+33) +1+3B]’ lz_c[1+3/3_\/(1+3ﬁ) +1+3ﬁ]
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for ¢ > 0 and

| B-1 B-1y2 pB-1 | B-1 B-1\2 B-1
ll_c[1+3ﬁ_\](1+3ﬁ) +1+3/3]’ IZ_C[1+3/3+\]<1+3B) +1+3B]

for ¢ < 0 are two roots of the equation

(a)

(b)

(c)

(d

2 2(B-1) B-1 ,_
BT TS A

If B < -1 then
L<0<c<ly or L<c<O0<l. (2.8)

If -3 < B < 0then
L<lij<0<c or c<0<lh<l. (2.9)

If B > 1 then
L<0O<li<c or c<lh<0<l.

Using the idea as introduced in [5] gives us the following conclusions:
Assume F(¢p) has a simple zero at ¢ = m so that F(m) = 0 and F'(m) # 0. The solution ¢ of (2.6) satisfies

@2 = (@ -m)F' (m) + 0((¢p - m)?) asx — m,

where f = 0(g) as x — a means that |£%| isbounded in some interval [a - €, a + €] with € > 0. Therefore

D) = m+ 7 (x - H2Fm) + 0((x - ) asx — & (2.10)
where ¢(&) = m.
If F(¢p) has a double zero at m, so that F'(m) = 0, F''(m) > 0, then
02 =(p-m)?F"(m)+0((p-m)’) as¢p — m.

We obtain

p(x)-m~ aexp(—X\/F”(m)) asx — oo (2.11)
for some constant a. Thus ¢ — m exponentially as x — co.
If ¢ approaches a double pole ¢(xp) = c of F(¢). Then

P(x) - ¢ = alx - xo|"? + 0((x - x0)>/?) asx — xo, (2.12)

x = {%a|x—xo|-1/2 +0((x-x0)''?)  asx | xo, (2.13)

—Lalx - xo| % + O((x - x0)*?) asx T xo
for some constant a. In particular, when F has a double pole, the solution ¢ has a cusp.
If the evolution of ¢ according to (2.6) suddenly changes direction ¢, — —¢@y, then peaked solitary waves

occur.
In view of (a)-(d), we give the following theorem on all bounded traveling wave solutions of (1.2) with

decay.

Theorem 2.3. Any bounded traveling wave of (1.2) with decay belongs to one of the following categories.
(1) Forp<-31:

2

o Ifc > 0, thenthereis a smooth traveling wave with decay ¢ < O with minycgr @(x) = ¢ — l; and a cusped
traveling wave with decay ¢ > 0 with max,er @(x) = c.

o Ifc <O, then there is a smooth traveling wave with decay ¢ > 0 with maxyegr @(x) = ¢ — I, and an an-
ticusped traveling wave with decay ¢ < 0 with minyer @(x) = c.

Forp=-3:

o Ifc >0, then there is a cusped traveling wave with decay ¢ > 0 with maXyegr ¢(x) = C.

o Ifc <O, then there is an anticusped traveling wave with decay ¢ < O with minycgr ¢(x) = c.

(3) For-1 <p<o:

o Ifc > 0, then there is a cusped traveling wave with decay ¢ > O with maXyer @(x) = c.
o Ifc <O, then there is an anticusped traveling wave with decay ¢ < O with minyegr ¢(x) = c.
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(4) ForB =0:

o Ifc > 0, then there is a cusped traveling wave with decay ¢ > O with maxyer @(x) = c.

o Ifc <0, then there is an anticusped traveling wave with decay ¢ < 0 with minyegr @(x) = c.
(5) ForO<B<1:

o Ifc >0, then there is a cusped traveling wave with decay ¢ > 0 with maxyegr @(x) = c.

o Ifc <0, then there is an anticusped traveling wave with decay ¢ < O with minyeg ¢(x) = c.
(6) ForB =1:

o Ifc > 0, then there is a peaked traveling wave with decay ¢ > O with maxyer @(x) = C.

« Ifc <0, then there is an antipeaked traveling wave with decay ¢ < 0 with minyegr @(x) = c.
(7) ForB > 1:

o Ifc >0, then there is a smooth traveling wave with decay ¢ > 0 with maXyegr ¢(x) = ¢ — ;.

o Ifc <0, then there is a smooth traveling wave with decay ¢ < 0 with minycg @(x) = ¢ — L.

Proof. First, we consider ¢ > 0. The other case ¢ < 0 can be handled in a very similar way.
If B = -1, then (2.6) becomes

2 _ —%C(pz(go - %C)

R

When ¢ > 0, ¢ = cis a double pole of F;(¢). Hence from (2.12) and (2.13) we see that we obtain a traveling
wave with cusp at ¢ = ¢, which decays exponentially.

If0< B <1andp =0, then ¢ = cis a double pole of F(¢) and ¢ = 0 is a double zero of F(¢) in (2.6).
Therefore, in the same manner as above, we obtain a cusped traveling wave with max,er ¢(x) = ¢ for ¢ > 0.
If B = 1, then (2.6) becomes , ,

oi- L - P,
When ¢ > 0, the smooth solution can be constructed until ¢ = c. But it can make a sudden turn at ¢ = c and
so give rise to a peak. Since ¢ = 0 is still a double zero of F,(¢), we still have the exponential decay.

Ifg<-1,-1<B<0,andB > 1, then (2.6) becomes

, (43R c-p-L)(c-p-1p)
Px = 4 -0

= F3(¢).

When < —%, we know that I; < 0 < ¢ < l; from (2.8). F5(¢) has a simple zero at ¢ =c—1; <0 and
a double zero at ¢ = 0. Therefore from (2.10) and (2.11) we see that in this case we can obtain a smooth
traveling wave with min,er ¢(x) = ¢ — I; and an exponential decay to zero at infinity. Moreover, since F5(¢)
has a double pole at ¢ = ¢, we can also obtain a cusped traveling wave with max,er @ (x) = ¢, which decays
exponentially.

If —% < B <0, weknow that I, < l; < 0 < ¢ from (2.9). In this case F3(¢) has a double pole at ¢ = ¢ and
a double zero at ¢ = 0. Hence we obtain a cusped traveling wave with max,er @ (x) = ¢, which decays expo-
nentially.

If > 1,weseethatl, <0< l; < cfrom(2.9). F5(¢) has asimple zeroat ¢ = ¢ — I; > 0 and a double zero
at ¢ = 0. Therefore from (2.10) and (2.11) we see that in this case we can obtain a smooth traveling wave with
maxyer @(X) = ¢ — 11 and an exponential decay to zero at infinity. This completes the proof of Theorem 2.3.

O

3 Traveling Wave Solutions Without the Decay Condition

In this section, we consider all weak traveling wave solutions of (1.2), i.e. solutions of the form

u(t,x)=p(x-ct), ceR (3.1)
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(iii) el

0 §

Figure 1. There are three different kinds of traveling wave solutions with decay for ¢ > 0 in Theorem 2.3.
(i) Cusped traveling waves with maxyer @(x) = ¢ for g < 1.

(i) Peaked traveling waves with maxxer @(x) = ¢ for g = 1.

(iii) Smooth traveling waves with maxyer @(x) = ¢ — [ for B > 1.

(1) (2)
p=c—l 99*50
=2
/Sp_cll =0 p=c \Zo p=0 p=c »
(3)
(4)
p=c—L p=c-l )
p=0p=c ®
=0 p=c p=2c TP
() (6)
2 =0 p=c % 2 =0 p=c %
(7)
p=c—1l 990—12/
p=0 p=c @

Figure 2. The graph of the polynomial (2.7) displayed for different values of B. The seven cases give rise to the categories
(1)-(7) in Theorem 2.3.
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without the decay condition at infinity. Note that if ¢(x - ct) is a traveling wave solution of (1.2), then
—@(x + ct) is also a traveling wave solution of (1.2). Thus we only consider traveling wave with a positive
speed ¢ > 0. Substituting (3.1) into (1.2) and integrating it, we have

1+3
(C_¢MUX_¢§:C¢__;T£¢2+kh (3.2)

where k; is an integration constant. Let ¢, = G. Then (3.2) becomes

2 1+3ﬁ k
2 G- (cp- 59"+ ) (3.3)
c-¢ c-¢

Solving the first-order ordinary differential equation (3.3), we have

(G*)y -

- ((p—c)z[lfﬁfp + B e cgo+ 1e2 —k1]+k2
o (p -0)?

= H(y),

where k; is an integration constant.
Consider the polynomial

1+38 , B-1 g-1,
3 P+ —cp+ 7 C—kl]

with a double root at ¢ = c. Then we can classify all traveling wave solutions of (1.2) depending on the differ-
ent behaviors of this polynomial. Once k; is fixed, a change in k;, will shift the graph vertically up or down.
Hence we can easily determine which k, yield bounded traveling waves. There are qualitatively different
cases.

Pi(p) = (9 - 0|

Case 1. We consider 8 = —%. Then P1(¢p) = (¢ - C)z(—%C(p - %Cz — k1) becomes a third-degree polynomial
with a double zero at ¢ = c.
Arguments similar to the ones in [5] and (2.10)-(2.13) give us the following theorem for 8 = —%.

Theorem 3.1. Let B = -3 L and ¢ > 0. Any bounded traveling wave of (1.2) belongs to one of the following cate-

gories. The waves are parametrlzed by ki1 € R as follows:

(1) Ifki < —c?, then there are no bounded solutions of (1.2).

(2) If k1 > —c2, then there exist a one-parameter group of cusped periodic traveling waves and one cusped
traveling wave with decay.

Proof. If B = -3, we have

3 2 5 1 3k 3 2 3 5 2
Pi(p) = —3c((p—c) (<p+ 2c+ 5 ) = —3c((p—c) —(c“+k)(p-0)°. (3.4)
Since ¢ > 0 and k; < —c?, we see that
P1(@) = -2c(p —c)* - 2(p —c)(c®> +k1) <0 forg < c.

Therefore, P1(¢p) is decreasing forp < c. There are no bounded solutions for any k.

If -c2<ky<-— k1 - ¢ S, and k1 > -%, then P1(¢) has a double zero at ¢ = ¢ and a simple zero at
= —CZZ—ikl >0 go =€ *3"1 = O and ¢ = C *3"1 < 0, respectively. Hence there are cusped traveling waves
for some k, > 0. This completes the proof of Theorem 3.1. O

Case 2. Consider B # —1. We know that

_ o[1+38 5, B-1 B-1,
Pl((p)—((p—c)[ 4 N 7 c—kl] (3.5)
is a fourth-degree polynomial. We distinguish two cases:
M g>-3,

(i) B <-3.



154 — B. Moon, Traveling Wave Solutions to the Burgers-af Equations DE GRUYTER

(Wky < —¢2 @) -2 <k <-%
. p=—tm .
=0 p=c © =0 p=c ®
2 2
(D1 = -5 (21 > =5
=0 R p =4 R
p=c ® o= p=c ®

Figure 3. The graph of the polynomial (3.4) displayed for different values of k;. The four cases give rise to the categories
(1)-(2) in Theorem 3.1.

B

We need the determinant A := 2-¢2 + (1 + 3B)k; of the second-degree polynomial

1+3ﬁ(p2+ﬁ_1 ﬁ 12 kl

4 2 o~ 4
DB >-3:
_ -1 Lok Bl : B -
A>O'k1>2(1+3ﬂ)c’ A—O.k1—2(1+3B)C, A<0'k1<2(1+3ﬂ)
(ii)B<—%:
. B-1 , e BT . B -
A>0k <503 A=0hi=gaape A0k a3 3B)

The idea as introduced in [5] and (2.10)—-(2.13) give us the following theorems.

Theorem 3.2. Letf3 > —% and c > 0. Any bounded traveling wave of (1.2) belongs to one of the following cate-
gories. The waves are parametrized by k, € R as follows:
(1) Ifky < - 2(1 el then there are no bounded solutions of (1.2).

) If _Z(Tsﬁ) <ki< zﬁ =) c?, then there exist a one-parameter group of smooth periodic traveling waves and
one smooth traveling wave with decay.
(3) Letks = 75agc?.
o If B > 0, then there exist a one-parameter group of smooth periodic traveling waves and one peaked
solitary wave.

. If—l < B < 0, then there are no bounded solutions of (1.2).

(4) If 3053 ﬁ c? <ki< 3’3 L¢2, then there exist a one -parameter group of smooth periodic traveling waves, one
peaked periodic travelmg wave, a one-parameter group of cusped periodic traveling waves, and one cusped
traveling wave with decay.

(5) Letk; = #cz
o If B >0, then there exist a one-parameter group of cusped periodic traveling waves and one cusped

traveling wave with decay.
. If—l < B < 0, then there are no bounded solutions of (1.2).

6) Ifky > Bﬁ L ¢2, then there exist a one -parameter group of cusped periodic traveling waves, one cusped trav-
eling wzth decay, a one-parameter group of anticusped periodic traveling waves, and one anticusped trav-
eling wave with decay.
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(C) (Composite waves) Any countable number of cuspons, anticuspons, and peakons from the categories (1)—
(6) corresponding to the same value of ky may be joined at points where ¢ = c to form a composite wave .
If the Lebesgue measure u(¢~1(c)) equals 0, then ¢ is a traveling wave of (1.2).

(S) (Stumpons) For ky = 2 ﬁ Lc2 the composite waves are traveling waves of (1.2) even if the Lebesgue measure
u(p1(c)) exceeds 0. Consequently, these waves may contain intervals where ¢ = c.

Proof. LetB>-%andc > 0.

(D) Ifky < - a direct computation gives us

2(1+3ﬁ) ’

2
P1(<P)’:(1+3B)(<P—C)(<p_ﬁ)2_(<p )(1C3/3+2k1)<0 for < c.

There are no bounded traveling wave solutions of (1.2) for any k; since P1(¢) is decreasing for ¢ < c.

) 1f- 2(1 3 ﬁ) <ki < /31 =5 c?, there are smooth traveling waves for some negative k.
(3) Let ky = 3 ;3113) 2 If B > 0, then there are a peaked solitary wave for k = 0 and smooth traveling

waves for some negative k,. If -3 < B < 0, there are no bounded solutions for any k.

(4) If so— 2(1 3 ﬁ c?<ki< 3ﬁ E 2 , then there are smooth traveling waves for some negative k,, a peaked pe-
riodic traveling wave for k, = 0, and cusped traveling wave solutions for some k, > 0.

(5)Letkq = E ﬁ Le2 1f B > 0, there are cusped traveling waves for some positive k, and the constant ¢ = ¢
is a solution for kz =0.1If -3 < B < 0, there are no bounded solutions for any k.

(6)If ki > 3ﬁ 1¢2, then there are cusped and anticusped traveling waves for some positive k. O

Remark 3.3. In [6], Lenells categorized traveling wave solutions of the Degasperis—Procesi equation. His cat-
egories (1)—(8) correspond to our categories (1)—(6), (C), and (S) for 8 = 1 in Theorem 3.2.

Theorem 3.4. Letf < —% and c > 0. Any bounded traveling wave of (1.2) belongs to one of the following cate-
gories. The Waves are parametrized by ky € R as follows:
1) If k1 > — 2(1+3ﬁ), then there are no bounded solutions of (1.2).

(2) If 2(T3l3) c2<ky<- 2(+23ﬁ) then there exist a one-parameter group of cusped periodic traveling waves and
one cusped traveling wave with decay.

(3) If k1 = %Cz’ then there exist a one-parameter group of smooth periodic traveling waves, one smooth
traveling waves with decay, a one-parameter group of cusped periodic traveling waves, and one cusped
travelmg wave with decay.

(4) If 5— 3ﬁ B2 o < zﬁ;;ﬁ) c?, then there exist a one-parameter group of smooth periodic traveling waves, a
one parameter group of cusped periodic traveling waves, and one cusped traveling wave with decay.

(5) If ky = 3I;T_lcz, then there exist a one-parameter group of smooth periodic traveling waves and cusped pe-
riodic traveling waves.

6) If ky > 3ﬁ L¢2, then there exist a one -parameter group of smooth periodic traveling waves, one peaked
periodic travelmg waves, and cusped periodic traveling waves.

(C) (Composite waves) Any countable number of cuspons, anticuspons, and peakons from the categories (1)—
(6) corresponding to the same value of k; may be joined at points where ¢ = c to form a composite wave @.
If the Lebesgue measure u(¢~1(c)) equals 0, then ¢ is a traveling wave of (1.2).

(S) (Stumpons) For ky = 3 B L ¢2 the composite waves are traveling waves of (1.2) even if the Lebesgue measure

u(p1(c)) exceeds 0. Consequently, these waves may contain intervals where ¢ = c.

Proof. LetB < -} andc > 0.

D) Ifky > - 74 direct computation gives us

2(1+3ﬁ

! 2 c?
Pi(p) =(1+3ﬁ)((p—c)((p— ) —((p—c)(1 3/3+2k1)>0 for < c.

c
1+38

There are no bounded traveling wave solutions of (1.2) for any k; since P;(¢) is increasing for ¢ < c.
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(1) (2)
0=0 o=c 7] o=0 g=c %
8)—3<pB<0 (3)3=0
1—
Y = 1138¢
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Figure 4. The polynomial (3.5) displayed for different values of ky. All cases give rise to the categories (1)-(6) in Theorem 3.2.
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Figure 5. The polynomial (3.5) displayed for different values of k;. The six cases give rise to the categories (1)-(6) in

Theorem 3.4.
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2) If t—= 2(1 3 ﬂ) c2<ki<- 1C+23 e there are cusped traveling waves for some positive k.

3 Ifky = c?, there are smooth traveling waves and cusped traveling waves for some positive k.

2(1+3,B)

Bﬁ 1
WIfE=c? <k < 2(1+3ﬁ
waves for some positive k5.

c?, there are smooth periodic traveling waves for k, = 0 and cusped traveling

(B)Ifky = 3ﬁ B2 , there are smooth periodic traveling waves for some negative k,, cusped perlodlc trav-
eling waves for p051t1ve k., and smooth periodic traveling waves and the constant ¢ = c for k, =

6) If kq > 3ﬁ L c?, there are smooth periodic traveling waves for some negative k», a peaked periodic
traveling wave for k, = 0, and cusped periodic traveling waves for some positive k. O

4 Concluding Remarks

In this paper, we have investigated traveling wave solutions of the Burgers-af equation withv=0and b = 3,
including the well-studied integrable Degasperis—Procesi equation [2], 8 = 1. Hence the present paper gen-
eralizes some priori traveling wave results from [6] of the Degasperis—Procesi equation. The free parameter
B and the integration constant k; play an important role in the type of traveling wave solutions of (1.2). Our
study shows that there are three different kinds of traveling wave solutions with the decay condition to (1.2)
such as cusped (8 < 1), peaked (8 = 1), and smooth (8 > 1). Traveling wave solutions without the decay con-
dition to (1.2) are parametrized by the integration constant k.
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