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Abstract: The Burgers-αβ equation, which was first introduced by Holm and Staley [4], is considered in the
special case where ν = 0 and b = 3. Traveling wave solutions are classified to the Burgers-αβ equation con-
taining four parameters b, α, ν, and β, which is a nonintegrable nonlinear partial di�erential equation that
coincideswith the usual Burgers equation and viscous b-family of peakon equation, respectively, for two spe-
cific choices of the parameter β = 0 and β = 1. Under the decay condition, it is shown that there are smooth,
peaked and cusped traveling wave solutions of the Burgers-αβ equation with ν = 0 and b = 3 depending on
the parameter β. Moreover, all traveling wave solutions without the decay condition are parametrized by the
integration constant k1 ∈ ℝ. In an appropriate limit β = 1, the previously known traveling wave solutions of
the Degasperis–Procesi equation are recovered.
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1 Introduction
Consider the Burgers-αβ equation [4] with ν = 0 and b = 3:

ut − α2utxx + (1 + 3β)uux = α2(3uxuxx + uuxxx), x ∈ ℝ, t > 0, (1.1)

where the subscripts denote the partial derivatives with respect to the spatial coordinate x and temporal
coordinate t, and α, β are real parameters. Indeed, using the transformations t Ü→ 1

α t and x Ü→
1
α x, we can

rewrite (1.1) as
ut − utxx + (1 + 3β)uux = 3uxuxx + uuxxx , x ∈ ℝ, t > 0. (1.2)

It is easy to see that (1.2) is the more general case compared to the Degasperis–Procesi equation. The
Degasperis–Procesi equation is a special case of (1.2) with β = 1. The formal integrability of the Degasperis–
Procesi equation was obtained in [2] by constructing a Lax pair. It has a bi-Hamiltonian structure with an
infinite sequence of conserved quantities and admits exact peakon solutions which are analogous to the
Camassa–Holm peakons [2]. The Degasperis–Procesi equation can be regarded as a model for nonlinear
shallow water dynamics and its asymptotic accuracy is the same as for the Camassa–Holm shallow water
equation [1, 3]. An inverse scattering approach for computing N-peakon solutions of the Degasperis–Procesi
equation was presented in [8]. Its traveling wave solutions were investigated in [6, 9].
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Note that if p(x) := 1
2 e
−|x|, x ∈ ℝ, then u = (1 − ∂2x)−1m = p ∗ m, where m := u − uxx and ∗ denotes the

convolution product onℝ, given by

(f ∗ g)(x) := ∫
ℝ

f(y)g(x − y)dy.

This formulation allows us to define a weak form of (1.2) as follows:

ut + ∂x(
1
2u

2 + p ∗ (
3β
2 u

2)) = 0, x ∈ ℝ, t > 0. (1.3)

We also note that the peaked solitons are not classical solutions of (1.2) with β = 1. They satisfy the
Degasperis–Procesi equation in the weak form (1.3) with β = 1.

Recently, Holm and Staley in [4] studied traveling wave solutions of the Burgers-αβ equation with
(3 − b)β = 1 and ν = 0. The aim of the present paper is to classify all weak traveling wave solutions of the
Burgers-αβ equation with b = 3 and ν = 0 by the idea used in [5, 7].

Our main results of this paper are Theorem 2.3 (traveling wave solution with decay; Figures 1 and 2) and
Theorems 3.1–3.4 (traveling wave solution without decay; Figures 3, 4 and 5)

This paper is organized as follows. In Section 2, we classify the traveling wave solutions of (1.2) under
the decay condition. In particular, we show the existence of peaked traveling wave solutions for β = 1. In Sec-
tion 3, we categorize the travelingwave solutions of (1.2) without the decay condition, by using an analogous
analysis in [6]. Finally, we give our concluding remarks in Section 4.

2 Traveling Wave Solutions With the Decay Condition
In this section, we study all weak traveling wave solutions of (1.2), i.e. solutions of the form

u(t, x) = φ(x − ct), c ∈ ℝ (2.1)

for some φ : ℝ → ℝ such that φ → 0 as |x| → ∞. Note that if φ(x − ct) is a traveling wave solution of (1.2),
then −φ(x + ct) is also a traveling wave solution of (1.2). Substituting (2.1) into (1.2) and integrating it, we
have

(c − φ)φxx − φ2
x = cφ −

1 + 3β
2 φ2, (2.2)

We rewrite (2.2) as
1
2 [(φ − c)

2]xx = −cφ +
1 + 3β
2 φ2.

Now we give the definition of a traveling wave solution of (1.2).

Definition 2.1. A function φ(x − ct) ∈ H1(ℝ) is a nontrivial traveling wave solution of (1.2) with c ∈ ℝ and
φ → 0 as |x| → ∞.

The following lemma deals with the regularity of the traveling wave solutions. The idea is inspired by the
study of the traveling waves of the Camassa–Holm equation [5].

Lemma 2.2. Let φ(x − ct) be a traveling wave solutions of (1.2). Then

(φ − c)k ∈ Cj(ℝ \ φ−1(c)), k ≥ 2j . (2.3)

Therefore
φ ∈ C∞(ℝ \ φ−1(c)).

Proof. Let ν = φ − c and denote P(ν) = −2c(ν + c) + (1 + 3β)(ν + c)2. So P(ν) is a polynomial in ν. Then ν
satisfies

(ν2)xx = P(ν).
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Since ν ∈ H1(ℝ), we know that (ν2)xx ∈ L1loc(ℝ). Hence (ν2)x is absolutely continuous and ν2 ∈ C1(ℝ). Then
ν ∈ C1(ℝ \ ν−1(0)). Moreover, we have

(νk)xx = (kνk−1νx)x =
k
2 (ν

k−2(ν2)x)x = k(k − 2)ν
k−2ν2x +

k
2 ν

k−2(ν2)xx

= k(k − 2)νk−2ν2x +
k
2 ν

k−2P(ν). (2.4)

For k = 3, the right-hand side of (2.4) is in L1loc(ℝ). Thuswe conclude that ν3 ∈ C1(ℝ). For k ≥ 22 = 4we know
that (2.4) implies

(νk)xx =
k
4 (k − 2)ν

k−4[(ν2)x]2 +
k
2 ν

k−2P(ν) ∈ C1(ℝ).

Therefore νk ∈ C1(ℝ) for k ≥ 22 = 4.
For k ≥ 23 = 8 we see from the above that ν4, νk−4, νk−2, νk−2P(ν) ∈ C2(ℝ). Moreover, we have

νk−2ν2x =
1
4 (ν

4)x
1

k − 4 (ν
k−4)x ∈ C1(ℝ).

Hence from (2.4) we deduce that

νk ∈ C3(ℝ \ ν−1(0)), k ≥ 23 = 8.

Applying the same argument to higher values of k we prove that νk ∈ Cj(ℝ \ ν−1(0)) for k ≥ 2j, and hence
(2.3). This completes the proof of Lemma 2.2.

Let φx = G. Then (2.2) becomes

(G2)φ −
2

c − φ
G2 =

2(cφ − 1+3β
2 φ2)

c − φ
. (2.5)

Solving the first-order ordinary di�erential equation (2.5), we have

φ2
x =

φ2[1+3β4 φ2 − (1 + β)cφ + c2]
(φ − c)2

:= F(φ). (2.6)

Consider the polynomial
P(φ) = φ2[

1 + 3β
4 φ2 − (1 + β)cφ + c2] (2.7)

with a double root at φ = 0. Then we can classify all traveling wave solutions of (1.2) depending on the dif-
ferent behaviors of this polynomial.

If β = −13 , thenwe know that P(φ) is the third-degree polynomialwith a double zero atφ = 0 and a simple
zero at φ = 3

2 c such that P(φ) = −23 cφ
2(φ − 3

2 c).
If β ̸= −13 , then P(φ) is the fourth-degree polynomial with a double zero at φ = 0 and there are the three

cases
(i) ∆ < 0,
(ii) ∆ = 0,
(iii) ∆ > 0,
where ∆ := c2β(β − 1) is the determinant of 1+3β

4 φ2 − (1 + β)cφ + c2.
(i) ∆ < 0: For 0 < β < 1, we have that P(φ) is the fourth-degree polynomial with a double zero at φ = 0.
(ii) ∆ = 0:

∙ For β = 0, P(φ) = φ2(12φ − c)
2 is the fourth-degree polynomial with a double zero at φ = 0 and φ = 2c.

∙ For β = 1, P(φ) = φ2(φ − c)2 is the fourth-degree polynomial with a double zero at φ = 0 and φ = c.
(iii) ∆ > 0: For β < 0 or β > 1, P(φ) = 1+3β

4 φ2(c − l1 − φ)(c − l2 − φ) is the fourth-degree polynomial with
a double zero at φ = 0 and a simple zero at φ = c − l1 or φ = c − l2, where

l1 = c[
β − 1
1 + 3β +

√(
β − 1
1 + 3β )

2
+
β − 1
1 + 3β], l2 = c[

β − 1
1 + 3β −

√(
β − 1
1 + 3β )

2
+
β − 1
1 + 3β]
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for c > 0 and

l1 = c[
β − 1
1 + 3β −

√(
β − 1
1 + 3β )

2
+
β − 1
1 + 3β], l2 = c[

β − 1
1 + 3β +

√(
β − 1
1 + 3β )

2
+
β − 1
1 + 3β]

for c < 0 are two roots of the equation

y2 − 2(β − 1)1 + 3β cy −
β − 1
1 + 3β c

2 = 0.

If β < −13 then
l2 < 0 < c < l1 or l2 < c < 0 < l1. (2.8)

If −13 < β < 0 then
l2 < l1 < 0 < c or c < 0 < l2 < l1. (2.9)

If β > 1 then
l2 < 0 < l1 < c or c < l2 < 0 < l1.

Using the idea as introduced in [5] gives us the following conclusions:
(a) Assume F(φ) has a simple zero at φ = m so that F(m) = 0 and F�(m) ̸= 0. The solution φ of (2.6) satisfies

φ2
x = (φ − m)F�(m) + O((φ − m)2) as x → m,

where f = O(g) as x → ameans that !!!!
f(x)
g(x)

!!!! is bounded in some interval [a − ϵ, a + ϵ]with ϵ > 0. Therefore

φ(x) = m + 14 (x − ξ)
2F�(m) + O((x − ξ)4) as x → ξ, (2.10)

where φ(ξ) = m.
(b) If F(φ) has a double zero at m, so that F�(m) = 0, F��(m) > 0, then

φ2
x = (φ − m)2F��(m) + O((φ − m)3) as φ → m.

We obtain
φ(x) − m ∼ α exp(−x√F��(m)) as x →∞ (2.11)

for some constant α. Thus φ → m exponentially as x →∞.
(c) If φ approaches a double pole φ(x0) = c of F(φ). Then

φ(x) − c = α|x − x0|1/2 + O((x − x0)3/2) as x → x0, (2.12)

φx =
{
{
{

1
2α|x − x0|

−1/2 + O((x − x0)1/2) as x ↓ x0,
−12α|x − x0|

−1/2 + O((x − x0)1/2) as x ↑ x0
(2.13)

for some constant α. In particular, when F has a double pole, the solution φ has a cusp.
(d) If the evolution ofφ according to (2.6) suddenly changes directionφx Ü→ −φx, then peaked solitarywaves

occur.
In view of (a)–(d), we give the following theorem on all bounded traveling wave solutions of (1.2) with

decay.

Theorem 2.3. Any bounded traveling wave of (1.2) with decay belongs to one of the following categories.
(1) For β < −13 :
∙ If c > 0, then there is a smooth traveling wavewith decay φ < 0withminx∈ℝ φ(x) = c − l1 and a cusped

traveling wave with decay φ > 0 withmaxx∈ℝ φ(x) = c.
∙ If c < 0, then there is a smooth traveling wave with decay φ > 0 with maxx∈ℝ φ(x) = c − l2 and an an-

ticusped traveling wave with decay φ < 0 with minx∈ℝ φ(x) = c.
(2) For β = −13 :
∙ If c > 0, then there is a cusped traveling wave with decay φ > 0 with maxx∈ℝ φ(x) = c.
∙ If c < 0, then there is an anticusped traveling wave with decay φ < 0 with minx∈ℝ φ(x) = c.

(3) For −13 < β < 0:
∙ If c > 0, then there is a cusped traveling wave with decay φ > 0 with maxx∈ℝ φ(x) = c.
∙ If c < 0, then there is an anticusped traveling wave with decay φ < 0 with minx∈ℝ φ(x) = c.
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(4) For β = 0:
∙ If c > 0, then there is a cusped traveling wave with decay φ > 0 withmaxx∈ℝ φ(x) = c.
∙ If c < 0, then there is an anticusped traveling wave with decay φ < 0 with minx∈ℝ φ(x) = c.

(5) For 0 < β < 1:
∙ If c > 0, then there is a cusped traveling wave with decay φ > 0 withmaxx∈ℝ φ(x) = c.
∙ If c < 0, then there is an anticusped traveling wave with decay φ < 0 with minx∈ℝ φ(x) = c.

(6) For β = 1:
∙ If c > 0, then there is a peaked traveling wave with decay φ > 0 with maxx∈ℝ φ(x) = c.
∙ If c < 0, then there is an antipeaked traveling wave with decay φ < 0 with minx∈ℝ φ(x) = c.

(7) For β > 1:
∙ If c > 0, then there is a smooth traveling wave with decay φ > 0 withmaxx∈ℝ φ(x) = c − l1.
∙ If c < 0, then there is a smooth traveling wave with decay φ < 0 withminx∈ℝ φ(x) = c − l2.

Proof. First, we consider c > 0. The other case c < 0 can be handled in a very similar way.
If β = −13 , then (2.6) becomes

φ2
x =
−23 cφ

2(φ − 3
2 c)

(φ − c)2
:= F1(φ).

When c > 0, φ = c is a double pole of F1(φ). Hence from (2.12) and (2.13) we see that we obtain a traveling
wave with cusp at φ = c, which decays exponentially.

If 0 < β < 1 and β = 0, then φ = c is a double pole of F(φ) and φ = 0 is a double zero of F(φ) in (2.6).
Therefore, in the same manner as above, we obtain a cusped traveling wave with maxx∈ℝ φ(x) = c for c > 0.
If β = 1, then (2.6) becomes

φ2
x =

φ2(φ − c)2

(φ − c)2
:= F2(φ).

When c > 0, the smooth solution can be constructed until φ = c. But it can make a sudden turn at φ = c and
so give rise to a peak. Since φ = 0 is still a double zero of F2(φ), we still have the exponential decay.

If β < −13 , −
1
3 < β < 0, and β > 1, then (2.6) becomes

φ2
x =

(1 + 3β)φ2(c − φ − l1)(c − φ − l2)
4(φ − c)2

:= F3(φ).

When β < −13 , we know that l2 < 0 < c < l1 from (2.8). F3(φ) has a simple zero at φ = c − l1 < 0 and
a double zero at φ = 0. Therefore from (2.10) and (2.11) we see that in this case we can obtain a smooth
traveling wave with minx∈ℝ φ(x) = c − l1 and an exponential decay to zero at infinity. Moreover, since F3(φ)
has a double pole at φ = c, we can also obtain a cusped traveling wave with maxx∈ℝ φ(x) = c, which decays
exponentially.

If −13 < β < 0, we know that l2 < l1 < 0 < c from (2.9). In this case F3(φ) has a double pole at φ = c and
a double zero at φ = 0. Hence we obtain a cusped traveling wave with maxx∈ℝ φ(x) = c, which decays expo-
nentially.

If β > 1, we see that l2 < 0 < l1 < c from (2.9). F3(φ) has a simple zero at φ = c − l1 > 0 and a double zero
at φ = 0. Therefore from (2.10) and (2.11) we see that in this casewe can obtain a smooth travelingwavewith
maxx∈ℝ φ(x) = c − l1 and an exponential decay to zero at infinity. This completes the proof of Theorem 2.3.

3 Traveling Wave Solutions Without the Decay Condition
In this section, we consider all weak traveling wave solutions of (1.2), i.e. solutions of the form

u(t, x) = φ(x − ct), c ∈ ℝ (3.1)
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(iii) c− l1

Figure 1. There are three di�erent kinds of traveling wave solutions with decay for c > 0 in Theorem 2.3.
(i) Cusped traveling waves with maxx∈ℝ φ(x) = c for β < 1.
(ii) Peaked traveling waves with maxx∈ℝ φ(x) = c for β = 1.
(iii) Smooth traveling waves with maxx∈ℝ φ(x) = c − l1 for β > 1.

ϕ = c− l1 ϕ = 0 ϕ = c

ϕ = c− l2

ϕ

(1)

ϕ = 3

2
c

ϕ = cϕ = 0 ϕ

(2)

ϕ = 0 ϕ = c
ϕ = c− l1 ϕ = c− l2

ϕ

(3)

ϕ = 2cϕ = cϕ = 0 ϕ

(4)

ϕ = cϕ = 0 ϕ

(5)

ϕ = cϕ = 0 ϕ

(6)

ϕ = 0 ϕ = c
ϕ = c− l1 ϕ = c− l2

ϕ

(7)

Figure 2. The graph of the polynomial (2.7) displayed for di�erent values of β. The seven cases give rise to the categories
(1)–(7) in Theorem 2.3.
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without the decay condition at infinity. Note that if φ(x − ct) is a traveling wave solution of (1.2), then
−φ(x + ct) is also a traveling wave solution of (1.2). Thus we only consider traveling wave with a positive
speed c > 0. Substituting (3.1) into (1.2) and integrating it, we have

(c − φ)φxx − φ2
x = cφ −

1 + 3β
2 φ2 + k1, (3.2)

where k1 is an integration constant. Let φx = G. Then (3.2) becomes

(G2)φ −
2

c − φ
G2 =

2(cφ − 1+3β
2 φ2 + k1)
c − φ

. (3.3)

Solving the first-order ordinary di�erential equation (3.3), we have

φ2
x =

(φ − c)2[1+3β4 φ2 + β−12 cφ + β−14 c2 − k1] + k2
(φ − c)2

:= H(φ),

where k2 is an integration constant.
Consider the polynomial

P1(φ) = (φ − c)2[
1 + 3β
4 φ2 +

β − 1
2 cφ + β − 14 c2 − k1]

with a double root at φ = c. Thenwe can classify all traveling wave solutions of (1.2) depending on the di�er-
ent behaviors of this polynomial. Once k1 is fixed, a change in k2 will shift the graph vertically up or down.
Hence we can easily determine which k2 yield bounded traveling waves. There are qualitatively di�erent
cases.

Case 1. We consider β = −13 . Then P1(φ) = (φ − c)
2(−23 cφ −

1
3 c

2 − k1) becomes a third-degree polynomial
with a double zero at φ = c.

Arguments similar to the ones in [5] and (2.10)–(2.13) give us the following theorem for β = −13 .

Theorem 3.1. Let β = −13 and c > 0. Any bounded traveling wave of (1.2) belongs to one of the following cate-
gories. The waves are parametrized by k1 ∈ ℝ as follows:
(1) If k1 ≤ −c2, then there are no bounded solutions of (1.2).
(2) If k1 > −c2, then there exist a one-parameter group of cusped periodic traveling waves and one cusped

traveling wave with decay.

Proof. If β = −13 , we have

P1(φ) = −
2
3 c(φ − c)

2(φ + 12 c +
3k1
2c ) = −

2
3 c(φ − c)

3 − (c2 + k1)(φ − c)2. (3.4)

Since c > 0 and k1 ≤ −c2, we see that

P1(φ)� = −2c(φ − c)2 − 2(φ − c)(c2 + k1) < 0 for φ < c.

Therefore, P1(φ) is decreasing for φ < c. There are no bounded solutions for any k2.
If −c2 < k1 < − c

2

3 , k1 = − c
2

3 , and k1 > − c
2

3 , then P1(φ) has a double zero at φ = c and a simple zero at
φ = − c

2+3k1
2c > 0, φ = −

c2+3k1
2c = 0, and φ = −

c2+3k1
2c < 0, respectively. Hence there are cusped traveling waves

for some k2 > 0. This completes the proof of Theorem 3.1.

Case 2. Consider β ̸= −13 . We know that

P1(φ) = (φ − c)2[
1 + 3β
4 φ2 +

β − 1
2 cφ + β − 14 c2 − k1] (3.5)

is a fourth-degree polynomial. We distinguish two cases:
(i) β > −13 ,
(ii) β < −13 .
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ϕ = 0 ϕ = c ϕ

(1)k1 ≤ −c
2

ϕ = 0 ϕ = c

ϕ = −

c
2
+3k1

2c

ϕ

(2)− c2 < k1 < −

c
2

3

ϕ = c
ϕ = 0

ϕ

(2)k1 = −

c
2

3

ϕ = 0 ϕ = c

ϕ = −

c
2
+3k1

2c

ϕ

(2)k1 > −

c
2

3

Figure 3. The graph of the polynomial (3.4) displayed for di�erent values of k1. The four cases give rise to the categories
(1)–(2) in Theorem 3.1.

We need the determinant ∆ := 1−β2
2 c2 + (1 + 3β)k1 of the second-degree polynomial

1 + 3β
4 φ2 +

β − 1
2 cφ + β − 14 c2 − k1.

(i) β > −13 :

∆ > 0: k1 >
β2 − 1

2(1 + 3β) c
2, ∆ = 0: k1 =

β2 − 1
2(1 + 3β) c

2, ∆ < 0: k1 <
β2 − 1

2(1 + 3β) c
2.

(ii) β < −13 :

∆ > 0: k1 <
β2 − 1

2(1 + 3β) c
2, ∆ = 0: k1 =

β2 − 1
2(1 + 3β) c

2, ∆ < 0: k1 >
β2 − 1

2(1 + 3β) c
2.

The idea as introduced in [5] and (2.10)–(2.13) give us the following theorems.

Theorem 3.2. Let β > −13 and c > 0. Any bounded traveling wave of (1.2) belongs to one of the following cate-
gories. The waves are parametrized by k1 ∈ ℝ as follows:
(1) If k1 ≤ − c2

2(1+3β) , then there are no bounded solutions of (1.2).

(2) If − c2
2(1+3β) < k1 <

β2−1
2(1+3β) c

2, then there exist a one-parameter group of smooth periodic traveling waves and
one smooth traveling wave with decay.

(3) Let k1 = β2−1
2(1+3β) c

2.
∙ If β > 0, then there exist a one-parameter group of smooth periodic traveling waves and one peaked

solitary wave.
∙ If −13 < β ≤ 0, then there are no bounded solutions of (1.2).

(4) If β2−1
2(1+3β) c

2 < k1 < 3β−1
2 c2, then there exist a one-parameter group of smooth periodic traveling waves, one

peaked periodic traveling wave, a one-parameter group of cusped periodic traveling waves, and one cusped
traveling wave with decay.

(5) Let k1 = 3β−1
2 c2.

∙ If β > 0, then there exist a one-parameter group of cusped periodic traveling waves and one cusped
traveling wave with decay.

∙ If −13 < β ≤ 0, then there are no bounded solutions of (1.2).
(6) If k1 > 3β−1

2 c2, then there exist a one-parameter group of cusped periodic traveling waves, one cusped trav-
eling with decay, a one-parameter group of anticusped periodic traveling waves, and one anticusped trav-
eling wave with decay.
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(C) (Composite waves) Any countable number of cuspons, anticuspons, and peakons from the categories (1)–
(6) corresponding to the same value of k1 may be joined at points where φ = c to form a composite wave φ.
If the Lebesgue measure μ(φ−1(c)) equals 0, then φ is a traveling wave of (1.2).

(S) (Stumpons) For k1 = 3β−1
2 c2 the composite waves are traveling waves of (1.2) even if the Lebesguemeasure

μ(φ−1(c)) exceeds 0. Consequently, these waves may contain intervals where φ ≡ c.

Proof. Let β > −13 and c > 0.

(1) If k1 ≤ − c2
2(1+3β) , a direct computation gives us

P1(φ)� = (1 + 3β)(φ − c)(φ −
c

1 + 3β )
2
− (φ − c)( c2

1 + 3β + 2k1) < 0 for φ < c.

There are no bounded traveling wave solutions of (1.2) for any k2 since P1(φ) is decreasing for φ < c.
(2) If − c2

2(1+3β) < k1 <
β2−1

2(1+3β) c
2, there are smooth traveling waves for some negative k2.

(3) Let k1 = β2−1
2(1+3β) c

2. If β > 0, then there are a peaked solitary wave for k2 = 0 and smooth traveling
waves for some negative k2. If −13 < β ≤ 0, there are no bounded solutions for any k2.

(4) If β2−1
2(1+3β) c

2 < k1 < 3β−1
2 c2, then there are smooth traveling waves for some negative k2, a peaked pe-

riodic traveling wave for k2 = 0, and cusped traveling wave solutions for some k2 > 0.
(5) Let k1 = 3β−1

2 c2. If β > 0, there are cusped traveling waves for some positive k2 and the constant φ ≡ c
is a solution for k2 = 0. If −13 < β ≤ 0, there are no bounded solutions for any k2.

(6) If k1 > 3β−1
2 c2, then there are cusped and anticusped traveling waves for some positive k2.

Remark 3.3. In [6], Lenells categorized traveling wave solutions of the Degasperis–Procesi equation. His cat-
egories (1)–(8) correspond to our categories (1)–(6), (C), and (S) for β = 1 in Theorem 3.2.

Theorem 3.4. Let β < −13 and c > 0. Any bounded traveling wave of (1.2) belongs to one of the following cate-
gories. The waves are parametrized by k1 ∈ ℝ as follows:
(1) If k1 ≥ − c2

2(1+3β) , then there are no bounded solutions of (1.2).

(2) If β2−1
2(1+3β) c

2 < k1 < − c2
2(1+3β) , then there exist a one-parameter group of cusped periodic traveling waves and

one cusped traveling wave with decay.
(3) If k1 = β2−1

2(1+3β) c
2, then there exist a one-parameter group of smooth periodic traveling waves, one smooth

traveling waves with decay, a one-parameter group of cusped periodic traveling waves, and one cusped
traveling wave with decay.

(4) If 3β−1
2 c2 < k1 < β2−1

2(1+3β) c
2, then there exist a one-parameter group of smooth periodic traveling waves, a

one-parameter group of cusped periodic traveling waves, and one cusped traveling wave with decay.
(5) If k1 = 3β−1

2 c2, then there exist a one-parameter group of smooth periodic traveling waves and cusped pe-
riodic traveling waves.

(6) If k1 > 3β−1
2 c2, then there exist a one-parameter group of smooth periodic traveling waves, one peaked

periodic traveling waves, and cusped periodic traveling waves.
(C) (Composite waves) Any countable number of cuspons, anticuspons, and peakons from the categories (1)–

(6) corresponding to the same value of k1 may be joined at points where φ = c to form a composite wave φ.
If the Lebesgue measure μ(φ−1(c)) equals 0, then φ is a traveling wave of (1.2).

(S) (Stumpons) For k1 = 3β−1
2 c2 the composite waves are traveling waves of (1.2) even if the Lebesguemeasure

μ(φ−1(c)) exceeds 0. Consequently, these waves may contain intervals where φ ≡ c.

Proof. Let β < −13 and c > 0.

(1) If k1 ≥ − c2
2(1+3β) , a direct computation gives us

P1(φ)� = (1 + 3β)(φ − c)(φ −
c

1 + 3β )
2
− (φ − c)( c2

1 + 3β + 2k1) > 0 for φ < c.

There are no bounded traveling wave solutions of (1.2) for any k2 since P1(φ) is increasing for φ < c.
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Figure 4. The polynomial (3.5) displayed for di�erent values of k1. All cases give rise to the categories (1)–(6) in Theorem 3.2.
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Figure 5. The polynomial (3.5) displayed for di�erent values of k1. The six cases give rise to the categories (1)–(6) in
Theorem 3.4.
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(2) If β2−1
2(1+3β) c

2 < k1 < − c2
2(1+3β) , there are cusped traveling waves for some positive k2.

(3) If k1 = β2−1
2(1+3β) c

2, there are smooth traveling waves and cusped traveling waves for some positive k2.

(4) If 3β−1
2 c2 < k1 < β2−1

2(1+3β) c
2, there are smooth periodic traveling waves for k2 = 0 and cusped traveling

waves for some positive k2.
(5) If k1 = 3β−1

2 c2, there are smooth periodic traveling waves for some negative k2, cusped periodic trav-
eling waves for positive k2, and smooth periodic traveling waves and the constant φ ≡ c for k2 = 0.

(6) If k1 > 3β−1
2 c2, there are smooth periodic traveling waves for some negative k2, a peaked periodic

traveling wave for k2 = 0, and cusped periodic traveling waves for some positive k2.

4 Concluding Remarks
In this paper, we have investigated traveling wave solutions of the Burgers-αβ equation with ν = 0 and b = 3,
including the well-studied integrable Degasperis–Procesi equation [2], β = 1. Hence the present paper gen-
eralizes some priori traveling wave results from [6] of the Degasperis–Procesi equation. The free parameter
β and the integration constant k1 play an important role in the type of traveling wave solutions of (1.2). Our
study shows that there are three di�erent kinds of traveling wave solutions with the decay condition to (1.2)
such as cusped (β < 1), peaked (β = 1), and smooth (β > 1). Traveling wave solutions without the decay con-
dition to (1.2) are parametrized by the integration constant k1.
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