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Abstract

This is a continuation of our previous paper Chang, Wang, Zhang [6]. We investigate the
multiple non semi-trivial solutions for nonlinear elliptic systems by two kinds of index
theory. In particular the pseudo index theory for the Z2 × Z2 index theory is developed
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1 Introduction
A solution (u0, v0) of a differential system:

{
f (u, v,∇u,∇v, · · · ) = 0,
g(u, v,∇u,∇v, · · · ) = 0, (1.1)

is called trivial if (u0, v0) = (0, 0); it is called semi-trivial(STS, in short) if (u0, v0) , (0, 0), but one
of u0 and v0 is 0.
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In this paper we continue our studies on the multiplicities of non semi-trivial solutions (NSTS,
in short) in Chang, Wang and Zhang [6] for the elliptic system:

{
−∆u = Gu(u, v),
−∆v = Gv(u, v), (1.2)

where G ∈ C1(R1 × R1).
Again we shall use the indices γ1 and γ2 for the symmetric groups G1 and G2 resp. introduced

there as our main tools (see section 2 below).
The motivation for the study of the non semi-trivial solutions for nonlinear Schrödinger type

systems can be seen in (e.g., [11, 2, 3, 1, 4, 12, 14, 15]) and more references therein. As a matter
of fact, the notion of non semi-trivial solutions can be traced back to the so-called singular value
problem for matrices. Given an m × n rectangle real matrix A, λ ≥ 0 is called a singular value of A,
if there exists x ∈ Rn\{0} and y ∈ Rm\{0} such that

Ax = λy and A⊤y = λx.

The notion of singular values has been extended to higher order tensors, see Lathauwer, de Moor,
Vandewalle [9], Lim [10], Chang, Qi, Zhou [5], etc. The multiplicity of singular values for tensors
was studied by critical point theory in Chang and Zhang [7].

The paper is organized as follows: In section 2, we briefly review theGi-genus theory for i = 1, 2,
which was defined in [6]. In particular, the critical point Theorem and the Intersection Theorem are
presented. In section 3 we have discussions on distinguishing non semi-trivial solutions from semi-
trivial ones. In sections 4, examples on asymptotically linear elliptic systems are studied. Section 5
and 6 are devoted to applications of the pseudo index theory toG1 andG2- invariant functionals resp.
It is a parallel development of the pseudo index theory for the Z2-genus given by Ambrosetti and
Rabinowitz. We apply the pseudo index theory to study the multiplicity of non semi-trivial solutions
for superlinear elliptic systems.

2 G-indices
Let E and F be Banach spaces, with norms ∥ ◦ ∥E and ∥ ◦ ∥F respectively. Let G = Gi for i = 1 or 2
be the group actions defined as follows:
G1 = {id, g}, where g acts on E × F as

g(x, y) = (−x,−y), ∀ (x, y) ∈ E × F,

and G2 = {id, g1, g2, g1g2}, where gi, i = 1, 2 act on E × F as

g1(x, y) = (−x, y), g2(x, y) = (x,−y) ∀ (x, y) ∈ E × F.

Let
∑

i be the family of all closed Gi-invariant sets, and Hi be the sets of all Gi-equivariant
continuous maps: h : E × F → E × F, i = 1, 2.

Let P1 be the projection: E × F → E, and P2 : E × F → F, and let hi = Pi ◦ h, i = 1, 2. Then we
have ∀ (x, y) ∈ E × F ∀ h ∈ H1,
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h(x, y) = −h(−x,−y),

and ∀ (x, y) ∈ E × F ∀ h ∈ H2

h1(x, y) = −h1(−x, y) = h1(x,−y), h2(x, y) = −h2(x,−y) = h2(−x, y).

A G1-orbit consists of a pair of antipodal points, and a G2-orbit consists of four points
{(x, y), (−x, y), (x,−y), (−x,−y)} if x , θ, y , θ.

The Gi genus for i = 1, 2 are defined as follows [6]. We point out that a G2 index theory was also
defined in [16] whose definition is somewhat different from ours in [6] but has similar properties.

Definition 2.1 The function γG :
∑→ Z+∪{+∞} defined by

γG1 (A) =


0, if A = ∅,
min{k ∈ Z | ∃ l ∈ Z+ ∪ {+∞}, ∃h ∈ H1 with either h : A→ (Rk\{θ})
×(Rl\{θ}) or h : A→ (Rl\{θ}) × (Rk\{θ})},
+∞, otherwise,

(2.1)

γG2 (A) =


0, if A = ∅,
min{k ∈ Z | ∃ l1, l2 ∈ Z+, ∃h ∈ H2 with h : A→ (Rl1\{θ}) × (Rl2\{θ}),
k = l1 + l2 − 1},
+∞, otherwise,

(2.2)

is called a Gi genus of A ∈ ∑i, for i = 1, 2.

The G-genus possesses all basic properties in the index theory see [13], [6] and [16]:

1. γG(A) = 0 if and only if A = ∅.

2. (monotonicity) ∀A1, A2 ∈
∑
, A1 ⊂ A2 implies γG(A1) ≤ γG(A2).

3. (continuity) ∀ A ∈ ∑, if it is compact, then ∃ a G-invariant open neighborhood N of A such
that γG(A) = γG(N).

4. (subadditivity) ∀A1, A2 ∈
∑
, γG(A1

∪
A2) ≤ γG(A1) + γG(A2).

5. (hyper-invariance) γG(A) ≤ γG(h(A)), ∀ (A, h) ∈ ∑×H .
6. (normality) γG({O}) = 1, where O = {±(x, y)} for G1 and O = {(±x,±y)} for G2, where

x , θ, y , θ.

The following theorems are known [6] [16].

Theorem 2.1 ∀ n,m ≥ 0,
γG1 (S n × S m) = min{n,m} + 1

and
γG2 (S n × S m) = n + m + 1.
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Theorem 2.2 Assume f ∈ C1(E × F,R1) is bounded from below and satisfies the Palais Smale (PS)
condition. For any k ≥ 1. we define

ck = in fγG(A)≥kmax(x,y)∈A f (x, y)

where A ∈ X
∩∑

. Then

1. All ck are critical values of f .

2. ck ≤ ck+1,∀k = 1, 2, · · · ,

3. If c = ck+1 = · · · ck+l, then γG(Kc) ≥ l, where Kc is the critical set with critical value c.

This is not the exact form of the Liusternik-Schnirelmann Multiplicity Theorem, because from
γG(Kc) ≥ k, we cannot conclude the existence of at least k distinct critical G-orbits with critical
value c. In particular, we have

Theorem 2.3 Suppose A ⊂ ∑2 and γ2(A) < +∞. Then ((E × {θ})∪({θ} × F))
∩

A = ∅.

Proof. Suppose ∃ (x, θ) ∈ A for some x ∈ E\{θ}. ∀h ∈ H2, if ∃l1, l2 ∈ Z+ such that h : A →
(Rl1\{θ}) × (Rl2\{θ}). Then from h2(x, θ) = −h2(x, θ) implies h2(x, θ) = θ, which contradicts with
γ2(A) < +∞. Similarly, we conclude: ({θ} × F))

∩
A = ∅.

This means that a critical orbit K = (±u0, θ) or K = (θ,±v0), which correspond to semi-trivial
solutions for the associate Euler Lagrange equation, has infinite G2 genus. In fact, the multiplicity
theorem holds if ((E × {θ})∪({θ} × F))

∩
Kc = ∅ ∀ c = ck, i.e., under the additional condition: if

there is no semi trivial solutions on the level c, then there exist at least γG(Kc) distinct G-critical
orbits in Kc.

The proof is simple. Suppose not, say γG(Kc) = m with ((E × {θ})∪({θ} × F))
∩

Kc = ∅, Kc

contains only l < m distinct G-critical orbits. Then by the normality and the subadditivity, this is a
contradiction. Namely, we have

Theorem 2.4 Under the assumptions of Theorem 2.2, if further, for some k, we assume

((E × {θ})
∪

({θ} × F))
∩

Kck = ∅

then Kck contains at least γG(Kck ) distinct G-critical orbits.

The following intersection property has been proved for γG1 . In fact, it holds for both γG1 and
γG2 . Although the proofs are the same, we rewrite the proof for completeness.

Theorem 2.5 Let X = E × F, and let V = V1 × V2 be a linear subspace of X with dim(Vi) = ri, i =
1, 2. Assume A ⊂ ∑1 with γG1 (A) > min{r1, r2}, or A ⊂ ∑2 with γG2 (A) > r1 + r2 − 1 resp. Let
V⊥ = (V⊥1 ×F)

∪
(E×V⊥2 ) be the complement subspace of V, where V⊥i be the complement subspace

of Vi in E for i = 1, and in F for i = 2. Then

A
∩

V⊥ , ∅.
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Proof. We define projection P : X → V . Then Vi = PiV and V⊥i = Pi(1 − P)X for i = 1, 2, where
P1, P2 are defined in the beginning of this section.

Suppose A
∩

V⊥ = ∅. This means{
(V⊥1 × F)

∩
A = ∅,

(E × V⊥2 )
∩

A = ∅. (2.3)

Let Qi = PiP. Then 0 < Qi(A), i = 1, 2.
Define

h : (x, y) 7→
( Q1x
∥Q1x∥ ,

Q2y
∥Q2y∥

)
.

Then h is G1 as well as G2 equivariant, with h : A → V
∩

(S E × S F), where S E and S F are the unit
spheres of E and F respectively .

From the hypervariance, monotonicity of the G1-genus, and Theorem 2.1, it follows

γG1 (A) ≤ γG1 (h(A)) ≤ γG1 (V
∩

(S V1 × S V2 )) ≤ min{r, s},

and from those of G2-genus, we have

γG2 (A) ≤ γG1 (V
∩

(S V1 × S V2 )) ≤ r + s − 1.

These are contradictions.

3 Non semi-trivial solutions
We present here some criteria in distinguishing solutions of (1.2) from semi-trivial solutions.

3.1 A necessary condition
Define a functional on H1

0(Ω) × H1
0(Ω),

J(u, v) =
∫
Ω

{1/2[|∇u|2 + |∇v|2] −G(u, v)}dx.

Let w0 = (u0, θ) be a solution of (1.2), i.e.,

{
−∆u0 = Gu(u0, θ),
0 = Gv(u0, θ).

(3.1)

By the observation, we introduce the following condition on the function G:{
Gξ(0, η) , 0, ∀ η ∈ (−ϵ, ϵ)\{0},
Gη(ξ, 0) , 0, ∀ ξ ∈ (−ϵ, ϵ)\{0} (3.2)

for some ϵ > 0.

Lemma 3.1 Under the assumption (3.2), the system (1.2) does not have STS except the trivial solu-
tion.
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3.2 Critical values
Assume {

Gξ(ξ, 0)ξ ≥ 2G(ξ, 0), ∀ ξ,
Gη(0, η)η ≥ 2G(0, η), ∀ η. (3.3)

If w0 = (u0, θ) is a solution of (1.2), then we have

−∆u0 = Gξ(u0, 0).

Multiplying u0 on both sides of the equation, it follows∫
Ω

G(u0, 0)dx ≤ 1
2

∫
Ω

Gξ(u0, 0)u0dx =
1
2

∫
Ω

−∆u0 · u0dx =
1
2

∫
Ω

|∇u0|2.

and then

J(w0) = J(u0, θ) =
1
2

∫
Ω

|∇u0|2 −
∫
Ω

G(u0, 0) ≥ 0.

If w0 = (θ, v0) is a solution of (1.2), then by the same approach we verify: J(w0) = J(θ, v0) ≥ 0.
We arrive at

Lemma 3.2 Under the assumption (3.3), if w0 is a STS of (1.2), then J(w0) ≥ 0.

Similarly, we introduce the following duel condition on G:{
Gξ(ξ, 0)ξ ≤ 2G(ξ, 0), ∀ ξ,
Gη(0, η)η ≤ 2G(0, η), ∀ η, (3.4)

and have

Lemma 3.3 Under the assumption (3.4), if w0 is a STS of (1.2), then J(w0) ≤ 0.

4 Examples
We have given examples in Chang, Wang, Zhang [6] on the multiple non semi-trivial solutions for
the elliptic system (1.2) via the above indices. In this section we shall provide more.

Example 4.1
We present an example in which the functional is neither bounded from above nor from below.
Assume the function G ∈ C1(R1 × R1) satisfies the following conditions:

(G1) G(u, v) = G(−u,−v) for all (u, v),
(G2) G(u, v) = λuv + o(u2 + v2) as (u, v)→ 0,
(G3) H(u, v) := G(u, v) − auv has a bounded C1 norm,

(4.1)

where a ∈ (λm, λm+1), λ ∈ (λk, λk+1), m < k, and λk is the k-th eigenvalue of the Laplacian on Ω with
zero boundary condition.
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We study the system (1.2): {
−∆u = Gu(u, v),
−∆v = Gv(u, v), (4.2)

and introduce the functional

J(u, v) =
∫
Ω

(
1
2

(|∇u|2 + |∇v|2) −G(u, v))dx.

First, we verify the (PS) condition for J. Let (un, vn) be a (PS) sequence. Then J′(un, vn) → 0.
We need only show that (un, vn) is bounded.

Suppose ||un|| → ∞. After subsequence, we first assume ||vn||/||un|| → b < ∞. Let ũn := un
||un ||

and ṽn := vn
||vn || . Then we may assume ũn ⇀ ũ in E, ũn → ũ in L2(Ω), and ṽn ⇀ ṽ in E, ṽn → ṽ in

L2(Ω). From (G3), we may deduce that there is a C > 0 such that |Gu(u, v)| ≤ C(|u| + |v| + 1) and
|Gv(u, v)| ≤ C(|u| + |v| + 1) for all (u, v). Multiplying the first equation by un/||un||2 and integrating it
over Ω, it yields

||ũn||2 ≤ C||ũn||2L2 +C(||vn||/||un||)||ũn||L2 ||ṽn||L2 + o(1).

From this, we see ũ , 0.
If b = 0, then for any ϕ ∈ C∞0 (Ω), multiplying the equation by ϕ/||un|| and integrating it over Ω,

we get, by (G3), that ∫
Ω

∇ũn · ∇ϕ − aṽnϕ||vn||/||un|| = o(1).

This gives
∫
Ω
∇ũ · ∇ϕ = 0. A contradiction with ũ , 0.

If b > 0, then again we get a contradiction as follows. Using the system we have∫
Ω

∇ũn · ∇ϕ − aṽnϕ||vn||/||un|| = o(1),

and ∫
Ω

∇ṽn · ∇ψ − aũnψ||un||/||vn|| = o(1).

Sending n→ ∞ we obtain ∫
Ω

∇ũ · ∇ϕ − abṽϕ = 0, ∀ϕ

and ∫
Ω

∇ṽ · ∇ψ − a
b

ũψ = 0,∀ψ.

Since either w = ũ + bṽ or w = ũ − bṽ not equal to 0 and solves −∆w = ±aw, a contradiction
with the assumption a ∈ (λm, λm+1). Otherwise, after a subsequence, ||vn||/||un|| → ∞, it is equivalent
to ||un||/||vn|| → 0. A contradiction is obtained by interchanging un and vn in the previous process.
Similarly, we can show ||vn|| is bounded.

Second, we define Ek = span{φ1, φ2, · · · , φk}. For (u,w) ∈ Ek, we have the decomposition:

u = Σk
1ciφi and w = Σk

1d jφ j.

Consider the set:
A+ = {(u, u + ϵw) | u ∈ S k−1

ϵ ,w ∈ S k−1
ϵ },
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where S k−1
ϵ = Ek ∩ S ϵ , and S ϵ is the sphere with radius ϵ > 0 centered at the origin. Obviously, A+

is G1 invariant. Thus, for ϵ small enough,

J(u, v) = 1
2 [Σk

1λic2
i + Σ

k
1λi(ci + ϵdi)2] − λΣk

1ci(ci + ϵdi) + o(|Σk
i (c2

i + ϵd
2
i )|)

= Σk
1(λi − λ)c2

i + ϵΣ
k
1(λi − λ)cidi +

ϵ2

2 Σ
k
1λiλid2

i + o(|Σk
i (c2

i + ϵd
2
i )|)

< 0, ∀ (u, v) ∈ A+.
(4.3)

For sufficiently small ϵ > 0, A+ is G1 homeomorphic to S k−1 × S k−1, so γG1 (A+) = k.
Since ∀ A ∈ ∑1, by Theorem 2.3, if j > m and γG1 (A) ≥ j, then A ∩ (Em ⊕ Em)⊥ is a nonempty

set. If (u, v) ∈ A ∩ (Em ⊕ Em)⊥, writing (u, v) = (u1 + u2, v1 + v2) with u1 ∈ Em, v1 ∈ Em, and
u2, v2 ∈ E⊥m we have either u1 = 0 or v1 = 0. Note that (G3) implies that there is C > 0 such that
G(u, v) ≤ C + auv for all (u, v). If u1 = 0 we have J(u, v) ≥ J(u2, v2) − C1 for some C1 independent
of (u, v), then

J(u, v) ≥ in fE⊥m⊕E⊥m J(u, v) −C1 > −∞.
The case v1 = 0 is similar.

Now, ∀ k ≥ 1, we define

ck = in fγG1 (A)≥kmax(u,v)∈AJ(u, v).

Since
max(u,v)∈A+ J(u, v) < 0,

we have −∞ < cm+1 ≤ cm+2 ≤ · · · ≤ ck < 0. Consequently, by Theorem 2.2, the functional J has
at least k − m pairs of critical points with negative critical values, which are solutions of the above
system.

According to the assumption (3.3), after Lemma 3.1, all critical values for semi trivial solutions
are nonnegative, therefore those solutions we obtained by minimax principle are truly non semi-
trivial. Similarly, we can handle the case when λ ∈ (−λk+1,−λk). In summary, we have:

Theorem 4.1 Under the assumptions (G1), (G2), (G3) and (3.3) (or 3.2), if ∃ k ∈ N with k > m such
that |λ| ∈ (λk, λk+1), then the system (4.2) possesses at least k − m distinct pairs of non semi-trivial
solutions.

Remark 4.1 The above example is a correction of Example 4 in Chang, Wang and Zhang [6].

Remark 4.2 In Theorem 4.1, if the assumption (G2) is replaced by

(G′2) G(u, v) =
1
2

(αu2 + βv2) + o(u2 + v2) as (u, v)→ 0,

where α ∈ (λk, λk+1), β ∈ (λl, λl+1). We have

Theorem 4.2 Under the assumptions (G1), (G′2), (G3) and (3.3) (or 3.2), if min{k, l} > m, then the
system (1.2) possesses at least min{k, l} − m distinct pairs of NST solutions.
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Proof. The proof is similar to that of Theorem 4.1. The only modification is to reconstruct a
G1 invariant subset A+ ⊂ J0 with γG1 (A+) = min{k, l}. To this end, we use the subspace Ek =

span{φ1, φ2, · · · , φk} and Fl = span{φ1, φ2, · · · , φl}. For (u, v) ∈ Ek × Fl, we have the decomposi-
tion:

u = Σk
1ciφi, v = Σl

1d jφ j.

Define the set:
A+ = {(u, v) ∈ Ek × F l | ∥u∥ = ∥v∥ = ε.}

where ∥ ◦ ∥ is the H1
0(Ω) norm, ε > 0 is small and is to be determined. Thus

J(u, v) = Σk
1(1 − α

λi
)c2

i + Σ
l
1(1 − β

λ j
)d2

j + o(Σ∞1 (c2
q + d2

q)) < 0, ∀ (u, v) ∈ A+.

Since A+ is homeomorphic to S k−1 × S l−1, the desired result γG1 (A+) = min{k, l} follows from
Theorem 2.1.

5 Positive critical values for G1 invariant functionals
We have pointed out previously that those unconstraint multiple solution problems studied by G1
index theory can also be studied by the Z2 genus. In this section, we shall use the pseudo index
theory for the Z2 genus to studyG1 invariant functionals with positive critical values by the following
example.

We study the multiple NST solution problem on H1
0(Ω) × H1

0(Ω), where Ω ⊂ R3.{
−∆u = µ1v3 + 3µ2u2v,
−∆v = µ2u3 + 3µ1v2u. (5.1)

The associated functional reads as:

J(u, v) =
∫
Ω

(
1
2

(|∇u|2 + |∇v|2) − [µ1uv3 + µ2u3v])dx.

We assume that for j = 1, 2, µ j > 0.
1. The functional satisfies the (PS) condition.
Verification: Let {(u j, v j)} be a (PS )c sequence, i.e.,

J(u j, v j)→ c,

and 
∫
Ω
∇u j∇ϕ − µ1v3

jϕ − 3µ2u2
jv jϕ = o(∥ϕ∥),∫

Ω
∇v j∇ψ − µ2u3

jψ − 3µ1v2
ju jψ = o(∥ψ∥). (5.2)

It follows ∫
Ω

(|∇u j|2 + |∇v j|2) − 4[µ1u jv3
j + µ2u3

jv j])dx = o(∥u j∥ + ∥v j∥).

Thus ∫
Ω

1/4(|∇u j|2 + |∇v j|2) = o(∥u j∥ + ∥v j∥) + c + o(1),
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and then ∥u j∥ and ∥v j∥ are bounded, there exist subsequences
u j ⇀ ũ, v j ⇀ ṽ,
u j → ũ v j → ṽ, (Lp(Ω)), p ∈ (2, 6),
u jv3

j → ũṽ3, u3
jv j → ũ3ṽ, (Lp(Ω)), p ∈ (1, 3/2).

(5.3)

By using (5.2), we obtain: u j → ũ v j → ṽ, H1
0(Ω).

2. Recall the pseudo index theory for the Z2 genus(see [13]). Let E be a Banach space and let
f ∈ C1(E,R1) satisfy the (PS) condition. Let

Σ∗ = {K|Kis compact and symmetric},

Λ = {h| is an odd homeomorphism satisfying h(B1) ⊂ J−1[0,∞)},

where B1 is the unit ball centered at θ in E. Let γ be the Z2 genus. Define

γ∗(K) = in fh∈Λγ(K ∩ h(∂B1)), ∀K ∈ Σ∗,

Γn = {K ∈ Σ∗ | γ∗(K) ≥ n},

and
c∗n = in fK∈Γn supx∈K f (x). (5.4)

One has the Multiplicity Theorem

Theorem 5.1 Assume that f ∈ C1(E,R1) is an odd function satisfying the Palais Smale Condition.
Assume Γn , ∅, and if c∗n defined in (5.4) is finite, then c∗n is a critical value of J. Moreover, if
c = c∗n+1 = · · · = c∗n+k, then the critical set Kc with critical value c has γ(Kc) ≥ m.

3. The multiple solutions for J with positive critical values.
It is easily seen that J(u, v) = J(−u,−v), i.e., J is an even functional. Let E j = span{φ1, φ2. · · · , φ j}

where φk is the kth eigenfunction of −∆ on H1
0(Ω). We define

Π j = {(u, u) ∈ H1
0(Ω) × H1

0(Ω) | u ∈ E j}.

Note that

J|Π j =

∫
Ω

|[∇u|2 − (µ1 + µ2)u4]dx, ∀w = (u, u) ∈ Π j,

there exists R j > 0 such that J−1[0,∞) ∩Π j ⊂ Π j ∩ BR j . where Br is the r− ball in H1
0(Ω) × H1

0(Ω.).
Let

K j = Π j ∩ BR j ,

we claim:
γ∗(K j) ≥ j.

Indeed, ∀ h ∈ Λ, h(B1) ⊂ J−1[0,∞),

K j ∩ h(∂B1) ⊂ Π j ∩ h(∂B1) ⊂ K j ∩ h(∂B1),
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i.e.,
K j ∩ h(∂B1) = Π j ∩ h(∂B1).

Therefore
γ∗(K j) = in fh∈Λγ(Π j ∩ h(∂B1)) = j,

provided by Borsuk Ulam Theorem.
Since K j are compact, c∗j is finite. Moreover, we claim that there exists α > 0 such that c∗j ≥

α ∀ j. In fact, from the special feature of J, there exists ρ > 0, α > 0 such that

J|(u,v)∈∂Bρ ≥ α.

In particular, we take h0 = ρid, then h0 ∈ Λ. Since ∀K ∈ Γ j, K ∩ ∂Bρ = K ∩ h0(∂B1) , ∅, therefore

c∗j = in fK∈Γn sup(u,v)∈K J(u, v) ≥ in f(u,v)∈∂Bρ J(u, v) ≥ α.

4. NSTS
It remains to see if the solutions obtained are NST. To the special structure of the system, among

all STS, there is only the trivial solution. Indeed, (3.2) is satisfied. Therefore all solutions we
obtained are NSTS. There are infinitely many NSTS for the system.

Remark 5.1 Extensions:
It is easy to see that the method works for many other elliptic systems with G1 symmetry. For

example
G(u, v) = F(u, v) + h(uv),

where

1. F(u, v) = µ1|u|p+1 + µ2|v|q+1, 1 < p, q < 2∗ − 1, µ1 > 0, µ2 > 0, or

2. F(u, v) = |uv|puv, 0 < 2p < 2∗ − 2,

and h ∈ C1(R1) satisfies

1. h(0) = 0, h′(0) ∈ (0, λ1)

2. ∃M > 0 such that |h(t)| + |h′(t)| ≤ M, ∀ t.

These conditions are used to ensure the (PS) condition, (3.2), superliner at (θ, θ) and at infinity.

6 γ2− pseudo index and applications
Now, we extend the pseudo index theory for the Z2-genus to γ2. For a given functional J ∈ C1(E ×
F,R1), we introduce

Σ∗2 = {K ∈ Σ2 |Kis compact},
Λ = {h ∈ H2 | is a homeomorphism satisfying h(BE

1 × BF
1 ) ⊂ J−1[0,∞)}

where BE
r is the ball with radius r centered at the origin in the Banach space E, similarly, we use the

notation BF
r . Let

H∗ = {η ∈ H2 | is a homeomorphism satisfying η|J0 = id|J0 }.
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Thus, ∀ η ∈ H∗, η : J−1[0,∞)→ J−1[0,∞).
For example, if η is an equivariant deformation derived from a non increasing flow of the func-

tional J, and is identity on J0, then η ∈ H∗. It is easily seen: η−1 : Λ→ Λ, if η ∈ H∗.
Now, we define

γ∗2(K) = in fh∈Λ γ2(K ∩ h(S E × S F)) ∀K ∈ Σ∗2,

where S E is the unit sphere centered at the origin in the Banach space E, similar notation applies to
S F .

The following basic properties for pseudo indices hold:

1. ∀ A ∈ Σ∗2, B ∈ Σ2, η ∈ H∗, A\B ∈ Σ∗2, η(A) ∈ Σ∗2.

2. (monotonicity) ∀A1, A2 ∈ Σ∗2, A1 ⊂ A2 implies γ∗2(A1) ≤ γ∗2(A2).

3. (subadditivity) ∀A1 ∈ Σ∗2, A2 ∈ Σ2, γ
∗
2(A1\A2) ≥ γ∗2(A1) − γ2(A2).

4. (hyper-invariance) γ∗2(A) ≤ γ∗2(η(A)), ∀ A ∈ Σ∗2, η ∈ H∗.

The proofs are standard, we omit them.
We denote

Γ∗n = {K ∈ Σ∗2 | γ∗2(K) ≥ n} ∀ n ∈ N,

and in case Γ∗n , ∅, we define
cn = in fK∈Γ∗n sup(u,v)∈K J(u, v). (6.1)

Firstly, we extend Theorem 2.1. For all ( j, k) ∈ N × N, let E j, Fk be j, k dimensional linear
subspaces of E and F respectively.

Lemma 6.1 If h ∈ H2 is a homeomorphism, then h(S E × S F) ⊂ (E\{θ}) × (F\{θ}).

Proof. We prove it by contradiction. Suppose that there exists (u, v) ∈ S E × S F , such that h(u, v) =
(x, θ), or h(u, v) = (θ, y) for some (x, y) ∈ (E\{θ}) × (F\{θ}). By the G2 -equivariance of h, we have

h(u,−v) = (x, θ), or h(−u, v) = (θ, y), resp.

But h is a homeomorphism, this is a contradiction.

Lemma 6.2 If h ∈ H2 is a homeomorphism, and

A = (E j × Fk) ∩ h(S E × S F),

then γ2(A) = j + k − 1.

Proof. 1◦ After Lemma 6.1,

i : (E j × Fk) ∩ h(S E × S F)→ (E j\{θ}) × (Fk\{θ})

is an injection. Therefore
γ2(A) ≤ j + k − 1.
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2◦ ∀ (x, y) ∈ S E ×S F , let Z1(y) = h1(S E × {y}),Z2(x) = h2({x} ×S F). They are symmetric subsets
in E and F respectively. Define

B = (E j ∩ Z1(y)) × (Fk ∩ Z2(x)).

We claim: γ2(B) ≥ j + k − 1. In fact, suppose it is not true. then there exists a G2-equivariant map
φ = (φ1, φ2) such that

φ : B→ (Rl\{θ}) × (Rm\{θ})

with l + m < k + j. Since
φ1|E j\{θ} : E j ∩ Z1(y)→ Rl\{θ},

and
φ2|Fk\{θ} : Fk ∩ Z2(x)→ Rm\{θ},

are odd mappings, according to Borsuk Ulam Theorem, we have

l ≥ j, m ≥ k.

and then l + m ≥ k + j. This is a contradiction.

From, B ⊂ A, it follows
γ2(A) ≥ γ2(B) ≥ j + k − 1.

Lemma 6.3 ∀ ( j, k) ∈ N2, if the set (E j×Fk)∩J−1[0,∞) is bounded, then Γ∗n , ∅, where n = j+k−1.

Proof. Set K = (E j × Fk) ∩ (BE
R × BF

R ), where R > 0 is chosen such that

(E j × Fk) ∩ J−1[0,∞) ⊂ K.

Thus ∀ h ∈ Λ,
(E j × Fk) ∩ h(BE

1 × BF
1 ) ⊂ (E j × Fk) ∩ J−1[0,∞) ⊂ K,

and then
K ∩ h(S E × S F) = (E j × Fk) ∩ h(S E × S F).

According to Lemma 6.2,

γ∗2(K) = in fh∈Λγ2(K ∩ h(S E × S F)) = j + k − 1.

Thus, K ∈ Γ∗n.

Applying the general pseudo index theory, see Rabinowitz [13], we obtain the following

Theorem 6.1 Assume that J ∈ C1(E × F,R1) is a G2-invariant function satisfying the Palais Smale
Condition. Assume Γ∗k , ∅, and if ck defined in (6.1) is finite. Then ck is a critical value of J.
Moreover, if c = ck+1 = · · · = ck+m, then the critical set Kc with critical value c has γ2(Kc) ≥ m.
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Now we turn to an example in the applications of the G2 pseudo index theory. Let us assume
α, β > 0, 1 < p, q < 2∗ − 1 and G ∈ C1(R1 × R1) satisfying

(G1) G(x, y) = G(−x, y) = G(x,−y) ∀ (x, y) ∈ R1 × R1,
(G2) ∃M > 0, |G(x, y)| + |∇G(x, y)| ≤ M,
(G3) G(0, 0) = 0,
(G4) G(u, v) ≤ 0.

(6.2)

We consider the functional on (E\{θ}) × (E\{θ}), where E = H1
0(Ω), and Ω ⊂ Rn is a bounded

domain:

J(u, v) =
∫
Ω

[1/2(|∇u|2 + |∇v|2) − |u|
p+1

p + 1
− |v|

q+1

q + 1
−G(u, v)]dx − α

∥u∥ −
β

∥v∥ ,

where ∥u∥ = (
∫
Ω
|∇u|2dx)1/2 is the E norm. The Euler Lagrange equation reads as: −∆(1 + α

∥u∥3 )u = |u|p−1u +Gu(u, v),
−∆(1 + β

∥v∥3 )v = |v|p−1v +Gv(u, v).
(6.3)

1. The functional J satisfies the Palais Smale Condition. In fact, let (u j, v j) be a (PS )c sequence,
i.e.,

J(u j, v j) =
∫
Ω

[1/2(|∇u j|2 + |∇v j|2) − |u j |p+1

p+1 −
|v j |q+1

q+1 −G(u j, v j)]dx
− α
∥u j∥ −

β
∥v j∥ = c + o(1)

(6.4)

and 
∫

[∇u j∇ϕ − |u j|p−1u jϕ −Gu(u j, v j)ϕ +
α∇u j∇ϕ
∥u j∥3 ]dx = o(∥ϕ∥) ∀ ϕ ∈ E∫

[∇v j∇ψ − |v j|p−1v jψ −Gv(u j, v j)ψ +
β∇v j∇ψ
∥v j∥3 ]dx = o(∥ψ∥) ∀ψ ∈ E.

(6.5)

It follows that 
∫

[|∇u j|2 − |u j|p+1 −Gu(u j, v j)u j]dx + α
∥u j∥ = o(∥u j∥)∫

[|∇v j|2 − |v j|q+1 −Gv(u j, v j)v j]dx + β
∥v j∥ = o(∥v j∥).

(6.6)

From (6.6) and (G2), we conclude the existence of δ > 0, such that

∥u j∥ ≥ δ, ∥v j∥ ≥ δ. (6.7)

By adding (6.4) with (6.6), we obtain

( 1
2 −

1
p+1 )∥u j∥2

+( 1
2 −

1
q+1 )∥v j∥2 −

∫
Ω

[G(u j, v j) − 1
p+1Gu(u j, v j)u j − 1

q+1Gv(u j, v j)v j]dx
−(1 + 1

p+1 ) α
∥u j∥ − (1 + 1

q+1 ) β
∥v j∥

= o(∥u j∥ + ∥v j∥) + c + o(1).

(6.8)

Applying the assumption (G2) and (6.7), we conclude the boundedness of (u j, v j) in H1
0 ×H1

0 . There-
fore
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
u j ⇀ ũ, v j ⇀ ṽ, (H1

0(Ω)),
(u j, v j)→ (ũ, ṽ) (Lp+1 × Lq+1),
∇G(u j, v j)→ ∇G(ũ, ṽ) (L2 × L2).

(6.9)

Also, after a subsequence, ∥u j∥ → ξ, ∥v j∥ → η, ξ, η > 0. Since (1 + α
∥u j∥3 )u j = (−∆)−1(|u j|p−1u j +Gu(u j, v j)),

(1 + β
∥v j∥3 )v j = (−∆)−1(|v j|q−1v j +Gv(u j, v j))

(6.10)

are strongly convergent in H1
0 ×H1

0 , and 1+ α
∥u j∥3 → 1+ α

ξ3 , 1+ β
∥v j∥3 → 1+ β

η3 , we proved the strongly
convergent of (u j, v j). The (PS) condition is verified.

2. For any finitely dimensional linear subspace U ⊂ H1
0 ,V ⊂ H1

0 , it is not difficult to verify:

J(u, v)→ −∞, as (u, v) ∈ U × V, ∥u∥2 + ∥v∥2 → ∞.

There exists R > 0 such that (U ×V)∩ J−1[0,∞) ⊂ K := (U ×V)∩ (BR ×BR). Applying Lemma 6.3,

γ∗2(K) ≥ dim(U) + dim(V) − 1.

Thus, ∀ n ∈ N,Γ∗n , ∅. Since K is compact,

cn = in fK∈Γ∗n sup(u,v)∈K J(u, v)

is finite.
3. Now we turn to verify: cn > 0∀ n ∈ N. Denote

Cr = sup∥u∥=1
|u|r+1

r+1

r + 1
, 1 ≤ r ≤ 2∗ − 1.

Lemma 6.4 Assume (G4) and

0 < α <
1

8(4Cp)
3

p−2

, 0 < β <
1

8(4Cq)
3

q−2

. (6.11)

There exists ρ0 > 0 such that

J(u, v) ≥ 1/4ρ2
0, as ∥u∥ = ∥v∥ = ρ0.

Proof. Let
f (t) = 1/2t2 −Cptp+1 − α/t,

and choose
ρ0 ∈ ((8α)1/3,

1
(4Cp)1/(p−1) ).

Then
f (ρ0) ≥ (1/2 −Cpρ

p−1
0 )ρ2

0 − α/ρ0 ≥ 1/4ρ2
0 − α/ρ0 ≥ 1/8ρ2

0.

Applying to the functional J, the estimate follows.
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Theorem 6.2 Under the assumptions (G1) − (G4) and (6.11), the system (6.3) possesses infinitely
many NSTS with positive critical values.

As the last example of this paper, we turn to the asymptotically linear case. In order to avoid
some technical difficulties, we study ordinary differential systems. Let λ j be the j-th eigenvalue
of the differential operator − d2

dt2 on the interval (0, T ) with Dirichlet boundary condition. We make
some assumptions on G ∈ C1(R1 × R1):
(G1) G(x, y) = G(−x, y) = G(x,−y) ∀ (x, y) ∈ R1 × R1,
(G2) ∃R0 > 0, G(x, y) = 1/2(ax2 + by2), x2 + y2 ≥ R2

0,
(G3) ∃R0 > r0 > 0, G(x, y) = 1/2(cx2 + dy2), x2 + y2 ≤ r2

0,
(G4) p < k, q < l, a ∈ (λk, λk+1), b ∈ (λl, λl+1), c ∈ (λp, λp+1), d ∈ (λq, λq+1).

Denote E = H1
0(0,T ). One studies the following functional on (E\{θ}) × (E\{θ}):

J(u, v) =
1
2

(∥u∥2 + ∥v∥2) −
∫ T

0
G(u, v)dt − α

∥u∥ −
β

∥v∥ , (6.12)

where ∥u∥2 =
∫ T

0 |u̇|
2dt. We assume α > 0 and β > 0.

The verification of the (PS) Condition is the same as that in Theorem 6.2.
Let φ1, φ2, φ3, · · · , be the eigenfunctions with eigenvalues λ1 < λ2 ≤ λ3 ≤ · · · , and let E j =

span{φ1, φ2, · · · , φ j}.

Lemma 6.5 For all i ≤ k, j ≤ l

J(u, v)→ −∞ as ∥u∥ + ∥v∥ → ∞, (u, v) ∈ Ei × E j.

Proof. There is a constant C such that

J(u, v) ≤ 1/2(∥u∥2 − a|u|22) + 1/2(∥v∥2 − b|u|22) +C.

Now,
∥u∥2 ≤ λk |u|22, ∥v∥2 ≤ λl|v|22,

λk < a, λl < b, and on any finite dimensional space all norms are equivalent, the conclusion follows.
In particular, there exist R > 0 such that (Ei × E j) ∩ J−1[0,∞) ⊂ (Ei × E j) ∩ (BR × BR).

Now we modify the definition of the G2 pseudo index by using

Λ∗ = {h ∈ H2, h(B1 × B1) ⊂ J−1[0,∞) ∪ (BR × BR)}

to replace Λ in the definition of γ∗2. Again, we see

η−1 : Λ∗ → Λ∗ ∀ η ∈ H∗,

because

η−1 ◦ h(B1 × B1) ⊂ η−1(J−1[0,∞) ∪ ((BR × BR) ∩ J0)) ⊂ J−1[0,∞) ∪ (BR × BR),

provided η|J0 = id|J0 .
To this modified G2 pseudo index, now, we define the set Γ∗n, and then

c∗n = in fK∈Γ∗n S up(u,v)∈K J(u, v).

The following lemma holds:
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Lemma 6.6
Γ∗n , ∅, ∀ 0 < n ≤ k + l − 1

Proof. Let K = (Ei × E j) ∩ (BR × BR), we show: γ∗2(K) ≥ i + j − 1, ∀ i ≤ k, j ≤ l. The proof is the
same as in Lemma 6.3. It follows

Γ∗i+ j−1 , ∅.

Next we show: ∃ ε0 > 0 such that c∗n ≥ ε0 ∀ n ≥ p + q. To this end let us introduce a function
with 2 parameters

Φ(ξ, η; t) = −ξ/t + ηt2.

The following lemma is easy to verify.

Lemma 6.7 If η < 0, then

maxt∈(0,∞)Φ = Φ(σ) = −3/2ξ2/3(−2η)1/3,

where σ = ξ1/3(−2η)−1/3.
If η > 0, then Φ′(t) > 0, and for any r > 0, maxt∈[0,r]Φ = −ξ/r + ηr2.

By Schwarz inequality, we have the embedding

|u|∞ ≤ (T/2)1/2 ∥u∥.

Thus, if r0 ≥ (T/2)1/2 r, then for ∥u∥2 + ∥v∥2 ≤ r2,

J|E⊥p ×E⊥q ≥ Φ(α, 1/2(1 − c/λp+1); ∥u∥) + Φ(β, 1/2(1 − d/λq+1); ∥v∥),
J|E⊥p ×Eq ≥ Φ(α, 1/2(1 − c/λp+1); ∥u∥) + Φ(β, 1/2(1 − d/λ1); ∥v∥),
J|Ep×E⊥q ≥ Φ(α, 1/2(1 − c/λ1); ∥u∥) + Φ(β, 1/2(1 − d/λq+1); ∥v∥).

(6.13)

If there exist ρ0 ∈ (0, r0) and ε0 > 0 such that

r2
0 ≥

2
T (2ρ2

0 + α
2/3( c

λ1
− 1)−2/3 + β2/3( d

λ1
− 1)−2/3), (6.14)

and
min{ 12 (1 − c

λp+1
)ρ2

0 −
β
ρ0
− 3

2α
2/3( c

λ1
− 1)1/3,

1
2 (1 − d

λq+1
)ρ2

0 −
α
ρ0
− 3

2β
2/3( d

λ1
− 1)1/3} ≥ ε0

(6.15)

then we may choose
σ1 = α

1/3(c/λ1 − 1)−1/3,

σ2 = β
1/3(d/λ1 − 1)−1/3,

and obtain
J|

(S
E⊥p
ρ0 ×S

E⊥q
ρ0 )∪(S

E⊥p
ρ0 ×S

Eq
σ2 )∪(S

Ep
σ1 ×S

E⊥q
ρ0 )
≥ ε0. (6.16)

Now, to any set A ∈ Γ∗n, n ≥ p + q, after Theorem 2.5,

A ∩ h(∂B1 × ∂B1) ∩ ((E⊥p × E) ∪ (E × E⊥q )) , ∅ ∀ h ∈ Λ∗.
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In particular, we choose
h(u, v) = (σ1u1 + ρ0u2, σ2v1 + ρ0v2),

where u = u1 + u2, v = v1 + v2 are orthogonal decompositions of u and v, u1 ∈ Ep, u2 ∈ E⊥p , and
v1 ∈ Eq, v2 ∈ E⊥q . This means

A ∩ (S Ep
σ1 × S

E⊥q
ρ0 ∪ S

E⊥p
ρ0 × S Eq

σ2 ∪ S
E⊥p
ρ0 × S

E⊥q
ρ0 ) , ∅.

By (6.16) we proved
c∗n = in fA∈Γ∗n J(u, v) ≥ ε0.

According to Theorem 6.1 we arrive at

Theorem 6.3 Under the assumptions (G1) − (G4) and (6.14) and (6.15), the functional (6.12) pos-
sesses k + l − p − q − 1 non semi-trivial critical points of positive critical values.

We remark that (6.14) and (6.15) are easily satisfied when we choose α, β small.
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