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Abstract

This is a continuation of our previous paper Chang, Wang, Zhang [6]. We investigate the
multiple non semi-trivial solutions for nonlinear elliptic systems by two kinds of index
theory. In particular the pseudo index theory for the Z, X Z, index theory is developed
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1 Introduction

A solution (ug, vo) of a differential system:

= ()’
0 (1.1)

f,v,Vu,Vy, ...
g(u,v,Vu,Vy,- .

is called trivial if (ug, vg) = (0, 0); it is called semi-trivial(STS, in short) if (ug, vy) # (0, 0), but one
of ugp and vg is 0.

363



364 K-C. Chang, Z-Q. Wang

In this paper we continue our studies on the multiplicities of non semi-trivial solutions (NSTS,
in short) in Chang, Wang and Zhang [6] for the elliptic system:

{ —Au =G,(u,v), (12)

—-Av =G, (u,v),

where G € C'(R! x R1).

Again we shall use the indices y; and y, for the symmetric groups G| and G, resp. introduced
there as our main tools (see section 2 below).

The motivation for the study of the non semi-trivial solutions for nonlinear Schrodinger type
systems can be seen in (e.g., [11, 2, 3, 1, 4, 12, 14, 15]) and more references therein. As a matter
of fact, the notion of non semi-trivial solutions can be traced back to the so-called singular value
problem for matrices. Given an m X n rectangle real matrix A, 4 > 0 is called a singular value of A,
if there exists x € R"\{0} and y € R™\{0} such that

Ax=1y and ATy=Ax

The notion of singular values has been extended to higher order tensors, see Lathauwer, de Moor,
Vandewalle [9], Lim [10], Chang, Qi, Zhou [5], etc. The multiplicity of singular values for tensors
was studied by critical point theory in Chang and Zhang [7].

The paper is organized as follows: In section 2, we briefly review the G;-genus theory fori = 1, 2,
which was defined in [6]. In particular, the critical point Theorem and the Intersection Theorem are
presented. In section 3 we have discussions on distinguishing non semi-trivial solutions from semi-
trivial ones. In sections 4, examples on asymptotically linear elliptic systems are studied. Section 5
and 6 are devoted to applications of the pseudo index theory to G| and G,- invariant functionals resp.
It is a parallel development of the pseudo index theory for the Z,-genus given by Ambrosetti and
Rabinowitz. We apply the pseudo index theory to study the multiplicity of non semi-trivial solutions
for superlinear elliptic systems.

2 G-indices

Let E and F be Banach spaces, with norms || o ||z and || o ||r respectively. Let G = G, fori = 1 or 2
be the group actions defined as follows:
G = {id, g}, where g actson E X F as

g(x7y) = (_-x7 _y), V(X»Y) € EX F7
and G, = {id, g1, 82,8182}, where g;,i = 1,2 acton E X F as
gl(x,)’) = (_-x7y)’ gz(x,)’) = (-x9 _Y) v(x,)’) €EXF.

Let }; be the family of all closed G;-invariant sets, and H; be the sets of all G;-equivariant
continuous maps: h: EXF - EXF,i=1,2.

Let P; be the projection: EXF — E,and P, : EXF — F,andleth; = P;oh,i = 1,2. Then we
have V(x,y) e EXF Yh e H,,
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h(x,y) = —h(-x, -y),
andV(x,y) e EXFYhe®H,

hi(x,y) = =hi(=x,y) = hi(x,=y), ha(x,y) = —ho(x, =y) = ha(=x, ).

A G-orbit consists of a pair of antipodal points, and a G,-orbit consists of four points

{5 ), (=%, ), (x, =y), (=x, =)} if x £ 6,y # 6.
The G; genus for i = 1, 2 are defined as follows [6]. We point out that a G, index theory was also
defined in [16] whose definition is somewhat different from ours in [6] but has similar properties.

Definition 2.1 The function yg : ), — Z. | J{+00} defined by

0, ifA=0,
min{k € Z|31 € Z, U {+oo}, Ih € H, with either & : A — (RF\{8})

Y A= @6 or s A — B x BA\BD). @D
+o00, otherwise,
0, if A=0,
| mintk € 2131, 1 € Z,, 3h € Hy with h: A — RI\(B)) x (R2\{)),
Y6,(A) = k=1 +bh—1}, (2.2)

+o00, otherwise,
is called a G; genus of A € Y;, fori =1,2.
The G-genus possesses all basic properties in the index theory see [13], [6] and [16]:
1. yg(A) =0 if and only if A = 0.
2. (monotonicity) VA, A, € 3}, A; C Ay implies yg(A1) < yg(Az).

3. (continuity) VA € 3, if it is compact, then 3 a G-invariant open neighborhood N of A such
that yg(A) = yg(N).

4. (subadditivity) YA, Ay € Z, )/g(Al UA2) < )/g(Al) + )’g(Az).
5. (hyper-invariance) yg(A) < yg(h(A)), Y (A, h) € 3, xH.

6. (normality) yg({0}) = 1, where O = {+(x,y)} for G| and O = {(xx, +y)} for G,, where
x#6,y+#6.

The following theorems are known [6] [16].

Theorem 2.1 VY n,m > 0,
Y6, (8" X S™) = min{n,m} + 1

and
Y6,(8" XS =n+m+ 1.
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Theorem 2.2 Assume f € C'(E x F,R!) is bounded from below and satisfies the Palais Smale (PS)
condition. For any k > 1. we define

Ck = infy a)=kmaxyeaf (X, y)

where A € X 2. Then

1. All ¢y are critical values of f.
2. cx L cps1,Vk=1,2,---,
3. If ¢ = kst = -+ Ckst, then yg(K.) > I, where K, is the critical set with critical value c.

This is not the exact form of the Liusternik-Schnirelmann Multiplicity Theorem, because from
vg(K.) > k, we cannot conclude the existence of at least k distinct critical G-orbits with critical
value c. In particular, we have

Theorem 2.3 Suppose A C Y, and y»(A) < +oo. Then (E X {6}) U({0} x F))(A = 0.

Proof. Suppose A (x,0) € A for some x € E\{0}). Yh € H,, if A1,l, € Z, suchthat h : A —
(R\{6}) x (R2\{#}). Then from hy(x,0) = —hy(x,6) implies hy(x,6) = 6, which contradicts with
v2(A) < +oo. Similarly, we conclude: ({6} X F)) (A = 0.

This means that a critical orbit K = (xug, ) or K = (6, £vy), which correspond to semi-trivial
solutions for the associate Euler Lagrange equation, has infinite G, genus. In fact, the multiplicity
theorem holds if ((E x {6}) J({6} X F))(Y K. = 0 V¢ = ¢, i.e., under the additional condition: if
there is no semi trivial solutions on the level c, then there exist at least yg(K,) distinct G-critical
orbits in K.

The proof is simple. Suppose not, say yg(K.) = m with (E x {6}) U({6} x F)) K. = 0, K.
contains only / < m distinct G-critical orbits. Then by the normality and the subadditivity, this is a
contradiction. Namely, we have

Theorem 2.4 Under the assumptions of Theorem 2.2, if further, for some k, we assume

(Ex{on | Jaoyx Fy( ) Ky =0
then K., contains at least yg(K.,) distinct G-critical orbits.

The following intersection property has been proved for yg,. In fact, it holds for both yg, and
Yg,- Although the proofs are the same, we rewrite the proof for completeness.

Theorem 2.5 Let X = E X F, and let V = V| X V, be a linear subspace of X with dim(V;) = r;,i =
1,2. Assume A C )| with yg,(A) > min{r|,r2}, or A C Y, with yg,(A) > ri + r, — 1 resp. Let
V*t = (Vi x F) U(E X V5) be the complement subspace of V, where V- be the complement subspace
of ViinE fori= 1, and in F fori = 2. Then

Aﬂvﬂﬁ@.
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Proof. We define projection P : X — V. Then V; = P;V and ViL = P;(1 — P)X fori = 1,2, where
Py, P, are defined in the beginning of this section.
Suppose A () V+ = (. This means

{ (VExF)NA =0,

(EXVHNA=0. 2.3

Let Q; = P;,P. Then 0 ¢ Q;(A),i =1,2.
Define

O1x Oy )
011" 1@yl

Then h is G as well as G, equivariant, with b : A — V(S x S¥), where S¥ and S* are the unit
spheres of E and F respectively .

h:(x,y)|—>(

From the hypervariance, monotonicity of the G|-genus, and Theorem 2.1, it follows

Y6,(4) < v6,(h(A)) < yg,(V [ |8 x %)) < minlr, s},

and from those of G,-genus, we have

Y6,(A) < VQI(VQ(SV' xSV <r+s-1.

These are contradictions.

3 Non semi-trivial solutions

We present here some criteria in distinguishing solutions of (1.2) from semi-trivial solutions.

3.1 A necessary condition
Define a functional on Hé Q) x Hé (Q),

J(u,v) = f (1/2[1Vul? + |Vv]*] = G(u, v)}dx.
Q

Let wy = (ug, 6) be a solution of (1.2), i.e.,

—Auy = G, (up, 0),
{ 0 = G, (up.0). G-b
By the observation, we introduce the following condition on the function G:
Ge(0.m) # 0, V17 € (=€, {0}, 32
Gy(£,0)#0, VE&e (e e)\{0} )

for some € > 0.

Lemma 3.1 Under the assumption (3.2), the system (1.2) does not have STS except the trivial solu-
tion.
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3.2 Critical values

Assume

(3.3)

{ Ge(£,0)6 2 2G(£,0), V¢,
G,(0,mn =22G(0,n), Vn.

If wo = (ug, 0) is a solution of (1.2), then we have
—AM() = Gg(uo, 0)

Multiplying u, on both sides of the equation, it follows

1 1 1
fG(uo,O)dx < - f Ge(ug, Oupdx = = f —Aug - updx = = f |Vu0|2.
Q 2 Ja 2 Ja 2 Ja

J(w0)=J(u0,9)=% fg [Vuol* - fg G(up,0) > 0.

and then

If wo = (6, vp) is a solution of (1.2), then by the same approach we verify: J(wy) = J(6,vy) = 0.
We arrive at

Lemma 3.2 Under the assumption (3.3), if wg is a STS of (1.2), then J(wq) > 0.

Similarly, we introduce the following duel condition on G:

{ Ge(£,0)¢ < 2G(£,0), V¢, 3.4)

G, (0,mn <2G(0,n), VY,
and have

Lemma 3.3 Under the assumption (3.4), if wg is a STS of (1.2), then J(wg) < 0.

4 Examples

We have given examples in Chang, Wang, Zhang [6] on the multiple non semi-trivial solutions for
the elliptic system (1.2) via the above indices. In this section we shall provide more.

Example 4.1

We present an example in which the functional is neither bounded from above nor from below.
Assume the function G € C'(R! x R!) satisfies the following conditions:

(G1) G(u,v) = G(—u,—v) for all (u, v),
(G2) G(u,v) = v + o(u* +v¥) as (u,v) — 0, “.1)
(G3) H(u,v) := G(u,v) — auv has a bounded C! norm,

where a € (A, A1), A € (A, Aks1), m < k, and Ay, is the k-th eigenvalue of the Laplacian on Q with
zero boundary condition.
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We study the system (1.2):
{ —Au = G,(u,v),

-Av =G, (u,v), 4.2)

and introduce the functional
1
Juv) = f (GUVul? +19) = G, v
Q

First, we verify the (PS) condition for J. Let (u,,v,) be a (PS) sequence. Then J'(u,,v,) — O.
We need only show that (i, v,) is bounded.
Suppose ||u,|| — oo. After subsequence, we first assume |[v,||/||un]| = b < oo. Let i, :=

(A
and 9, := . Then we may assume i, — ii in E, @i, — @i in [*(Q),and ¥, — Pin E, , > ¥in
L*(Q). From (G3), we may deduce that there is a C > 0 such that |G, (u, v)] < C(Ju| + [v| + 1) and
|Gy (u, v)| < C(lu| + |v| + 1) for all (u, v). Multiplying the first equation by uy, /||l and integrating it
over Q, it yields

~ 112 ~ 12 ~ ~
I~ < Cllanliz, + Cvall/ltnlDlinll 2 Vallz2 + o(1).

From this, we see it # 0.
If b = 0, then for any ¢ € C;°(€2), multiplying the equation by ¢/||u,|| and integrating it over €,
we get, by (G3), that

fg Vit, - Vo — aullvall/llaall = o(1).

This gives fQ Vii- V¢ = 0. A contradiction with & # 0.
If b > 0, then again we get a contradiction as follows. Using the system we have

L Vit - V¢ — avp@llvall/llunll = o(1),

and
f Vi - Vi — atithllugll/ Il = o(1).
Q
Sending n — oo we obtain

fVﬁ-V(ﬁ—ab\”/q):O, Vo

Q

fQV

Since either w = ii + b¥ or w = it — b¥ not equal to 0 and solves —Aw = *aw, a contradiction
with the assumption a € (4,,, 4,,+1). Otherwise, after a subsequence, |[v,||/||u,|| — oo, it is equivalent
to ||u,ll/|lvall = 0. A contradiction is obtained by interchanging u,, and v, in the previous process.
Similarly, we can show ||v,|| is bounded.

Second, we define E;, = span{¢, ¢2, -+, ¢x}. For (u,w) € E;, we have the decomposition:

and

<t

V- gfa// -0, V.

u=3%cpr and w=23%dgp;.

Consider the set:
A" = ((u,u+ew) lue S we sk,
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where S = E; N S, and S is the sphere with radius € > 0 centered at the origin. Obviously, A*
is G invariant. Thus, for € small enough,

J(u,v) = %[Z]f/liciz + Z’fxli(c,- +€ed)?] - /lZIICi(ci + ed;) + 0(|Zf.‘(c? + ediz)l)
=K = Vet + €2X (A — Deid; + SERAdP + o(|EX(cF + ed?)) 4.3)
<0, V(u,v)eA*.

For sufficiently small € > 0, A* is G| homeomorphic to S¥! x §¥71, 50 yg,(A*) = k.

Since YA € Y|, by Theorem 2.3, if j > m and yg, (A) > j, then A N (E,, ® E,)* is a nonempty
set. If (u,v) € AN (E, ® E,)*, writing (u,v) = (u; + up, vy + vp) with u; € E,, v € E,;, and
up, v, € E;- we have either u; = 0 or vi = 0. Note that (G3) implies that there is C > 0 such that
G(u,v) < C + auv for all (u,v). If u; = 0 we have J(u,v) > J(up,v,) — C; for some C; independent
of (u,v), then

Jw,v) 2 infgigpsJ(u,v) — Cp > —oo.

The case v; = 0 is similar.
Now, Y k > 1, we define

Ck = iNfyg, (A)2kMAX(wy)ead (U, V).
Since

maxgyea+J(u,v) <0,

we have —oo < ¢j1) < cpp2 < -+ < ¢ < 0. Consequently, by Theorem 2.2, the functional J has
at least k — m pairs of critical points with negative critical values, which are solutions of the above
system.

According to the assumption (3.3), after Lemma 3.1, all critical values for semi trivial solutions
are nonnegative, therefore those solutions we obtained by minimax principle are truly non semi-
trivial. Similarly, we can handle the case when A € (=1, —4;). In summary, we have:

Theorem 4.1 Under the assumptions (G1),(G>),(G3) and (3.3) (or 3.2), if Ak € N with k > m such
that |A| € (A, Aks1), then the system (4.2) possesses at least k — m distinct pairs of non semi-trivial
solutions.

Remark 4.1 The above example is a correction of Example 4 in Chang, Wang and Zhang [6].

Remark 4.2 In Theorem 4.1, if the assumption (G,) is replaced by
/ L 2 2, 2
(Gy) G(u,v) = E(au + Bv7) +o(u” +v7)as (u,v) — 0,

where @ € (A, Ak+1), B € (A, A141). We have

Theorem 4.2 Under the assumptions (G1), (G), (G3) and (3.3) (or 3.2), if min{k,l} > m, then the
system (1.2) possesses at least min{k, l} — m distinct pairs of NST solutions.
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Proof. The proof is similar to that of Theorem 4.1. The only modification is to reconstruct a
G, invariant subset A* c Jy with yg (A*) = min{k,l}. To this end, we use the subspace E; =
span{ei, @2, , ¢} and F; = span{py, ¢z, -+ , ). For (u,v) € E; X F;, we have the decomposi-
tion:

u= EIICC,'QD,‘, V= ledngj

Define the set:
A* = {(u,v) € E* X F'[||ull = V]l = &.}

where || o || is the H(‘)(Q) norm, & > 0 is small and is to be determined. Thus

B

a [on]
J(u,v) = 2k(1 - Z_)c,.2 +Zi(1 - /l—j)df +0(EX(c; +d)) <0, V(u,v) A"

Since A™ is homeomorphic to S¥! x S7!, the desired result yg,(A") = min{k,l} follows from
Theorem 2.1.

5 Positive critical values for G, invariant functionals

We have pointed out previously that those unconstraint multiple solution problems studied by G,
index theory can also be studied by the Z, genus. In this section, we shall use the pseudo index
theory for the Z, genus to study G; invariant functionals with positive critical values by the following
example.

We study the multiple NST solution problem on H(l) Q) X Hé (Q), where Q c R3.

—Au = v + 30y, .1)
—Av = poud + 3uviu. ’
The associated functional reads as:
1
Sy = [ GOV +1998) = g + i
Q
We assume that for j = 1,2, u; > 0.
1. The functional satisfies the (PS) condition.
Verification: Let {(u},v;)} be a (PS). sequence, i.e.,
J(uj,vj) — c,
and s
Jo Vu; V¢ — mvz¢ = Yy = ollgl, 52)
Jo VViV¥ = pouly = 3puviupy = o(lyl).
It follows
L(|Vuj|2 + Vv = 4uyuv; + pouivdx = olllull + [1v;1).
Thus

f 174V +1Vv,1%) = o(llu,ll + 1Iv,l) + ¢ + o(1),
Q
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and then ||u;|| and ||v;|| are bounded, there exist subsequences

Uu; —_ I:l, Vj _— f/,
u; = iv; =9, (LP(Q)), p€(2,6), (5.3)
ujv; — i, uivj — ®7, (LP(Q), pe(1,3/2).

By using (5.2), we obtain: u; — i v; — 7, Hé(Q).
2. Recall the pseudo index theory for the Z, genus(see [13]). Let E be a Banach space and let
f € CY(E,R!) satisfy the (PS) condition. Let

¥* = {K| Kis compact and symmetric},

A = {h|is an odd homeomorphism satisfying h(B;) C J7'0, 00)},

where Bj is the unit ball centered at 8 in E. Let y be the Z, genus. Define
Y (K) = infheny(K N h(0B1)), YK € X7,

[, ={K €X' |y (K) 2 n},
and
¢y = infger, supyek f(x). (5.4)
One has the Multiplicity Theorem

Theorem 5.1 Assume that f € C'(E,R") is an odd function satisfying the Palais Smale Condition.
Assume Ty # 0, and if c;, defined in (5.4) is finite, then c;, is a critical value of J. Moreover, if

c=c* then the critical set K. with critical value ¢ has y(K.) > m.

= e e — *
n+l — =c

n+k’

3. The multiple solutions for J with positive critical values.
Itis easily seen that J(u, v) = J(—u, —v),i.e., Jis an even functional. Let E; = span{p1, ¢2.- -+ ,¢;}
where ¢ is the kth eigenfunction of —A on Hé (Q). We define

I1; = {(u,u) € Hy(Q) x Hy(Q) |u € E,}.
Note that
Jln, = f [Vul® = (u1 + po)u*ldx, ¥w = (u,u) € T1,
Q

there exists R; > 0 such that J~'[0, c0) N IT; C IT; N Bg,. where B, is the r— ball in H)(Q) x H(Q.).
Let
Kj = Hj N BRJ-,

we claim:
Y (K)) = .
Indeed, Y/ € A, h(B;) c J7'[0, o),

Kj N h((’)Bl) C Hj N h(&Bl) C Kj N h(&Bl),
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ie.,
Kj N h(@Bl) = H] nh(aBl)

Therefore
¥ (K;) = infieay(1; N h(OBY)) = j,
provided by Borsuk Ulam Theorem.

Since K; are compact, c; is finite. Moreover, we claim that there exists @ > 0 such that cj >
a VY j. In fact, from the special feature of J, there exists p > 0, @ > 0 such that

Jlwveon, = a.

In particular, we take ho = pid, then hg € A. Since VK € I';, KN B, = K Nho(0B;) # 0, therefore

¢; = infger, supuvexJ U, v) 2 infueos,J,v) 2 a.

4. NSTS

It remains to see if the solutions obtained are NST. To the special structure of the system, among
all STS, there is only the trivial solution. Indeed, (3.2) is satisfied. Therefore all solutions we
obtained are NSTS. There are infinitely many NSTS for the system.

Remark 5.1 Extensions:
It is easy to see that the method works for many other elliptic systems with G| symmetry. For
example
G(u,v) = F(u,v) + h(uv),

where
1. Fu,v) = mi|ulP*™' + o9, 1 < p,g <2 =1, 1 > 0,40 > 0, or
2. F(u,v) = luvf’uv, 0 <2p <2* -2,
and h € C'(R") satisfies
1. A(0) =0, K (0) € (0,2y)
2. dM > 0 such that |h(?)| + | ()| < M, VYt

These conditions are used to ensure the (PS) condition, (3.2), superliner at (6, 8) and at infinity.

6 v,— pseudo index and applications

Now, we extend the pseudo index theory for the Z,-genus to y,. For a given functional J € C!(E x
F,R"), we introduce
%5 ={K € %, | Kis compact},

A = {h € H, |is a homeomorphism satisfying h(BY x BY) c J7'[0, c0)}

where BE is the ball with radius r centered at the origin in the Banach space E, similarly, we use the
notation BY. Let

H* = {n € H,|is a homeomorphism satisfying nj|;, = id|,,}.
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Thus,Vne H,n: J70, 00) — J710, 00).
For example, if 7 is an equivariant deformation derived from a non increasing flow of the func-
tional J, and is identity on Jo, then n € H*. It is easily seen: 7! : A — A, if n € H*.
Now, we define
Y5(K) = infien v2(K N h(S® x ST)) VK € %5,

w?ere S ¥ is the unit sphere centered at the origin in the Banach space E, similar notation applies to
S,

The following basic properties for pseudo indices hold:

. VA€X;, BeX,, ne H,A\B € X}, n(A) € I3

2. (monotonicity) YA, A, € Z;,Al C A, implies 7;(141) < 7;(A2).

3. (subadditivity) VA € 5, A € 2o, 73(A1\A2) 2 ¥i(A1) = y2(A2).

4. (hyper-invariance) y;(A) < y;(m), VYAeXi,ne H.

The proofs are standard, we omit them.
We denote
I ={KeZ|y5(K)>n} VneN,

and in case I';, # 0, we define
Cp = ianGF,*l Sup(u,v)EKJ(us V)~ (6 1 )

Firstly, we extend Theorem 2.1. For all (j,k) € N X N, let E;, F;, be j, k dimensional linear
subspaces of E and F respectively.

Lemma 6.1 Ifh € H, is a homeomorphism, then h(SE x ST) c (E\{6}) x (F\{6)}).

Proof. We prove it by contradiction. Suppose that there exists (u,v) € S€ x §¥, such that h(u,v) =
(x,0), or h(u,v) = (0,y) for some (x,y) € (E\{8}) x (F\{6}). By the G, -equivariance of h, we have

h(u, —v) = (x,0), or h(—u,v) = (0,y), resp.
But £ is a homeomorphism, this is a contradiction.
Lemma 6.2 If h € H, is a homeomorphism, and
A=(E;jxF)nh(SExsh,
then y,(A) = j+k—1.
Proof. 1° After Lemma 6.1,
i1 (Ejx F)N ST xST) — (E)\6) x (F\{6)

is an injection. Therefore
v2A) < j+k-1
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2°V (x,y) € SEXSF, let Zi(y) = hi(SE x{y}), Zo(x) = ho({x} x ST). They are symmetric subsets
in E and F respectively. Define

B = (E; N Z1(y)) X (Fx N Zy(x)).

We claim: y»(B) > j + k — 1. In fact, suppose it is not true. then there exists a G,-equivariant map
@ = (¢1,¥2) such that
¢ B — ®R\{0h) x R"\{6)

with [ + m < k + j. Since
e1leg  EjNZi(y) — RI\{6),

and
©2lrne - Fire N Za(x) — R™\{6),

are odd mappings, according to Borsuk Ulam Theorem, we have
[>j, m>k.

and then / + m > k + j. This is a contradiction.
From, B C A, it follows
Y2(A) Zy2(B) =2 j+ k-1

Lemma 6.3 V (j, k) € N2, ifthe set (ijFk)ﬂJ_l[O, ) is bounded, thenT';, # 0, where n = j+k—1.
Proof. Set K = (E; x Fi) N (B% X Bk), where R > 0 is chosen such that
(E;x F)NJ7'[0,00) C K.

Thus ¥V /i € A,
(E; X Fx) N h(BY x BY) c (E; x Fy) N J7'[0,00) C K,

and then
KNhSExSH) =(E;x F)nh(SE xS").

According to Lemma 6.2,
Y5(K) = infreny2(K NH(SE xS = j+k—1.
Thus, K €T7.

Applying the general pseudo index theory, see Rabinowitz [13], we obtain the following

Theorem 6.1 Assume that J € C'(E x F,R) is a G»-invariant function satisfying the Palais Smale
Condition. Assume I', # 0, and if ¢, defined in (6.1) is finite. Then c is a critical value of J.
Moreover, if ¢ = Cry1 = +*+ = Crk+m» then the critical set K, with critical value ¢ has y>(K.:) > m.
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Now we turn to an example in the applications of the G, pseudo index theory. Let us assume
a,B>0,1<p,g<2*—1andG e C'(R! x R!) satisfying

(Gl) G(x»)’) = G(_xsy) = G(-x’ —)’) V(x,)’) € Rl X R]»
(G2) AM >0, |G(x, I+ IVG(x, I < M,

(G3) G(0,0)=0

(G4) G(u,v) 0.

6.2)

We consider the functional on (E\{6}) X (E\{#}), where E = H(l)(Q), and Q C R" is a bounded
domain:

+1
J(u,v) = f[1/2(|vu|2 + |V T M G- & B
q [l VIl

where ||u| = ( fQ [Vul*’dx)'/? is the E norm. The Euler Lagrange equation reads as:

{ —A(L + g = lulP ™ u+ Gu(u, v), 63)

-A(l + W)v = WP + G(u, v).

1. The functional J satisfies the Palais Smale Condition. In fact, let (u;,v;) be a (PS). sequence,
ie.,

u 4t
Jupv) = [I209u2 + Vv = M W Gy v )dx

p+1 q+1 (6.4)
a B _
|_jH - |_/|| Cc+ 0(1)
and oy
SV =~ s = Gl v)d + St ldx = olligl) Vo € E 65
S99y =P~ = G, v + ﬁﬁ:jlﬁw] x=o(lyl) Yy e E. '
It follows that
f[|VMj|2 |uj|p+1 Gu(uj,vjujldx + = Hu = = o(llu;ll) 66)
JUVvP =l = Golugvjvjldx + By = odllv; . '
From (6.6) and (G,), we conclude the existence of 6 > 0, such that
lleejll = 6, vyl = 6. 6.7
By adding (6.4) with (6.6), we obtain
G = P
+(_ - qﬂ)”V ”2 L[G(M], ]) p_,,lGu(u]? /)u] q+1 v(u]’ ])V]]dx (68)

(1+17+1)||u,-\| I+ q+1)|\v/-||
= o(llujll + lvill) + ¢ + o(1).

Applying the assumption (G») and (6.7), we conclude the boundedness of (1, v;) in Hé X Hé. There-
fore
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(uj,v;) = (@,7) (LP' x LI, (6.9)

uj - ﬁ’ vj - ‘7’ (Hé(Q))s
VG(uj,v;) = VG(ii,7) (L* x L?).

Also, after a subsequence, |lu;|| — &, |[v;ll — 1, &7 > 0. Since

(1 + gt = (07 (gl uj + Guluj, v)),
TP 7 J j Jo Vi (6.10)
(1 + 2w = GO Wil v + Golugv))
are strongly convergent in H(l) X Hé, and 1+ ﬁ - 1+ %, 1+ ﬁ - 1+ %, we proved the strongly

convergent of (u;,v;). The (PS) condition is verified.

2. For any finitely dimensional linear subspace U C H, V C Hy, it is not difficult to verify:
J(u,v) = —oo, as (u,v) € UXV, [lull* +|V|]* — co.
There exists R > 0 such that (U x V)N J7![0, 00) € K := (U x V) N (Bg X Bg). Applying Lemma 6.3,
v5(K) = dim(U) + dim(V) — 1.
Thus, Vn € N, T, # 0. Since K is compact,
Cp = infxer: SUP ek J (U, v)

is finite.
3. Now we turn to verify: ¢, > 0V n € N. Denote

r+l

C, = SUP|ju||=1 r-|’:+ll ,1 <r< 2% —1.

Lemma 6.4 Assume (G4) and

1 1
0<a<—— 0<f<——. 6.11)

8(4C,)77 8(4C,)7
There exists py > 0 such that

J@u,v) > 1/403,  asllull = V]| = po.

Proof. Let

() =1/262 = Cpt"*! — a1,
and choose

po € (B0)' . i)
Then

fpo) = (1/2 = Cppl ™Yol — alpo > 1/403 — a/po > 1/8p}.
Applying to the functional J, the estimate follows.
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Theorem 6.2 Under the assumptions (G1) — (G4) and (6.11), the system (6.3) possesses infinitely
many NSTS with positive critical values.

As the last example of this paper, we turn to the asymptotically linear case. In order to avoid

some technical difficulties, we study ordinary differential systems. Let A; be the j-th eigenvalue

of the differential operator —5—; on the interval (0, T) with Dirichlet boundary condition. We make

some assumptions on G € C'(R! x R!):

(G1) G(x,y) = G(=x,y) = G(x,—y) ¥ (x,y) e R' xR/,

(G2) ARy > 0, G(x,y) = 1/2(ax®> + by?), x*+y*> > R2,

(G3) ARy > 1y > 0, G(x,y) = 1/2(cx® +dy?), x> +y* <12,

G9) p<kq <l a€ua) b el ¢ € L dpar), d € (g, Agur).
Denote E = Hé(O, T). One studies the following functional on (E\{6}) X (E\{6}):

1 T
T vy = 3l + 1P - f G- & _ P

_—, 6.12
; ldl )

where ||u|*> = fOT |it*dt. We assume @ > 0 and 8 > 0.
The verification of the (PS) Condition is the same as that in Theorem 6.2.
Let @1, 02,3, -+, be the eigenfunctions with eigenvalues 1; < A < A3 < ---, and let E; =

span{gy, 2, -+, ¢l
Lemma 6.5 Foralli<k, j<I

J(u,v) = —oo as|lul| + |[V|| = oo, (u,v) € E; X E;.
Proof. There is a constant C such that

Ju,v) < 172(all? = aluy) + 1/24M = blul3) + C.

Now,
2 2 2 2
lleell” < Agluls, [VII° < Aglvi,

Ax < a, 4; < b, and on any finite dimensional space all norms are equivalent, the conclusion follows.
In particular, there exist R > 0 such that (E; X E;) N J71[0, 00) C (E; % E;) N (Bg X Bg).
Now we modify the definition of the G, pseudo index by using

A" ={h € Hy, h(B; X By) € J'[0,00) U (Bg X Bg)}
to replace A in the definition of y3. Again, we see
AT AT Ve H,
because
0o h(By % By) € "' (J710,00) U ((Br X Br) N Jp) € J7'[0,00) U (B X Br),
provided 7y, = id|y,.

To this modified G, pseudo index, now, we define the set I';, and then

¢, = infrer;SupuwexJ (U, v).

The following lemma holds:
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Lemma 6.6
I,+#0, YO<n<k+I-1

Proof. Let K = (E; X E;) N (Br X Bg), we show: y3(K) 2 i+ j—1, Vi <k, j <L The proof is the
same as in Lemma 6.3. It follows
Fl’;j_l # 0.

Next we show: dgy > 0 such that ¢, > &9 Yn > p + g. To this end let us introduce a function
with 2 parameters
OE,m;1) = ~&/t + i

The following lemma is easy to verify.
Lemma 6.7 Ifn <0, then
maxie.00® = O(o) = =3/26*7 (2",

where o = £'3(=2n)7113.
Ifn > 0, then ®'(¢) > 0, and for any r > 0, max;cp ® = —&/r + nr*.

By Schwarz inequality, we have the embedding
luloo < (T/2)"2 |l
Thus, if ro > (T/2)"/? r, then for |lu||*> + |[v|]> < 72,
Jsxer 2 P, 1/2(1 = ¢/ Apar)s lul) + OB, 1/2(1 — d/ Ag41); IVID,
Jegxe, 2 P, 1/2(1 = ¢/ Apr1)s llull) + OB, 1/2(1 — d/ A1); [ vID, (6.13)
Je,xer 2 (e, 1/2(1 = ¢/ A0); |lull) + @B, 1/2(1 = d/ Age1); [IVID.

If there exist pg € (0, rg) and &y > 0 such that

2> 2(2p} + a2/3(§1 — 1) +/32/3(% — )23, (6.14)
and ‘ _
min{%(l - /1;+1)p(2) - pﬁo - %azm(ﬂ% - 1)1/3’ (6 15)
1= 500 - 2= 3 = D) 2 |
then we may choose
o1 =a e/ =177,
oy =P/ - 1),
and obtain
J| EL E, Ep > £0. (616)

v ofq Ep  oEq Ej, =
(ST XS U AP xSEDU(S xSl )

Now, to any set A € T,

n’

n > p + g, after Theorem 2.5,

ANh(@By xdB) N ((E, xE)U(EXE;)#0 YheA"
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In particular, we choose
h(u,v) = (o1u1 + poltz, 02v1 + Pova2),
where u = u; + up, v = v; + v, are orthogonal decompositions of u and v, u; € E,,u; € E[f and

vi€Eg v € qu. This means

L
Eq

EX E: E:
AN XSy US, XSt US,T X S,0) # 0.

By (6.16) we proved
CZ = l'aner;](M, V) > &.

According to Theorem 6.1 we arrive at

Theorem 6.3 Under the assumptions (G1) — (G4) and (6.14) and (6.15), the functional (6.12) pos-
sesses k + 1 — p — q — 1 non semi-trivial critical points of positive critical values.

We remark that (6.14) and (6.15) are easily satisfied when we choose a, 8 small.
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