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Abstract

We prove the existence of infinitely many subharmonic solutions, with prescribed nodal
properties, for a planar Hamiltonian system Jz' = V_ H(¢,z), with H periodic in the first
variable. The goal is achieved by performing estimates of the rotation numbers with respect
to deformed polar coordinates and applying Ding’s version of the Poincaré-Birkhoff fixed
point theorem.

2000 Mathematics Subject Classification. 34C25, 37TE45, 37J10.

Key words. Subharmonic solutions, Poincaré-Birkhoff theorem, Rotation number.
o

1 Introduction

In this paper we deal with the problem of the existence and multiplicity of subharmonic solutions
for a planar Hamiltonian system of the type

J? =V.H(t,z)  z=(x,y)€R?, (1.1)

being J = (
that:

(1) _01 ) the standard symplectic matrix and H : R X R? 5> R regular enough and such
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e H is T-periodic in the first variable, with T > 0 fixed,
e V.H(1,0) = 0.

Incidentally, we remark that the last condition is often unrestrictive. In fact, a typical preliminary
step is given by the proof of the existence of at least one T-periodic solution; then, via the obvious
change of variable which sends a periodic solution into the origin, the original problem is reduced
to the existence of subharmonics for a planar system of the same type and for which the condition
V. H(t,0) = 0 holds true.

The problem of the existence of (harmonic and) subharmonic solutions for a planar Hamiltonian
system, and in particular for a conservative scalar second order equation like

u” +g(t,u) =0, (1.2)

is classical and widely studied. Due to the variational structure of equation (1.1), tools from critical
point theory like linking theorems can be successfully applied, even in dimension greater than two:
we refer to the book [15] for a standard reference on the subject and to the more recent contributions
[1], [4], [11], [12] for the specific problem of the existence of subharmonic solutions.

On the other hand, a more classical dynamical approach can be followed. In fact, if the unique-
ness and the global continuability of the solutions of the initial value problems associated to the
equation (1.1) are guaranteed, the Poincaré map ® : R> — R? is well defined (and it turns out to
be a global homeomorphism of the plane) and, as well known, kT -periodic solutions (k € Ny) of
(1.1) correspond to the fixed points of the k-th iterate ®. In the particular case of an Hamiltonian
flow, Liouville’s theorem implies that @ is area preserving and some refined versions of the classi-
cal Poincaré-Birkhoff fixed point theorem can be applied, the crucial point of the proof consisting,
of course, in performing some careful estimates of the rotations of the solutions in order to show a
“twist condition” for the Poincaré map.

For a detailed analysis of the relationship between these two different approaches, and in par-
ticular for a comparison between the classical twist condition in the Poincaré-Birkhoff theorem and
tools of critical point theory like Morse and Maslov indexes, we refer to the paper [14]. We only
remark that, with respect to variational techniques, the Poincaré-Birkhoff theorem seems to be par-
ticularly well suited in order to obtain fine multiplicity results for the existence of subharmonics, as
information about nodal properties (and hence multiplicity) are intrinsic in the method itself.

From here on, we will focus on this dynamical approach, which will be used in the paper. In
the particular case of the second order equation (1.2), Poincaré-Birkhoff theorem has been applied
in many works (concerning the existence of both harmonic and subharmonic solutions), in order to
cover a very wide set of nonlinearities: we refer in particular to [8] for the sublinear case and to [7],
[17] for the superlinear one.

In this paper we consider the general Hamiltonian system (1.1), together with hypotheses (H,)
on the Hamiltonian which generalize a (possibly one-side) sublinearity condition for the second
order equation; on the other hand, a positive mean condition (Hy) is required near the equilibrium. In
this way, small solutions in the phase-plane wind around the origin many times, while large solutions
do not: as consequence, we get (via Poincaré-Birkhoff theorem) the existence of infinitely many
subharmonic solutions (Theorems 3.1 and 4.1). As corollaries, some results for the second order
equation (1.2) are obtained (Corollaries 3.1 and 4.1). With respect to previous works, the standard
linearization hypotheses at zero and at infinity (as in [18]) are substituted by suitable inequalities
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((go) and (g«)) only; in particular, no differentiability condition on the nonlinearity is required. The
conclusion is analogous to that of the main result of [8], but no sign condition is required; moreover,
while in this latter work a time-map approach is performed in order to study the behavior of large
norm solutions, our proof relies only on some explicit computations of the rotation numbers.

The plan of the article is the following. In Section 2 we introduce a “modified rotation number”,
suitable for our problem, and relate it to the classical one, completing in this way the work of [19].
It is worth noticing that these systems of “deformed” polar coordinates are used not only as a useful
trick in order to simplify some estimates (as in [17]), but play an essential role in the formulation of
the hypotheses on the Hamiltonian at infinity.

In Section 3 and 4 we prove our main results and some related corollaries.

In Section 5, finally, an outline of a possible application to a class of Lotka-Volterra type planar
systems is presented.

We end this introduction by recalling, for the reader’s convenience, the main tools which will
be used in the paper. For a (at least absolutely continuous) path z = (x,y) : [s1, s2] — R? such that
z(t) # 0 for every t, we define the rotation number

Rot(z: [s1, 52]) := 1 f 2 yOx (1) — xOy'©)

1.3

2n x(6)2 + y(1)? (1.3)

As well known, it represents an algebraic count of the clockwise windings around the origin of the

path z(¢) in the time interval [s, s;]; details will be given in Section 2. Based on the rotation number,

we employ the following generalized version of the Poincaré-Birkhoft twist theorem, where k € Ny
is fixed.

Application of the Poincaré-Birkhoff fixed point theorem

Let us assume the uniqueness and the global continuability of the solutions of the Cauchy prob-
lems associated to equation (1.1) and denote by z(-; 29) the solution with z(0; z9) = zo.
Let us suppose that there exist two circumferences I'; = rS' and T, = RS', with 0 < r < R, and
j € Ny such that:

e Rot(z(t;z0); [0,kT]) > j for every zg € T;;
e Rot(z(t;20); [0, kT]) < j for every zg € T,,.

Then, denoting with A the closed annulus having as inner and outer boundaries the circumferences
I'; and T, respectively, equation (1.1) has at least two kT -periodic solutions z;, 7o with z(0), 22(0) €
A and such that

Rot(z1; [0, kT'T) = Rot(z; [0, kT']) = J.

This result can be proved by applying the Poincaré-Birkhoff theorem in the version given by W.Y.
Ding in [5], to the k-th iterate of the Poincaré map as an area-preserving homeomorphism

OF : A c R?\ {0} » O*(A) c R?\ {0).

Observe that the condition V_H(¢,0) = 0 implies that z(¢; z9) # O for every t whenever zy # 0; hence
the rotation numbers are well defined. For a complete proof of the statements and more details, we
refer to [17]. For the present paper it is sufficient to have stated the theorem for a standard annulus.
However, the result holds even in greater generality for some topological planar annuli.
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2 Modified rotation numbers

The use of a suitable system of “polar coordinates”, and the consequent definition of an associated
rotation number, is an essential tool in the qualitative theory of ordinary differential equations in
the plane. The most standard choice is given by the classical polar coordinates, which lead to the
definition of the standard rotation number (1.3). Different choices, however, are possible and can be
useful; we refer to the work [17] for a unifying approach on this matter.

The aim of this section is to introduce a system of deformed polar coordinates along a strictly
star-shaped Jordan curve surrounding the origin, which allows the definition of a modified rotation
number which will be extensively used in all the paper. The definition goes back to the work [19].

Definition 2.1 Let P be the set of all C! functions V : R? — R such that:

e V is positively homogeneous of degree 2, i.e. V(1z) = A2V(z) for every A > 0 and for every
zeR%:

e V(z) > 0 forevery z # 0.

Let us recall that, if V € P, then limy;—,., V(z) = +o0 and the Euler’s formula
2V() =VV(2) - z

holds true. These properties easily imply that the open set {z € R?> | V(z) < 1} is a bounded
neighborhood of the origin, with boundary

Ty =V I(1) cR*\ {0}

which turns out to be a Jordan curve (i.e. a subset of R> homeomorphic to the circle S') surrounding
the origin and strictly star-shaped with respect to it, in the sense that every ray emanating from
0 € R? intersects the curve in exactly one point. We want to make R a (universal) covering space of
Iy.

The following preliminary lemma is useful; we remark that it follows by the result of [16], but
here we propose an independent proof.

Lemma 2.1 The uniqueness and the global continuability of the solutions of the initial value prob-
lems associated to the autonomous planar Hamiltonian system

1
J7 = zVV(z) 2.1)
are ensured.
Proof. Let us suppose, by contradiction, that there exist two solutions z;,2, of (2.1) defined in a
neighborhood of 0 and such that z;(0) = z,(0) = zo € R?\ {0}; by the conservation of energy

relations V(z;(#)) = V(z2(#)) = V(z9) and Euler’s formula, we get

JZ)(0) - 21(t) = JZ5(1) - zo(1) = V(zo) # 0. (2.2)
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Let us define, for (r, s) in a neighborhood of (1, 0), the C ! function
P(r,s) = rza(s) € R

we have that P(1,0) = zo, while (2.2) implies that the Jacobian matrix DP(1, 0) is invertible. Then,
the local inversion theorem implies that there exist C' maps r(¢), s(¢), defined in a neighborhood of
0 and with values in a neighborhood of 1 and 0 respectively, such that

21() = P(r(1), s(1) = r(1)z2(s()).

The conservation of the energy and the homogeneity of V imply that r(r) = 1; hence z;(¢) = z2(s(?)).
On the other hand, differentiating this last equality and using relation (2.2), we obtain s’(r) = 1; as
s(0) = 0, we get s(f) = t. In conclusion, z;(f) = z2(¢). The observation that every positive energy
level set does not contain the origin implies the uniqueness for zy = 0 too, while the global continu-
ability follows from the compactness of the energy level set V~!(c) for every ¢ > 0.

So, denoting by zy the (unique and globally defined) solution of the Cauchy problem

J7 = 1vv(z) )
{ 2(0) :2V_1(1) N (0, +oo[x{0}) z=(x),

and by 7y its minimal period, we get that the map zy : [0,7y] — R? gives a simple clockwise
parametrization of I'y; hence Stokes’ theorem and Euler’s formula imply that

1
Ay = f dxdyz—f (xdy — ydx) =
{v<1} 2 HV<I1y*

1 v
-1 f 2,0 - 2y(t)dt =
2 Jo

1 v TV
= = dt=—.
zfo 2

We can finally define a natural covering projection ITy : R — I’y letting
Ty
Hv(G) =2y (—9) .
2n

By the standard theory of covering spaces, for every absolutely continuous path z : [s;, s,] — R?
such that z(¢) # O for every ¢ € [s1, 52], the path [sy, s;] — 'y given by
0]
H —
VV(z()
can be lifted to the covering space (R,IIy) of I'y, i.e. there exists an absolutely continuous path

Oy : [s1, s2] — R such that
2(2)

V(z(1)
Moreover, standard calculations show that, for almost every ¢,
2 JZ' (@) - 2(0) _ 27 (y(0)x' (1) — x(@)y' (0)
v V() Ty V(z(®) '

Finally, we are led to give the following definition.

= Hy(Ov(0).

6,() =
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Definition 2.2 The (clockwise) V-rotation number of an absolutely continuous path z : [s, s2] —
R?, such that z(f) # 0 for every ¢ € [s1, 5,], is the number

Oy(s2) = Ov(s1) _ 1 fsz JZ0 -0
2n v ds, V)
1 2 J7 (1) - z2(b)
24y Jy,  V(@(®)

Roty(z; [s1, 521) =

Note that, as usual, the definition does not depend on the choice of the lifting 6y .

Remark 2.1 In the language of differential forms, we have that

1
Roty(z; [s1, 52]) = A0 fwv,
VvV Jz

where wy is the closed (by Euler’s identity) differential form

Jdz -z  ydx — xdy
Vi) V()

wV(-x’ y) =

This point of view can be useful in the proof of some properties of homotopy invariance for the
V-rotation number, but will not be used in the sequel.

Note at this point that the standard (clockwise) rotation number as defined in (1.3) corresponds to
the choice V(x,y) = x* + y?, i.e. to the standard covering space (R, e ") of S! = V=1(1). We will
continue to denote this number simply by Rot(z; [s1, s2]).

The next goal of the section is to investigate the relation of a V-rotation number as defined before
with the standard one. We begin with the following lemma.

Lemma 2.2 The map ¥y : R — R defined by

2 ds
Yy(O) = — f -
v Jo V(coss,—sin s)

is an increasing C'-homeomorphism of R, such that, for every 6 € R and for every k € Z,

WYy(0 + 2km) = Py () + 2kn. (2.3)
In particular, for every k € Z,
Yy (2kr) = 2k (2.4)
Proof. As
0= Ve

we have that Wy is strictly increasing. Moreover, by the 27-periodicity of the integrand, for every
0 € R and for every k € Z,
Yy (0 + 2kn) = Py (0) + k¥v(2n);
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so the computation in (clockwise) polar coordinates

21
ds Ty
=2 dxdy = T = Yy,(2
i f{vg} ray j(; V(coss,—sins) 2m v(m)

implies (2.3). On the other hand, passing to the limit in (2.3) we conclude that ¥y () — oo as
6 — +oo0 and so Wy is a homeomorphism of R. Finally, (2.4) follows from (2.3) and the fact that
Yy (0) = 0.

The next proposition shows a concrete way to compute a V-rotation number starting from the
knowledge of the standard one.

Proposition 2.1 Let z : [s1, s:] = R? be an absolutely continuous path, such that z(t) % 0 for every
t € [s1, 52], and 8 : [s1, 521 = R a lifting to the covering space (R, e~") of the path

|z(0)]
Then v .
Roty(z; [s1, s2]) = V(Q(SZ))Z; V(e(sl)). (2.5)

Proof. Let Oy : [s1, s2] — R be the path defined by

Oy (1) = ¥y(0(1)).

Since 6 is absolutely continuous and Wy is of class C', standard properties of absolutely continuous
functions imply that ®y is absolutely continuous too; moreover, for a.e. t € [s1, s2],

®),(1) = ¥, (6(1)F (0).

Since z(f) = |z(£)le D, we get

W00 (1) = = ! I 20 _

0y v V(cos (1), — sin6(1)  |z(D)

2m (1) 2()
ARTED)

This finally implies that

i 2 J7 (1) - z(t) _
v Js, V()

R _ Oy(s2) — Oy(sy)
= 2 L Oy (tdt = o= .

Roty(z; [s1, 521)

We easily deduce the following fundamental properties.



84 A. Boscaggin

Proposition 2.2 Let z : [s1, s:] = R? be an absolutely continuous path, such that z(t) # 0 for every
t € [s1, 2], and j € Z. Then:

Roty(z; [s1, 52]) = j & Rot(z; [s1, 521) = J; (2.6)
Roty(z; [s1, 52]) < j &= Rot(z; [s1, 521) < J; 2.7)
Roty(z; [s1, $21) > j & Rot(z; [s1, 52]) > j. (2.8)

Proof. Let 0 : [s1, s2] — R be a lifting to the covering space (R, e) of the path 7 — Z2: we begin

to prove (2.6). If Roty(z; [s1, s2]) = j we deduce from Proposition 2.1 that Hor
Wy (0(s2)) — Pv(O(s1)) = 27
Defining 67 = 6(s1) mod 2n, 65 = 6(s2) mod 27, (2.3) implies that
Yy (65) — Py (6)) € 27Z;
as Wy ([0, 2n[) C [0, 27[ we conclude that 85 = 6}. Again by (2.3), we finally deduce that
0(s2) — 0(s1) = 27j,
that is Rot(z; [s1, s2]) = j. Conversely, if Rot(z; [s1, s2]) = J, then
0(s2) — 0(s1) = 27j

and Proposition 2.1 and (2.3) imply that Roty(z; [s1, s2]) = j. We prove (2.7), the proof of (2.8)
being similar. We have that Rot(z; [s1, s2]) < j if and only if

0(s2) — (8(s1) + 27 j) < 0;
being Wy strictly increasing this is equivalent to the condition
Wy (6(s2)) — Py (6(s1) +27)) <0,

which by (2.3) is the same as
Wy (0(s2)) — ¥Yv(0(s1)) <27

But this is the same as Rot(z; [s1, $2]) < j, by Proposition 2.1.

Remark 2.2 A very useful choice of V is given by the diagonal quadratic form
2 2
Viny) ==+ 2
c d

for some ¢, d > 0; in this case, clearly, Ay = ( Ved)r. The asymmetric situation

xt o\ + -\
(25

o d d>
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for some ¢y, ¢, d;,d; > 0 can be considered as well (see [19] for an application). In particular, in the
case of a diagonal quadratic form, the symmetries of V imply that the homeomorphism Wy satisfies
the extra property

v, (kg) _ kg 2.9)

for every k € Z. From this fact we can easily deduce that
1
Roty(z: [s1, 521) = Rot(z [s1. 52])| < 7. (2.10)

Rotation numbers of this kind have been often considered in literature (at least implicitly, as in [9])
and a systematic treatment is given in [17], where relations (2.6), (2.7), (2.8), (2.10) are proved with
different arguments.

We end this section with a remark about the possibility of describing an arbitrary Jordan curve
surrounding the origin as the level set V=!(1) for a (unique) V € P. We will use some concepts and
results of differential geometry, for which we refer to [3].

We have already noticed that, if I'y = V~I(1) for V € P, then T'y is a Jordan curve around
the origin and strictly star-shaped with respect to it. Moreover, since 1 is a regular value of V, the
preimage theorem implies that I'y is a one dimensional C' embedded submanifold of R2. Finally,
relation

JIT,(6) - TTy(6) = const # 0

implies that
y(®) ¢ Tr,ely.

This last relation shows that every ray intersects I'y transversally. These conditions turn out to be
sufficient, as the following proposition shows.

Proposition 2.3 Let T c R\ {0} be a Jordan curve surrounding the origin and strictly star-shaped
with respect to it. Moreover, suppose that T is a one dimensional C' embedded submanifold such
that for every z € T the transversality condition

z¢T.I (2.11)
holds. Then there exists a unique V € P such that Ty = V71(1).

Proof. Uniqueness is quite obvious. On the other hand, we have to construct V € . By definition
of strictly star-shapedness of I" with respect to the origin, for every z € R? \ {0} there exists a unique
1(z) €10, +o0[ such that #(z)z € T’; by construction, the function #(z) is also continuous on R? \ {0}.
Define V : R? \ {0} — R by

V(z) = @

It is clear that V is positively homogeneous of degree 2 and strictly positive; we claim that it is
of class C! on R? \ {0}. To see this, fix zy € R?\ {0}; it is well known that there exist an open
neighborhood U of #(z9)zo € T and a C! function G : U — R with VG(#(z0)zo) # O such that

rnvu=a6'0). (2.12)
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Moreover, as Ty, I = {w € R? | VG(t(z0)z0) - w = 0}, the transversality condition (2.11) implies
that
VG(t(zo)zo) - 20 # 0.

Define, for s in a neighborhood of #(zp) and z in a neighborhood of zg, the map
F(s,2) = G(s2),

which is clearly of class C'; moreover, F(t(z9), z0) = 0 and

oF
E(I(ZO),ZO) = VG(t(z0)z0) - 20 # 0.

Then the implicit function theorem implies that there exists a C' function s(z), defined in a neigh-
borhood of zy and with values in a neighborhood of #(zy), such that, in a neighborhood of (#(zo), zo),

F(s,2) =0 = s = s(2).

As 1(z)z € T and #(z) is continuous, (2.12) implies that F(#(z), z) = G(#(z)z) = 0 and hence #(z) = 5(z)
in a neighborhood of zo. We deduce that V is of class C' in a neighborhood of zy and hence, being a
local property, on R? \ {0}. Setting V(0) = 0, the positive homogeneity of degree 2 implies that V is
of class C! on R? concluding the proof.

Remark 2.3 Given a 27 periodic function y : R — R? of class C! such that, for every s € R,
JY'(s)-y(s)>0 (2.13)

and that
Rot(y; [0,2n]) = 1, (2.14)

we claim that the image I" = {y(s) | s € [0, 2x[} verifies the hypotheses of Proposition 2.3.

To this aim, we denote by R/(27Z) the interval [0, 2x[ with the topology which identifies the
extreme points and with the natural differentiable structure and recall that y can be viewed as a map
v : R/(2nZ) — R? of class C! in the sense of the differentiable manifolds. Moreover, we observe
that relation (2.13) implies that for every [s, ] C [0, 2r]

208
Rot(:[s.1) = 5- f %d»& 2.15)

The fact that y’(s) # O implies that y is an immersion; we claim that it is injective. In fact, if
[t1, 7] € [0, 2n[ are such that y(#;) = y(,), then Rot(y; [#, £2]) is an integer number, strictly positive
by relation (2.15); on the other hand, (2.15) implies that

Rot(y; [t1, 2]) < Rot(y; [0,27]) = 1

which is a contradiction.

Since R/(27Z) is compact and connected, y is actually an embedding; we deduce that I' =
Y(R/27Z) is a compact, connected, one dimensional C' embedded submanifold of R?. In particular,
I"is a Jordan curve and, by (2.14), it surrounds the origin. Finally, the transversality condition (2.11)
is clearly satisfied. It remains to show the condition of strictly star-shapedness.
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1. We prove that every ray intersects I in at least one point. This is quite obvious; a formal proof
can be sketched as follows. Consider the path

tl—)i’/(t)zﬂegl

vl

and let 6(¢) a lifting with respect to the standard polar system; then relation (2.14) implies that
6(2m) — 6(0) = 2. By the intermediate value theorem, every value in the interval [6(0), 6(27)]
is assumed by 6, that is ¥(f) is onto S'.

2. We prove that every ray intersects I in at most one point, that is ¥ is injective on [0, 27[. But
this can be proved with the same argument used to show that vy is injective.

It is worth noticing that if we drop condition (2.14), then the result is false, as I" is not even a Jordan
curve. To see this, it is enough to consider the C' curve y : R/(22Z) — R? given by

y(1) = (sin(20), (F3(1 — 27)* + 4) cos(21)),

which satisfies condition (2.13). The set ' = y(R/(272Z)) is plotted in the figure below with
MAPLE® software.

Figure 1: The setI' = y(R/(277Z))

3 A first result of multiplicity

In this section we prove a first result of multiplicity about the existence of subharmonic solutions
for equation (1.1). The goal will be achieved by performing some estimates of the modified rotation
numbers introduced in the previous section and applying Ding’s version of the Poincaré-Birkhoft
fixed point theorem, as stated in the Introduction. Throughout the section, we will assume that
H:RxR? — RisaC' Carathéodory function, that is:
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e 1+ H(t,7) is measurable for every z € R2;
e 7z H(t,z)is of class C' for almost every t € R;

e for every r > 0 there exists ¢, € L'(]0, T[) such that |V_H(t,z)| < {.(¢) for a.e. ¢ € [0,T] and
for every z € R? with |7] < r.

Accordingly, solutions of (1.1) will be considered in the Carathéodory sense, that is (locally) abso-
lutely continuous functions that solve the differential equation for a.e z.

Remark 3.1 According to [6], [7], [17], by subharmonic solution of order k of equation (1.1) we
mean a k7T -periodic solution which is not /T-periodic for / = 1,...,k — 1; this does not imply in
general that k7 is the minimal period. We recall that other definitions of subharmonics are pos-
sible, like the one in [15]. Moreover, by periodicity class of a subharmonic solution z we mean
the set {z,z(- + T),z(- + 2T),...,z(- + (k — 1)T)}; by the T-periodicity of H, these functions are all
(subharmonic) solutions of (1.1).

Hereafter, we will always suppose that the uniqueness and the global continuability of the solutions
of the initial value problems associated to (1.1) are guaranteed. We recall that this assumption,
together with the fact that V_H(z, 0) = 0, implies the following well known “elastic property”:

o forevery s, T* > 0, there exists 0 < r < s such that

lzol < r = |z(t;z0)| < s forevery t € [0,T"];

e forevery S, 7" > 0, there exists 0 < S < R such that

lzol = R = |z(t; z0)| = S for every t € [0, T"].

For a proof and more comments on this classical subject, see [13], [19].
We can state our first main result.

Theorem 3.1 Let us suppose that:
(Hyp) there exist Vo € P, ap € L' (10, T]) with fOT ao(t)dt > 0 such that

. . V:H(t,2)z
liminf =——="= > qy(¢
=0 Vo(2) o)

uniformly for a.e. t € [0, T];
(H.) there exist two sequences (V") C P, (a’,) c L'(]0, T|) such that:
i)
T
| arat
f2 = <0;
in Ay <
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ii) for everyn e Ny
. VZH(ts Z) *Z
lim sup

—— S ag()
|z]—+00 V& (z)

uniformly for a.e. t € [0, T1].

Then, for every j € Ny there exists mj € Ng such that, for every k > m; with k prime with j, equation
(1.1) has at least two subharmonic solutions z} o z?  Of order k, not belonging to the same periodicity

class, with
Rot(z}: [0, kT1) = Rot(z%: [0.KT]) = j.

Remark 3.2 Note that the definition of subharmonics adopted before implies that the above solu-
tions are pairwise different. It is worth noticing, moreover, that, taking j = 1, Theorem 3.1 ensures
the existence of subharmonics of order k for every sufficiently large integer k.

Proof. Letus fix j € Np; we claim that there exists m; € Ny such that, for every k > m;:

o there exists a circumference Ff.‘ centered at the origin such that, for every zp € I“ff s
Rot(z(; 20); [0, kT1) > j;
e there exists a circumference F’; centered at the origin such that, for every zy € Fﬁ,
Rot(z(t;20); [0,kT]) < 1 < j.
In fact, let ¢, > O be so small that ag‘ () = ap(t) — € has positive mean and V) € P as in hypothesis

szélvs,)d, j. By hypothesis (Hy) there
o %o

(Ho) and define m; as the smallest integer strictly greater than

exists s, > 0 such that
VZH(t3 Z) *Z

Vo(2)
fora.e. 0 <t < T andO0 < [z] < 5¢ and by the elastic property there exists 0 < r, < s, such that

> ao(t) — € = ag (1)

lzol £ 7e, = |2(t; 20)| < 54

for every 0 < ¢ < kT. Define I'¥ = {z € R? | |z| = r, }; we have that, if zo € T},

1 f"T JZ(620) - d620) |
2Av, Jo Vo(z(t; 20))
1 f"T V H(t,z(t; 20)) - 2(t; 20)

Roty, (z(t; 20); [0, kT])

dt >

2Av, Jo Vo(z(t; 20)) B
1 kT
> — ‘(Hdt =
= 2Avof0 dy ()
k T
= — Hdt >
2Avﬂf0 a (Ddt =
>

e f ' al(Hde > j
2Av, Jo 0
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and by Proposition 2.2 this implies that
Rot(z(t; z0); [0, kT']) > ji.

On the other hand, by hypothesis (H.,,) there exist V" € P, a”, € L'(]0, T[) such that

) a (o 1
Avg0 k

and
. VH(1,2) -z
lim sup ————

m <dl (), uniformly for a.e. ¢ € [0, T'].
|z]—+0c0 V&(z)

Aun _
So, taken 0 < & < === there exists S, > 0 such that
V. H(t,z) -z
LRI o+ e
V(@)

fora.e. 0 <t < T and for every |z] > S, and by the elastic property again there exists 0 < S, < R,
such that
20l 2 Re, = |2(1:20)| 2 S &

for every 0 < ¢ < kT. Define Ff‘, ={zeR?||7 = R.,}; we have that, if 7y € Ff,,

1 fkT JZ(620) 2d620)
2Avn Jo VE(z(t; 20))
kT . (4
1 f V. H(t,2(t; 20)) - 2(; 20) di <
2Av, Jo V& (2(t; 20))

1 kT
A (f al (Hdt + kT€2) =
ve \Jo

T
k |, ak@dt
k Jy () e
Ayn 2Ayn
1

+—:1<.
3 =J

Rotyn (z(t; 20), [0, kT])

IA

NSRS ]

and by Proposition 2.2 again we get
Rot(z(t; z0); [0, kT]) < j.

Denoting with A* the closed annulus having l"f and T'* as inner and outer boundaries, we conclude
that there exist two kT -periodic solutions z}’z, zik (not belonging to the same periodicity class by a
remark of Neumann to the Poincaré-Birkhoff theorem, see [17] for some details) with z}’Z(O), ziZ(O) €
AF and such that

Rot(z}: [0, kT1) = Rot(z3: [0,kT]) = j.
If k£ is prime with j, then it can be proved in a standard manner that these solutions are actually
subharmonics of order k.
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Remark 3.3 Some remarks about the condition (H) are in order. We first remark that an admis-
sible choice for i) is given by @, = 0; in this case, as for every V € P there exist m, M > 0 such
that

mlz* < V(2) < Mlz,

condition ii) does not depend on V € P. In particular, Theorem (3.1) holds in the sublinear case

V.H(t,z7) - .
lim sup & <0, uniformly for a.e. ¢ € [0, T]. (3.1

|z|—>+00 |Z|2

On the other hand, the Theorem covers situations for which (3.1) is not satisfied, but such that

limsup,, V:I{,Ei’)z)'z can be made “arbitrarily small”, in some L' sense, with suitable choices of

V € P. It is worth noticing that this kind of condition has to be invariant under the dilatation

Qoo > Al
Voo b %Vm,

since the second requirement of hypothesis (H) is. This is indeed the case, as A%v = AAy for every
VePand > 0.

This last consideration can be successfully applied in order to get a more familiar result in the case of
the conservative scalar second order equation (1.2), with g : RXR — R a Carathéodory function, 7 -
periodic in the first variable and such that g(z,0) = O for a.e. r € R. As usual, we assume uniqueness
and global continuability for the solutions of the Cauchy problems associated to (1.2).

Corollary 3.1 Let us suppose that for every r > 0 there exists C, > 0 such that |g(t, x)| < C, for a.e.
t € [0, T] and for every x € R with |x| < r; moreover suppose that:

(go) there exists gy € L' (10, T[) with foT qo(Hdt > 0 such that

8, x)
X

lim i(?f > qo(?)

uniformly for a.e. t € [0, T];

(&)
(, x)

lim sup g
|x] =400 X

<0

uniformly for a.e. t € [0, T].

Then, for every j € Ny there exists mj € Ny such that, for every k > m; with k prime with j,
equation (1.2) has at least two subharmonic solutions u; o u?  of order k, not belonging to the same
periodicity class, with exactly 2 j zeros in the interval [0, kT|.

Proof. Write (1.2) as the equivalent first order system

X =y
Y =—g(t,x),
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which is of the form (1.1) with
1, x
H(t, x,y) = V g(t, s)ds.
0

Clearly, HisaC 1 Carathéodory function, T-periodic in the first variable and such that V,H(z,0) = 0.
We claim that (H) and (H,) are satisfied. Indeed, take p, o > 0 so small that ay(#) = min(go(?), é) -
o has positive mean and define Vy(x,y) = oy + X2, By hypothesis (go), for a.e. r € [0,7] and x in a
sufficiently small neighborhood of 0 we have

(#, %)
2> o0 -0 = gt
moreover !
ap(t) < ap(t) +o < —.
o

Hence we get

V.H(t, T (2
liminf Y BD 2 g L T EGOX
-0 Vo(z) =0 py? + x2
Y2 + ao()x2
> liming 20V * @OX
-0 py- +x
> ap(t)

uniformly for a.e ¢ € [0, T].
On the other hand, define V7, (x,y) = x> + 2nTy? and a’,(1) = =, so that

T
ar (tdt /
inf‘ﬂ)—:inf 2—Tl=0.
n AVSZ n nnm

By hypothesis (g.) there exists R} > 0 such that for a.e. ¢ € [0, T] and for |x| > R}

g(t,X)S 1 :
X 2nT

moreover, there exists R2 > 0 such that for a.e. ¢ € [0, T] and for [x| < R., |y| > R2

gt,x)x _ CpRy 1
< < —
x2+2nTy? =~ 2nTy? = 2nT

We deduce that, for a.e. ¢ € [0, T] and for every z € R? \ ([-R!, Rl] x [-R2, R2]), we have

n’ n

V.H(t,2) 2 ¥ L8 xx
Vi(2) T x2+42nTy? X2+ 20Ty T

l 1 n .
T Yo T ag(1);
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so we get
. V H(t,7) - 2
lim sup ———"—= < a" (1)
2] —>+c0 Ve (2)

uniformly for a.e ¢ € [0, T]. We conclude by applying Theorem 3.1 and recalling that, as usual for
second order scalar equations (see [17]), the fact that

Rot((x(; 20), y(t; 20)); [0, kT']) = j
implies that u = x has exactly 2 zeros in the interval [0, kT'[.

Remark 3.4 We recall that the global continuability of the solutions of the initial value problems is
ensured if, instead of (g.,), we suppose that:

(g%,) there exists m € L'(]0, T[) such that

g(t,x) < lim sup g, x)

|x|—>+00 X

<0

—m(t) < liminf
|x]—+00 X

uniformly for a.e. 1 € [0, T].

Remark 3.5 Note that, with respect to some well known results about rotations of second order
scalar equations, no sign condition is required in the hypothesis at 0. On the other hand, hypothesis
at infinity cannot be improved to the mean condition

T
t, .
lim sup _g(xx) < geo(t) with f go(t)dt < 0.
0

|x]—+00
In fact, it is enough to consider the linear Hill’s equation
u' +qHu=0 (3.2)

with a two-step periodic potential

1 O0<t<S
Q(I)_{—w S <t<T, w > 0.

We claim that if
S > 2arctan Vw (3.3)

then
Jlim Rot(z(t: 20): [0,1]) = oo (3.4)

uniformly for zy € R?\ {0}. In fact, elementary considerations about the linear autonomous equation
u”’ + u = 0 show that,

S
Rot(z(t; 20); [KT, kT + S]) > o for every k € N; (3.5)
s

on the other hand, since the standard angular speed 8’ can be negative only in the regions

It ={(x,y) e R* | —Vwx <y < Voux}
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I ={(xy) e R*| Vox <y < —Vwx},

which are both positively invariant for the linear autonomous equation u”’ — wu = 0, we see that

arctan vw
n

Rot(z(t; 20); [kT + S, (k+ DT]) > for every k € N. 3.6)

Clearly, (3.5) and (3.6) imply (3.4). As (3.3) is compatible with a (arbitrarily large) negative mean
for ¢() (note in particular that it is always satisfied when S > 27) the conclusion follows.

4 A second result of multiplicity

In this section we prove an improvement of Theorem 3.1. Roughly speaking, the ideas are the
following:

e in order to have a positive angular speed for the small solutions, it would be sufficient to
have a partition of the plane into several angular sectors, each with a positive weight for
hypothesis (H)), in such a way that the crossing between two adjacent regions is possible only
“clockwise’;

e in order to have a low angular speed for the large solutions, it would be sufficient that the
sublinearity-like condition (H,) holds in a small angular sector.

Conditions of this kind go back to [2], Th. 2.10.1; we also refer to [10] for some recent contributions
in the same spirit.

We preliminarily introduce some notations; recall that every point of R? \ {0} can be expressed
in (clockwise) polar coordinates z = pe” for a unique p > 0 and 6 € [0, 2x[.

Definition 4.1 Let 6 € [0, 2n[. We denote by L(6) the open half-line
L) := {pe ™| p >0} cR*\ {0}.

Definition 4.2 Let 8,6, € [0, +oo[ with 0 < 6, — 8; < 27. We denote by R(6,, 6,) the open angular
region A
R(O1,62) == {pe™ | p >0, 61 < 6 < 62} C R\ {0).

An ordered p-uple (61,...,6,) (p > 2) with

0S91<92<"'<9,,<27T

determines a subdivision S(, ..., 8,) of the plane into p angular regions
R] = R(Gl, 62),
Ra = R(62,65),

R[, = R(gp,gl + 27T)
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Moreover, in order to formulate a general condition on the Hamiltonian near infinity, it is essential
to introduce the following definition.

Definition 4.3 Let 6,6, € [0, +oo[ with 0 < 6, — 0; < 27 and F C P. We say that F is admissible
with respect to (61, 6,) if
Yy (6,) — Py (@
inf V) = FvE) “.1)
VeF 2r
Remark 4.1 We emphasize that, even if we proved that for every V €

Wy(0+2m) - Pv(6)
2n B

19

there is in general no positive lower bound for the quantity w for arbitrary 6y, 6,. In other

words, the size of an angular sector can become arbitrarily small when measured with suitable
V € P; as we want to formulate a condition on the Hamiltonian involving only the behavior in an
angular sector, a condition like (4.1) seems necessary. Note that, as

Py(@) - ¥v@) _ 1 fgz do
27 2Ay Jp, V(cos,—sin6)’

aclass F C P is certainly admissible with respect to (6, 8,) if there exists C > 0 such that
AyVEe ™ <cC (4.2)

for every V € ¥ and for every 6, < 0 < 6.

On the other hand, a class ¥ C % can be admissible even if relation (4.2) is not satisfied; a
crucial example, which will be used in the sequel, is given by the set D of all diagonal quadratic
forms with respect to the angles (61, 6,) = (j7,(j + 1)3) for some j = 0,...,3. In this case, indeed,
relation (2.9) implies that D is admissible with respect to (6, 6).

We are now in a position to state and prove our result. Throughout the section, we will assume
that H : R x R> — R is a continuous function, of class C! in the variable z = (x,y); accordingly,
Carathéodory solutions will be of class C I and, hence, classical. We emphasize in particular, that,

for every zp € RZ\{0}and V € P, any lifting 0y (t; z9) of \/% to the covering space (R, ITy) is of

class C! and for every t

/ T VZH(t» Z(t; ZO)) : Z(t; ZO)
0y(t;20) = — -
Ay V(z(t; 20))
Theorem 4.1 Let us suppose that:
(H(’)) there exist a subdivision S0}, . . ., Qg) of the plane into p angular regions, Vy € P, a(l), e, ag €

L'(0, T[) with fOT af)(t)dt >0fori=1,...,psuchthat:
i) foreveryi=1,...,p

V.H(t,z)-z>0 foreveryt e [0,T], forevery z € .E(Hé);
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ii) foreveryi=1,...,p
.. VHtD) 7z
liminf =—2"2= > al (¢
0 Vo(2) o®

2€R;
uniformly int € [0,T];

(H',) there exist an angular region R(0.,,6%) and two sequences (V) c P, (a',) c L'(10, T[) with
ay, > 0 such that:

i) the class F = {VL },en, is admissible with respect to o, 930);
ii)
I a(d
inf =— =0;
n AV!,LO
iii) for every n € Ny,

. VZH(t, Z) *Z
lim sup ————
livoo V& (2)

eR0OL.02,)

< ag(1)

uniformly int € [0,T].

Then, for every j € Ny there exists mj € Ng such that, for every k > m; with k prime with j, equation
(1.1) has at least two subharmonic solutions z} B z? . of order k, not belonging to the same periodicity

class, with
Rot(zj,: [0,KT]) = Rot(zj,; [0, kT]) = j.

Proof. The proof follows the same line of that of Theorem 3.1; in particular, fixed j € Ny, we will
prove that there exists m; € Ny such that, for every k > m:

e there exists a circumference Fff centered at the origin such that, for every zo € I f,

Rot(z(t; z0); [0, kT]) > j;

e there exists a circumference l"ﬁ centered at the origin such that, for every zo € I’ fﬁ

Rot(z(#;20); [0,kT]) < 1 < J.

Let Vj € P be as in hypothesis (Hy) and define
0, = min(¥y,(65) — v, (0)), W, (6)) — Py, (67). ..., Wy, (6 + 2m) — Py, (6)),
©" = max(Wy, (65) — Vv, (09), W, (63) — Py, (7). .. .. Py, (0 + 2m) — Py, (6)));

moreover, let €, > 0 be so small that, for every i = 1,..., p, aéfl n = af)(t) — € has positive mean
and define m; as the smallest integer strictly greater than

« AV, T 1,61 \—
27+ 20, + O (O + maxigc, [ (ag?) (1)dr .

. T
0. mmlggpfo ag™ (t)dt
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By ii) of hypothesis (H(’)) there exists s, > O such that, foreveryi=1,...,p,
VZH(ts Z) +Z
Vo(2)

for every 0 < ¢ < T and for every z € R; with 0 < [¢] < s,,, moreover by the elastic property there
exists 0 < r¢, < 5¢ such that

> ay(t) — & = a;™ (1)

IZ()l < T =— |Z(I;ZO)| < Se

for every 0 < 1 < kT. Define I'* = {z € R? | |z] = r} and let zy € I'*. By i) of hypothesis (H}) we
have that, if z(¢; z9) € L(é’é) for somei=1,...,p, then
n V_H(t,2(t; 20)) - 2(t; 20)

oy K : 4.
M T @

hence we deduce that the set
S =1[0,kT] nz(~;zo)_1[ U L(Gg)]

is finite: let [ denote its cardinality.

We note that the case [ = 0 is not excluded at this point; moreover, if [ > 0 we set S = {z,...,#;}
with0 <# <--- <ty <kT. Setting tnp = 0 and #;,; = kT, we can define, for every h = 0, ...,/ such
that ]t;, 1 [# 0, an integer i(h) € {1,..., p} such that

2(t;20) € Riw for every t €lty, tpi1[.

Then relation (2.5) implies that, for every 2 = 0, ..., 1,

%

0
Roty, (z(t; z0); [th, th+1]) < P (4.4)

which, denoting with [r] the integer part of a real number r, implies that

Ay, f’h“ V_ H(t, z(t; 20)) - 2(t; 20)
n ,,l Vo(z(t; 20))

Ihel
f al" e (n)dt >
t — 1
| h]f I(h)el(t)dt f(al(h)fl) (dt >
Inel — I i€ i€
> [’” ’]m f ‘(t)dt—maxf (@) (.
T I<i<p Jo

Hence, we get that, forevery h = 0,...,/,

1, -1
a1 =ty < T([%] + 1) <

Ay, T e
O"— + maxii< a; ")~ (t)dt
1<i<p o (@) (1) 1]S

mln1<1<p fO aé)el (t)dt
0.
27+ 20, + 0"

O} dt >

v

v

IA

T

ij,
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which implies that

!
0.
T <kT = thii—t) <(l+1)——— mT.
m;l < ;(lm n) < ( )2nj+2®*+®*mj

In conclusion we obtain )
2nj + OF S

which in particular excludes the case S = 0. On the other hand relation (4.3) implies that, for every
h=1,...,1-1

i(h+ 1) = (i(h) mod p) + 1,
which yields

CH
Roty, (z(#; z0); [th, the1]) > e
JT

Moreover, by relation (4.3) again, it is easy to see that
Roty, (z(#;20); [0,11]) > 0,
and that -
Roty, (z(#; 20); [1, kT]) > ——;
2n
hence we finally obtain that

1
D Roty, (2t 20); [th, 11 ) >

h=0

0.
I-H=— -
( )27r

Roty, (z(t; 20); [0, kT1)

®*>,
2w =

\%

By Proposition 2.2, we conclude that
Rot(z(t; 20); [0, kTT) > j.
On the other hand, being R(6.,, 62), (V") and (a”,) as in hypothesis (H’,) and setting

Wy (62) — Py (6
m = inf 2vale) = Fre) 0, (4.5)

n 2r

we have that there exists n such that

NG/

<
A v mk

and
V.H(t,z2) - . .
lim sup % <dl (1), uniformly in 7 € [0, T].
2] —+00 0o\ &

2eRO% %)
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Ayn .
So, taken 0 < & < m—* there exists S, > 0 such that
V.H(t,7) -z
—— = " <dl(H)+e
Vi) O +e

for every 0 < ¢ < T and for every z € R(A,, 6%) with |z] > S, and by the elastic property again there
exists 0 < §¢, < R, such that

for every 0 < ¢ < kT. Define T* = {z € R? | |z| = R, }; we claim that, if 7y € TX, then
Roty» (z(t; 20); [0, £T]) < 1,

which by Proposition 2.2 implies the conclusion. In fact, suppose by contradiction that
Rotyr (z(t;20); [0, kT]) > 1

for some zg € I'*. Then, by standard connectivity arguments, we get the existence of two disjoint
open intervals
Iy =lay, bil, (0 <ay; <by <kT),

b =las, by, (0 < ay < by <kT),

(the choice can be, of course, non unique, and one of them can be taken empty if zo ¢ R(6L,62))
such that z(t; z0) € R(6L,, 030) for every ¢ € I} U I, and that

Oy (b1;20) — Bvn (a1; 20) + Ovn (D23 20) — Ovn (@23 20) = Pyn (62,) — Py (6L).

Then, by relation (4.5), we get

m < Rotyn (z(t;20); I) + Rotyn (z(t; 20); I) =
_ 1 f JZl(t;ZO)'Z(Z;ZO)dt_
2Avy, Jnun, - V((5520))
3 1 f V H(t,z(t; 20)) - 2(t; 20) J
2Avr, Jun V(z(t; 20)) B
=),
< (aZ (1) + e)dt
2AV& 1 Ul
< " (t dt <
< 2Avgcfo () + e)dt <
T
.k |y as@ar | M
= 2 A 24w
.om,m
n.m_ .
2 2

which is a contradiction.
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Remark 4.2 Clearly, if there exists an angular region R(6.., 62,) such that

lim sup
|z

<0, uniformly in ¢ € [0, T],
|zl—+00

2eR(0k.0%)

then hypothesis (H.,) is satisfied with a”, = 0 and V" (x,y) = x> + y? for every n € Ny. Moreover,
we remark that it is possible to prove a variant of Theorem 4.1 by keeping hypothesis (H.,) and
assuming (Hj) of Theorem 3.1, instead of (H(’)); it is worth noticing that, in this case, the result is
still true in the Carathéodory setting.

Again, we get a corollary for the second order equation (1.2), in order to cover an asymmetric
behavior at 0 and a one-side sublinearity condition at infinity. Here we assume that g : RXR — Ris
continuous, T-periodic in the first variable and such that g(¢z,0) = 0; moreover, we suppose that the
uniqueness and global continuability of the solutions of the initial value problems are guaranteed.

Corollary 4.1 Let us suppose that

(gp) there exist q,q, € L'(10, T]) with fOT qy(Odt > 0 such that

ts
timinf £ 5 gy
x—0* X
uniformly in t € [0, T];
moreover suppose that one of the conditions
(8~)
ta
lim sup 8. %) <0
xX—>—00 X
uniformly in t € [0, T],
(8%)
t7
lim sup 8(t. ) <0
X—+00 X

uniformly in t € [0, T],

is satisfied. Then, for every j € Ny there exists m; € Ny such that for every k > m; with k prime
with j, equation (1.2) has at least two subharmonic solutions u' " u? Tk of order k, not belonging to
the same periodicity class, with exactly 2 j zeros in the interval [0, kT[

Proof. Hypothesis (H\) is satisfied for the subdivision S(7, 27r) in fact, forz € L(5) U L(zn)
V.H(t,7)-z=y" >0,

while computations analogous to those of Corollary 3.1 show that with a(l)(t) = min(g, (9), l) -0
(t) = min(q; (0), ) o (for o, p > 0 small enough) the second condition in (H{) holds true.

On the other hand, hypothe31s (HL,) is satisfied for one of the half-planes R(z, 27r) or 73(2 27r) and
Vi (x,y) = x> +2nTy?>. As F = {V"} is admissible with respect to each half-plane, Theorem 4.1 can
be applied to get the conclusion.
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Remark 4.3 Note that Corollary 4.1 applies to nonlinearity which near O are of the form
8(t, %) ~ gy (Dx" = gy (X",

being g, q, € L'(0, T]) with fOT gy ()dt > 0; this does not in general imply that min(gj (1), g, (1))
has positive mean, so Corollary 3.1 does not apply.

5 An application to a class of Lotka-Volterra planar systems

In this section we give a very brief sketch of a possible application of Theorem 4.1 to some Hamil-
tonian planar systems. In particular, we start our considerations by considering a generalized Lotka-
Volterra system

2
q = q(=c(t) + d(t)p) (p.q) € R, (5.1)

with a, b, c,d : R — R continuous and T-periodic, b and d strictly positive. Of course, system (5.1)
is not Hamiltonian; but, as already observed in many papers, the change of variables

{ p’ = pla(t) - b(t)q)

u=logp v =logg

permits to establish a one-to-one correspondence between positive solutions of (5.1) and solutions
of the planar Hamiltonian system

{ W = a(t) - b(t)e"

2
Vo= —C(t) + d(t)eu (u’ V) ER". (52)

With a topological degree argument, it is shown in [6] that, under the conditions

T T
f a(tydt > 0, f c(t)dt > 0,
0 0

system (5.2) has a T-periodic solution (u*(¢), v*(#)); then, via the change of variables
x=v—=v) y=u-—u),

the problem of the existence of subharmonic solutions of (5.2) is reduced to the existence of subhar-
monic solutions for the planar Hamiltonian system

X =d®)e” D - 1) := X(1,y)
{ y = b(t)e” V(1 - e*) := Y(t, %), (5.3)

which is of type (1.1) with
Yy X
H(t, x,y) = f X(t, s)ds — f Y(t, s)ds.
0 0
Actually, system (5.3) has infinitely many subharmonic solutions, as shown in [6], with a long and

careful phase-plane analysis. Here we want to show that a similar result can be obtained, in a very
direct way, as a consequence of our main results.
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The smoothness of H implies the uniqueness for the solutions of the Cauchy problems associated
to (5.3), while the global existence is proved in [6]; we claim that (Hy) and (H.,) hold, too. In fact,
since

V.H(t,7) -z dt)e” Dy(e’ — 1) + b()e Dx(e* — 1) S

|z a X2 +y?

vy —1)+x(e*-1)
x2 +y?

v

min(d(®)e” ?, b(r)e" )

s

hypothesis (Hy) is satisfied with ao(f) = min(d(t)e" ®, b(t)e” @) and Vy(z) = |z*>; on the other hand,
since

. V.H(t,z2) -z
lim ——2>~ = ( 5 ) =0
fe=+o0 |zl
<R(E.m)

uniformly in 7 € [0, T'], hypothesis (HY,) is satisfied for the angular region R(3, 7).
In conclusion, the variant of Theorem 4.1 described in Remark 4.2 can be applied, giving the exis-
tence of infinitely many subharmonic solutions for system (5.3).
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