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Abstract

We prove the existence of infinitely many subharmonic solutions, with prescribed nodal
properties, for a planar Hamiltonian system Jz′ = ∇zH(t, z), with H periodic in the first
variable. The goal is achieved by performing estimates of the rotation numbers with respect
to deformed polar coordinates and applying Ding’s version of the Poincaré-Birkhoff fixed
point theorem.
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1 Introduction
In this paper we deal with the problem of the existence and multiplicity of subharmonic solutions
for a planar Hamiltonian system of the type

Jz′ = ∇zH(t, z) z = (x, y) ∈ R2, (1.1)

being J =
(

0 −1
1 0

)
the standard symplectic matrix and H : R × R2 → R regular enough and such

that:
∗The author acknowledges the support of MIUR-PRIN Project “Equazioni Differenziali Ordinarie ed Applicazioni”.
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• H is T -periodic in the first variable, with T > 0 fixed,

• ∇zH(t, 0) ≡ 0.

Incidentally, we remark that the last condition is often unrestrictive. In fact, a typical preliminary
step is given by the proof of the existence of at least one T -periodic solution; then, via the obvious
change of variable which sends a periodic solution into the origin, the original problem is reduced
to the existence of subharmonics for a planar system of the same type and for which the condition
∇zH(t, 0) ≡ 0 holds true.

The problem of the existence of (harmonic and) subharmonic solutions for a planar Hamiltonian
system, and in particular for a conservative scalar second order equation like

u′′ + g(t, u) = 0, (1.2)

is classical and widely studied. Due to the variational structure of equation (1.1), tools from critical
point theory like linking theorems can be successfully applied, even in dimension greater than two:
we refer to the book [15] for a standard reference on the subject and to the more recent contributions
[1], [4], [11], [12] for the specific problem of the existence of subharmonic solutions.

On the other hand, a more classical dynamical approach can be followed. In fact, if the unique-
ness and the global continuability of the solutions of the initial value problems associated to the
equation (1.1) are guaranteed, the Poincaré map Φ : R2 → R2 is well defined (and it turns out to
be a global homeomorphism of the plane) and, as well known, kT -periodic solutions (k ∈ N0) of
(1.1) correspond to the fixed points of the k-th iterate Φk. In the particular case of an Hamiltonian
flow, Liouville’s theorem implies that Φk is area preserving and some refined versions of the classi-
cal Poincaré-Birkhoff fixed point theorem can be applied, the crucial point of the proof consisting,
of course, in performing some careful estimates of the rotations of the solutions in order to show a
“twist condition” for the Poincaré map.

For a detailed analysis of the relationship between these two different approaches, and in par-
ticular for a comparison between the classical twist condition in the Poincaré-Birkhoff theorem and
tools of critical point theory like Morse and Maslov indexes, we refer to the paper [14]. We only
remark that, with respect to variational techniques, the Poincaré-Birkhoff theorem seems to be par-
ticularly well suited in order to obtain fine multiplicity results for the existence of subharmonics, as
information about nodal properties (and hence multiplicity) are intrinsic in the method itself.

From here on, we will focus on this dynamical approach, which will be used in the paper. In
the particular case of the second order equation (1.2), Poincaré-Birkhoff theorem has been applied
in many works (concerning the existence of both harmonic and subharmonic solutions), in order to
cover a very wide set of nonlinearities: we refer in particular to [8] for the sublinear case and to [7],
[17] for the superlinear one.

In this paper we consider the general Hamiltonian system (1.1), together with hypotheses (H∞)
on the Hamiltonian which generalize a (possibly one-side) sublinearity condition for the second
order equation; on the other hand, a positive mean condition (H0) is required near the equilibrium. In
this way, small solutions in the phase-plane wind around the origin many times, while large solutions
do not: as consequence, we get (via Poincaré-Birkhoff theorem) the existence of infinitely many
subharmonic solutions (Theorems 3.1 and 4.1). As corollaries, some results for the second order
equation (1.2) are obtained (Corollaries 3.1 and 4.1). With respect to previous works, the standard
linearization hypotheses at zero and at infinity (as in [18]) are substituted by suitable inequalities
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((g0) and (g∞)) only; in particular, no differentiability condition on the nonlinearity is required. The
conclusion is analogous to that of the main result of [8], but no sign condition is required; moreover,
while in this latter work a time-map approach is performed in order to study the behavior of large
norm solutions, our proof relies only on some explicit computations of the rotation numbers.

The plan of the article is the following. In Section 2 we introduce a “modified rotation number”,
suitable for our problem, and relate it to the classical one, completing in this way the work of [19].
It is worth noticing that these systems of “deformed” polar coordinates are used not only as a useful
trick in order to simplify some estimates (as in [17]), but play an essential role in the formulation of
the hypotheses on the Hamiltonian at infinity.

In Section 3 and 4 we prove our main results and some related corollaries.
In Section 5, finally, an outline of a possible application to a class of Lotka-Volterra type planar

systems is presented.
We end this introduction by recalling, for the reader’s convenience, the main tools which will

be used in the paper. For a (at least absolutely continuous) path z = (x, y) : [s1, s2] → R2 such that
z(t) , 0 for every t, we define the rotation number

Rot(z; [s1, s2]) :=
1

2π

∫ s2

s1

y(t)x′(t) − x(t)y′(t)
x(t)2 + y(t)2 dt. (1.3)

As well known, it represents an algebraic count of the clockwise windings around the origin of the
path z(t) in the time interval [s1, s2]; details will be given in Section 2. Based on the rotation number,
we employ the following generalized version of the Poincaré-Birkhoff twist theorem, where k ∈ N0
is fixed.

Application of the Poincaré-Birkhoff fixed point theorem

Let us assume the uniqueness and the global continuability of the solutions of the Cauchy prob-
lems associated to equation (1.1) and denote by z(·; z0) the solution with z(0; z0) = z0.
Let us suppose that there exist two circumferences Γi = rS1 and Γo = RS1, with 0 < r < R, and
j ∈ N0 such that:

• Rot(z(t; z0); [0, kT ]) > j for every z0 ∈ Γi;

• Rot(z(t; z0); [0, kT ]) < j for every z0 ∈ Γo.

Then, denoting withA the closed annulus having as inner and outer boundaries the circumferences
Γi and Γo respectively, equation (1.1) has at least two kT-periodic solutions z1, z2 with z1(0), z2(0) ∈
A and such that

Rot(z1; [0, kT ]) = Rot(z2; [0, kT ]) = j.

This result can be proved by applying the Poincaré-Birkhoff theorem in the version given by W.Y.
Ding in [5], to the k-th iterate of the Poincaré map as an area-preserving homeomorphism

Φk : A ⊂ R2 \ {0} → Φk(A) ⊂ R2 \ {0}.
Observe that the condition ∇zH(t, 0) ≡ 0 implies that z(t; z0) , 0 for every t whenever z0 , 0; hence
the rotation numbers are well defined. For a complete proof of the statements and more details, we
refer to [17]. For the present paper it is sufficient to have stated the theorem for a standard annulus.
However, the result holds even in greater generality for some topological planar annuli.
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2 Modified rotation numbers
The use of a suitable system of “polar coordinates”, and the consequent definition of an associated
rotation number, is an essential tool in the qualitative theory of ordinary differential equations in
the plane. The most standard choice is given by the classical polar coordinates, which lead to the
definition of the standard rotation number (1.3). Different choices, however, are possible and can be
useful; we refer to the work [17] for a unifying approach on this matter.
The aim of this section is to introduce a system of deformed polar coordinates along a strictly
star-shaped Jordan curve surrounding the origin, which allows the definition of a modified rotation
number which will be extensively used in all the paper. The definition goes back to the work [19].

Definition 2.1 Let P be the set of all C1 functions V : R2 → R such that:

• V is positively homogeneous of degree 2, i.e. V(λz) = λ2V(z) for every λ > 0 and for every
z ∈ R2:

• V(z) > 0 for every z , 0.

Let us recall that, if V ∈ P, then lim|z|→∞ V(z) = +∞ and the Euler’s formula

2V(z) = ∇V(z) · z

holds true. These properties easily imply that the open set {z ∈ R2 | V(z) < 1} is a bounded
neighborhood of the origin, with boundary

ΓV = V−1(1) ⊂ R2 \ {0}

which turns out to be a Jordan curve (i.e. a subset of R2 homeomorphic to the circle S1) surrounding
the origin and strictly star-shaped with respect to it, in the sense that every ray emanating from
0 ∈ R2 intersects the curve in exactly one point. We want to make R a (universal) covering space of
ΓV .

The following preliminary lemma is useful; we remark that it follows by the result of [16], but
here we propose an independent proof.

Lemma 2.1 The uniqueness and the global continuability of the solutions of the initial value prob-
lems associated to the autonomous planar Hamiltonian system

Jz′ =
1
2
∇V(z) (2.1)

are ensured.

Proof. Let us suppose, by contradiction, that there exist two solutions z1, z2 of (2.1) defined in a
neighborhood of 0 and such that z1(0) = z2(0) = z0 ∈ R2 \ {0}; by the conservation of energy
relations V(z1(t)) = V(z2(t)) = V(z0) and Euler’s formula, we get

Jz′1(t) · z1(t) = Jz′2(t) · z2(t) = V(z0) , 0. (2.2)
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Let us define, for (r, s) in a neighborhood of (1, 0), the C1 function

P(r, s) = rz2(s) ∈ R2;

we have that P(1, 0) = z0, while (2.2) implies that the Jacobian matrix DP(1, 0) is invertible. Then,
the local inversion theorem implies that there exist C1 maps r(t), s(t), defined in a neighborhood of
0 and with values in a neighborhood of 1 and 0 respectively, such that

z1(t) = P(r(t), s(t)) = r(t)z2(s(t)).

The conservation of the energy and the homogeneity of V imply that r(t) = 1; hence z1(t) = z2(s(t)).
On the other hand, differentiating this last equality and using relation (2.2), we obtain s′(t) = 1; as
s(0) = 0, we get s(t) = t. In conclusion, z1(t) = z2(t). The observation that every positive energy
level set does not contain the origin implies the uniqueness for z0 = 0 too, while the global continu-
ability follows from the compactness of the energy level set V−1(c) for every c ≥ 0.

So, denoting by zV the (unique and globally defined) solution of the Cauchy problem{
Jz′ = 1

2∇V(z)
z(0) = V−1(1) ∩ (]0,+∞[×{0}) z = (x, y),

and by τV its minimal period, we get that the map zV : [0, τV ] → R2 gives a simple clockwise
parametrization of ΓV ; hence Stokes’ theorem and Euler’s formula imply that

AV :=
∫
{V<1}

dxdy =
1
2

∫
∂{V<1}+

(xdy − ydx) =

=
1
2

∫ τV

0
Jz′V (t) · zV (t)dt =

=
1
2

∫ τV

0
dt =

τV

2
.

We can finally define a natural covering projection ΠV : R→ ΓV letting

ΠV (θ) := zV

(
τv

2π
θ
)
.

By the standard theory of covering spaces, for every absolutely continuous path z : [s1, s2] → R2

such that z(t) , 0 for every t ∈ [s1, s2], the path [s1, s2]→ ΓV given by

t 7→ z(t)
√

V(z(t))

can be lifted to the covering space (R,ΠV ) of ΓV , i.e. there exists an absolutely continuous path
θV : [s1, s2]→ R such that

z(t)
√

V(z(t))
= ΠV (θV (t)).

Moreover, standard calculations show that, for almost every t,

θ′V (t) =
2π
τV

Jz′(t) · z(t)
V(z(t))

=
2π
τV

(
y(t)x′(t) − x(t)y′(t)

V(z(t))

)
.

Finally, we are led to give the following definition.
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Definition 2.2 The (clockwise) V-rotation number of an absolutely continuous path z : [s1, s2] →
R2, such that z(t) , 0 for every t ∈ [s1, s2], is the number

RotV (z; [s1, s2]) :=
θV (s2) − θV (s1)

2π
=

1
τV

∫ s2

s1

Jz′(t) · z(t)
V(z(t))

dt =

=
1

2AV

∫ s2

s1

Jz′(t) · z(t)
V(z(t))

dt.

Note that, as usual, the definition does not depend on the choice of the lifting θV .

Remark 2.1 In the language of differential forms, we have that

RotV (z; [s1, s2]) =
1

2AV

∫
z
ωV ,

where ωV is the closed (by Euler’s identity) differential form

ωV (x, y) =
Jdz · z
V(z)

=
ydx − xdy

V(z)
.

This point of view can be useful in the proof of some properties of homotopy invariance for the
V-rotation number, but will not be used in the sequel.

Note at this point that the standard (clockwise) rotation number as defined in (1.3) corresponds to
the choice V(x, y) = x2 + y2, i.e. to the standard covering space (R, e−iθ) of S1 = V−1(1). We will
continue to denote this number simply by Rot(z; [s1, s2]).

The next goal of the section is to investigate the relation of a V-rotation number as defined before
with the standard one. We begin with the following lemma.

Lemma 2.2 The map ΨV : R→ R defined by

ΨV (θ) =
2π
τV

∫ θ

0

ds
V(cos s,− sin s)

is an increasing C1-homeomorphism of R, such that, for every θ ∈ R and for every k ∈ Z,

ΨV (θ + 2kπ) = ΨV (θ) + 2kπ. (2.3)

In particular, for every k ∈ Z,
ΨV (2kπ) = 2kπ. (2.4)

Proof. As

Ψ′V (θ) =
2π
τV

1
V(cos θ,− sin θ)

> 0,

we have that ΨV is strictly increasing. Moreover, by the 2π-periodicity of the integrand, for every
θ ∈ R and for every k ∈ Z,

ΨV (θ + 2kπ) = ΨV (θ) + kΨV (2π);
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so the computation in (clockwise) polar coordinates

τV = 2
∫
{V≤1}

dxdy =
∫ 2π

0

ds
V(cos s,− sin s)

=
τV

2π
ΨV (2π)

implies (2.3). On the other hand, passing to the limit in (2.3) we conclude that ΨV (θ) → ±∞ as
θ → ±∞ and so ΨV is a homeomorphism of R. Finally, (2.4) follows from (2.3) and the fact that
ΨV (0) = 0.

The next proposition shows a concrete way to compute a V-rotation number starting from the
knowledge of the standard one.

Proposition 2.1 Let z : [s1, s2]→ R2 be an absolutely continuous path, such that z(t) , 0 for every
t ∈ [s1, s2], and θ : [s1, s2]→ R a lifting to the covering space (R, e−iθ) of the path

t 7→ z(t)
|z(t)| ∈ S

1.

Then

RotV (z; [s1, s2]) =
ΨV (θ(s2)) − ΨV (θ(s1))

2π
. (2.5)

Proof. Let ΘV : [s1, s2]→ R be the path defined by

ΘV (t) = ΨV (θ(t)).

Since θ is absolutely continuous and ΨV is of class C1, standard properties of absolutely continuous
functions imply that ΘV is absolutely continuous too; moreover, for a.e. t ∈ [s1, s2],

Θ′V (t) = Ψ′V (θ(t))θ′(t).

Since z(t) = |z(t)|e−iθ(t), we get

Θ′V (t) = Ψ′V (θ(t))θ′(t) =
2π
τV

1
V(cos θ(t),− sin θ(t))

Jz′(t) · z(t)
|z(t)|2 =

=
2π
τV

Jz′(t) · z(t)
V(z(t))

.

This finally implies that

RotV (z; [s1, s2]) =
1
τV

∫ s2

s1

Jz′(t) · z(t)
V(z(t))

dt =

=
1

2π

∫ s2

s1

Θ′V (t)dt =
ΘV (s2) − ΘV (s1)

2π
.

We easily deduce the following fundamental properties.
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Proposition 2.2 Let z : [s1, s2]→ R2 be an absolutely continuous path, such that z(t) , 0 for every
t ∈ [s1, s2], and j ∈ Z. Then:

RotV (z; [s1, s2]) = j⇐⇒ Rot(z; [s1, s2]) = j; (2.6)

RotV (z; [s1, s2]) < j⇐⇒ Rot(z; [s1, s2]) < j; (2.7)

RotV (z; [s1, s2]) > j⇐⇒ Rot(z; [s1, s2]) > j. (2.8)

Proof. Let θ : [s1, s2] → R be a lifting to the covering space (R, e−iθ) of the path t 7→ z(t)
|z(t)| ; we begin

to prove (2.6). If RotV (z; [s1, s2]) = j we deduce from Proposition 2.1 that

ΨV (θ(s2)) − ΨV (θ(s1)) = 2π j.

Defining θ∗1 = θ(s1) mod 2π, θ∗2 = θ(s2) mod 2π, (2.3) implies that

ΨV (θ∗2) − ΨV (θ∗1) ∈ 2πZ;

as ΨV ([0, 2π[) ⊂ [0, 2π[ we conclude that θ∗2 = θ
∗
1. Again by (2.3), we finally deduce that

θ(s2) − θ(s1) = 2π j,

that is Rot(z; [s1, s2]) = j. Conversely, if Rot(z; [s1, s2]) = j, then

θ(s2) − θ(s1) = 2π j

and Proposition 2.1 and (2.3) imply that RotV (z; [s1, s2]) = j. We prove (2.7), the proof of (2.8)
being similar. We have that Rot(z; [s1, s2]) < j if and only if

θ(s2) − (θ(s1) + 2π j) < 0;

being ΨV strictly increasing this is equivalent to the condition

ΨV (θ(s2)) − ΨV (θ(s1) + 2π j) < 0,

which by (2.3) is the same as
ΨV (θ(s2)) − ΨV (θ(s1)) < 2π j.

But this is the same as Rot(z; [s1, s2]) < j, by Proposition 2.1.

Remark 2.2 A very useful choice of V is given by the diagonal quadratic form

V(x, y) =
x2

c
+

y2

d

for some c, d > 0; in this case, clearly, AV = (
√

cd)π. The asymmetric situation

V(x, y) =
(

x+

c1
− x−

c2

)2

+

(
y+

d1
− y−

d2

)2
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for some c1, c2, d1, d2 > 0 can be considered as well (see [19] for an application). In particular, in the
case of a diagonal quadratic form, the symmetries of V imply that the homeomorphism ΨV satisfies
the extra property

ΨV

(
k
π

2

)
= k
π

2
(2.9)

for every k ∈ Z. From this fact we can easily deduce that∣∣∣∣RotV (z; [s1, s2]) − Rot(z; [s1, s2])
∣∣∣∣ < 1

4
. (2.10)

Rotation numbers of this kind have been often considered in literature (at least implicitly, as in [9])
and a systematic treatment is given in [17], where relations (2.6), (2.7), (2.8), (2.10) are proved with
different arguments.

We end this section with a remark about the possibility of describing an arbitrary Jordan curve
surrounding the origin as the level set V−1(1) for a (unique) V ∈ P. We will use some concepts and
results of differential geometry, for which we refer to [3].

We have already noticed that, if ΓV = V−1(1) for V ∈ P, then ΓV is a Jordan curve around
the origin and strictly star-shaped with respect to it. Moreover, since 1 is a regular value of V , the
preimage theorem implies that ΓV is a one dimensional C1 embedded submanifold of R2. Finally,
relation

JΠ′V (θ) · ΠV (θ) = const , 0

implies that
ΠV (θ) < TΠV (θ)ΓV .

This last relation shows that every ray intersects ΓV transversally. These conditions turn out to be
sufficient, as the following proposition shows.

Proposition 2.3 Let Γ ⊂ R2 \ {0} be a Jordan curve surrounding the origin and strictly star-shaped
with respect to it. Moreover, suppose that Γ is a one dimensional C1 embedded submanifold such
that for every z ∈ Γ the transversality condition

z < TzΓ (2.11)

holds. Then there exists a unique V ∈ P such that ΓV = V−1(1).

Proof. Uniqueness is quite obvious. On the other hand, we have to construct V ∈ P. By definition
of strictly star-shapedness of Γ with respect to the origin, for every z ∈ R2 \ {0} there exists a unique
t(z) ∈ ]0,+∞[ such that t(z)z ∈ Γ; by construction, the function t(z) is also continuous on R2 \ {0}.
Define V : R2 \ {0} → R by

V(z) =
1

t(z)2 .

It is clear that V is positively homogeneous of degree 2 and strictly positive; we claim that it is
of class C1 on R2 \ {0}. To see this, fix z0 ∈ R2 \ {0}; it is well known that there exist an open
neighborhood U of t(z0)z0 ∈ Γ and a C1 function G : U → R with ∇G(t(z0)z0) , 0 such that

Γ ∩ U = G−1(0). (2.12)
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Moreover, as Tt(z0)z0Γ = {w ∈ R2 | ∇G(t(z0)z0) · w = 0}, the transversality condition (2.11) implies
that

∇G(t(z0)z0) · z0 , 0.

Define, for s in a neighborhood of t(z0) and z in a neighborhood of z0, the map

F(s, z) = G(sz),

which is clearly of class C1; moreover, F(t(z0), z0) = 0 and

∂F
∂s

(t(z0), z0) = ∇G(t(z0)z0) · z0 , 0.

Then the implicit function theorem implies that there exists a C1 function s(z), defined in a neigh-
borhood of z0 and with values in a neighborhood of t(z0), such that, in a neighborhood of (t(z0), z0),

F(s, z) = 0⇐⇒ s = s(z).

As t(z)z ∈ Γ and t(z) is continuous, (2.12) implies that F(t(z), z) = G(t(z)z) = 0 and hence t(z) = s(z)
in a neighborhood of z0. We deduce that V is of class C1 in a neighborhood of z0 and hence, being a
local property, on R2 \ {0}. Setting V(0) = 0, the positive homogeneity of degree 2 implies that V is
of class C1 on R2 concluding the proof.

Remark 2.3 Given a 2π periodic function γ : R→ R2 of class C1 such that, for every s ∈ R,

Jγ′(s) · γ(s) > 0 (2.13)

and that
Rot(γ; [0, 2π]) = 1, (2.14)

we claim that the image Γ = {γ(s) | s ∈ [0, 2π[} verifies the hypotheses of Proposition 2.3.
To this aim, we denote by R/(2πZ) the interval [0, 2π[ with the topology which identifies the

extreme points and with the natural differentiable structure and recall that γ can be viewed as a map
γ : R/(2πZ) → R2 of class C1 in the sense of the differentiable manifolds. Moreover, we observe
that relation (2.13) implies that for every [s, t] ⊂ [0, 2π]

Rot(γ; [s, t]) =
1

2π

∫ t

s

Jγ′(s) · γ(s)
|γ(s)|2 ds > 0. (2.15)

The fact that γ′(s) , 0 implies that γ is an immersion; we claim that it is injective. In fact, if
[t1, t2] ⊂ [0, 2π[ are such that γ(t1) = γ(t2), then Rot(γ; [t1, t2]) is an integer number, strictly positive
by relation (2.15); on the other hand, (2.15) implies that

Rot(γ; [t1, t2]) < Rot(γ; [0, 2π]) = 1

which is a contradiction.
Since R/(2πZ) is compact and connected, γ is actually an embedding; we deduce that Γ =

γ(R/2πZ) is a compact, connected, one dimensional C1 embedded submanifold of R2. In particular,
Γ is a Jordan curve and, by (2.14), it surrounds the origin. Finally, the transversality condition (2.11)
is clearly satisfied. It remains to show the condition of strictly star-shapedness.



Subharmonic solutions of planar Hamiltonian systems 87

1. We prove that every ray intersects Γ in at least one point. This is quite obvious; a formal proof
can be sketched as follows. Consider the path

t 7→ γ̃(t) = γ(t)|γ(t)| ∈ S
1

and let θ(t) a lifting with respect to the standard polar system; then relation (2.14) implies that
θ(2π) − θ(0) = 2π. By the intermediate value theorem, every value in the interval [θ(0), θ(2π)]
is assumed by θ, that is γ̃(t) is onto S1.

2. We prove that every ray intersects Γ in at most one point, that is γ̃ is injective on [0, 2π[. But
this can be proved with the same argument used to show that γ is injective.

It is worth noticing that if we drop condition (2.14), then the result is false, as Γ is not even a Jordan
curve. To see this, it is enough to consider the C1 curve γ : R/(2πZ)→ R2 given by

γ(t) = (sin(2t), (t2(t − 2π)2 + 4) cos(2t)),

which satisfies condition (2.13). The set Γ = γ(R/(2πZ)) is plotted in the figure below with
MAPLEr software.

Figure 1: The set Γ = γ(R/(2πZ))

3 A first result of multiplicity
In this section we prove a first result of multiplicity about the existence of subharmonic solutions
for equation (1.1). The goal will be achieved by performing some estimates of the modified rotation
numbers introduced in the previous section and applying Ding’s version of the Poincaré-Birkhoff
fixed point theorem, as stated in the Introduction. Throughout the section, we will assume that
H : R × R2 → R is a C1 Carathéodory function, that is:
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• t 7→ H(t, z) is measurable for every z ∈ R2;

• z 7→ H(t, z) is of class C1 for almost every t ∈ R;

• for every r > 0 there exists ζr ∈ L1(]0,T [) such that |∇zH(t, z)| ≤ ζr(t) for a.e. t ∈ [0,T ] and
for every z ∈ R2 with |z| ≤ r.

Accordingly, solutions of (1.1) will be considered in the Carathéodory sense, that is (locally) abso-
lutely continuous functions that solve the differential equation for a.e t.

Remark 3.1 According to [6], [7], [17], by subharmonic solution of order k of equation (1.1) we
mean a kT -periodic solution which is not lT -periodic for l = 1, . . . , k − 1; this does not imply in
general that kT is the minimal period. We recall that other definitions of subharmonics are pos-
sible, like the one in [15]. Moreover, by periodicity class of a subharmonic solution z we mean
the set {z, z(· + T ), z(· + 2T ), . . . , z(· + (k − 1)T )}; by the T -periodicity of H, these functions are all
(subharmonic) solutions of (1.1).

Hereafter, we will always suppose that the uniqueness and the global continuability of the solutions
of the initial value problems associated to (1.1) are guaranteed. We recall that this assumption,
together with the fact that ∇zH(t, 0) ≡ 0, implies the following well known “elastic property”:

• for every s, T ∗ > 0, there exists 0 < r < s such that

|z0| ≤ r =⇒ |z(t; z0)| ≤ s for every t ∈ [0,T ∗];

• for every S ,T ∗ > 0, there exists 0 < S < R such that

|z0| ≥ R =⇒ |z(t; z0)| ≥ S for every t ∈ [0,T ∗].

For a proof and more comments on this classical subject, see [13], [19].
We can state our first main result.

Theorem 3.1 Let us suppose that:

(H0) there exist V0 ∈ P, a0 ∈ L1(]0, T [) with
∫ T

0 a0(t)dt > 0 such that

lim inf
z→0

∇zH(t, z) · z
V0(z)

≥ a0(t)

uniformly for a.e. t ∈ [0, T ];

(H∞) there exist two sequences (Vn
∞) ⊂ P, (an

∞) ⊂ L1(]0,T [) such that:

i)

inf
n

∫ T
0 an

∞(t)dt

AVn
∞

≤ 0;
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ii) for every n ∈ N0

lim sup
|z|→+∞

∇zH(t, z) · z
Vn
∞(z)

≤ an
∞(t)

uniformly for a.e. t ∈ [0,T ].

Then, for every j ∈ N0 there exists m j ∈ N0 such that, for every k ≥ m j with k prime with j, equation
(1.1) has at least two subharmonic solutions z1

j,k, z
2
j,k of order k, not belonging to the same periodicity

class, with
Rot(z1

j,k; [0, kT ]) = Rot(z2
j,k; [0, kT ]) = j.

Remark 3.2 Note that the definition of subharmonics adopted before implies that the above solu-
tions are pairwise different. It is worth noticing, moreover, that, taking j = 1, Theorem 3.1 ensures
the existence of subharmonics of order k for every sufficiently large integer k.

Proof. Let us fix j ∈ N0; we claim that there exists m j ∈ N0 such that, for every k ≥ m j:

• there exists a circumference Γk
i centered at the origin such that, for every z0 ∈ Γk

i ,

Rot(z(t; z0); [0, kT ]) > j;

• there exists a circumference Γk
o centered at the origin such that, for every z0 ∈ Γk

o,

Rot(z(t; z0); [0, kT ]) < 1 ≤ j.

In fact, let ϵ1 > 0 be so small that aϵ10 (t) = a0(t) − ϵ1 has positive mean and V0 ∈ P as in hypothesis

(H0) and define m j as the smallest integer strictly greater than
2AV0∫ T

0 aϵ10 (t)dt
j. By hypothesis (H0) there

exists sϵ1 > 0 such that
∇zH(t, z) · z

V0(z)
≥ a0(t) − ϵ1 = aϵ10 (t)

for a.e. 0 ≤ t ≤ T and 0 < |z| ≤ sϵ1 and by the elastic property there exists 0 < rϵ1 ≤ sϵ1 such that

|z0| ≤ rϵ1 =⇒ |z(t; z0)| ≤ sϵ1

for every 0 ≤ t ≤ kT . Define Γk
i = {z ∈ R2 | |z| = rϵ1 }; we have that, if z0 ∈ Γk

i ,

RotV0 (z(t; z0); [0, kT ]) =
1

2AV0

∫ kT

0

Jz′(t; z0) · z(t; z0)
V0(z(t; z0))

dt =

=
1

2AV0

∫ kT

0

∇zH(t, z(t; z0)) · z(t; z0)
V0(z(t; z0))

dt ≥

≥ 1
2AV0

∫ kT

0
aϵ10 (t)dt =

=
k

2AV0

∫ T

0
aϵ10 (t)dt ≥

≥
m j

2AV0

∫ T

0
aϵ10 (t)dt > j
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and by Proposition 2.2 this implies that

Rot(z(t; z0); [0, kT ]) > j.

On the other hand, by hypothesis (H∞) there exist Vn
∞ ∈ P, an

∞ ∈ L1(]0,T [) such that∫ T
0 an

∞(t)dt

AVn
∞

<
1
k

and
lim sup
|z|→+∞

∇zH(t, z) · z
Vn
∞(z)

≤ an
∞(t), uniformly for a.e. t ∈ [0, T ].

So, taken 0 < ϵ2 <
AVn∞
kT there exists S ϵ2 > 0 such that

∇zH(t, z) · z
Vn
∞(z)

≤ an
∞(t) + ϵ2

for a.e. 0 ≤ t ≤ T and for every |z| ≥ S ϵ2 and by the elastic property again there exists 0 < S ϵ2 < Rϵ2
such that

|z0| ≥ Rϵ2 =⇒ |z(t; z0)| ≥ S ϵ2
for every 0 ≤ t ≤ kT . Define Γk

o = {z ∈ R2 | |z| = Rϵ2 }; we have that, if z0 ∈ Γk
o,

RotVn
∞ (z(t; z0), [0, kT ]) =

1
2AVn

∞

∫ kT

0

Jz′(t; z0) · z(t; z0)
Vn
∞(z(t; z0))

dt =

=
1

2AVn
∞

∫ kT

0

∇zH(t, z(t; z0)) · z(t; z0)
Vn
∞(z(t; z0))

dt ≤

≤ 1
2AVn

∞

(∫ kT

0
an
∞(t)dt + kT ϵ2

)
=

=
k
2

∫ T
0 an

∞(t)dt

AVn
∞

+
kT ϵ2
2AVn

∞

<

<
1
2
+

1
2
= 1 ≤ j

and by Proposition 2.2 again we get

Rot(z(t; z0); [0, kT ]) < j.

Denoting with Ak the closed annulus having Γk
i and Γk

o as inner and outer boundaries, we conclude
that there exist two kT -periodic solutions z1

j,z, z
2
j,k (not belonging to the same periodicity class by a

remark of Neumann to the Poincaré-Birkhoff theorem, see [17] for some details) with z1
j,z(0), z2

j,z(0) ∈
Ak and such that

Rot(z1
j,k; [0, kT ]) = Rot(z2

j,k; [0, kT ]) = j.

If k is prime with j, then it can be proved in a standard manner that these solutions are actually
subharmonics of order k.
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Remark 3.3 Some remarks about the condition (H∞) are in order. We first remark that an admis-
sible choice for i) is given by an

∞ ≡ 0; in this case, as for every V ∈ P there exist m,M > 0 such
that

m|z|2 ≤ V(z) ≤ M|z|2,

condition ii) does not depend on V ∈ P. In particular, Theorem (3.1) holds in the sublinear case

lim sup
|z|→+∞

∇zH(t, z) · z
|z|2 ≤ 0, uniformly for a.e. t ∈ [0,T ]. (3.1)

On the other hand, the Theorem covers situations for which (3.1) is not satisfied, but such that
lim sup|z|→+∞

∇zH(t,z)·z
V(z) can be made “arbitrarily small”, in some L1 sense, with suitable choices of

V ∈ P. It is worth noticing that this kind of condition has to be invariant under the dilatation{
a∞ 7→ λa∞
V∞ 7→ 1

λ
V∞,

since the second requirement of hypothesis (H∞) is. This is indeed the case, as A 1
λV = λAV for every

V ∈ P and λ > 0.

This last consideration can be successfully applied in order to get a more familiar result in the case of
the conservative scalar second order equation (1.2), with g : R×R→ R a Carathéodory function, T -
periodic in the first variable and such that g(t, 0) = 0 for a.e. t ∈ R. As usual, we assume uniqueness
and global continuability for the solutions of the Cauchy problems associated to (1.2).

Corollary 3.1 Let us suppose that for every r > 0 there exists Cr > 0 such that |g(t, x)| ≤ Cr for a.e.
t ∈ [0,T ] and for every x ∈ R with |x| ≤ r; moreover suppose that:

(g0) there exists q0 ∈ L1(]0,T [) with
∫ T

0 q0(t)dt > 0 such that

lim inf
x→0

g(t, x)
x
≥ q0(t)

uniformly for a.e. t ∈ [0,T ];

(g∞)

lim sup
|x|→+∞

g(t, x)
x
≤ 0

uniformly for a.e. t ∈ [0,T ].

Then, for every j ∈ N0 there exists m j ∈ N0 such that, for every k ≥ m j with k prime with j,
equation (1.2) has at least two subharmonic solutions u1

j,k, u
2
j,k of order k, not belonging to the same

periodicity class, with exactly 2 j zeros in the interval [0, kT [.

Proof. Write (1.2) as the equivalent first order system{
x′ = y
y′ = −g(t, x),
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which is of the form (1.1) with

H(t, x, y) =
1
2

y2 +

∫ x

0
g(t, s)ds.

Clearly, H is a C1 Carathéodory function, T -periodic in the first variable and such that ∇zH(t, 0) ≡ 0.
We claim that (H0) and (H∞) are satisfied. Indeed, take ρ, σ > 0 so small that a0(t) = min(q0(t), 1

ρ
)−

σ has positive mean and define V0(x, y) = ρy2 + x2. By hypothesis (g0), for a.e. t ∈ [0,T ] and x in a
sufficiently small neighborhood of 0 we have

g(t, x)
x
≥ q0(t) − σ ≥ a0(t);

moreover

a0(t) ≤ a0(t) + σ ≤ 1
ρ
.

Hence we get

lim inf
z→0

∇zH(t, z) · z
V0(z)

= lim inf
z→0

y2 + g(t, x)x
ρy2 + x2 ≥

≥ lim inf
z→0

ρa0(t)y2 + a0(t)x2

ρy2 + x2 ≥

≥ a0(t)

uniformly for a.e t ∈ [0,T ].
On the other hand, define Vn

∞(x, y) = x2 + 2nTy2 and an
∞(t) = 1

nT , so that

inf
n

∫ T
0 an

∞(t)dt

AVn
∞

= inf
n

√
2T
n

1
π
= 0.

By hypothesis (g∞) there exists R1
n > 0 such that for a.e. t ∈ [0,T ] and for |x| ≥ R1

n

g(t, x)
x
≤ 1

2nT
;

moreover, there exists R2
n > 0 such that for a.e. t ∈ [0,T ] and for |x| ≤ R1

n, |y| ≥ R2
n

g(t, x)x
x2 + 2nTy2 ≤

CR1
n
R1

n

2nTy2 ≤
1

2nT

We deduce that, for a.e. t ∈ [0,T ] and for every z ∈ R2 \ ([−R1
n,R

1
n] × [−R2

n,R
2
n]), we have

∇zH(t, z) · z
Vn
∞(z)

=
y2

x2 + 2nTy2 +
g(t, x)x

x2 + 2nTy2 ≤

≤ 1
2nT

+
1

2nT
= an

∞(t);
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so we get

lim sup
|z|→+∞

∇zH(t, z) · z
Vn
∞(z)

≤ an
∞(t)

uniformly for a.e t ∈ [0,T ]. We conclude by applying Theorem 3.1 and recalling that, as usual for
second order scalar equations (see [17]), the fact that

Rot((x(t; z0), y(t; z0)); [0, kT ]) = j

implies that u = x has exactly 2 j zeros in the interval [0, kT [.

Remark 3.4 We recall that the global continuability of the solutions of the initial value problems is
ensured if, instead of (g∞), we suppose that:

(g∗∞) there exists m ∈ L1(]0,T [) such that

−m(t) ≤ lim inf
|x|→+∞

g(t, x)
x
≤ lim sup
|x|→+∞

g(t, x)
x
≤ 0

uniformly for a.e. t ∈ [0,T ].

Remark 3.5 Note that, with respect to some well known results about rotations of second order
scalar equations, no sign condition is required in the hypothesis at 0. On the other hand, hypothesis
at infinity cannot be improved to the mean condition

lim sup
|x|→+∞

g(t, x)
x
≤ q∞(t) with

∫ T

0
q∞(t)dt ≤ 0.

In fact, it is enough to consider the linear Hill’s equation

u′′ + q(t)u = 0 (3.2)

with a two-step periodic potential

q(t) =
{

1 0 < t < S
−ω S < t < T, ω > 0.

We claim that if
S > 2 arctan

√
ω (3.3)

then
lim

t→+∞
Rot(z(t; z0); [0, t]) = +∞ (3.4)

uniformly for z0 ∈ R2 \ {0}. In fact, elementary considerations about the linear autonomous equation
u′′ + u = 0 show that,

Rot(z(t; z0); [kT, kT + S ]) ≥ S
2π

for every k ∈ N; (3.5)

on the other hand, since the standard angular speed θ′ can be negative only in the regions

I+ = {(x, y) ∈ R2 | −
√
ωx ≤ y ≤

√
ωx}



94 A. Boscaggin

I− = {(x, y) ∈ R2 |
√
ωx ≤ y ≤ −

√
ωx},

which are both positively invariant for the linear autonomous equation u′′ − ωu = 0, we see that

Rot(z(t; z0); [kT + S , (k + 1)T ]) ≥ −arctan
√
ω

π
for every k ∈ N. (3.6)

Clearly, (3.5) and (3.6) imply (3.4). As (3.3) is compatible with a (arbitrarily large) negative mean
for q(t) (note in particular that it is always satisfied when S ≥ 2π) the conclusion follows.

4 A second result of multiplicity
In this section we prove an improvement of Theorem 3.1. Roughly speaking, the ideas are the
following:

• in order to have a positive angular speed for the small solutions, it would be sufficient to
have a partition of the plane into several angular sectors, each with a positive weight for
hypothesis (H0), in such a way that the crossing between two adjacent regions is possible only
“clockwise”;

• in order to have a low angular speed for the large solutions, it would be sufficient that the
sublinearity-like condition (H∞) holds in a small angular sector.

Conditions of this kind go back to [2], Th. 2.10.1; we also refer to [10] for some recent contributions
in the same spirit.

We preliminarily introduce some notations; recall that every point of R2 \ {0} can be expressed
in (clockwise) polar coordinates z = ρe−iθ for a unique ρ > 0 and θ ∈ [0, 2π[.

Definition 4.1 Let θ ∈ [0, 2π[. We denote by L(θ) the open half-line

L(θ) := {ρe−iθ | ρ > 0} ⊂ R2 \ {0}.

Definition 4.2 Let θ1, θ2 ∈ [0,+∞[ with 0 < θ2 − θ1 ≤ 2π. We denote by R(θ1, θ2) the open angular
region

R(θ1, θ2) := {ρe−iθ | ρ > 0, θ1 < θ < θ2} ⊂ R2 \ {0}.
An ordered p-uple (θ1, . . . , θp) (p ≥ 2) with

0 ≤ θ1 < θ2 < · · · < θp < 2π

determines a subdivision S(θ1, . . . , θp) of the plane into p angular regions

R1 = R(θ1, θ2),

R2 = R(θ2, θ3),

...

Rp = R(θp, θ1 + 2π).
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Moreover, in order to formulate a general condition on the Hamiltonian near infinity, it is essential
to introduce the following definition.

Definition 4.3 Let θ1, θ2 ∈ [0,+∞[ with 0 < θ2 − θ1 < 2π and F ⊂ P. We say that F is admissible
with respect to (θ1, θ2) if

inf
V∈F

ΨV (θ2) − ΨV (θ1)
2π

> 0. (4.1)

Remark 4.1 We emphasize that, even if we proved that for every V ∈ P

ΨV (θ + 2π) − ΨV (θ)
2π

= 1,

there is in general no positive lower bound for the quantity ΨV (θ2)−ΨV (θ1)
2π for arbitrary θ1, θ2. In other

words, the size of an angular sector can become arbitrarily small when measured with suitable
V ∈ P; as we want to formulate a condition on the Hamiltonian involving only the behavior in an
angular sector, a condition like (4.1) seems necessary. Note that, as

ΨV (θ2) − ΨV (θ1)
2π

=
1

2AV

∫ θ2

θ1

dθ
V(cos θ,− sin θ)

,

a class F ⊂ P is certainly admissible with respect to (θ1, θ2) if there exists C > 0 such that

AVV(e−iθ) ≤ C (4.2)

for every V ∈ F and for every θ1 < θ < θ2.
On the other hand, a class F ⊂ P can be admissible even if relation (4.2) is not satisfied; a

crucial example, which will be used in the sequel, is given by the set D of all diagonal quadratic
forms with respect to the angles (θ1, θ2) = ( j π2 , ( j + 1) π2 ) for some j = 0, . . . , 3. In this case, indeed,
relation (2.9) implies thatD is admissible with respect to (θ1, θ2).

We are now in a position to state and prove our result. Throughout the section, we will assume
that H : R × R2 → R is a continuous function, of class C1 in the variable z = (x, y); accordingly,
Carathéodory solutions will be of class C1 and, hence, classical. We emphasize in particular, that,
for every z0 ∈ R2 \ {0} and V ∈ P, any lifting θV (t; z0) of z(t;z0)√

V(z(t;z0))
to the covering space (R,ΠV ) is of

class C1 and for every t

θ′V (t; z0) =
π

AV

∇zH(t, z(t; z0)) · z(t; z0)
V(z(t; z0))

.

Theorem 4.1 Let us suppose that:

(H′0) there exist a subdivision S(θ10, . . . , θ
p
0 ) of the plane into p angular regions, V0 ∈ P, a1

0, . . . , a
p
0 ∈

L1(]0,T [) with
∫ T

0 ai
0(t)dt > 0 for i = 1, . . . , p such that:

i) for every i = 1, . . . , p

∇zH(t, z) · z > 0 for every t ∈ [0,T ], for every z ∈ L(θi0);
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ii) for every i = 1, . . . , p

lim inf
z→0
z∈Ri

∇zH(t, z) · z
V0(z)

≥ ai
0(t)

uniformly in t ∈ [0,T ];

(H′∞) there exist an angular region R(θ1∞, θ
2
∞) and two sequences (Vn

∞) ⊂ P, (an
∞) ⊂ L1(]0,T [) with

an
∞ ≥ 0 such that:

i) the class F = {Vn
∞}n∈N0 is admissible with respect to (θ1∞, θ

2
∞);

ii)

inf
n

∫ T
0 an

∞(t)dt

AVn
∞

= 0;

iii) for every n ∈ N0,

lim sup
|z|→+∞

z∈R(θ1∞ ,θ2∞ )

∇zH(t, z) · z
Vn
∞(z)

≤ an
∞(t)

uniformly in t ∈ [0,T ].

Then, for every j ∈ N0 there exists m j ∈ N0 such that, for every k ≥ m j with k prime with j, equation
(1.1) has at least two subharmonic solutions z1

j,k, z
2
j,k of order k, not belonging to the same periodicity

class, with
Rot(z1

j,k; [0, kT ]) = Rot(z2
j,k; [0, kT ]) = j.

Proof. The proof follows the same line of that of Theorem 3.1; in particular, fixed j ∈ N0, we will
prove that there exists m j ∈ N0 such that, for every k ≥ m j:

• there exists a circumference Γk
i centered at the origin such that, for every z0 ∈ Γk

i ,

Rot(z(t; z0); [0, kT ]) > j;

• there exists a circumference Γk
o centered at the origin such that, for every z0 ∈ Γk

o,

Rot(z(t; z0); [0, kT ]) < 1 ≤ j.

Let V0 ∈ P be as in hypothesis (H0) and define

Θ∗ = min(ΨV0 (θ20) − ΨV0 (θ10),ΨV0 (θ30) − ΨV0 (θ20), . . . ,ΨV0 (θ10 + 2π) − ΨV0 (θp
0 )),

Θ∗ = max(ΨV0 (θ20) − ΨV0 (θ10),ΨV0 (θ30) − ΨV0 (θ20), . . . ,ΨV0 (θ10 + 2π) − ΨV0 (θp
0 ));

moreover, let ϵ1 > 0 be so small that, for every i = 1, . . . , p, ai,ϵ1
0 (t) = ai

0(t) − ϵ1 has positive mean
and define m j as the smallest integer strictly greater than

2π j + 2Θ∗ + Θ∗

Θ∗

Θ∗
AV0
π
+max1≤i≤p

∫ T
0 (ai,ϵ1

0 )−(t)dt

min1≤i≤p
∫ T

0 ai,ϵ1
0 (t)dt

+ 1

 .
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By ii) of hypothesis (H′0) there exists sϵ1 > 0 such that, for every i = 1, . . . , p,

∇zH(t, z) · z
V0(z)

≥ ai
0(t) − ϵ1 = ai,ϵ1

0 (t)

for every 0 ≤ t ≤ T and for every z ∈ Ri with 0 < |z| ≤ sϵ1 , moreover by the elastic property there
exists 0 < rϵ1 ≤ sϵ1 such that

|z0| ≤ rϵ1 =⇒ |z(t; z0)| ≤ sϵ1
for every 0 ≤ t ≤ kT . Define Γk

i = {z ∈ R2 | |z| = rϵ1 } and let z0 ∈ Γk
i . By i) of hypothesis (H′0) we

have that, if z(t; z0) ∈ L(θi0) for some i = 1, . . . , p, then

θ′V0
(t; z0) =

π

AV0

∇zH(t, z(t; z0)) · z(t; z0)
V0(z(t; z0))

> 0; (4.3)

hence we deduce that the set

S = [0, kT ] ∩ z(·; z0)−1

 ∪
i=1,...,p

L(θi0)


is finite: let l denote its cardinality.

We note that the case l = 0 is not excluded at this point; moreover, if l > 0 we set S = {t1, . . . , tl}
with 0 ≤ t1 < · · · < tl ≤ kT . Setting t0 = 0 and tl+1 = kT , we can define, for every h = 0, . . . , l such
that ]th, th+1[, ∅, an integer i(h) ∈ {1, . . . , p} such that

z(t; z0) ∈ Ri(h) for every t ∈]th, th+1[.

Then relation (2.5) implies that, for every h = 0, . . . , l,

RotV0 (z(t; z0); [th, th+1]) ≤ Θ
∗

2π
, (4.4)

which, denoting with [r] the integer part of a real number r, implies that

Θ∗
AV0

π
≥

∫ th+1

th

∇zH(t, z(t; z0)) · z(t; z0)
V0(z(t; z0))

dt ≥

≥
∫ th+1

th
ai(h),ϵ1

0 (t)dt ≥

≥
[ th+1 − th

T

] ∫ T

0
ai(h),ϵ1

0 (t)dt −
∫ T

0
(ai(h),ϵ1

0 )−(t)dt ≥

≥
[ th+1 − th

T

]
min
1≤i≤p

∫ T

0
ai,ϵ1

0 (t)dt − max
1≤i≤p

∫ T

0
(ai,ϵ1

0 )−(t)dt.

Hence, we get that, for every h = 0, . . . , l,

th+1 − th < T
([ th+1 − th

T

]
+ 1

)
≤

≤ T

Θ∗
AV0
π
+max1≤i≤p

∫ T
0 (ai,ϵ1

0 )−(t)dt

min1≤i≤p
∫ T

0 ai,ϵ1
0 (t)dt

+ 1

 ≤
≤ Θ∗

2π j + 2Θ∗ + Θ∗
m jT,
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which implies that

m jT ≤ kT =
l∑

h=0

(th+1 − th) ≤ (l + 1)
Θ∗

2π j + 2Θ∗ + Θ∗
m jT.

In conclusion we obtain
(l − 1) ≥ 2π j + Θ∗

Θ∗
> 0,

which in particular excludes the case S = ∅. On the other hand relation (4.3) implies that, for every
h = 1, . . . , l − 1

i(h + 1) = (i(h) mod p) + 1,

which yields

RotV0 (z(t; z0); [th, th+1]) >
Θ∗
2π
.

Moreover, by relation (4.3) again, it is easy to see that

RotV0 (z(t; z0); [0, t1]) ≥ 0,

and that
RotV0 (z(t; z0); [tl, kT ]) > −Θ

∗

2π
;

hence we finally obtain that

RotV0 (z(t; z0); [0, kT ]) =

l∑
h=0

RotV0 (z(t; z0); [th, th+1]) >

> (l − 1)
Θ∗
2π
− Θ

∗

2π
≥ j.

By Proposition 2.2, we conclude that

Rot(z(t; z0); [0, kT ]) > j.

On the other hand, being R(θ1∞, θ
2
∞), (Vn

∞) and (an
∞) as in hypothesis (H′∞) and setting

m = inf
n

ΨVn
∞(θ2∞) − ΨVn

∞(θ1∞)
2π

> 0, (4.5)

we have that there exists n such that ∫ T
0 an

∞(t)dt

AVn
∞

<
1

mk

and

lim sup
|z|→+∞

z∈R(θ1∞ ,θ2∞ )

∇zH(t, z) · z
Vn
∞(z)

≤ an
∞(t), uniformly in t ∈ [0,T ].
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So, taken 0 < ϵ2 < m
AVn∞
kT there exists S ϵ2 > 0 such that

∇zH(t, z) · z
Vn
∞(z)

≤ an
∞(t) + ϵ2

for every 0 ≤ t ≤ T and for every z ∈ R(θ1∞, θ
2
∞) with |z| ≥ S ϵ2 and by the elastic property again there

exists 0 < S ϵ2 < Rϵ2 such that
|z0| ≥ Rϵ2 =⇒ |z(t; z0)| ≥ S ϵ2

for every 0 ≤ t ≤ kT . Define Γk
o = {z ∈ R2 | |z| = Rϵ2 }; we claim that, if z0 ∈ Γk

o, then

RotVn
∞(z(t; z0); [0, kT ]) < 1,

which by Proposition 2.2 implies the conclusion. In fact, suppose by contradiction that

RotVn
∞ (z(t; z0); [0, kT ]) ≥ 1

for some z0 ∈ Γk
o. Then, by standard connectivity arguments, we get the existence of two disjoint

open intervals
I1 =]a1, b1[, (0 ≤ a1 ≤ b1 ≤ kT ),

I2 =]a2, b2[, (0 ≤ a2 ≤ b2 ≤ kT ),

(the choice can be, of course, non unique, and one of them can be taken empty if z0 < R(θ1∞, θ
2
∞))

such that z(t; z0) ∈ R(θ1∞, θ
2
∞) for every t ∈ I1 ∪ I2 and that

θVn
∞(b1; z0) − θVn

∞ (a1; z0) + θVn
∞(b2; z0) − θVn

∞ (a2; z0) = ΨVn
∞(θ2∞) − ΨVn

∞ (θ1∞).

Then, by relation (4.5), we get

m ≤ RotVn
∞(z(t; z0); Ī1) + RotVn

∞(z(t; z0); Ī2) =

=
1

2AVn
∞

∫
I1∪I2

Jz′(t; z0) · z(t; z0)
V(z(t; z0))

dt =

=
1

2AVn
∞

∫
I1∪I2

∇zH(t, z(t; z0)) · z(t; z0)
V(z(t; z0))

dt ≤

≤ 1
2AVn

∞

∫
I1∪I2

(an
∞(t) + ϵ2)dt

≤ 1
2AVn

∞

∫ kT

0
(an
∞(t) + ϵ2)dt ≤

≤ k
2

∫ T
0 an

∞(t)dt

AVn
∞

+
kT ϵ2
2AVn

∞

<

<
m
2
+

m
2
= m

which is a contradiction.
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Remark 4.2 Clearly, if there exists an angular region R(θ1∞, θ
2
∞) such that

lim sup
|z|→+∞

z∈R(θ1∞ ,θ2∞ )

∇zH(t, z) · z
|z|2 ≤ 0, uniformly in t ∈ [0,T ],

then hypothesis (H′∞) is satisfied with an
∞ ≡ 0 and Vn

∞(x, y) = x2 + y2 for every n ∈ N0. Moreover,
we remark that it is possible to prove a variant of Theorem 4.1 by keeping hypothesis (H′∞) and
assuming (H0) of Theorem 3.1, instead of (H′0); it is worth noticing that, in this case, the result is
still true in the Carathéodory setting.

Again, we get a corollary for the second order equation (1.2), in order to cover an asymmetric
behavior at 0 and a one-side sublinearity condition at infinity. Here we assume that g : R×R→ R is
continuous, T -periodic in the first variable and such that g(t, 0) ≡ 0; moreover, we suppose that the
uniqueness and global continuability of the solutions of the initial value problems are guaranteed.

Corollary 4.1 Let us suppose that

(g±0 ) there exist q+0 , q
−
0 ∈ L1(]0,T [) with

∫ T
0 q±0 (t)dt > 0 such that

lim inf
x→0±

g(t, x)
x
≥ q±0 (t)

uniformly in t ∈ [0,T ];

moreover suppose that one of the conditions

(g−∞)

lim sup
x→−∞

g(t, x)
x
≤ 0

uniformly in t ∈ [0,T ],

(g+∞)

lim sup
x→+∞

g(t, x)
x
≤ 0

uniformly in t ∈ [0,T ],

is satisfied. Then, for every j ∈ N0 there exists m j ∈ N0 such that, for every k ≥ m j with k prime
with j, equation (1.2) has at least two subharmonic solutions u1

j,k, u
2
j,k of order k, not belonging to

the same periodicity class, with exactly 2 j zeros in the interval [0, kT [.

Proof. Hypothesis (H′0) is satisfied for the subdivision S( π2 ,
3
2π): in fact, for z ∈ L( π2 ) ∪ L( 3

2π)

∇zH(t, z) · z = y2 > 0,

while computations analogous to those of Corollary 3.1 show that with a1
0(t) = min(q−0 (t), 1

ρ
) − σ,

a2
0(t) = min(q+0 (t), 1

ρ
) − σ (for σ, ρ > 0 small enough) the second condition in (H′0) holds true.

On the other hand, hypothesis (H′∞) is satisfied for one of the half-planes R( π2 ,
3
2π) or R( 3

2π,
5
2π) and

Vn
∞(x, y) = x2 + 2nTy2. As F = {Vn

∞} is admissible with respect to each half-plane, Theorem 4.1 can
be applied to get the conclusion.
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Remark 4.3 Note that Corollary 4.1 applies to nonlinearity which near 0 are of the form

g(t, x) ∼ q+0 (t)x+ − q−0 (t)x−,

being q+0 , q
−
0 ∈ L1(]0,T [) with

∫ T
0 q±0 (t)dt > 0; this does not in general imply that min(q+0 (t), q−0 (t))

has positive mean, so Corollary 3.1 does not apply.

5 An application to a class of Lotka-Volterra planar systems
In this section we give a very brief sketch of a possible application of Theorem 4.1 to some Hamil-
tonian planar systems. In particular, we start our considerations by considering a generalized Lotka-
Volterra system {

p′ = p(a(t) − b(t)q)
q′ = q(−c(t) + d(t)p) (p, q) ∈ R2, (5.1)

with a, b, c, d : R → R continuous and T -periodic, b and d strictly positive. Of course, system (5.1)
is not Hamiltonian; but, as already observed in many papers, the change of variables

u = log p v = log q

permits to establish a one-to-one correspondence between positive solutions of (5.1) and solutions
of the planar Hamiltonian system{

u′ = a(t) − b(t)ev

v′ = −c(t) + d(t)eu (u, v) ∈ R2. (5.2)

With a topological degree argument, it is shown in [6] that, under the conditions∫ T

0
a(t)dt > 0,

∫ T

0
c(t)dt > 0,

system (5.2) has a T -periodic solution (u∗(t), v∗(t)); then, via the change of variables

x = v − v∗(t) y = u − u∗(t),

the problem of the existence of subharmonic solutions of (5.2) is reduced to the existence of subhar-
monic solutions for the planar Hamiltonian system{

x′ = d(t)eu∗(t)(ey − 1) := X(t, y)
y′ = b(t)ev∗(t)(1 − ex) := Y(t, x), (5.3)

which is of type (1.1) with

H(t, x, y) =
∫ y

0
X(t, s)ds −

∫ x

0
Y(t, s)ds.

Actually, system (5.3) has infinitely many subharmonic solutions, as shown in [6], with a long and
careful phase-plane analysis. Here we want to show that a similar result can be obtained, in a very
direct way, as a consequence of our main results.
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The smoothness of H implies the uniqueness for the solutions of the Cauchy problems associated
to (5.3), while the global existence is proved in [6]; we claim that (H0) and (H′∞) hold, too. In fact,
since

∇zH(t, z) · z
|z|2 =

d(t)eu∗(t)y(ey − 1) + b(t)ev∗(t)x(ex − 1)
x2 + y2 ≥

≥ min(d(t)eu∗(t), b(t)ev∗(t))
(

y(ey − 1) + x(ex − 1)
x2 + y2

)
,

hypothesis (H0) is satisfied with a0(t) = min(d(t)eu∗(t), b(t)ev∗(t)) and V0(z) = |z|2; on the other hand,
since

lim
|z|→+∞

z∈R( π2 ,π)

∇zH(t, z) · z
|z|2 = 0

uniformly in t ∈ [0,T ], hypothesis (H′∞) is satisfied for the angular region R( π2 , π).
In conclusion, the variant of Theorem 4.1 described in Remark 4.2 can be applied, giving the exis-
tence of infinitely many subharmonic solutions for system (5.3).
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