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Abstract

The aim of this paper is to extend previous results regarding the multiplicity of solutions for
quasilinear elliptic problems with critical growth to the variable exponent case. We prove,
in the spirit of [4], the existence of at least three nontrivial solutions to the quasilinear
elliptic equation —A oy = [u]¥"2u + Af(x, u) in a smooth bounded domain Q of RY with
homogeneous Dirichlet boundary conditions on 9Q. We assume that {g(x) = p*(x)} # 0,
where p*(x) = Np(x)/(N — p(x)) is the critical Sobolev exponent for variable exponents
and Ayu = div([Vul’=2Vu) is the p(x)-laplacian. The proof is based on variational
arguments and the extension of concentration compactness method for variable exponent
spaces.
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1 Introduction

Let us consider the following nonlinear elliptic problem:

(1.1)

~Apott = I 2 + Af(x,u)  in Q
u=0 onodQ,
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where Q is a bounded smooth domain in RV, A,yu = div(|VulP~2Vu) is the p(x)—laplacian,
1 < p(x) < N. On the exponent g(x) we assume that it is critical in the sense that {g(x) = p*(x)} # 0,
where p*(x) = Np(x)/(N — p(x)) is the critical exponent in the Sobolev embedding, A is a positive
parameter and the nonlinear term f is a subcritical perturbation with some precise assumptions that
we state below.

The purpose of this paper is to extend the results obtained in [4] where the same problem but with
constant p was treated. Namely, in [4], problem (1.1) was analyzed in the case p(x) = p constant
and g(x) = p*.

To be more precise, the result in [4] proves the existence of at least three nontrivial solutions
for (1.1), one positive, one negative and one that changes sign, under adequate assumptions on the
source term f and the parameter A.

The method in the proof used in [4] consists of restricting the functional associated to (1.1) to
three different Banach manifolds, one consisting of positive functions, one consisting of negative
functions and the third one consisting of sign-changing functions, all of them under a normalization
condition. Then, by means of a suitable version of the Mountain Pass Theorem due to Schwartz [15]
and the concentration-compactness principle of P.L. Lions [12] the authors can prove the existence
of a critical point of each restricted functional and, finally, the authors were able to prove the that
critical points of each restricted functional are critical points of the unrestricted one.

This method was introduced by M. Struwe [16] where the subcritical case (in the sense of the
Sobolev embeddigs) for the p—Laplacian was treated. A related result for the p—Laplacian un-
der nonlinear boundary condition can be found in [8]. Also, a similar problem in the case of the
p(x)—Laplacian, but with subcritical nonlinearities was analyzed in [5].

In all the above mentioned works, the main feature on the nonlinear term f is that no odd-
ness condition is imposed. Very little is known about critical growth nonlinearities for variable
exponent problems, since one of the main techniques used in order to deal with such issues is the
concentration-compactness principle. This result was recently obtained for the variable exponent
case independently in [9] and [10]. In both of these papers the proofs are similar and both relate
to that of the original proof of P.L. Lions. However, the arguments in [9] are a little more subtle
and allow the authors to deal with the case where the exponent g(x) is critical only in some part
of the domain, while the results in [10] require g(x) to be identically p*(x). So we will rely on the
concentration-compactness principle proved in [9] in this work.

The concentration compactness method to deal with the p—Laplacian has been used by so many
authors before that it is almost impossible to give a complete list of contributions. However we want
to refer to the work of J. Garcia Azorero and I. Peral in [11] from where we borrow some ideas.

Throughout this work, by (weak) solutions of (1.1) we understand critical points of the associated
energy functional acting on the Sobolev space W(;’p (X)(Q):

D) = f vaw(*)dx— f L|u|4<x>dx—a f F(x,v)dx, (1.2)
o p(x) o q(x) o

where F(x, u) = fou f(x,2)dz.

To end this introduction, let us comment on different applications where the p(x)—Laplacian has
appeared.

Up to our knowledge there are two main fields where the p(x)—Laplacian has been proved to be
extremely useful in applications:
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o Image Processing
e Electrorheological Fluids

For instance, Y. Chen, S. Levin and R. Rao [1] proposed the following model in image processing

(x)
Ew= [ MO a9l dx — min
o pK)

where p(x) is a function varying between 1 and 2 and f is a convex function. In their application,
they chose p(x) close to 1 where there is likely to be edges and close to 2 where it is unlikely to
be edges. The electrorheological fluids application is much more developed and we refer to the
monograph by M. RuZi¢ka, [14], and its references.

2 Assumptions and statement of the results.
Throughout this paper the following notation will be used: Given ¢: Q2 — R bounded, we denote
q" = supg(x), g :=inf g(x).
Q Q

The precise assumptions on the source term f are as follows:

(F1) f: QxR — R, is a measurable function with respect to the first argument and continuously
differentiable with respect to the second argument for almost every x € Q. Moreover, f(x,0) =
0 for every x € Q.

(F2) There exist constants ¢; > 1/(¢g~ — 1), ¢z € (p*,q7), 0 < ¢3 < ¢4, such that for any u € LI(Q)
and p- < pt<r 2rf<q <q*.

cipr(m) < fQ F(x,u)dx < fQ f(x,wudx
<c fgfu(x, wu? dx < capr (1)

where p,(u) := fQ "™ dx

Remark 2.1 Observe that this set of hypotheses on the nonlinear term f are similar than the ones
considered by [4].

Remark 2.2 We exhibit now one example of nonlinearities that fulfills all of our hypotheses. f(x,u) =
)20+ |uy O 2uy, if s(x) < r(x), g~ — 1> s~ > p*. Hypotheses (F1)-(F2) are clearly satisfied.

Remark 2.3 p is a Log-Holder continuity function if there exists a constant C > 0 such that

C 1
|p(x) = p(y)]| £ ———— Vx,y such that x—yl <=
—log(lx =yl 2

So the main result of the paper reads:
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Theorem 2.1 Let q(x), p(x) and r(x) be log-Hdlder functions such that

1 < inf p(x) < sup p(x) < N and 1<gx)<p'(x) inQ
xeQ xeQ

where the set A = {x € Q : q(x) = p*(x)} # 0. Under assumptions (F1)—~(F2), there exists A* > 0
depending only on N, p, q and the constant c3 in (F2), such that for every A > A, there exist three
different, nontrivial, (weak) solutions of problem (1.1). Moreover these solutions are, one positive,
one negative and the other one has non-constant sign.

3 Results on variable exponent Sobolev spaces

The variable exponent Lebesgue space L™ (Q) is defined by

LPY(Q) = {u €L, (Q): f ()PP dx < oo}.
Q
This space is endowed with the norm

p(x)
”M”Lp(x)(g) = inf {/l >0: f dx < 1} .
Q

The variable exponent Sobolev space W!*¥(Q) is defined by

)
A

WPOQ) = {u e WH(Q): u € LPY(Q) and [Vu| € L'™(Q)).
The corresponding norm for this space is
”u”W‘»PU)(Q) = ”M”LF(X)(Q) + |||VM|”LF<X>(Q).

Define W(;"” (x)(Q) as the closure of C’(€2) with respect to the W1P)(Q) norm. The spaces LP™Y(Q),

WP (Q) and Wol’p () are separable and reflexive Banach spaces when 1 < infq p < sup, p < co.
As usual, we denote p’(x) = p(x)/(p(x) — 1) the conjugate exponent of p(x). Define

Np(x)
5() = | N if p(x) < N or
oo if p(x) > N.

The following results are proved in [7]

Proposition 3.1 (Holder-type inequality) Let f € LP™(Q) and g € LP P (Q). Then the following
inequality holds

f lf(0)g(0ldx < Cpllfllro@liglroq
Q

Proposition 3.2 (Sobolev embedding) Let p, g € C(Q) be such that 1 < q(x) < p*(x) for all x € Q.
Assume moreover that the functions p and q are log-Holder continuous. Then there is a continuous

embedding
Whre(Q) — LI9(Q).

Moreover, if infq(p* — q) > O then, the embedding is compact.
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Proposition 3.3 (Poincaré inequality) There is a constant C > 0, such that
lleell ooy < ClHVul || ooy
forallu e Wé’p(x)(Q).

Remark 3.1 By Proposition 3.3, we know that || [Vul ||y q) and |jullyir.w ) are equivalent norms
on Wy "(Q).

4 Proof of the theorem 1.

The proof uses the same approach as in [16]. That is, we will construct three disjoint sets K; # 0

not containing 0 such that ® has a critical point in K;. These sets will be subsets of C'—manifolds

M; ¢ WP (Q) that will be constructed by imposing a sign restriction and a normalizing condition.
In fact, let

Jw) = [, IVl = 7@ dx
_ Lp(x) . _
My ={ue Wy (Q): [u, >0and Ju,) = [ Af(x, wu,dx},
My ={ue Wy (Q): [ u_>0and J(u_) = - [, Af(x.upu_dx],
Ms =M, N M,.
where u, = max{u, 0}, u- = max{—u, O} are the positive and negative parts of u. We define
K] Z{MEM] |MZO},

Ky ={ueM;|u<0},
K; = Mj.

First, we need a Lemma to show that these sets are nonempty and, moreover, give some proper-
ties that will be useful in the proof of the result.

Lemma 4.1 For every wy € Wé’p(x)(Q), wo > 0 (wy < 0), there exists t; > 0 such that tywy € M, (€

M,). Moreover, lim)_,, 1y = 0. As a consequence, given wy, w; € Wé’p(x)(Q), wo > 0, wy <0, with
disjoint supports, there exists ty,t, > 0 such that fywg + t, w1 € M3. Moreovert;,t, — 0 as 1 — oo.

Proof. We prove the lemma for M|, the other cases being similar. For w € Wé’p (x)(Q), w > 0, we
consider the functional

1(w) = f TP — ot — £ (e, wyw di.
Q

Given wy > 0, in order to prove the lemma, we must show that ¢;(¢,wg) = 0 for some 7, > 0. Using
hypothesis (F2), if # < 1, we have that:

@1(two) = AP = BtT — eyCt™



68 A. Silva

and
@1(two) < AP — Bt — AesCt”,

where the coefficients A, B and C are given by:

Aszwolp(x)dx, B=f|Wo|q(X)dx, C=f|W0|r(x)dX.
Q Q Q

Since p~ < p* < r £ rt < g £ g* it follows that ¢(twg) is positive for ¢ small enough,
and negative for 7 big enough. Hence, by Bolzano’s theorem, there exists some ¢ = f, such that
¢1(tu) = 0. (This ¢ need not to be unique, but this does not matter for our purposes).

In order to give an upper bound for ¢, it is enough to find some ¢#;, such that ¢;(#;wy) < 0. We
observe that:

@1(two) < max{Ar” — Ac;Cr AP — AesCr )

so it is enough to choose #; such that max{Atlpf = AcsCt AR = AesCET Y = 0, e,

t A 1/(r*=p7) . A 1/(r—=p*)
= T = .
1=\ Gac orh =\ aac

Hence, again by Bolzano’s theorem, we can choose #; € [0,#], which implies that ; — 0 as
A — +oo.

Lemma 4.2 There exists C1,C, > 0 depending on p(x) and on c, such that, for every u € K;,
i=1,2,3, we have

f IVul”(x)dxz(/l f flx, wudx + f |u|q(x)dx)SC1(I>(u)SC2 ( f |Vu|f’<*‘>dx).
Q Q Q Q

Proof. The equality is clear since u € K;. Now, by (F2), F(x,u) > 0; so
Ow) = [, o5Vl — L jul?® — AF (x, u) dx

L P(x)
< o Jo IVl dx.

To prove the final inequality, we proceed as follows. Using the norming condition of K; and
hypothesis (F2):

1 1
Ou) = f —— VUl — —— 7™ — AF(x, u)dx
o p(x) q(x)

> (% - L)f ) dx + /lf (%f(x, wu — F(x, u)) dx
p q Q Q\p

1 1 1 1
> (—+ - —)f |7 dx + (—+ - —)/lff(x, wudx.
p q Q p (&) Q

(Recall that g~ > p*). This finishes the proof.
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Lemma 4.3 There exists ¢ > 0 such that

Vil 2c Vuek, 3.1
||Vu_||Lp(.x)(Q) >c Yue Kz, (3.2)
1Vt gy IVl 2 € Vi€ Ko, (33)

Proof. Suppose that ||V ||, » @ < 1. By the definition of K;,by (F2) and the Poincaré inequality
we have that

Hvui”in(a(g) = pp(vui) = f/lf(x, . + |u_,_,|q(x)dx
Q

a

< Cprlu) + py(ite) < Clluclly gy + el

< c ||Vui||2p(x>(g) + C2||Vui||(lllp<x)(g)'

As p* < r~ < g, this finishes the proof.
The following lemma describes the properties of the manifolds M;.

Lemma 4.4 M, is a C' sub-manifold of Wé’p(x)(Q) of co-dimension I (i = 1,2), 2 (i = 3) respec-
tively. The sets K; are complete. Moreover, for every u € M; we have the direct decomposition

T, Wé’p(x)(Q) =T,M;® Span{u_H u_},

where T, M is the tangent space at u of the Banach manifold M. Finally, the projection onto the first
component in this decomposition is uniformly continuous on bounded sets of M,.

Proof. Let us denote

M, = {u € Wé’pm(Q): fQ u, dx > O},
M, = {u € Wé’p(x)(Q): fQ u_dx > O},
Ms =M, N M,.
Observe that M; ¢ M;. The set M; is open in W™ (Q). Therefore it is enough to prove that M; is
a C' sub-manifold of M;. In order to do this, we will construct a C' function ¢; : M; — R¢ with

d=1(G{=1,2),d =2 (i = 3) respectively and M; will be the inverse image of a regular value of ¢;.
In fact, we define: For u € M|,

¢WDijMWLWWW—MWMMM.
Q

For u € M,,
WM=IWMM—MW—U@me
Q

For u € Ms,
w3(u) = (p1(u), p2(u)).
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Obviously, we have M; = t,Di_] (0). From standard arguments (see [3], or the appendix of [13]), ¢; is
of class C!. Therefore, we only need to show that 0 is a regular value for ¢;. To this end we compute,
foru e My,

(Vor(u),uy)y < p*pp(Vuy) — g pg(uy) = A fg feewu, — f,(x, w, dx
<4 (pp(Vits) = py(u)) = 4 fg f s = fux,u dx
<(@A-2) f fx,wu, dx — f fulx, u)ui dx.
Q Q

By (F2) the last term is bounded by
_ A _ 1
(gA-a-—) f SO, wu, dx = (q -1- —)(pp(Vm.) _pq(“+))
c1 Jo Ci

1
< ((1 -1- C_l)pp(vu+)

Recall that ¢; < 1/(¢g~ — 1). Now, the last term is strictly negative by Lemma 4.3. Therefore, M, is
a C! sub-manifold of W™ (Q). The exact same argument applies to M,. Since trivially

Vor(w),u_) = (Ve (u),uy) =0

for u € M5, the same conclusion holds for Mj5.

To see that K; is complete, let u; be a Cauchy sequence in K;, then u; — u in Whre(Q).
Moreover, () — ux in W'P®(Q). Now it is easy to see, by Lemma 4.3 and by continuity that
ue K,'.

Finally, by the first part of the proof we have the decomposition

T, W'"P9(Q) = T, M; & span{u, }

where M; = {u : ¢1(u) = 0} and T, M; = {v : (Voi(u),v) = 0}. Now let v € TMW(;""(X)(Q) be a unit
tangential vector, then v = v| + v, where v, = au, and v| = v — v,. Let us take @ as

L Ve
(Vor(u), us)

With this choice, we have that v, € T,,M;. Now

{p1(u),v1) = 0.

The very same argument to show that T, WhHQ) = T,M, & (u_) and T,W'"PI(Q) = T, M5 &
(uy,u_). From these formulas and from the estimates given in the first part of the proof, the uniform
continuity of the projections onto 7, M; follows.

Now, we need to check the Palais-Smale condition for the functional @ restricted to the manifold
M;. We begin by proving the Palais-Smale condition for the functional ® unrestricted, below certain
level of energy.
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Lemma 4.5 Assume thatr < q. Let {u} jen C Wé’p (X)(Q) a Palais-Smale sequence. Then {u;} ey is
bounded in Wy"™(€).

Proof. By definition
O(uj) = ¢ and D'(u;) - 0.

Now, we have
L, L,
c+12> D) =Du;) - c_2<(D (uj), uj;y + c_2<(D (uj), u;),

where
(D' (u)),uj) = f IVaj P9 = Ju 19 — Af(x, uj)u; dx.
Q

Then, if ¢, < g~ we conclude

11 f 1
cHl1>|———| | IVulP™ dx — — D' (), u;)l.
(P"‘ Cz) o 2 I

We can assume that ||u j”Wl,ﬁ(x)(Q) > 1. As ||®’(u;)|| is bounded we have that
0

C

c+1>— = =i’ e il
> (o = g = g

We deduce that u; is bounded. This finishes the proof.

From the fact that {u;} ;e is a Palais-Smale sequence it follows, by Lemma 4.5, that {u;} ey is

bounded in WS”’ (x)(Q). Hence, by The Concentration-Compactness method for variable exponent
(See[9]), we have

1) v = O 4 5y iy vi> 0,
Vi = o> 1Vl + S by > O,
SV[I/P*(XI') Sluil/P(Xi)

where S is the best constant in the Gagliardo-Nirenberg-Sobolev inequality for variable exponents,
namely
S in |||V¢|||LF(~‘)(]RN)'
9eCy @) 1@l o@n)
Note that if / = 0 then u; — u strongly in LY(Q). We know that {x;}ie; € A := {x : q(x) =
p*(x)}. We define g, := inf 4 g(x).

Let us show that if ¢ < (p—ﬂ - é)S N and {u;} e is a Palais-Smale sequence, with energy level

¢, then I = (. In fact, suppose that / # (. Then let ¢ € Cy’ (RY) with support in the unit ball of RY.
Consider the rescaled functions ¢; .(x) = ¢(*=2). As ®'(u;) — 0 in (Wé’p @ (Q)), we obtain that

lim (D’ (u;), $ieu;) = 0.
On the other hand,

(D (uj), picut)) = fg IV lPO2Vu V(@i st )) — Af(x )i — |19 . dx.
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Then, passing to the limit as j — oo, we get
0= limje (f, IVu P 2Vu, V(g o)u; dx)
+ [ iedu — [ iodv— [ Af(x,u)ug;, dx.
By Holder inequality, it is easy to check that

lim | Va2 Vu,;V($i)u;dx = 0.
Q

Jj—ooo
On the other hand,
lim | ¢;.du = (0, lim f biedv =vip(0)
-0 Jo -0 Jo
and
lim f Af(x, wup; . dx = 0.
&e—0 o)
So, we conclude that (i; — v;)¢(0) = 0, i.e, u; = v;. Then,

S Vil/P*(Xi) < V:'l/p(Xi)’

A. Silva

so it is clear that v; = 0 or SV < v;. On the other hand, we consider the §—tubular neighborhood of

A, namely
A = _J(Bs() N Q).

XeA
So, as ¢; > p*,

¢ = limje @) = lim e O(u)) = SLAQ" (), u))
= limjow fj (ﬁ = L) IVu 9 dx + (# - ﬁ) lu 909 dx
—A [, F(x,uj) dx + [%fgf(x,uj)ujdx
> 1imjoe [ (2 = o) 1017 dx
> limje fﬂﬁ <PL+ - ﬁ) 199 dix
> limjeo [ ([?L+ - i)luﬂqw dx.
But

1 1
: (x) (1 1 X
tin [ (5= g Joran = (3 ) (e e 1)
5

1 1
>(L - L}y
> (% T, )
L __1L|gN
(35 -5
As ¢ > 0 is arbitrary, and ¢ is continuous, we get

c> (L - L)SM
P+ dy

\%
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Therefore, if
1 1
c < (— - —_) SN,
PT 44
the index set 7 is empty.

Now we are ready to prove the Palais-Smale condition below level c.

Lemma 4.6 Let {uj}jen C Wol’p ) (Q) be a Palais-Smale sequence, with energy level c. If ¢ <

(p%r - q%) SN then there exist u € Wé’p(x)(Q) and {u; Yren C {u;}jew a subsequence such thatu;, — u
ﬂ :

strongly in Wé’p @(Q).

Proof. We have that {u;} jen is bounded. Then, for a subsequence that we still denote {1} jen, u; — u
strongly in L9%(Q). We define @’ (u ;) := ¢;. By the Palais-Smale condition, with energy level c, we

have ¢; — 0 in (W, "(Q))'.
By definition (@' (u)), z) = (¢, 2) for all z € Wy "V(Q), iLe,

fg [V, |IP2Vu,Vz dx — fg | 1192w 1z dx — fQ Af(x,up)zdx = ($;,2).

Then, u; is a weak solution of the following equation.

34

—Ap(x)uj = |Mj|q<x)721/tj + /lf(x, I/lj) + ¢j = fjln Q,
u; = Oon Q.

We define T': (W(;’p ) Q) — Wé’p (x)(Q), T(f) := u where u is the weak solution of the following
equation.

(3.5)

—Ap(x)u = fll] Q,
u = Oon 0Q.

Then T is a continuous invertible operator.
It is sufficient to show that f; converges in (Wé 70 (Q))y . We only need to prove that |u 11920 —

lul?™=2u strongly in (W)™ (€))'. In fact,

<|uj|q(x)—2uj _ |u|q()‘)‘2u, Y) = fQ(|uj|q(x)—2uj _ Iulq()‘)_zu)z// dx

< Wl oo @112 19920 = [ul99"20) | o -
Therefore,

19024, [gela(0-2
||(|uj| Uj |M| M)H(W[;‘p(x)(ﬂ))’

1 Jo 772 = [l "2y dx

= Sup“//ewg'/)(x)(Q)ZHlﬂHwl.p(X)(Q):
0

< N1 = 1l O 2w oy

and now, by the Dominated Convergence Theorem this last term goes to zero as j — oo.
Now, we can prove the Palais-Smale condition for the restricted functional.



74 A. Silva

Lemma 4.7 The functional ®|k, satisfies the Palais-Smale condition for energy level c for every
c< (L - L_)S N,
P+ 4y

Proof. Let{u;} C K; be aPalais-Smale sequence, that is ®(u;) is uniformly bounded and V®|g, (1) —
0 strongly. We need to show that there exists a subsequence uy, that converges strongly in K;.

Letv; €T, W(;‘p @(Q) be a unit tangential vector such that
(VD) V) = VD))l 00,0y
Now, by Lemma 4.4, v; = w; + z; with w; € T),,M; and z; € span{(u;)+, (u;)-}.
Since ®(u;) is uniformly bounded, by Lemma 4.2, u; is uniformly bounded in W(;’p (x)(Q) and
hence w; is uniformly bounded in Wé"’ @(Q). Therefore

||Vq)(uj)”(wél’(”(g))/ = (V(D(u])’ v]> = <V(D|K,(u])’ v]> - 0.

As w; is uniformly bounded and V®|g, (u;) — 0 strongly, the inequality converges strongly to 0.
Now the result follows by Lema 4.6.
The following lemma now follows easily.

Lemma 4.8 Let u € K; be a critical point of the restricted functional ®@l,. Then u is also a critical
point of the unrestricted functional ® and hence a weak solution to (1.1).

Proof. To prove the Theorem, we need to check that the functional @ |k, verifies the hypotheses
of the Ekeland’s Variational Principle [2]. The fact that ® is bounded below over K; is a direct
consequence of the construction of the manifold K;. Then, by Ekeland’s Variational Principle, there
existe v; € K; such that

d(vy) > ¢ = ingD and (D |g,)' (v) = 0.

We have to check that if we choose A large, we have that ¢; < (p%r - q%)SN ,. This follows easily
A

from Lemma 4.1. For instance, for ¢;, we have that choosing wy > 0, if }A <1
Loy (%)
c1 < Dd(rwp) < —n [VwolP™ dx
p Q

Hence ¢; — 0 as 1 — oo. Moreover, it follows from the estimate of ¢, in Lemma 4.1, that ¢; <

(p%r - q%)S” for 1 > A*(p, ¢, n, c3). The other cases are similar.
A

From Lemma 4.7, it follows that v; has a convergent subsequence, that we still call v;. Therefore
® has a critical point in K;, i = 1,2, 3 and, by construction, one of them is positive, other is negative
and the last one changes sign.

Acknowledgements I want to thank Julidan Ferndndez Bonder for valuable help.
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