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Abstract

The aim of this paper is to extend previous results regarding the multiplicity of solutions for
quasilinear elliptic problems with critical growth to the variable exponent case. We prove,
in the spirit of [4], the existence of at least three nontrivial solutions to the quasilinear
elliptic equation −∆p(x)u = |u|q(x)−2u + λ f (x, u) in a smooth bounded domain Ω of RN with
homogeneous Dirichlet boundary conditions on ∂Ω. We assume that {q(x) = p∗(x)} , ∅,
where p∗(x) = N p(x)/(N − p(x)) is the critical Sobolev exponent for variable exponents
and ∆p(x)u = div(|∇u|p(x)−2∇u) is the p(x)−laplacian. The proof is based on variational
arguments and the extension of concentration compactness method for variable exponent
spaces.
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1 Introduction
Let us consider the following nonlinear elliptic problem:−∆p(x)u = |u|q(x)−2u + λ f (x, u) in Ω

u = 0 on ∂Ω,
(1.1)
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where Ω is a bounded smooth domain in RN , ∆p(x)u = div(|∇u|p(x)−2∇u) is the p(x)−laplacian,
1 < p(x) < N. On the exponent q(x) we assume that it is critical in the sense that {q(x) = p∗(x)} , ∅,
where p∗(x) = N p(x)/(N − p(x)) is the critical exponent in the Sobolev embedding, λ is a positive
parameter and the nonlinear term f is a subcritical perturbation with some precise assumptions that
we state below.

The purpose of this paper is to extend the results obtained in [4] where the same problem but with
constant p was treated. Namely, in [4], problem (1.1) was analyzed in the case p(x) ≡ p constant
and q(x) ≡ p∗.

To be more precise, the result in [4] proves the existence of at least three nontrivial solutions
for (1.1), one positive, one negative and one that changes sign, under adequate assumptions on the
source term f and the parameter λ.

The method in the proof used in [4] consists of restricting the functional associated to (1.1) to
three different Banach manifolds, one consisting of positive functions, one consisting of negative
functions and the third one consisting of sign-changing functions, all of them under a normalization
condition. Then, by means of a suitable version of the Mountain Pass Theorem due to Schwartz [15]
and the concentration-compactness principle of P.L. Lions [12] the authors can prove the existence
of a critical point of each restricted functional and, finally, the authors were able to prove the that
critical points of each restricted functional are critical points of the unrestricted one.

This method was introduced by M. Struwe [16] where the subcritical case (in the sense of the
Sobolev embeddigs) for the p−Laplacian was treated. A related result for the p−Laplacian un-
der nonlinear boundary condition can be found in [8]. Also, a similar problem in the case of the
p(x)−Laplacian, but with subcritical nonlinearities was analyzed in [5].

In all the above mentioned works, the main feature on the nonlinear term f is that no odd-
ness condition is imposed. Very little is known about critical growth nonlinearities for variable
exponent problems, since one of the main techniques used in order to deal with such issues is the
concentration-compactness principle. This result was recently obtained for the variable exponent
case independently in [9] and [10]. In both of these papers the proofs are similar and both relate
to that of the original proof of P.L. Lions. However, the arguments in [9] are a little more subtle
and allow the authors to deal with the case where the exponent q(x) is critical only in some part
of the domain, while the results in [10] require q(x) to be identically p∗(x). So we will rely on the
concentration-compactness principle proved in [9] in this work.

The concentration compactness method to deal with the p−Laplacian has been used by so many
authors before that it is almost impossible to give a complete list of contributions. However we want
to refer to the work of J. Garcı́a Azorero and I. Peral in [11] from where we borrow some ideas.

Throughout this work, by (weak) solutions of (1.1) we understand critical points of the associated
energy functional acting on the Sobolev space W1,p(x)

0 (Ω):

Φ(v) =
∫
Ω

1
p(x)
|∇v|p(x) dx −

∫
Ω

1
q(x)
|u|q(x) dx − λ

∫
Ω

F(x, v) dx, (1.2)

where F(x, u) =
∫ u

0 f (x, z) dz.
To end this introduction, let us comment on different applications where the p(x)−Laplacian has

appeared.
Up to our knowledge there are two main fields where the p(x)−Laplacian has been proved to be

extremely useful in applications:
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• Image Processing

• Electrorheological Fluids

For instance, Y. Chen, S. Levin and R. Rao [1] proposed the following model in image processing

E(u) =
∫
Ω

|∇u(x)|p(x)

p(x)
+ f (|u(x) − I(x)|) dx→ min

where p(x) is a function varying between 1 and 2 and f is a convex function. In their application,
they chose p(x) close to 1 where there is likely to be edges and close to 2 where it is unlikely to
be edges. The electrorheological fluids application is much more developed and we refer to the
monograph by M. Ružička, [14], and its references.

2 Assumptions and statement of the results.
Throughout this paper the following notation will be used: Given q : Ω→ R bounded, we denote

q+ := sup
Ω

q(x), q− := inf
Ω

q(x).

The precise assumptions on the source term f are as follows:

(F1) f : Ω × R → R, is a measurable function with respect to the first argument and continuously
differentiable with respect to the second argument for almost every x ∈ Ω. Moreover, f (x, 0) =
0 for every x ∈ Ω.

(F2) There exist constants c1 > 1/(q− − 1), c2 ∈ (p+, q−), 0 < c3 < c4, such that for any u ∈ Lq(Ω)
and p− ≤ p+ < r− ≤ r+ < q− ≤ q+.

c3ρr(u) ≤ c2
∫
Ω

F(x, u) dx ≤
∫
Ω

f (x, u)u dx

≤ c1
∫
Ω

fu(x, u)u2 dx ≤ c4ρr(u)

where ρr(u) :=
∫
Ω
|u|r(x) dx

Remark 2.1 Observe that this set of hypotheses on the nonlinear term f are similar than the ones
considered by [4].

Remark 2.2 We exhibit now one example of nonlinearities that fulfills all of our hypotheses. f (x, u) =
|u|r(x)−2u + |u+|s(x)−2u+, if s(x) < r(x) , q− − 1 > s− > p+. Hypotheses (F1)–(F2) are clearly satisfied.

Remark 2.3 p is a Log-Hölder continuity function if there exists a constant C > 0 such that

|p(x) − p(y)| ≤ C
− log(|x − y| ∀x, y such that |x − y| < 1

2

So the main result of the paper reads:
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Theorem 2.1 Let q(x) , p(x) and r(x) be log-Hölder functions such that

1 < inf
x∈Ω

p(x) ≤ sup
x∈Ω

p(x) < N and 1 ≤ q(x) ≤ p∗(x) in Ω

where the set A = {x ∈ Ω : q(x) = p∗(x)} , ∅. Under assumptions (F1)–(F2), there exists λ∗ > 0
depending only on N, p, q and the constant c3 in (F2), such that for every λ > λ∗, there exist three
different, nontrivial, (weak) solutions of problem (1.1). Moreover these solutions are, one positive,
one negative and the other one has non-constant sign.

3 Results on variable exponent Sobolev spaces
The variable exponent Lebesgue space Lp(x)(Ω) is defined by

Lp(x)(Ω) =
{

u ∈ L1
loc(Ω) :

∫
Ω

|u(x)|p(x) dx < ∞
}
.

This space is endowed with the norm

∥u∥Lp(x)(Ω) = inf
{
λ > 0 :

∫
Ω

∣∣∣∣∣u(x)
λ

∣∣∣∣∣p(x)

dx ≤ 1
}
.

The variable exponent Sobolev space W1,p(x)(Ω) is defined by

W1,p(x)(Ω) = {u ∈ W1,1
loc (Ω) : u ∈ Lp(x)(Ω) and |∇u| ∈ Lp(x)(Ω)}.

The corresponding norm for this space is

∥u∥W1,p(x)(Ω) = ∥u∥Lp(x)(Ω) + ∥|∇u|∥Lp(x)(Ω).

Define W1,p(x)
0 (Ω) as the closure of C∞0 (Ω) with respect to the W1,p(x)(Ω) norm. The spaces Lp(x)(Ω),

W1,p(x)(Ω) and W1,p(x)
0 (Ω) are separable and reflexive Banach spaces when 1 < infΩ p ≤ supΩ p < ∞.

As usual, we denote p′(x) = p(x)/(p(x) − 1) the conjugate exponent of p(x). Define

p∗(x) =

 N p(x)
N−p(x) if p(x) < N or
∞ if p(x) ≥ N.

The following results are proved in [7]

Proposition 3.1 (Hölder-type inequality) Let f ∈ Lp(x)(Ω) and g ∈ Lp′(x)(Ω). Then the following
inequality holds ∫

Ω

| f (x)g(x)| dx ≤ Cp∥ f ∥Lp(x)(Ω)∥g∥Lp′ (x)(Ω)

Proposition 3.2 (Sobolev embedding) Let p, q ∈ C(Ω) be such that 1 ≤ q(x) ≤ p∗(x) for all x ∈ Ω.
Assume moreover that the functions p and q are log-Hölder continuous. Then there is a continuous
embedding

W1,p(x)(Ω) ↪→ Lq(x)(Ω).

Moreover, if infΩ(p∗ − q) > 0 then, the embedding is compact.
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Proposition 3.3 (Poincaré inequality) There is a constant C > 0, such that

∥u∥Lp(x)(Ω) ≤ C∥ |∇u| ∥Lp(x)(Ω),

for all u ∈ W1,p(x)
0 (Ω).

Remark 3.1 By Proposition 3.3, we know that ∥ |∇u| ∥Lp(x)(Ω) and ∥u∥W1,p(x)(Ω) are equivalent norms
on W1,p(x)

0 (Ω).

4 Proof of the theorem 1.
The proof uses the same approach as in [16]. That is, we will construct three disjoint sets Ki , ∅
not containing 0 such that Φ has a critical point in Ki. These sets will be subsets of C1−manifolds
Mi ⊂ W1,p(x)(Ω) that will be constructed by imposing a sign restriction and a normalizing condition.

In fact, let

J(v) =
∫
Ω
|∇v|p(x) − |v|q(x)dx

M1 =
{
u ∈ W1,p(x)

0 (Ω) :
∫
Ω

u+ > 0 and J(u+) =
∫
Ω
λ f (x, u)u+dx

}
,

M2 =
{
u ∈ W1,p(x)

0 (Ω) :
∫
Ω

u− > 0 and J(u−) = −
∫
Ω
λ f (x, u)u−dx

}
,

M3 = M1 ∩ M2.

where u+ = max{u, 0}, u− = max{−u, 0} are the positive and negative parts of u. We define

K1 = {u ∈ M1 | u ≥ 0},
K2 = {u ∈ M2 | u ≤ 0},

K3 = M3.

First, we need a Lemma to show that these sets are nonempty and, moreover, give some proper-
ties that will be useful in the proof of the result.

Lemma 4.1 For every w0 ∈ W1,p(x)
0 (Ω), w0 > 0 (w0 < 0), there exists tλ > 0 such that tλw0 ∈ M1(∈

M2). Moreover, limλ→∞ tλ = 0. As a consequence, given w0,w1 ∈ W1,p(x)
0 (Ω), w0 > 0, w1 < 0, with

disjoint supports, there exists t̄λ, tλ > 0 such that t̄λw0 + tλw1 ∈ M3. Moreover t̄λ, tλ → 0 as λ→ ∞.

Proof. We prove the lemma for M1, the other cases being similar. For w ∈ W1,p(x)
0 (Ω), w ≥ 0, we

consider the functional

φ1(w) =
∫
Ω

|∇w|p(x) − |w|q(x) − λ f (x,w)w dx.

Given w0 > 0, in order to prove the lemma, we must show that φ1(tλw0) = 0 for some tλ > 0. Using
hypothesis (F2), if t < 1, we have that:

φ1(tw0) ≥ Atp+ − Btq− − λc4Ctr−
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and
φ1(tw0) ≤ Atp− − Btq+ − λc3Ctr+ ,

where the coefficients A, B and C are given by:

A =
∫
Ω

|∇w0|p(x) dx, B =
∫
Ω

|w0|q(x) dx, C =
∫
Ω

|w0|r(x) dx.

Since p− ≤ p+ < r− ≤ r+ < q− ≤ q+ it follows that φ1(tw0) is positive for t small enough,
and negative for t big enough. Hence, by Bolzano’s theorem, there exists some t = tλ such that
φ1(tλu) = 0. (This tλ need not to be unique, but this does not matter for our purposes).

In order to give an upper bound for tλ, it is enough to find some t1, such that φ1(t1w0) < 0. We
observe that:

φ1(tw0) ≤ max{Atp− − λc3Ctr+ ; Atp+ − λc3Ctr− }

so it is enough to choose t1 such that max{Atp−

1 − λc3Ctr+
1 ; Atp+

1 − λc3Ctr−
1 } = 0, i.e.,

t1 =
(

A
c3λC

)1/(r+−p−)

or t1 =
(

A
c3λC

)1/(r−−p+)

.

Hence, again by Bolzano’s theorem, we can choose tλ ∈ [0, t1], which implies that tλ → 0 as
λ→ +∞.

Lemma 4.2 There exists C1,C2 > 0 depending on p(x) and on c2 such that, for every u ∈ Ki,
i = 1, 2, 3, we have∫

Ω

|∇u|p(x) dx =
(
λ

∫
Ω

f (x, u)u dx +
∫
Ω

|u|q(x) dx
)
≤ C1Φ(u) ≤ C2

(∫
Ω

|∇u|p(x) dx
)
.

Proof. The equality is clear since u ∈ Ki. Now, by (F2), F(x, u) ≥ 0; so

Φ(u) =
∫
Ω

1
p(x) |∇u|p(x) − 1

q(x) |u|q(x) − λF(x, u) dx

≤ 1
p−

∫
Ω
|∇u|p(x) dx.

To prove the final inequality, we proceed as follows. Using the norming condition of Ki and
hypothesis (F2):

Φ(u) =
∫
Ω

1
p(x)
|∇u|p(x) − 1

q(x)
|u|q(x) − λF(x, u)dx

≥
(

1
p+
− 1

q−

) ∫
Ω

|u|q(x) dx + λ
∫
Ω

(
1
p+

f (x, u)u − F(x, u)
)

dx

≥
(

1
p+
− 1

q−

) ∫
Ω

|u|q(x) dx +
(

1
p+
− 1

c2

)
λ

∫
Ω

f (x, u)udx.

(Recall that q− > p+). This finishes the proof.
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Lemma 4.3 There exists c > 0 such that

∥∇u+∥Lp(x) (Ω) ≥ c ∀ u ∈ K1, (3.1)
∥∇u−∥Lp(x) (Ω) ≥ c ∀ u ∈ K2, (3.2)

∥∇u+∥Lp(x) (Ω) , ∥∇u−∥Lp(x) (Ω) ≥ c ∀ u ∈ K3. (3.3)

Proof. Suppose that ∥∇u±∥Lp(x) (Ω) < 1. By the definition of Ki,by (F2) and the Poincaré inequality
we have that

∥∇u±∥p
+

Lp(x)(Ω) ≤ ρp(∇u±) =
∫
Ω

λ f (x, u)u± + |u±|q(x)dx

≤ Cρr(u±) + ρq(u±) ≤ C∥u±∥r
−

Lr(x)(Ω) + ∥u±∥
q−

Lq(x)(Ω)

≤ c1∥∇u±∥r
−

Lp(x)(Ω) + c2∥∇u±∥q
−

Lp(x)(Ω).

As p+ < r− < q−, this finishes the proof.
The following lemma describes the properties of the manifolds Mi.

Lemma 4.4 Mi is a C1 sub-manifold of W1,p(x)
0 (Ω) of co-dimension 1 (i = 1, 2), 2 (i = 3) respec-

tively. The sets Ki are complete. Moreover, for every u ∈ Mi we have the direct decomposition

TuW1,p(x)
0 (Ω) = TuMi ⊕ span{u+, u−},

where TuM is the tangent space at u of the Banach manifold M. Finally, the projection onto the first
component in this decomposition is uniformly continuous on bounded sets of Mi.

Proof. Let us denote

M̄1 =
{
u ∈ W1,p(x)

0 (Ω) :
∫
Ω

u+ dx > 0
}
,

M̄2 =
{
u ∈ W1,p(x)

0 (Ω) :
∫
Ω

u− dx > 0
}
,

M̄3 = M̄1 ∩ M̄2.

Observe that Mi ⊂ M̄i. The set M̄i is open in W1,p(x)(Ω). Therefore it is enough to prove that Mi is
a C1 sub-manifold of M̄i. In order to do this, we will construct a C1 function φi : M̄i → Rd with
d = 1 (i = 1, 2), d = 2 (i = 3) respectively and Mi will be the inverse image of a regular value of φi.

In fact, we define: For u ∈ M̄1,

φ1(u) =
∫
Ω

|∇u+|p(x) − |u+|q(x) − λ f (x, u)u+ dx.

For u ∈ M̄2,

φ2(u) =
∫
Ω

|∇u−|p(x) − |u−|q(x) − λ f (x, u)u− dx.

For u ∈ M̄3,

φ3(u) = (φ1(u), φ2(u)).
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Obviously, we have Mi = φ
−1
i (0). From standard arguments (see [3], or the appendix of [13]), φi is

of class C1. Therefore, we only need to show that 0 is a regular value for φi. To this end we compute,
for u ∈ M1,

⟨∇φ1(u), u+⟩ ≤ p+ρp(∇u+) − q−ρq(u+) − λ
∫
Ω

f (x, u)u+ − fu(x, u)u2
+ dx

≤ q−
(
ρp(∇u+) − ρq(u+)

)
− λ

∫
Ω

f (x, u)u+ − fu(x, u)u2
+ dx

≤ (q−λ − λ)
∫
Ω

f (x, u)u+ dx −
∫
Ω

fu(x, u)u2
+ dx.

By (F2) the last term is bounded by

(q−λ − λ − λ

c1
)
∫
Ω

f (x, u)u+ dx =
(
q− − 1 − 1

c1

) (
ρp(∇u+) − ρq(u+)

)
≤

(
q− − 1 − 1

c1

)
ρp(∇u+).

Recall that c1 < 1/(q− − 1). Now, the last term is strictly negative by Lemma 4.3. Therefore, M1 is
a C1 sub-manifold of W1,p(x)(Ω). The exact same argument applies to M2. Since trivially

⟨∇φ1(u), u−⟩ = ⟨∇φ2(u), u+⟩ = 0

for u ∈ M3, the same conclusion holds for M3.
To see that Ki is complete, let uk be a Cauchy sequence in Ki, then uk → u in W1,p(x)(Ω).

Moreover, (uk)± → u± in W1,p(x)(Ω). Now it is easy to see, by Lemma 4.3 and by continuity that
u ∈ Ki.

Finally, by the first part of the proof we have the decomposition

TuW1,p(x)(Ω) = TuMi ⊕ span{u+}

where M1 = {u : φ1(u) = 0} and TuM1 = {v : ⟨∇φ1(u), v⟩ = 0}. Now let v ∈ TuW1,p(x)
0 (Ω) be a unit

tangential vector, then v = v1 + v2 where v2 = αu+ and v1 = v − v2. Let us take α as

α =
⟨∇φ1(u), v⟩
⟨∇φ1(u), u+⟩

.

With this choice, we have that v1 ∈ TuM1. Now

⟨φ1(u), v1⟩ = 0.

The very same argument to show that TuW1,p(x)(Ω) = TuM2 ⊕ ⟨u−⟩ and TuW1,p(x)(Ω) = TuM3 ⊕
⟨u+, u−⟩. From these formulas and from the estimates given in the first part of the proof, the uniform
continuity of the projections onto TuMi follows.

Now, we need to check the Palais-Smale condition for the functionalΦ restricted to the manifold
Mi. We begin by proving the Palais-Smale condition for the functional Φ unrestricted, below certain
level of energy.
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Lemma 4.5 Assume that r ≤ q. Let {u j} j∈N ⊂ W1,p(x)
0 (Ω) a Palais-Smale sequence. Then {u j} j∈N is

bounded in W1,p(x)
0 (Ω).

Proof. By definition
Φ(u j)→ c and Φ′(u j)→ 0.

Now, we have

c + 1 ≥ Φ(u j) = Φ(u j) −
1
c2
⟨Φ′(u j), u j⟩ +

1
c2
⟨Φ′(u j), u j⟩,

where
⟨Φ′(u j), u j⟩ =

∫
Ω

|∇u j|p(x) − |u j|q(x) − λ f (x, u j)u j dx.

Then, if c2 < q− we conclude

c + 1 ≥
(

1
p+
− 1

c2

) ∫
Ω

|∇u j|p(x) dx − 1
c2
|⟨Φ′(u j), u j⟩|.

We can assume that ∥u j∥W1,p(x)
0 (Ω) ≥ 1. As ∥Φ′(u j)∥ is bounded we have that

c + 1 ≥
(

1
p+
− 1

c2

)
∥u j∥p

−

W1,p(x)
0 (Ω)

− C
c2
∥u j∥W1,p(x)

0 (Ω).

We deduce that u j is bounded. This finishes the proof.
From the fact that {u j} j∈N is a Palais-Smale sequence it follows, by Lemma 4.5, that {u j} j∈N is

bounded in W1,p(x)
0 (Ω). Hence, by The Concentration-Compactness method for variable exponent

(See[9]), we have

|u j|q(x) ⇀ ν = |u|q(x) +
∑

i∈I νiδxi νi > 0,
|∇u j|p(x) ⇀ µ ≥ |∇u|p(x) +

∑
i∈I µiδxi µi > 0,

S ν1/p∗(xi)
i ≤ µ1/p(xi)

i

where S is the best constant in the Gagliardo-Nirenberg-Sobolev inequality for variable exponents,
namely

S := inf
ϕ∈C∞0 (RN )

∥|∇ϕ|∥Lp(x)(RN )

∥ϕ∥Lp∗ (x)(RN )
.

Note that if I = ∅ then u j → u strongly in Lq(x)(Ω). We know that {xi}i∈I ⊂ A := {x : q(x) =
p∗(x)}. We define q−A := infA q(x).

Let us show that if c <
(

1
p+ −

1
q−A

)
S N and {u j} j∈N is a Palais-Smale sequence, with energy level

c, then I = ∅. In fact, suppose that I , ∅. Then let ϕ ∈ C∞0 (RN) with support in the unit ball of RN .
Consider the rescaled functions ϕi,ε(x) = ϕ( x−xi

ε
). As Φ′(u j)→ 0 in (W1,p(x)

0 (Ω))′, we obtain that

lim
j→∞
⟨Φ′(u j), ϕi,εu j⟩ = 0.

On the other hand,

⟨Φ′(u j), ϕi,εu j⟩ =
∫
Ω

|∇u j|p(x)−2∇u j∇(ϕi,εu j) − λ f (x, u j)u jϕi,ε − |u j|q(x)ϕi,ε dx.
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Then, passing to the limit as j→ ∞, we get

0 = lim j→∞
(∫
Ω
|∇u j|p(x)−2∇u j∇(ϕi,ε)u j dx

)
+

∫
Ω
ϕi,ε dµ −

∫
Ω
ϕi,ε dν −

∫
Ω
λ f (x, u)uϕi,ε dx.

By Hölder inequality, it is easy to check that

lim
j→∞

∫
Ω

|∇u j|p(x)−2∇u j∇(ϕi,ε)u j dx = 0.

On the other hand,

lim
ε→0

∫
Ω

ϕi,ε dµ = µiϕ(0), lim
ε→0

∫
Ω

ϕi,ε dν = νiϕ(0)

and
lim
ε→0

∫
Ω

λ f (x, u)uϕi,ε dx = 0.

So, we conclude that (µi − νi)ϕ(0) = 0, i.e, µi = νi. Then,

S ν1/p∗(xi)
i ≤ ν1/p(xi)

i ,

so it is clear that νi = 0 or S N ≤ νi. On the other hand, we consider the δ−tubular neighborhood of
A, namely

Aδ :=
∪
x∈A

(Bδ(x) ∩Ω).

So, as c2 > p+,

c = lim j→∞Φ(u j) = lim j→∞Φ(u j) − 1
p+ ⟨Φ′(u j), u j⟩

= lim j→∞
∫
Ω

(
1

p(x) −
1

p+

)
|∇u j|p(x) dx +

∫
Ω

(
1

p+ −
1

q(x)

)
|u j|q(x) dx

−λ
∫
Ω

F(x, u j) dx + λ
p+

∫
Ω

f (x, u j)u j dx

≥ lim j→∞
∫
Ω

(
1

p+ −
1

q(x)

)
|u j|q(x) dx

≥ lim j→∞
∫
Aδ

(
1

p+ −
1

q(x)

)
|u j|q(x) dx

≥ lim j→∞
∫
Aδ

(
1

p+ −
1

q−Aδ

)
|u j|q(x) dx.

But

lim
j→∞

∫
Aδ

 1
p+
− 1

q−Aδ

 |u j|q(x) dx =

(
1

p+ −
1

q−Aδ

) (∫
Aδ
|u|q(x) dx +

∑
j∈I ν j

)
≥

(
1

p+ −
1

q−Aδ

)
νi

≥
(

1
p+ −

1
q−Aδ

)
S N .

As δ > 0 is arbitrary, and q is continuous, we get

c ≥
(

1
p+
− 1

q−A

)
S N .
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Therefore, if

c <
(

1
p+
− 1

q−A

)
S N ,

the index set I is empty.
Now we are ready to prove the Palais-Smale condition below level c.

Lemma 4.6 Let {u j} j∈N ⊂ W1,p(x)
0 (Ω) be a Palais-Smale sequence, with energy level c. If c <(

1
p+ −

1
q−A

)
S N , then there exist u ∈ W1,p(x)

0 (Ω) and {u jk }k∈N ⊂ {u j} j∈N a subsequence such that u jk → u

strongly in W1,p(x)
0 (Ω).

Proof. We have that {u j} j∈N is bounded. Then, for a subsequence that we still denote {u j} j∈N, u j → u
strongly in Lq(x)(Ω). We define Φ′(u j) := ϕ j. By the Palais-Smale condition, with energy level c, we
have ϕ j → 0 in (W1,p(x)

0 (Ω))′.
By definition ⟨Φ′(u j), z⟩ = ⟨ϕ j, z⟩ for all z ∈ W1,p(x)

0 (Ω), i.e,∫
Ω

|∇u j|p(x)−2∇u j∇z dx −
∫
Ω

|u j|q(x)−2u jz dx −
∫
Ω

λ f (x, u j)z dx = ⟨ϕ j, z⟩.

Then, u j is a weak solution of the following equation.−∆p(x)u j = |u j|q(x)−2u j + λ f (x, u j) + ϕ j =: f jin Ω,
u j = 0on ∂Ω.

(3.4)

We define T : (W1,p(x)
0 (Ω))′ → W1,p(x)

0 (Ω), T ( f ) := u where u is the weak solution of the following
equation. −∆p(x)u = f in Ω,

u = 0on ∂Ω.
(3.5)

Then T is a continuous invertible operator.
It is sufficient to show that f j converges in (W1,p(x)

0 (Ω))′. We only need to prove that |u j|q(x)−2u j →
|u|q(x)−2u strongly in (W1,p(x)

0 (Ω))′. In fact,

⟨|u j|q(x)−2u j − |u|q(x)−2u, ψ⟩ =
∫
Ω

(|u j|q(x)−2u j − |u|q(x)−2u)ψ dx

≤ ∥ψ∥Lq(x)(Ω)∥(|u j|q(x)−2u j − |u|q(x)−2u)∥Lq′(x)(Ω).

Therefore,

∥(|u j|q(x)−2u j − |u|q(x)−2u)∥(W1,p(x)
0 (Ω))′

= sup{ψ∈W1,p(x)
0 (Ω):∥ψ∥

W1,p(x)
0 (Ω)

=1}
∫
Ω

(|u j|q(x)−2u j − |u|q(x)−2u)ψ dx

≤ ∥(|u j|q(x)−2u j − |u|q(x)−2u)∥Lq′ (x)(Ω)

and now, by the Dominated Convergence Theorem this last term goes to zero as j→ ∞.
Now, we can prove the Palais-Smale condition for the restricted functional.
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Lemma 4.7 The functional Φ|Ki satisfies the Palais-Smale condition for energy level c for every

c <
(

1
p+ −

1
q−A

)
S N .

Proof. Let {uk} ⊂ Ki be a Palais-Smale sequence, that isΦ(uk) is uniformly bounded and∇Φ|Ki (uk)→
0 strongly. We need to show that there exists a subsequence uk j that converges strongly in Ki.

Let v j ∈ Tu j W
1,p(x)
0 (Ω) be a unit tangential vector such that

⟨∇Φ(u j), v j⟩ = ∥∇Φ(u j)∥(W1,p(x)
0 (Ω))′ .

Now, by Lemma 4.4, v j = w j + z j with w j ∈ Tu j Mi and z j ∈ span{(u j)+, (u j)−}.
Since Φ(u j) is uniformly bounded, by Lemma 4.2, u j is uniformly bounded in W1,p(x)

0 (Ω) and
hence w j is uniformly bounded in W1,p(x)

0 (Ω). Therefore

∥∇Φ(u j)∥(W1,p(x)
0 (Ω))′ = ⟨∇Φ(u j), v j⟩ = ⟨∇Φ|Ki (u j), v j⟩ → 0.

As w j is uniformly bounded and ∇Φ|Ki (uk)→ 0 strongly, the inequality converges strongly to 0.
Now the result follows by Lema 4.6.

The following lemma now follows easily.

Lemma 4.8 Let u ∈ Ki be a critical point of the restricted functional Φ|Ki . Then u is also a critical
point of the unrestricted functional Φ and hence a weak solution to (1.1).

Proof. To prove the Theorem, we need to check that the functional Φ |Ki verifies the hypotheses
of the Ekeland’s Variational Principle [2]. The fact that Φ is bounded below over Ki is a direct
consequence of the construction of the manifold Ki. Then, by Ekeland’s Variational Principle, there
existe vk ∈ Ki such that

Φ(vk)→ ci := inf
Ki
Φ and (Φ |Ki )

′(vk)→ 0.

We have to check that if we choose λ large, we have that ci <
(

1
p+ −

1
q−A

)
S N ,. This follows easily

from Lemma 4.1. For instance, for c1, we have that choosing w0 ≥ 0, if tλ < 1

c1 ≤ Φ(tλw0) ≤ 1
p−

tp+

λ

∫
Ω

|∇w0|p(x) dx

Hence c1 → 0 as λ → ∞. Moreover, it follows from the estimate of tλ in Lemma 4.1, that ci <(
1

p+ −
1

q−A

)
S n for λ > λ∗(p, q, n, c3). The other cases are similar.

From Lemma 4.7, it follows that vk has a convergent subsequence, that we still call vk. Therefore
Φ has a critical point in Ki, i = 1, 2, 3 and, by construction, one of them is positive, other is negative
and the last one changes sign.
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