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Abstract

This paper is about the existence and some properties of solutions of variational inequalities
associated with the 2nd order inclusion

div[A(x,∇u)] + L ∈ f (x, u) in Ω,

where the lower order term f (x, u) is a general multivalued function. Both coercive and
noncoercive cases are considered. In the noncoercive case, we use a sub-supersolution
approach to study the existence, comparison, and other properties of the solution set such
as its compactness, directedness, and the existence of extremal solutions.
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1 Introduction

We are concerned in this paper with the existence and some properties of the solutions to the follow-
ing inclusion  div[A(x,∇u)] + L ∈ f (x, u) in Ω

u = 0 on ∂Ω,
(1.1)
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or the more general variational inequality


∫
Ω

A(x,∇u)(∇v − ∇u)dx +
∫
Ω

f (x, u)(v − u)dx − ⟨L, v − u⟩ ≥ 0,∀v ∈ K

u ∈ K,
(1.2)

where Ω is an open bounded region in RN (N ≥ 1) with Lipschitz boundary ∂Ω, A : Ω × RN → RN

is an operator of Leray–Lions type, L is a bounded linear functional, and K is a closed convex subset
of a function space of admissible functions. A new feature in (1.1) and (1.2) that we would like to
concentrate here is that f : Ω × R → 2R \ {∅} is a general multivalued function. The lower order
term in (1.2) is thus an integral operator of multivalued functions. The inequality (1.2) is described
in detail in the sequel.

Note that first order ordinary differential inclusions of the form

x′(t) ∈ f (t, x(t)), t ∈ [0,T ],

and related problems in control or viability theory have been studied extensively (cf. e.g. [1, 2,
14, 18] and the rich references therein). Here, we are interested in second order partial differential
inclusions or inequalities. Compared to inclusions based on first order ordinary differential equations
such as above, general inclusions based on second order partial differential equations or inequalities
have been investigated to a lesser extent. On the other hand, problems of the form (1.1) or (1.2) with
f (x, u) = ∂u j(x, u) being Clarke’s generalized gradient of a locally Lipschitz function j(x, u) (with
respect to the second variable) have attracted much attention after the pioneering works of Clarke
and Chang ([12, 13]), see e.g. the monographs [6, 10, 13, 15, 22, 23, 24] and their references. In this
paper, we are concerned with problems such as (1.1) or more generally (1.2) with f being a general
multivalued function without such variational structure (that is, being the derivative of some other
smooth or nonsmooth function even in a certain generalized sense).

We consider problems (1.1) and (1.2) in both coercive and noncoercive cases. Even in the coer-
cive case, the problem seems interesting and has not been studied before from the point of view here.
Moreover, our problem here also serves as an interesting and relevant example for Browder–Hess’
abstract theory of multivalued pseudomonotone operators ([4]), applied to general multivalued inte-
gral operators not necessarily given by Clarke’s generalized gradients (or closely related functions)
as in [24] or [10], which seem so far the only type of examples and applications for Browder–Hess’
theory to boundary value problems. In the noncoercive case, we follow a sub-supersolution approach
to get the existence of solutions and also some qualitative properties of the solution sets between sub-
and supersolutions. As shown in the sequel, although the general ideas of regularization and trunca-
tion in the sub-supersolution method are followed, many new arguments and techniques are needed
in the proofs and calculations in our case of inequalities with general multivalued lower order terms.
Since Clarke’s generalized gradients are upper semicontinuous multivalued functions with closed,
convex values, the existence and comparison theorems and other properties of solutions in the non-
coercive case considered here improve and extend several nonsmooth existence and enclosure results
related to hemivariational and variational-hemivariational inequalities to the case of general multi-
valued lower order terms without nonsmooth potential functionals, therefore complement several of
our results established previously in [7, 9, 8, 10] etc.
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The paper is organized as follows. In Section 2, we present a precise formulation of the problem
together with the necessary assumptions on the involved sets and mappings. Our main theorems and
their preparation are presented in Sections 3 and 4. The coercive case, including the case where the
multivalued lower order term has a “sublinear” growth, is studied in Section 3 where abstract exis-
tence theorems (Theorems 3.1 and 3.3) together with an illustrating example of a unilateral problem
with a mixed Neumann–Dirichlet boundary condition (Theorem 3.7) are considered. Section 4 is
devoted to the noncoercive case. We introduce the concepts of sub- and supersolutions for our prob-
lem and prove a general existence/enclosure result (Theorem 4.2); some further properties of the
solution set such as its compactness and directedness and the existence of extremal solutions are
derived in Corollary 4.3.

2 Assumptions - problem setting
Let A : Ω × RN → RN be a Carathéodory function satisfying the following conditions:

(A1) There exists p ∈ (1,∞) such that

|A(x, ξ)| ≤ b1|ξ|p−1 + a1(x), (2.1)

A(x, ξ)ξ ≥ b2|ξ|p − a2(x), for a.e. x ∈ Ω, all ξ ∈ RN , (2.2)

where b1, b2 > 0, a1 ∈ Lp′(Ω) (p′ is the Hölder conjugate of p), and a2 ∈ L1(Ω),
(A2) A is monotone in the following sense:

[A(x, ξ1) − A(x, ξ2)](ξ1 − ξ2) ≥ 0, for a.e. x ∈ Ω, all ξ1, ξ2 ∈ RN . (2.3)

Due to the growth condition of A, an appropriate choice of our function space is the usual
Sobolev space W1,p(Ω). Suppose K is a closed convex (nonempty) subset of W1,p(Ω).

It is easy to see from (A1)–(A2) that the operatorA : W1,p(Ω)→ [W1,p(Ω)]∗,

⟨A(u), v⟩ =
∫
Ω

A(x,∇u(x))∇v(x)dx, u, v ∈ W1,p(Ω),

is well defined, continuous, bounded, and monotone (⟨·, ·⟩X∗,X denotes the dual pairing between X
and its dual X∗ and ⟨·, ·⟩ = ⟨·, ·⟩[W1,p(Ω)]∗,W1,p(Ω)).

Remark 2.1 (a) The variational (weak) formulation of (1.1) is the inclusion: Find u ∈ W1
0 (Ω) such

that ∫
Ω

A(x,∇u)∇vdx +
∫
Ω

f (x, u)vdx ∋ ⟨L, v⟩, (2.4)

for all v ∈ W1
0 (Ω). (The integral containing the multivalued lower order term f (x, u) and the inclusion

in (2.4) will be defined in a precise way later.) Hence, (1.2) reduces to (1.1) in the particular case
when K = W1,p

0 (Ω).
If K = h + W1,p

0 (Ω) is a linear manifold in W1,p(Ω) (h ∈ W1,p(Ω)) then (1.2) is the nonhomo-
geneous Dirichlet problem of the inclusion in (1.1) with the boundary condition u = h on ∂Ω. In
the case K = {u ∈ W1,p(Ω) : u = 0 on Γ} (Γ is a measurable subset of ∂Ω), (1.2) becomes a mixed
Neumann-Dirichlet boundary value problem which reduces to a Neumann problem when Γ = ∅. If
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K = {u ∈ W1,p(Ω) : u = constant on ∂Ω}, then we obtain a no-flux boundary problem, which is a
multidimensional generalization of the periodic boundary condition for ordinary differential equa-
tions. In general, K is used to describe various obstacle or other unilateral constraints on Ω or its
boundary.

(b) The results hereafter seem new even in the case of Dirichlet or Neumann boundary value
problems, i.e., when the inequality (1.2) is an equation, due to the presence of the multivalued lower
order term.

(c) If a boundary integral term such as
∫
∂Ω

g(x, u)(v−u)dS where g is a multivalued function from
∂Ω × R to 2R is included in the right hand side of (1.2), then the variational inequality can be used
to formulate other boundary conditions, such as nonhomogeneous Neumann or Robin condition, or
a Steklov type problem. In such cases, the obtained results extend those in [21] or [5]. Since the
adding of such terms could be done by combining the arguments and calculations in the sequel with
those in [21], it will not be considered here for the sake of simplicity of presentation.

Assume L is an element of the dual [W1,p(Ω)]∗. Concerning f , we use the notation

K(X) = {A ⊂ X : A , ∅, A is closed and convex},

where X is a normed vector space. Let f be a function from Ω × R to K(R) such that:
(F1) f is graph measurable on Ω×R, that is, Gr( f ) = {(x, u, ξ) ∈ Ω×R×R : ξ ∈ f (x, u)} belongs

to [L(Ω) × B(R)] × B(R), where L(Ω) is the family of Lebesgue measurable subsets of Ω and B(R)
is the σ-algebra of Borel sets in R.

Note that if f is measurable from Ω × R to K(R) in the usual sense, that is f −(W) := {(x, u) ∈
Ω × R : f (x, u) ∩W , ∅} ∈ L(Ω) × B(R) for all W ⊂ R open, then f is graph measurable on Ω × R.

(F2) For a.e. x ∈ Ω, the function f (x, ·) : R → K(R) is upper semicontinuous, that is, for each
u ∈ R and each open U ⊂ R such that f (x, u) ⊂ U, there exists δ > 0 such that if |v − u| < δ then
f (x, v) ⊂ U.

In many places in the sequel, we also need the following growth condition on f :
(F3) There exist q ∈ [1, p∗) (p∗ is the Sobolev conjugate of p) and a3 ∈ Lq′(Ω) (q′ is the Hölder

conjugate of q), b3 ≥ 0 such that

sup{|ξ| : ξ ∈ f (x, u)} ≤ a3(x) + b3|u|q−1, (2.5)

for a.e. x ∈ Ω, all u ∈ R. Note that if (2.5) is assumed then f (x, u) is a compact interval in R,
hence (F2) is equivalent to the Hausdorff upper semicontinuity (h-u.s.c.) of f (x, ·) for a.e. x ∈ Ω (cf.
Theorem 2.68, Chap. 1, [17]).

We are now ready for a precise formulation of (1.2).

Definition 2.2 A function u ∈ K is a solution of (1.2) if there exist q ∈ [1, p∗) and η ∈ Lq′ (Ω) (q′ is
the Hölder conjugate of q) such that

η(x) ∈ f (x, u(x)), for a.e. x ∈ Ω, (2.6)

and ∫
Ω

A(x,∇u)(∇v − ∇u)dx +
∫
Ω

η(v − u)dx − ⟨L, v − u⟩ ≥ 0, ∀v ∈ K. (2.7)
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For 1 ≤ q ≤ p∗, we denote by iq the embedding W1,p(Ω) ↪→ Lq(Ω). If 1 ≤ q < p∗ then iq is
compact. Therefore its adjoint i∗q, which is the projection from Lq′ (Ω) ≡ [Lq(Ω)]∗ to [W1,p(Ω)]∗, is
also compact. Note that iq(u) = u for u ∈ W1,p(Ω), that is, iq(u)(x) = u(x) for a.e. x ∈ Ω. Thus,
to simplify the notation in the sequel, we shall use in many places u instead of iq(u). Similarly, i∗q
is the restriction of elements in Lq′(Ω) ≡ [Lq(Ω)]∗ on the functions in W1,p(Ω), i.e., for η ∈ Lq′(Ω),
i∗q(η) = η|W1,p(Ω),

⟨i∗q(η), v⟩[W1,p(Ω)]∗,W1,p(Ω) = ⟨η, iq(v)⟩Lq′ (Ω),Lq(Ω) =

∫
Ω

ηvdx,∀v ∈ W1,q(Ω). (2.8)

Inequality (1.2) can also be stated as an inclusion as follows. Let IK be the indicator functional
of K, IK : W1,p(Ω)→ [0,∞],

IK(u) =

 0 if u ∈ K

∞ if u < K.

IK is a proper, convex, and lower semicontinuous functional on W1,p(Ω) with effective domain
D(IK) = K. Let ∂IK be the subdifferential of IK (in the sense of Convex Analysis), then (1.2)
could be formulated as the following inclusion: Find u ∈ K such that

A(u) + (i∗q f̃ iq)(u) + ∂IK(u) − L ∋ 0. (2.9)

With the above assumptions, we see that u is a solution of (2.9) if and only if it satisfies (2.6)–
(2.7). In fact, assume u ∈ K satisfies (2.6) and (2.7). From (2.6), we have i∗qη ∈ i∗q f̃ (u) = i∗q f̃ iq(u).
Inequality (2.7) is equivalent to

⟨A(u) + i∗qη − L, v − u⟩ + IK(v) − IK(u) ≥ 0,∀v ∈ W1,p(Ω).

This means that −[A(u) + i∗qη − L] ∈ ∂IK(u), i.e., u satisfies (2.9). On the other hand, if u satisfies
(2.9) then there are η ∈ f̃ (u) and D ∈ ∂IK(u) such that A(u) + i∗qη + D − L = 0. The condition on η
implies (2.6). Since D = −[A(u) + i∗qη − L], and IK(v) − IK(u) ≥ ⟨D, v − u⟩, ∀v ∈ W1,p(Ω), we have
0 ≥ ⟨−[A(u) + i∗qη − L], v − u⟩, ∀v ∈ K. Together with (2.8), we see that (2.7) is satisfied.

Let u be any measurable function on Ω. From (F1), the function f (·, u(·)), x 7→ f (x, u(x)), is also
a measurable function from Ω to K(R). Let f̃ (u) be the set of all measurable selections of f (·, u(·)),
that is,

f̃ (u) = {η : Ω→ R : η is measurable on Ω and η(x) ∈ f (x, u(x)) for a.e. x ∈ Ω} . (2.10)

We know that f̃ (u) , ∅ whenever u is measurable on Ω since f (·, u(·)) is measurable. Moreover,
if the growth condition (2.5) is fulfilled then f̃ (u) ⊂ Lq′(Ω) whenever u ∈ Lq(Ω). Some further
properties of f̃ are given in the next section.

In the following sections, we study the existence and some properties of solutions of (2.9), i.e.
of (2.6)-(2.7).

3 Coercive case
To study the existence of solutions of (2.9) under some coercivity conditions on A, f , and K, we
need the following abstract result, which is a variant of Theorem 4.1 and Proposition 4.1 in [19].
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Theorem 3.1 Let (X, ∥ · ∥) be a reflexive Banach space and T : X → 2X be a multivalued mapping
such that:

(T1) (Condition (pm1), [19] or Condition (a), Definition 1, [4]) For each x ∈ X, T (x) is
nonempty, convex, and closed in X∗.

(T2) (Condition (pm2), [19] or Condition (c), Definition 1, [4]) If {xn} ⊂ X, {x∗n} ⊂ X∗ are
sequences such that x∗n ∈ T (xn), ∀n ∈ N, xn ⇀ x (weakly) in X, and

lim sup⟨x∗n, xn − x⟩ ≤ 0,

then to each y ∈ X, there exists x∗(y) ∈ T (x) such that

lim inf⟨x∗n, xn − y⟩ ≥ ⟨x∗(y), x − y⟩.

(T3) (Condition (pm4), [19]) For each x0 ∈ K, each bounded subset B of X, there exists a
constant N(B, x0) ∈ R such that ⟨x∗, x − x0⟩ ≥ N(B, x0) for all x ∈ B, all x∗ ∈ T (x).

Assume K is a nonempty closed convex subset of X and ϕ : X → R ∪ {∞} is a proper convex,
lower semicontinuous functional such that D(ϕ) ∩ K , ∅. Let f ∈ X∗.

If (T,K, ϕ, f ) has the following coercivity condition: There exists a ∈ D(ϕ) ∩ K such that

lim
x∈K,∥x∥→∞

(
inf

x∗∈T (x)
[⟨x∗ − f , x − a⟩ + ϕ(x)]

)
= ∞, (3.1)

then there exist x0 ∈ K and x∗0 ∈ T (x0) such that

⟨x∗0 − f , x − x0⟩ + ϕ(x) − ϕ(x0) ≥ 0, ∀x ∈ K. (3.2)

Proof. Let R > ∥a∥ and BR = BR(0) = {x ∈ X : ∥x∥ ≤ R} be the closed ball with radius R centered at
0. From Proposition 4.1 of [19], the variational inequality (3.2), restricted to K ∩ BR, has a solution
xR, i.e., there exist xR ∈ K ∩ BR and x∗R ∈ T (xR) such that

⟨x∗R − f , x − xR⟩ + ϕ(x) − ϕ(xR) ≥ 0, ∀x ∈ K ∩ BR. (3.3)

Next, we prove that there exists R > ∥a∥ such that

∥xR∥ < R, (3.4)

where xR is any solution of (3.3). In fact, assume otherwise that ∥xR∥ = R for all solutions xR of
(3.3), all R > ∥a∥. Letting a ∈ K ∩ BR into (3.3) yields

⟨x∗R − f , a − xR⟩ + ϕ(a) − ϕ(xR) ≥ 0,

i.e.,
⟨x∗R − f , xR − a⟩ + ϕ(xR) ≤ ϕ(a),

and thus
lim sup

R→∞
[ inf

x∗∈T (xR)
⟨x∗ − f , xR − a⟩ + ϕ(xR)] ≤ ϕ(a),

contradicting (3.1) since ∥xR∥ = R→ ∞ as R→ ∞.
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Let xR be a solution of (3.3) that satisfies (3.4). Let us show that xR is also a solution of (3.2).
In fact, let x ∈ K. For t > 0 sufficiently small, we have v = xR + t(x − xR) ∈ BR. Moreover,
v = (1 − t)xR + tx ∈ K since x, xR ∈ K. Letting v ∈ BR ∩ K in (3.3) gives

⟨x∗R − f , t(x − xR)⟩ + ϕ((1 − t)xR + tx) − ϕ(xR) ≥ 0.

However,
ϕ((1 − t)xR + tx) − ϕ(xR) ≤ t[ϕ(x) − ϕ(xR)],

and thus t[⟨x∗R − f , x − xR⟩ + ϕ(x) − ϕ(xR)] ≥ 0. Since t > 0, this gives us (3.2) with x0 = xR. 2

Remark 3.2 (a) If

lim
∥x∥→∞,x∈K

(
inf

x∗∈T (x)

⟨x∗, x − a⟩ + ϕ(x)
∥x∥

)
= ∞,

then (3.1) is satisfied for all f ∈ X∗. Hence, Theorem 3.1 implies Theorem 4.1, [19].
(b) Since ϕ + IK is convex, the subdifferential ∂(ϕ + IK) : X → 2X∗ is maximal monotone. The

variational inequality above can be written equivalently as the following inclusion for multivalued
operators: Find x0 ∈ X such that

T (x0) + ∂(ϕ + IK)(x0) ∋ f .

Theorem 3.1 does not follow from existence theorems for multivalued pseudomonotone perturba-
tions of maximal monotone operators such as Theorem 7 in [4], Theorem 3.2 in [19], or Theorems
2.11 and 2.12 in [24]. In those cited theorems, the coercivity conditions are solely on the pseu-
domonotone operators and not on the combinations of the pseudomonotone operators and maximal
monotone operators (or convex functionals) as considered in Theorem 3.1. Such combined coerciv-
ity conditions for variational inequalities or equalities are particularly relevant for boundary value
problems with principal terms given by Leray–Lions type operators and lower order terms given by
Niemytskii operators associated with some functions.

As an example, the p-Laplace equation with

⟨T (u), v⟩ =
∫
Ω

[|∇u|p−2∇u∇v + f (x, u)v]dx,

with sublinear lower order term f (x, u) with | f (x, u)| ≤ a1 + b1|u|α, 0 ≤ α < p − 1, is coercive
in the sense of (3.1) on the linear manifold K = h + W1,p

0 (Ω), T is a pseudomonotone operator on
X = W1,p(Ω), but is not coercive on X = W1,p(Ω).

(c) As noted in [19], if T satisfied (T1), (T2), and (T3) (i.e, (pm1), (pm2), and (pm4) in [19]) then
T is pseudomonotone (the definition of multivalued pseudomonotonicity in [4] consists of (T1)-(T2)
and the weak upper semicontinuity of T on finite dimensional subspaces of X). On the other hand,
if T is monotone with D(T ) = X or if T is bounded then T satisfies (T3). Therefore, for bounded
operators, the combination (T1)-(T2)-(T3) above is equivalent to the pseudomonotonicity of T .

We have the following existence result for (2.9), or equivalently (2.6)-(2.7), under certain coer-
civity condition.
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Theorem 3.3 Assume f satisfies (F1)-(F2)-(F3) and there exists u0 ∈ K such that

lim
∥u∥W1,p (Ω)→∞,u∈K

{
inf
η∈ f̃ (u)

∫
Ω

[A(x,∇u)(∇u − ∇u0) + η(u − u0)]dx − ⟨L, u − u0⟩
}
= ∞, (3.5)

or equivalently,∫
Ω

[A(x,∇u)(∇u − ∇u0) + η(u − u0)]dx − ⟨L, u − u0⟩ ≥ c(∥u∥W1,p(Ω)), (3.6)

for all u ∈ K, all η ∈ f̃ (u), where c : [0,∞) → R, c(r) → ∞ as r → ∞. Then, (2.6)-(2.7) has a
solution.

Some properties of f̃ are need for the proof of Theorem 3.3.

Lemma 3.4 Under assumptions (F1)-(F2)-(F3), if u ∈ Lq(Ω) then, f̃ (u) is a bounded, closed, and
convex subset of Lq′(Ω); in particular, f̃ (u) ∈ K(Lq′(Ω)). Moreover, f̃ is a bounded mapping from
Lq(Ω) to K(Lq′(Ω)).

Proof. The convexity of f̃ (u) follows from the fact that f (x, u) is a closed interval in R. Let η ∈ f̃ (u).
From (2.5),

|η(x)| ≤ a3(x) + b3|u(x)|q−1, a.e. x ∈ Ω. (3.7)

Since |u|q−1 ∈ Lq′(Ω) due to u ∈ Lq(Ω), we have the boundedness of f̃ (u) in Lq′ (Ω). Inequality (3.7)
also proves that if W is a bounded set in Lq(Ω) then f̃ (W) =

∪
u∈W f̃ (u) is a bounded set in Lq′ (Ω),

that is, f̃ is a bounded operator from Lq(Ω) to 2Lq′ (Ω).
To verify that f̃ (u) is closed in Lq′(Ω), let {ηn} be a sequence in f̃ (u) such that ηn → η in Lq′ (Ω).

By passing to a subsequence, we can assume without loss of generality that ηn(x) → η(x) for a.e.
x ∈ Ω. Since ηn(x) ∈ f (x, u(x)) for a.e. x ∈ Ω, all n ∈ N, and f (x, u(x)) is closed in R, we have
η(x) ∈ f (x, u(x)). Since this holds for a.e. x ∈ Ω, we have η ∈ f̃ (u), which proves the closedness of
f̃ (u) in Lq′(Ω). 2

Another property of f̃ (u) is given in the following lemma.

Lemma 3.5 Under assumptions (F1)-(F2)-(F3), f̃ is Hausdorff upper semicontinuous (h-u.s.c.)
from Lq(Ω) to K(Lq′ (Ω)), that is, for each u0 ∈ Lq(Ω), the function

u 7→ h∗Lq′ (Ω)( f̃ (u), f̃ (u0)) (3.8)

is continuous at u0, where

h∗Lq′ (Ω)(A, B) = sup
u∈A

(
inf
v∈B
∥u − v∥Lq′ (Ω)

)
, (3.9)

for A, B ⊂ Lq′ (Ω).

This property of f̃ is given in Theorem 7.26, [17]. We only note a small misprint in the condition
related to a(·) in the statement of that theorem.

The following lemma is crucial for the proof of Theorem 3.3 as well as later developments.
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Lemma 3.6 If f satisfies condition (F3) then the operator i∗q f̃ iq is pseudomonotone and bounded
from W1,p(Ω) to K([W1,p(Ω)]∗).

Proof. We first check that i∗q f̃ iq is weakly closed from W1,p(Ω) into 2W1,p(Ω) \ {∅}, that is, if {un} and
{ηn} are sequences in W1,p(Ω) and [W1,p(Ω)]∗ respectively such that

un ⇀ u (weakly) in W1,p(Ω), (3.10)

ηn ⇀ η (weakly) in [W1,p(Ω)]∗, (3.11)

and
ηn ∈ i∗q f̃ iq(un), ∀n ∈ N, (3.12)

then,
η ∈ i∗q f̃ iq(u). (3.13)

In fact, assume (3.10)-(3.12). As noted in (2.8), iq(un) = un and i∗q(ηn) = ηn|W1,p(Ω). From (3.12),
for each n, there exists η̃n ∈ f̃ i(un) = f̃ (un) such that ηn = i∗q(η̃n) = η̃n|W1,p(Ω). From (3.10) and the
compactness of iq, we have

un = iq(un)→ iq(u) = u (strongly) in Lq(Ω). (3.14)

Hence, from the h-upper semicontinuity of f̃ from Lq(Ω) to K(Lq′(Ω)) (cf. Lemma 3.5), we have

h∗( f̃ (un), f̃ (u))→ 0, (3.15)

where h∗ is given in (3.9). Since η̃n ∈ f̃ (un),

inf
v∈ f̃ (u)

∥η̃n − v∥Lq′ (Ω) ≤ h∗( f̃ (un), f̃ (u)).

Hence, infv∈ f̃ (u) ∥η̃n − v∥Lq′ (Ω) → 0 as n→ ∞, and there exists a sequence {η∗n} ⊂ f̃ (u) such that

lim
n→∞
∥η̃n − η∗n∥Lq′ (Ω) = 0. (3.16)

Since {η∗n} ⊂ f̃ (u) and f̃ (u) is a bounded subset of Lq′ (Ω), by passing to a subsequence if necessary,
we can assume that

η∗n ⇀ η0 (weakly) in Lq′(Ω) (3.17)

for some η0 ∈ Lq′(Ω). As f̃ (u) is closed and convex in Lq′(Ω), it is weakly closed there; thus
η0 ∈ f̃ (u) as a consequence of (3.17). Hence, (3.16) and (3.17) imply that

η̃n ⇀ η0 (weakly) in Lq′(Ω). (3.18)

Since i∗q : Lq′(Ω) → [W1,q(Ω)]∗ is continuous (in the strong topologies), it is also continuous in
the weak topologies of both Lq′(Ω) and [W1,q(Ω)]∗. From (3.18),

ηn = i∗q(η̃n) = η̃n|W1,p(Ω) ⇀ i∗q(η0) = η0|W1,p(Ω) (3.19)

weakly in [W1,p(Ω)]∗. From (3.11) and (3.19), we have η = i∗q(η0) ∈ i∗q f̃ (u) since ηn ⇀ η and
ηn ⇀ i∗q(η0) both in the sense of distribution. (3.13) is thus proved, which completes our proof of the
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weakly closed property of i∗q f̃ iq. As a direct consequence of this closedness, we see that (i∗q f̃ iq)(u)
is closed in [W1,p(Ω)]∗.

The above arguments show that for each u ∈ W1,p(Ω), (i∗q f̃ iq)(u) ∈ K([W1,p(Ω)]∗). Moreover,
since i∗q is linear and bounded, i∗q f̃ iq is a bounded operator from W1,p(Ω) to K([W1,p(Ω)]∗) from the
corresponding property of f̃ from Lq(Ω) to K(Lq′ (Ω)). In particular, i∗q f̃ iq(u) is a bounded, closed,
and nonempty convex subset of [W1,p(Ω)]∗.

Next, we check that if {un} ⊂ W1,p(Ω), {ηn} ⊂ [W1,p(Ω)]∗ are sequences satisfying (3.10)-(3.12)
then

⟨ηn, un⟩[W1,p(Ω)]∗,W1,p(Ω) → ⟨η, u⟩[W1,p(Ω)]∗,W1,p(Ω). (3.20)

Let {η̃n} and η0 be as above. We have

⟨ηn, un⟩[W1,p(Ω)]∗,W1,p(Ω) = ⟨η̃n|W1,p(Ω), un⟩[W1,p(Ω)]∗,W1,p(Ω)

= ⟨i∗q(η̃n), un⟩[W1,p(Ω)]∗,W1,p(Ω)

= ⟨η̃n, iq(un)⟩Lq′ (Ω),Lq(Ω) = ⟨η̃n, un⟩Lq′ (Ω),Lq(Ω).

(3.21)

From (3.14) and (3.18),

⟨η̃n, un⟩Lq′ (Ω),Lq(Ω) → ⟨η0, u⟩Lq′ (Ω),Lq(Ω) = ⟨η0, iq(u)⟩Lq′ (Ω),Lq(Ω)

= ⟨i∗q(η0), u⟩[W1,p(Ω)]∗,W1,p(Ω)

= ⟨η, u⟩[W1,p(Ω)]∗,W1,p(Ω).

This limit, together with (3.21), proves (3.20).
The weakly closed property of i∗q f̃ iq and (3.20) show that i∗q f̃ iq is generalized pseudomonotone

(cf. [4]) which together with its boundedness, implies that i∗q f̃ iq is pseudomonotone from W1,p(Ω)
to its dual [W1,p(Ω)]∗ (cf. Proposition 4 and Definitions 1 and 2 in [4]). 2

Proof of Theorem 3.3. Let T : W1,p(Ω)→ 2[W1,p(Ω)]∗ , T (u) = A(u) + (i∗q f̃ iq)(u). From (A1)-(A2), we
see thatA is a (singlevalued) monotone and bounded operator from W1,p(Ω) to [W1,p(Ω)]∗.

From Proposition 8 in [4], A is pseudomonotone (and bounded) on W1,p(Ω). From Lemma
3.6, i∗q f̃ iq is bounded and pseudomonotone. Hence, from Proposition 9 in [4], T = A + i∗q f̃ iq is a
multivalued pseudomonotone and bounded operator from W1,p(Ω) to K([W1,p(Ω)]∗). As noted in
Remark 3.2 (c), T satisfies conditions (T1)-(T3) in Theorem 3.1 with X = W1,p(Ω). Letting ϕ = 0
and f = L ∈ X∗, we see that condition (3.5) (or equivalently (3.6)) is the same as condition (3.1) in
our setting here. Also, in this setting (3.2) is the same as inequality (2.7). 2

As an illustrating consequence of the above abstract theorem, let us prove an existence result for
a mixed nonhomogeneous Dirichlet problem with “sublinear” multivalued lower order term. Let Γ
be a nonempty open subset of ∂Ω and

W1,p
Γ
= {u ∈ W1,p(Ω) : u|∂Ω(x) = 0 for a.e. x ∈ Γ}.

Also, let h ∈ W1,p(Ω) and let K be a nonempty closed convex subset of h + W1,p
Γ

. We have the
following existence theorem for (2.7).
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Theorem 3.7 Assume f satisfies (F1)-(F2) and (2.5) with

1 ≤ q < p. (3.22)

Then there exist u (and η) that satisfy (2.6)-(2.7).

Proof. Poincaré’s inequality implies that there exists C0 > 0 such that

∥ |∇u| ∥Lp(Ω) ≥ C0∥u∥Lp(Ω), ∀u ∈ W1,p
Γ
. (3.23)

Therefore, there exists C1 > 0 such that

∥ |∇u| ∥Lp(Ω) ≥ C1∥u∥W1,p(Ω), ∀u ∈ W1,p
Γ
.

Let u0 be a (fixed) element of K. We have from (2.2) that∫
Ω

A(x,∇u)∇udx ≥ b2∥ |∇u| ∥pLp(Ω) − ∥a2∥L1(Ω). (3.24)

Since u − u0 ∈ W1,p
Γ

and |∇u| ≥ | |∇(u − u0)| − |∇u0| | a.e. on Ω, we have

∥ |∇u| ∥Lp(Ω) ≥ ∥ |∇(u − u0)| − |∇u0| ∥Lp(Ω)

≥ C1∥u − u0∥W1,p(Ω) − ∥ |∇u0| ∥Lp(Ω)

≥ C1∥u∥W1,p(Ω) −C2,

where C2 = C1∥u0∥W1,p(Ω) + ∥ |∇u0| ∥Lp(Ω). If ∥u∥W1,p(Ω) ≥
2C2

C1
then

C1

2
∥u∥W1,p(Ω) ≥ C2 and thus

∥ |∇u| ∥Lp(Ω) ≥
C1

2
∥u∥W1,p(Ω) and ∫

Ω

A(x,∇u)∇udx ≥ C3∥u∥pW1,p(Ω), (3.25)

for all u ∈ W1,p
Γ

, ∥u∥W1,p(Ω) ≥
2C2

C1
, where C3 = b2

(C1

2

)p

. (Here and in the next estimates, Ck stands

for a generic constant that does not depend on u ∈ W1,p
Γ

.) On the other hand, it follows from (2.1)
that ∫

Ω

A(x,∇u)∇u0dx

≤ b1

∫
Ω

|∇u|p−1|∇u0|dx +
∫
Ω

a1(x)|∇u0|dx

≤ b1∥ |∇u| ∥p−1
Lp(Ω)∥ |∇u0| ∥Lp(Ω) + ∥a1∥Lp′ (Ω)∥ |∇u0| ∥Lp(Ω)

≤ C4(∥u∥p−1
W1,p(Ω) + 1).

(3.26)

Using (2.5), we have for all u ∈ W1,p
Γ

, all η ∈ f̃ (u),∫
Ω

η(u − u0)dx ≤
∫
Ω

(a3 + b3|u|q−1)(|u| + |u0|)dx

≤ ∥a3∥Lq′ (Ω)∥u∥Lq(Ω) + b3∥u∥qLq(Ω) + b3∥u∥q−1
Lq(Ω)∥u0∥Lq(Ω)

+∥a3∥Lq′ (Ω)∥u0∥Lq(Ω)

≤ C5(∥u∥W1,p(Ω) + ∥u∥qW1,p(Ω) + ∥u∥
q−1
W1,p(Ω) + 1).

(3.27)
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Lastly,

|⟨L, u − u0⟩| ≤ ∥L∥[W1,p(Ω)]∗(∥u∥W1,p(Ω) + ∥u0∥W1,p(Ω))

≤ C6(∥u∥W1,p(Ω) + 1).
(3.28)

Combining (3.25)-(3.28), we see that∫
Ω

[A(x,∇u)(∇u − ∇u0) + η(u − u0)]dx − ⟨L, u − u0⟩

≥ C3∥u∥pW1,p(Ω) −C7

(
∥u∥p−1

W1,p(Ω) + ∥u∥W1,p(Ω) + ∥u∥qW1,p(Ω) + ∥u∥
q−1
W1,p(Ω) + 1

)
,

for all u ∈ K with ∥u∥W1,p(Ω) ≥
2C2

C1
.

Since q < p and p > 1, this estimate immediately gives us (3.5) (or (3.6)), which in view of
Theorem 3.3, ensures the existence of solutions of (2.6)-(2.7). 2

4 Noncoercive case - sub-supersolution method
In cases where the coercivity condition (3.5) (or the growth condition (3.22)) is not satisfied then
(2.6)-(2.7) may not have solutions. However, if sub- and supersolutions of (2.6)-(2.7), in a cer-
tain appropriate sense, exist and f only satisfies some local growth condition, then we still get the
solvability of (2.6)-(2.7), together with other qualitative properties of their solutions.

Definition 4.1 A function u ∈ W1,p(Ω) is a subsolution of (1.2), or more precisely of (2.6)-(2.7), if
there exists q ∈ [1, p∗) and η ∈ Lq′ (Ω) such that

η(x) ∈ f (x, u(x)) for a.e. x ∈ Ω, (4.1)

(i.e., η ∈ Lq′ (Ω) ∩ f̃ (u)) such that∫
Ω

A(·,∇u)(∇v − ∇u)dx +
∫
Ω

η(v − u)dx − ⟨L, v − u⟩ ≥ 0, (4.2)

for all v ∈ u ∧ K := {u ∧ w = min{u,w} : w ∈ K}.
Similarly, u ∈ W1,p(Ω) is a supersolution of (2.6)-(2.7) if there is q ∈ [1, p∗) and

η ∈ Lq′ (Ω) ∩ f̃ (u) (4.3)

such that ∫
Ω

A(·,∇u)(∇v − ∇u)dx +
∫
Ω

η(v − u)dx − ⟨L, v − u⟩ ≥ 0, (4.4)

for all v ∈ u ∨ K := {u ∨ w = max{u,w} : w ∈ K}.

We have the following general existence and enclosure/comparison theorem for (2.7) when sub-
and supersolutions exist.
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Theorem 4.2 Let A and f satisfy (A1)-(A2)-(A3) and (F1)-(F2). Assume there are subsolutions ui,
i = 1, . . . , k, and supersolutions u j, j = 1, . . . ,m, of (2.6)-(2.7) such that

u := max{ui : 1 ≤ i ≤ k} ≤ u := min{u j : 1 ≤ j ≤ m}, (4.5)

and
ui ∨ K ⊂ K, u j ∧ K ⊂ K,∀i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}. (4.6)

Suppose f satisfies the following local growth condition: There exist q ∈ [1, p∗) and a4 ∈ Lq′(Ω)
such that

sup{|ξ| : ξ ∈ f (x, u)} ≤ a4(x), (4.7)

for a.e. x ∈ Ω, all u ∈ [u(x), u(x)].
Then, there exists a solution u of (2.6)-(2.7) such that

u ≤ u ≤ u a.e. on Ω. (4.8)

Proof. Note that the numbers q ∈ [1, p∗) in the definition of ui and u j and in the growth condition
(4.7) may be different. However, the conditions in the definition of sub- and supersolutions in
Definition 4.1 and in (4.7) still hold if q is replaced by q0 with 1 ≤ q ≤ q0 < p∗ (thus ∞ ≥ q′ ≥
q′0). Hence, by replacing such numbers q’s in the definitions of ui and u j and in (4.7) by their
greatest value (which still is in the interval [1, p∗)), we can assume without loss of generality and
for simplicity of notation that we have the same number q in (4.7) and in the conditions of η

i
and η j,

where η
i
and η j are the measurable selections of f (·, ui) and f (·, u j) in Definition 4.1.

We use the usual truncation-regularization method with some essential modifications and ex-
tensions for multivalued functions, as seen below. As noted above, for each i ∈ {1, . . . , k} (resp.
j ∈ {1, . . . ,m}), η

i
(resp. η j) is a function in Lq′(Ω) satisfying (4.1) and (4.2) with η

i
instead

of η (resp. (4.3) and (4.4) with η j instead of η). We construct families {Ωi : 1 ≤ i ≤ k} and
{Ω j : 1 ≤ j ≤ m} of subsets of Ω inductively as follows. Let Ω1 = {x ∈ Ω : u(x) = u1(x)}, and

Ωi =

x ∈ Ω \
i−1∩
l=1

Ωl : u(x) = ui(x)

 for i = 2, . . . , k. Similarly, let Ω1 = {x ∈ Ω : u(x) = u1(x)},

and Ω j =

x ∈ Ω \
j−1∩
l=1

Ωl : u(x) = u j(x)

 for j = 2, . . . ,m. It is clear that Ωi(1 ≤ i ≤ k) (resp.

Ω j(1 ≤ j ≤ m)) are disjoint measurable subsets of Ω and

Ω =

k∪
i=1

Ωi =

m∪
j=1

Ω j.

Let us define

η =

k∑
i=1

η
i
χΩi and η =

m∑
j=1

η jχΩ j ,

where χA (A ⊂ Ω) is the characteristic function of A. From their definitions, we see that η, η ∈
Lq′ (Ω). Moreover, since η(x) = η

i
(x) and u(x) = ui(x) for a.e. x ∈ Ωi (1 ≤ i ≤ k), we have

η(x) ∈ f (x, u(x)) for a.e. x ∈ Ω. (4.9)
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Similarly, η(x) ∈ f (x, u(x)) for a.e. x ∈ Ω.
Next, we define the truncated function for f (x, u). Let f0 : Ω × R→ 2R be given by

f0(x, u) =


{η(x)} if u < u(x)

f (x, u) if u(x) ≤ u ≤ u(x)

{η(x)} if u > u(x).

(4.10)

Then, f0 satisfies (F1) and (F2). In fact, we first note that

Gr( f0) = {(x, u, ξ) ∈ Ω × R × R : ξ ∈ f0(x, u)}
=

[{(x, u, ξ) ∈ Ω × R × R : u > u(x)} ∩ {(x, u, ξ) ∈ Ω × R × R : ξ = η(x)}]
∪[{(x, u, ξ) ∈ Ω × R × R : u < u(x)} ∩ {(x, u, ξ) ∈ Ω × R × R : ξ = η(x)}]
∪[{(x, u, ξ) ∈ Ω × R × R : u ≥ u(x)} ∩ {(x, u, ξ) ∈ Ω × R × R : u ≤ u(x)}
∩{(x, u, ξ) ∈ Ω × R × R : ξ ∈ f (x, u)}].

All sets in the right hand side belong to L(Ω) × B(R) × B(R) (the last set does because f satisfies
condition (F1), the other sets are inL(Ω)×B(R)×B(R) thanks to the fact that Carathéodory functions
are jointly measurable). Therefore Gr( f0) ∈ L(Ω) × B(R) × B(R), i.e. f0 satisfies (F1).

To verify that (F2) holds for f0, let x be any point in Ω such that η(x) ∈ f (x, u(x)) and η(x) ∈
f (x, u(x)) (note that the set of all x ∈ Ω not satisfying these inclusions has measure 0 by (4.9)). We
show that the function f0(x, ·) : R → R is u.s.c. at each u ∈ R. Assume W is an open set in R such
that f0(x, u) ⊂ W.

If u > u(x) then f0(x, u) = η(x) ∈ W. Let δ ∈ (0, u − u(x)). If v ∈ R, |v − u| < δ then v > u(x)
and thus f0(x, v) = η(x) ∈ W. Hence, f0(x, ·) is u.s.c. at u. Similar arguments show the upper
semicontinuity of f0(x, ·) at every u ∈ (−∞, u(x)). Assume now that u ∈ [u(x), u(x)]. By the upper
semicontinuity of f (x, ·) at u assumed in (F2), there exists δ > 0 such that f (x, v) ⊂ W for any
v ∈ (u − δ, u + δ). For such δ and v, we have three possibilities: (i) v ∈ [u(x), u(x)], (ii) v > u(x), and
(iii) v < u(x). In case (i), we have f0(x, v) = f (x, v) ⊂ W. In case (ii), we have f0(x, v) = {η(x)}. Since
u ≤ u(x) < v and |u−v| = v−u < δ, one has |u(x)−u| = u(x)−u < v−u < δ, and thus from the choice
of δ, f (x, u(x)) ⊂ W. However, since η(x) ∈ f (x, u(x)), we have f0(x, v) = {η(x)} ⊂ f (x, u(x)) ⊂ W.
Similar proofs show that in case (iii), f0(x, v) = {η(x)} ⊂ f (x, u(x)) ⊂ W if |v − u| < δ and v < u(x).
We have shown that in all cases, f0(x, v) ⊂ W whenever |v − u| < δ. The upper semicontinuity of
f0(x, ·) at u when u(x) ≤ u ≤ u(x) and therefore in all cases is proved. We have checked that f0
satisfies (F2).

Next, it follows from (4.7) and (4.10) that

sup{|ξ| : ξ ∈ f0(x, u)} ≤ a4(x) + |η(x)| + |η(x)|, (4.11)

for a.e. x ∈ Ω, all u ∈ R, where a4 + |η| + |η| ∈ Lq′(Ω). Hence, f0 satisfies (2.5) in (F3) with
a3 = a4 + |η| + |η| and b3 = 0.
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As in the singlevalued case, we also need the following regularization function b : Ω × R→ R,

b(x, u) =


[u − u(x)]p−1 if u > u(x)

0 if u(x) ≤ u ≤ u(x)

−[u(x) − u]p−1 if u < u(x), for x ∈ Ω, u ∈ R.

(4.12)

We see that b is a Carathéodory function and since u, u ∈ Lp(Ω),

|b(x, u)| ≤ a5(x) + b5|u|p−1, (x ∈ Ω, u ∈ R), (4.13)

with a5 ∈ Lp′ (Ω), b5 > 0, and∫
Ω

b(x, u)udx ≥ b6∥u∥pLp(Ω) − a6, ∀u ∈ Lp(Ω), (4.14)

a6, b6 > 0 (see e.g. [20, 10]). Let B : Lp(Ω)→ Lp′ (Ω) = [Lp(Ω)]∗ be given by

⟨B(u), v⟩Lp′ (Ω),Lp(Ω) =

∫
Ω

b(·, u)vdx, ∀u, v ∈ Lq(Ω).

Estimate (4.13) shows that B is well defined and is a bounded continuous operator from Lp(Ω) to
Lp′(Ω). Let us verify that i∗pBip is a (single-valued) pseudomonotone operator from W1,p(Ω) to its
dual. In fact, assume un ⇀ u weakly in W1,p(Ω). We have un = iq(un)→ iq(u) = u strongly in Lp(Ω).
Estimate (4.13), together with usual convergence arguments based on the Lebesgue dominated con-
vergence theorem, implies that B(un) → B(u) in Lp′ (Ω). In particular, ⟨B(un), un − v⟩Lp′ (Ω),Lp(Ω) →
⟨B(u), u − v⟩Lp′ (Ω),Lp(Ω),∀v ∈ Lp(Ω), and thus, for all v ∈ W1,p(Ω),

⟨i∗pBip(un), un − v⟩[W1,p(Ω)]∗,W1,p(Ω) = ⟨B(un), un − v⟩Lp′ (Ω),Lp(Ω)

→ ⟨B(u), u − v⟩Lp′ (Ω),Lp(Ω)

= ⟨i∗pBip(u), u − v⟩[W1,p(Ω)]∗,W1,p(Ω).

Next, let us define certain truncation functions needed for the regularization of the involved
setvalued mappings. For i ∈ {1, . . . , k}, let Ti(x, u) be a Carathéodory function such that for x ∈ Ω,
u ∈ R,

Ti(x, u) =

 |ηi
(x) − η(x)| if u ≤ ui(x)

0 if u ≥ u(x),
(4.15)

and
0 ≤ Ti(x, u) ≤ |η

i
(x) − η(x)|, for a.e. x ∈ Ω, all u ∈ R. (4.16)

A simple choice of such function is

Ti(x, u) = |η
i
(x) − η(x)|σ

(
u − ui(x)

u(x) − ui(x)

)
, (4.17)
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for x ∈ Ω, u ∈ R, where σ ∈ C(R,R), 0 ≤ σ(s) ≤ 1,∀s ∈ R, σ(s) = 1 if s ≤ 0, and σ(s) = 0 if s ≥ 1.
σ can be simply chosen as

σ(s) =


1, s ≤ 0

1 − s, 0 ≤ s ≤ 1

0, s ≥ 1.

(4.18)

It is clear that Ti given by (4.17)-(4.18) is a Carathéodory function satisfying (4.15) and (4.16).
Similarly, for j = 1, . . . ,m, we define T j : Ω × R→ R by

T j(x, u) = |η j(x) − η(x)|
[
1 − σ

(
u − u(x)

u j(x) − u(x)

)]
. (4.19)

T j is a Carathéodory function with

T j(x, u) =

 |η j(x) − η(x)| if u ≥ u j(x)

0 if u ≤ u(x),
(4.20)

and similarly to (4.16),

0 ≤ T j(x, u) ≤ |η j − η(x)|, for a.e. x ∈ Ω, all u ∈ R. (4.21)

Consequently,
Ti(·, u),T j(·, u) ∈ Lq′(Ω),∀u ∈ Lq(Ω), (4.22)

and Ti : u 7→ Ti(·, u), T j : u 7→ T j(·, u) are bounded operators from Lq(Ω) to Lq′(Ω). Using standard
convergence arguments based on Lebesgue’s dominated convergence theorem and the growths in
(4.16) and (4.21), we see that Ti,T j (1 ≤ i ≤ k, 1 ≤ j ≤ m) are also continuous from Lq(Ω) to Lq′ (Ω).
Hence, i∗qTiiq and i∗qT jiq are completely continuous and are thus (singlevalued) pseudomonotone
operators from W1,p(Ω) to [W1,p(Ω)]∗.

Let us consider the following auxiliary variational inequality of (2.7): Find u ∈ K, η ∈ Lq(Ω)
such that

η(x) ∈ f0(x, u(x)) a.e. x ∈ Ω and (4.23)∫
Ω

A(x,∇u)(∇v − ∇u)dx +
∫
Ω

η(x)(v − u)dx +
∫
Ω

b(x, u)(v − u)dx

−
k∑

i=1

∫
Ω

Ti(x, u)(v − u)dx +
m∑

j=1

∫
Ω

T j(x, u)(v − u)dx − ⟨L, v − u⟩

≥ 0, ∀v ∈ K.

(4.24)

This inequality is equivalent to finding u ∈ K and η̃ ∈ (i∗q f̃0iq)(u) (η̃ = i∗qηiq, η as in (4.23)) such that

⟨
A(u) + η̃ + (i∗pBip)(u) −

k∑
i=1

(i∗qTiiq)(u) +
m∑

j=1

(i∗qT jiq)(u) − L, v − u
⟩
≥ 0,∀v ∈ K. (4.25)
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This inequality is of the form (3.2) with f = L, ϕ = 0, X = W1,p(Ω), and T : X → 2X∗ ,

T = A + i∗q f̃ iq + i∗pBip −
k∑

i=1

(i∗qTiiq) +
m∑

j=1

(i∗qT jiq). (4.26)

Note that among the components of T , only i∗q f̃ iq is multivalued. Since all the components of T are
pseudomonotone from W1,p(Ω) to its dual, so is T .

Next, we check that the operators in (4.25) satisfy the coercivity condition (3.1). Letting u0 be
any (fixed) element of K, we have∫

Ω

A(x,∇u)∇udx ≥ b2∥ |∇u| ∥pLp(Ω) − ∥a2∥L1(Ω), (4.27)

and ∣∣∣∣∣∫
Ω

A(x,∇u)∇u0dx
∣∣∣∣∣ ≤ ∫

Ω

(
b1|∇u|p−1 + a1

)
|∇u0|dx

≤ b1∥ |∇u| ∥p−1
Lp(Ω)∥ |∇u0| ∥Lp(Ω) + ∥a1∥Lp′ (Ω)∥ |∇u0| ∥Lp(Ω)

≤ C1∥u∥p−1
W1,p(Ω) +C2.

(4.28)

As above, here and in the next estimates Ck’s stand for positive constants that do not depend on
u ∈ W1,p(Ω). From (4.11), for any η̃ ∈ (i∗q f̃0iq)(u),

|⟨η̃, u − u0⟩| ≤ (∥a4∥Lq′ (Ω) + ∥η∥Lq′ (Ω) + ∥η∥Lq′ (Ω))(∥u∥Lq(Ω) + ∥u0∥Lq(Ω))

≤ C3∥u∥W1,p(Ω) +C4.
(4.29)

From (4.13) and (4.14),

⟨(i∗pBip)(u), u − u0⟩ =
∫
Ω

b(x, u)(u − u0)dx

≥ b6∥u∥pLp(Ω) − a6 − ∥a5∥Lp′ (Ω)∥u0∥Lp(Ω) − b5∥u∥p−1
Lp(Ω)∥u0∥Lp(Ω)

≥ b6∥u∥pLp(Ω) −C5∥u∥p−1
W1,p(Ω) −C6.

(4.30)

From (4.16), for i ∈ {1, . . . , k},

|⟨(i∗qTiiq)(u), u − u0⟩| =
∣∣∣∣∣∫
Ω

Ti(·, u)(u − u0)dx
∣∣∣∣∣

≤ ∥η
i
− η∥Lq′ (Ω)∥u∥Lq(Ω) + ∥ηi

− η∥Lq′ (Ω)∥u0∥Lq(Ω).

Hence,
k∑

i=1

|⟨(i∗qTiiq)(u), u − u0⟩| ≤ C7∥u∥W1,p(Ω) +C8. (4.31)

Similarly,
m∑

j=1

|⟨(i∗qT jiq)(u), u − u0⟩| ≤ C9∥u∥W1,p(Ω) +C10. (4.32)
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Finally,
|⟨L, u − u0⟩| ≤ ∥L∥[W1,p(Ω)]∗∥u∥W1,p(Ω) + ∥L∥[W1,p(Ω)]∗∥u0∥W1,p(Ω). (4.33)

Combining the estimates from (4.27) to (4.33) shows that for any u ∈ W1,p(Ω) and u∗ ∈ T (u), that
is,

u∗ =
[
A + i∗pBip −

k∑
i=1

(i∗qTiiq) +
m∑

j=1

(i∗qT jiq)
]
(u) + η̃

with η̃ ∈ (iq f̃ iq)(u), we always have

⟨u∗ − L, u − u0⟩ ≥ b2∥ |∇u| ∥pLp(Ω) + b6∥u∥pLp(Ω) −C11

(
∥u∥p−1

W1,p(Ω) + ∥u∥W1,p(Ω) + 1
)

≥ C12∥u∥pW1,p(Ω) −C11

(
∥u∥p−1

W1,p(Ω) + ∥u∥W1,p(Ω) + 1
)
.

Since p > 1, this implies that

lim
∥u∥W1,p(Ω)→∞

[
inf

u∗∈T (u)
⟨u∗ − L, u − u0⟩

]
= ∞.

It follows from Theorem 3.1 that inequality (4.25), or (4.23)-(4.24), has a solution u ∈ K.
Let u ∈ K be any solution of (4.23)-(4.24). In the next step, we prove that

u ≤ u ≤ u a.e. on Ω. (4.34)

To verify the first inequality, we let s be any number in {1, . . . , k} and prove that

us ≤ u a.e. on Ω. (4.35)

From (4.6), we have us ∨ u ∈ K. Letting v = us ∨ u = u + (us − u)+ in (4.24) yields∫
Ω

A(x,∇u)∇[(us − u)+]dx +
∫
Ω

η(us − u)+dx +
∫
Ω

b(x, u)(us − u)+dx

−
k∑

i=1

∫
Ω

Ti(x, u)(us − u)+dx +
m∑

j=1

∫
Ω

T j(x, u)(us − u)+dx − ⟨L, (us − u)+⟩

≥ 0.

(4.36)

From (4.2) with us and η
s

instead of u and η, and v = us − (us − u)+ = us ∧ u ∈ us ∧ K, we obtain

−
∫
Ω

A(x,∇us)∇[(us − u)+]dx −
∫
Ω

η
s
(us − u)+dx + ⟨L, (us − u)+⟩ ≥ 0. (4.37)

Adding inequalities (4.36) and (4.37), we get∫
Ω

[A(x,∇u) − A(x, us)]∇[(us − u)+]dx +
∫
Ω

(η − η
s
)(us − u)+dx

+

∫
Ω

b(x, u)(us − u)+dx −
k∑

i=1

∫
Ω

Ti(x, u)(us − u)+dx

+

m∑
j=1

∫
Ω

T j(x, u)(us − u)+dx ≥ 0.

(4.38)
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Stampacchia’s theorem (cf. e.g. [16]) and the monotonicity of A in (A2) imply that∫
Ω

[A(x,∇u) − A(x, us)]∇[(us − u)+]dx

=

∫
{x∈Ω:us(x)>u(x)}

[A(x,∇u) − A(x, us)]∇[(us − u)+]dx

≥ 0.

(4.39)

At x ∈ Ω such that us(x) > u(x), since us(x) ≤ u(x) ≤ u(x), we have from (4.20) that T j(x, u(x)) = 0
and thus ∫

Ω

T j(x, u)(us − u)+dx =
∫
{x∈Ω:us(x)>u(x)}

T j(x, u)(us − u)dx = 0, (4.40)

for all j ∈ {1, . . . ,m}. Furthermore, for x ∈ Ω such that us(x) > u(x), we have u(x) < u(x) which,
together with (4.23) and (4.10), implies that η(x) ∈ {η(x)}, i.e.,

η(x) = η(x). (4.41)

Also, for such x, (4.15) gives
Ts(x, u(x)) = |η

s
(x) − η(x)|. (4.42)

As a direct consequence of (4.16),∫
Ω

Ti(x, u)(us − u)+dx ≥ 0, ∀i ∈ {1, . . . , k}.

Thanks to (4.41) and (4.42), we get∫
Ω

(η − η
s
)(us − u)+dx −

k∑
i=1

∫
Ω

Ti(x, u)(us − u)+dx

≤
∫
Ω

(η − η
s
)(us − u)+dx −

∫
Ω

Ts(x, u)(us − u)+dx

=

∫
{x∈Ω:us(x)>u(x)}

{[η(x) − η
s
(x)] − |η(x) − η

s
(x)|}(us − u)dx

≤ 0.

(4.43)

Combining (4.38) with (4.39), (4.40), and (4.43), we obtain

0 ≤
∫
Ω

b(x, u)(us − u)+dx =
∫
{x∈Ω:us(x)>u(x)}

b(x, u)(us − u)dx.

From (4.12), if us(x) > u(x) then u > u(x) and b(x, u(x)) = −[u(x) − u(x)]p−1. Hence, 0 ≤
−

∫
{x∈Ω:us(x)>u(x)}

[u(x) − u(x)]p−1[us(x) − u(x)]dx. Since u(x) − u(x) > 0 and us(x) − u(x) > 0 on

the set {x ∈ Ω : us(x) > u(x)}, this inequality implies that this set must have measure 0, which means
that u(x) ≥ us(x) for a.e. x ∈ Ω. We have proved (4.35). Since (4.35) holds for all s ∈ {1, . . . , k}, we
get the first inequality of (4.34). The second inequality of (4.34) is verified analogously.
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From (4.34) and (4.12)-(4.15)-(4.20), we have

b(·, u) = Ti(·, u) = T j(·, u) = 0 a.e. on Ω,

for all i ∈ {1, . . . , k}, j ∈ {1, . . . ,m}. Also, from (4.34) and (4.10), together with (4.23), we see that
η(x) ∈ f0(x, u(x)) = f (x, u(x)) for a.e. x ∈ Ω. In view of these observations, (4.23)-(4.24) reduce to
(2.6)-(2.7). Our proof of Theorem 4.2 is complete. 2

Let ui, 1 ≤ i ≤ k and u j, 1 ≤ j ≤ m, be sub- and supersolutions that satisfy conditions (4.5),
(4.6), and (4.7), in Theorem 4.2. We have proved that the set S of solutions of (2.7) between u and
u,

S = {u ∈ K : u satisfies (2.6)-(2.7) and u ≤ u ≤ u a.e. on Ω},
is nonempty. As consequences of Theorem 4.2, some further properties of S are given in the fol-
lowing theorem. Since the proofs of these properties do not require substantial modifications as in
Theorem 4.2 compared to the case of singlevalued lower order terms, they are just outlined here
with the necessary changes indicated. We assume in the sequel that A is strictly monotone, that is,
strict inequality holds in (2.3) whenever ξ1 , ξ2.

Corollary 4.3 (a) S is a compact subset of W1,p(Ω).
(b) If

S ∧ K ⊂ K (resp. S ∨ K ⊂ K), (4.44)

then
(i) any u ∈ S is a subsolution (resp. supersolution) of (2.7), and
(ii) S is directed downward (resp. upward), that is, for all u1, u2 ∈ S, there exists u ∈ S such

that
u ≤ min{u1, u2} (resp. u ≥ max{u1, u2}).

(c) If both inclusions in (4.44) hold then S has least and greatest elements, that is, there are
u∗, u∗ ∈ S such that u∗ ≤ u ≤ u∗, ∀u ∈ S.

Proof. Since u, u ∈ W1,p(Ω), it follows from (4.8) that the set {∥u∥Lp(Ω) : u ∈ S} is bounded. Let {un}
be a sequence in S and {ηn} be a corresponding sequence in Lq(Ω) that satisfies (2.6) and (2.7) (for
each u = un and η = ηn).

From (4.7), {ηn} is a bounded sequence in Lq(Ω). Using (2.7) with un, ηn, and v = v0, a fixed
element of K, we see that

{∫
Ω

A(·,∇un)∇undx
}

is a bounded sequence which thanks to (A1) implies
that the set {∥ |∇un| ∥Lp(Ω) : n ∈ N} is also bounded. Hence, {un} is a bounded sequence in W1,p(Ω)
and there exists a subsequence {unl } ⊂ {un} such that unl ⇀ u0 weakly in W1,p(Ω) for some u0 ∈ K
(note that K is weakly closed in W1,p(Ω)) and thus unl → u0 in Lq(Ω).

By passing to a subsequence if necessary, we can also assume that unl → u0 a.e. inΩ and because
of the boundedness of {ηn} in Lq′(Ω), ηnl ⇀ η0 weakly in Lq′(Ω) for some η0 ∈ Lq′ (Ω). It follows
that i∗qηnl ⇀ i∗qη0 weakly in [W1,p(Ω)]∗ and therefore∫

Ω

ηnl (unl − u0)dx→ 0 and ⟨L, unl − u0⟩ → 0 as l→ ∞. (4.45)

From (2.7) with u = unl and v = u0, we see that

lim inf
l→∞

⟨A(unl ), u0 − unl⟩ ≥ 0.
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SinceA is of class (S )+ (cf. e.g. [3]), we must have unl → u0 (strongly) in W1,p(Ω). Next, we prove
that u0 ∈ S. It is evident that

u ≤ u0 ≤ u a.e. on Ω. (4.46)

Let f0 be defined by (4.10) in the proof of Theorem 4.2. Since u ≤ un ≤ u a.e. on Ω, we see that un

and ηn satisfy (2.6)-(2.7) with f0 instead of f . From (4.45) and the fact that i∗q f̃0iq is pseudomonotone
and thus generalized pseudomonotone from W1,p(Ω) to [W1,p(Ω)]∗ (see the proof of Theorem 4.2)
we have η0 ∈ (i∗q f̃0iq)(u0), i.e.,

η0(x) ∈ f0(x, u0(x)) = f (x, u(x)) for a.e. x ∈ Ω, (4.47)

(from (4.46)) and
∫
Ω

ηnl unl dx→
∫
Ω

η0u0dx. Therefore, for all v ∈ K,

∫
Ω

A(·,∇unl )(∇v − ∇unl )dx +
∫
Ω

ηnl (v − unl ) − ⟨L, v − unl⟩

→
∫
Ω

A(·,∇u0)(∇v − ∇u0)dx +
∫
Ω

η0(v − u0) − ⟨L, v − u0⟩.

Since unl ∈ S, this limit together with (4.47) shows that u0 and η0 satisfy (2.6)-(2.7) which in view
of (4.46) implies that u0 ∈ S. We thus obtain the compactness of S in W1,p(Ω).

(b) Assume the first inclusion in (4.44). If u0 ∈ S then u0 ∧ K ⊂ K and thus u0 is a subsolution
of (2.7). If u1, u2 ∈ S then they are subsolutions of (2.7) and Theorem 4.2 thus implies the existence
of a solution u of (2.7) such that max{u1, u2} ≤ u ≤ min{u j : 1 ≤ j ≤ m} = u. It is clear that u ∈ S.

(c) Since W1,p(Ω) is separable, so is S with the metric generated by ∥ · ∥W1,p(Ω). Let {wn} be a
dense sequence in S. Using the directedness of S, we can construct inductively a sequence {un} in
S such that wn ≤ un ≤ un+1,∀n ∈ N. Let u∗(x) = sup{un(x) : n ∈ N} = limn→∞ un(x), x ∈ Ω. As a
consequence of the compactness of S, un → u∗ in W1,p(Ω) and u∗ ∈ S. Since u∗ ≥ wn a.e. in Ω for
all n ∈ N, from the density of {wn} in S, we see that u∗ ≥ u a.e. in Ω for all u ∈ S. The existence of
the smallest element u∗ of S is proved in a similar way. 2

We conclude our paper with some remarks regarding the consideration of multivalued integral
lower order terms in (1.1) and (1.2).

Remark 4.4 (a) If f = f (u) depends only on u then the upper semicontinuity of f in condition (F2)
implies its measurability in condition (F1) (cf. e.g. [1]).

(b) Let us consider f (x, u) = ∂F(x, u) where F(x, u) is a Carathéodory function which is locally
Lipschitz in u and ∂F(x, u) is the Clarke generalized gradient with respect to u. Since ∂F(x, u) is
a closed and bounded interval in R and the mapping u 7→ ∂F(x, u) is upper semicontinuous from
R into K(R) (cf. [13]), our discussions and existence results above and their variants are natural
extensions of several nonsmooth existence results containing Clarke’s generalized gradient (cf. [7,
9, 8, 10, 5, 11]), to more general multivalued functions without nonsmooth potential functionals.

Furthermore, as seen in the above arguments, we do not need the one-sided conditions, assumed
in some works related to Clarke’s generalized gradient as in the above references. Therefore, the
concepts and results presented here are natural continuation and complements of several results in
those works.
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(c) Here are some simple examples of multivalued functions f : R → 2R that satisfy the above
conditions (F1)-(F2) (and (F3)) but are not generalized gradients of any locally Lipschitz functions
(and are not subdifferentials of any convex functions either).

Example 1. (a) f (u) =

 [−1, 1] if u = 0

{0} if u , 0.

(b) f (u) =


{−1} if u < 0

[−2, 2] if u = 0

{1} if u > 0.
In Example 1(a), if f (u) = ∂F(u) for some locally Lipschitz function F (∂F denotes Clarke’s

generalized gradient) then since F(u) = C1 if u < 0, F(u) = C2 for u > 0 (C1,C2 = constant) and
F is continuous at 0, we must have C1 = C2 and thus ∂F(0) = 0. Similarly, in Example 1(b), if
f (u) = ∂F(u) then F(u) = −u+C1 for u < 0, F(u) = u+C2 for u > 0 and again by the continuity of
F at 0, C1 = C2. Therefore, F(u) = |u|, ∀u ∈ R and ∂F(0) = [−1, 1], not [−2, 2]. Note that in both
examples, f is upper semicontinuous at every u ∈ R.

0

1

−1

f (u)

(a)

0

1

2

−1

−2

f (u)

(b)

Figure 1: Example 1

Example 2. A more general example in this vein is the following function:

f (u) =



{h1(u)} if u < a

[α1, β1] if u = a

[g1(u), g2(u)] if a < u < b

[α2, β2] if u = b

{h2(u)} if u > b,

where a ≤ b, α1 ≤ β1, α2 ≤ β2 ([α1, β1] = [α2, β2] if a = b), h1 ∈ C((−∞, a]), h2 ∈ C([b,∞)),
with h1(a) ∈ [α1, β1], h2(b) ∈ [α2, β2], g1, g2 ∈ C([a, b]) with g1(u) ≤ g2(u), ∀u ∈ [a, b], and
[g1(a), g2(a)] ⊂ [α1, β1], [g1(b), g2(b)] ⊂ [α2, β2]. The graph of f is as follows.
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0

f (u)

ba

β1
g2

g1

α1

α2

h1 h2

β2

Figure 2: Example 2

Note that such function f satisfies conditions (F1), (F2), and (F3) above, but f is generally not a
Clarke’s generalized gradient.
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