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Abstract

This paper is about the existence and some properties of solutions of variational inequalities
associated with the 2nd order inclusion

div[A(x, Vu)] + L € f(x,u) in Q,

where the lower order term f(x,u) is a general multivalued function. Both coercive and
noncoercive cases are considered. In the noncoercive case, we use a sub-supersolution
approach to study the existence, comparison, and other properties of the solution set such
as its compactness, directedness, and the existence of extremal solutions.
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1 Introduction
We are concerned in this paper with the existence and some properties of the solutions to the follow-
ing inclusion

div[A(x, V)] + L € f(x,u) in Q

u=0 on 0Q,

(1.1)
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or the more general variational inequality

f A(x, Vu)(Vv — Vu)dx + f f,uw)v—u)dx —(L,v—u)>0,Yve K
Q Q

uek,

(1.2)

where Q is an open bounded region in RN (N > 1) with Lipschitz boundary 6Q, A : Q x RY — R¥
is an operator of Leray—Lions type, L is a bounded linear functional, and K is a closed convex subset
of a function space of admissible functions. A new feature in (1.1) and (1.2) that we would like to
concentrate here is that £ : Q x R — 2% \ {0} is a general multivalued function. The lower order
term in (1.2) is thus an integral operator of multivalued functions. The inequality (1.2) is described
in detail in the sequel.

Note that first order ordinary differential inclusions of the form

X' (t) € f(t, x(2)),t € [0,T],

and related problems in control or viability theory have been studied extensively (cf. e.g. [1, 2,
14, 18] and the rich references therein). Here, we are interested in second order partial differential
inclusions or inequalities. Compared to inclusions based on first order ordinary differential equations
such as above, general inclusions based on second order partial differential equations or inequalities
have been investigated to a lesser extent. On the other hand, problems of the form (1.1) or (1.2) with
f(x,u) = 0, j(x,u) being Clarke’s generalized gradient of a locally Lipschitz function j(x, u) (with
respect to the second variable) have attracted much attention after the pioneering works of Clarke
and Chang ([12, 13]), see e.g. the monographs [6, 10, 13, 15, 22, 23, 24] and their references. In this
paper, we are concerned with problems such as (1.1) or more generally (1.2) with f being a general
multivalued function without such variational structure (that is, being the derivative of some other
smooth or nonsmooth function even in a certain generalized sense).

We consider problems (1.1) and (1.2) in both coercive and noncoercive cases. Even in the coer-
cive case, the problem seems interesting and has not been studied before from the point of view here.
Moreover, our problem here also serves as an interesting and relevant example for Browder—Hess’
abstract theory of multivalued pseudomonotone operators ([4]), applied to general multivalued inte-
gral operators not necessarily given by Clarke’s generalized gradients (or closely related functions)
as in [24] or [10], which seem so far the only type of examples and applications for Browder—Hess’
theory to boundary value problems. In the noncoercive case, we follow a sub-supersolution approach
to get the existence of solutions and also some qualitative properties of the solution sets between sub-
and supersolutions. As shown in the sequel, although the general ideas of regularization and trunca-
tion in the sub-supersolution method are followed, many new arguments and techniques are needed
in the proofs and calculations in our case of inequalities with general multivalued lower order terms.
Since Clarke’s generalized gradients are upper semicontinuous multivalued functions with closed,
convex values, the existence and comparison theorems and other properties of solutions in the non-
coercive case considered here improve and extend several nonsmooth existence and enclosure results
related to hemivariational and variational-hemivariational inequalities to the case of general multi-
valued lower order terms without nonsmooth potential functionals, therefore complement several of
our results established previously in [7, 9, 8, 10] etc.
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The paper is organized as follows. In Section 2, we present a precise formulation of the problem
together with the necessary assumptions on the involved sets and mappings. Our main theorems and
their preparation are presented in Sections 3 and 4. The coercive case, including the case where the
multivalued lower order term has a “sublinear” growth, is studied in Section 3 where abstract exis-
tence theorems (Theorems 3.1 and 3.3) together with an illustrating example of a unilateral problem
with a mixed Neumann—Dirichlet boundary condition (Theorem 3.7) are considered. Section 4 is
devoted to the noncoercive case. We introduce the concepts of sub- and supersolutions for our prob-
lem and prove a general existence/enclosure result (Theorem 4.2); some further properties of the
solution set such as its compactness and directedness and the existence of extremal solutions are
derived in Corollary 4.3.

2 Assumptions - problem setting

Let A : Q x RY — RY be a Carathéodory function satisfying the following conditions:
(A1) There exists p € (1, c0) such that

A E) < bl + ai (), 2.1)

A(x, E)E = bylé)P — ar(x), forae. xeQ, allé e RV, (2.2)

where by, b, > 0, a; € L (Q) (p’ is the Holder conjugate of p), and a, € LY(Q),
(A2) A is monotone in the following sense:

[A(x, &) — A(x, E)](E — &) > 0, forae. xeQ,all&,& e RV, (2.3)

Due to the growth condition of A, an appropriate choice of our function space is the usual
Sobolev space whr(Q). Suppose K is a closed convex (nonempty) subset of whr(Q).
It is easy to see from (A1)—(A2) that the operator A : W'P(Q) — [WIP(Q)]*,

(Au), vy = fA(x, Vu(x))Vv(x)dx, u,v € Wl’p(Q),
Q

is well defined, continuous, bounded, and monotone ({-, -)x- x denotes the dual pairing between X
and its dual X* and (-, ) = (-, ywir @), wir@))-

Remark 2.1 (a) The variational (weak) formulation of (1.1) is the inclusion: Find u € W(; (Q) such
that

fA(x, Vu)Vvdx + f f(x,uyvdx > (L,v), 2.4)
Q Q

forallv e Wé (Q). (The integral containing the multivalued lower order term f(x, #) and the inclusion
in (2.4) will be defined in a precise way later.) Hence, (1.2) reduces to (1.1) in the particular case
when K = W, ”(Q).

IfK =h+ Wé”’ (Q) is a linear manifold in W'(Q) (h € W'P(Q)) then (1.2) is the nonhomo-
geneous Dirichlet problem of the inclusion in (1.1) with the boundary condition # = 4 on 0Q. In
the case K = {u € WhP(Q) : u = 0 on T} (T is a measurable subset of 9Q), (1.2) becomes a mixed
Neumann-Dirichlet boundary value problem which reduces to a Neumann problem when I' = 0. If
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K ={ue W"(Q) : u = constant on 9Q}, then we obtain a no-flux boundary problem, which is a
multidimensional generalization of the periodic boundary condition for ordinary differential equa-
tions. In general, K is used to describe various obstacle or other unilateral constraints on Q or its
boundary.

(b) The results hereafter seem new even in the case of Dirichlet or Neumann boundary value
problems, i.e., when the inequality (1.2) is an equation, due to the presence of the multivalued lower
order term.

(c) If a boundary integral term such as fasz g(x, u)(v—u)dS where g is a multivalued function from
0Q X R to 2% is included in the right hand side of (1.2), then the variational inequality can be used
to formulate other boundary conditions, such as nonhomogeneous Neumann or Robin condition, or
a Steklov type problem. In such cases, the obtained results extend those in [21] or [5]. Since the
adding of such terms could be done by combining the arguments and calculations in the sequel with
those in [21], it will not be considered here for the sake of simplicity of presentation.

Assume L is an element of the dual [W!?(Q)]*. Concerning f, we use the notation
KX)={AcX:A+#0,A isclosed and convex},

where X is a normed vector space. Let f be a function from Q X R to K(R) such that:

(F1) f is graph measurable on Q xR, that is, Gr(f) = {(x,u,&) € QXRXR : £ € f(x, u)} belongs
to [L(Q) X B(R)] X B(R), where L(Q) is the family of Lebesgue measurable subsets of QQ and B(R)
is the o-algebra of Borel sets in R.

Note that if f is measurable from Q X R to K(R) in the usual sense, that is f~(W) := {(x,u) €
QAXR: flx,u)NW £ 0} € L(Q) x B(R) for all W C R open, then f is graph measurable on Q X R.

(F2) For a.e. x € Q, the function f(x,-) : R — K(R) is upper semicontinuous, that is, for each
u € R and each open U C R such that f(x,u) C U, there exists 6 > 0 such that if |[v — u| < ¢ then
f(x,v) cU.

In many places in the sequel, we also need the following growth condition on f:

(F3) There exist g € [1, p*) (p* is the Sobolev conjugate of p) and a3 € L7 (Q) (¢’ is the Holder
conjugate of g), b3 > 0 such that

sup(lé] : € € f(x, )} < a3(x) + bslul’™, 2.5)

for a.e. x € Q, all u € R. Note that if (2.5) is assumed then f(x,u) is a compact interval in R,
hence (F2) is equivalent to the Hausdorff upper semicontinuity (h-u.s.c.) of f(x,-) for a.e. x € Q (cf.
Theorem 2.68, Chap. 1, [17]).

We are now ready for a precise formulation of (1.2).

Definition 2.2 A function u € K is a solution of (1.2) if there exist ¢ € [1, p*) and 5 € L7 (Q) (¢’ is
the Holder conjugate of ¢) such that

n(x) € f(x,u(x)), fora.e. xeQ, (2.6)

and
f A(x, Vu)(Vv = Vu)dx + f nv—u)dx—{(L,v—u)>0, VYve k. 2.7
Q Q
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For 1 < g < p*, we denote by i, the embedding WhP(Q) — LI(Q). If 1 < g < p* then ig is
compact. Therefore its adjoint ij;, which is the projection from L7 (Q) = [LY(Q)]* to [WHP(Q)]*, is
also compact. Note that i,(u) = u for u € Whr(Q), that is, igu)(x) = u(x) for a.e. x € Q. Thus,
to simplify the notation in the sequel, we shall use in many places u instead of i,(u). Similarly, i
is the restriction of elements in L? (Q) = [L4(Q)]* on the functions in W'?(Q), i.e., for neE L7 (Q),
i,(m) = nlwir)s

(i Vitwir @ wie@) = M igW) e @) 10) = LUde, Vv e WH(Q). (2.8)

Inequality (1.2) can also be stated as an inclusion as follows. Let Ik be the indicator functional
of K, Iy : WP(Q) — [0, 0],
0 if uek
Ix(u) =

o if ug¢k.

Ik is a proper, convex, and lower semicontinuous functional on WP (Q) with effective domain
D(Ix) = K. Let dIx be the subdifferential of Ix (in the sense of Convex Analysis), then (1.2)
could be formulated as the following inclusion: Find u € K such that

Au) + (i;fiq)(u) +0Ig(u) - L>0. (2.9)

With the above assumptions, we see that u is a solution of (2.9) if and only if it satisfies (2.6)—
(2.7). In fact, assume u € K satisfies (2.6) and (2.7). From (2.6), we have iyn € i f(u) = iy fig(u).
Inequality (2.7) is equivalent to

(AW) + izn = Lv — u) + Ig(v) = Ig(u) 2 0,Yv € WP (Q).

This means that —[A(u) + i;n — L] € 0Ix(u), i.e., u satisfies (2.9). On the other hand, if u satisfies
(2.9) then there are 17 € f(u) and D € 0l (u) such that A(u) + izn+ D — L = 0. The condition on n
implies (2.6). Since D = —[A(u) + izn — L], and Ix(v) — Ix(u) = (D,v —u), Yv € Whr(Q), we have
0= (—[A(u) + iyn — L],v —u), ¥v € K. Together with (2.8), we see that (2.7) is satisfied.

Let u be any measurable function on Q. From (F1), the function f(:, u(-)), x = f(x, u(x)), is also
a measurable function from Q to K(R). Let f (u) be the set of all measurable selections of f(:, u(-)),
that is,

f(u) ={n: Q — R : nis measurable on Q and n(x) € f(x, u(x)) for a.e. x € Q}. (2.10)

We know that f(u) # 0 whenever u is measurable on Q since f(-,u(-)) is measurable. Moreover,
if the growth condition (2.5) is fulfilled then f(u) c LY (Q) whenever u € LI(Q). Some further
properties of f are given in the next section.

In the following sections, we study the existence and some properties of solutions of (2.9), i.e.
of (2.6)-(2.7).

3 Coercive case

To study the existence of solutions of (2.9) under some coercivity conditions on A, f, and K, we
need the following abstract result, which is a variant of Theorem 4.1 and Proposition 4.1 in [19].
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Theorem 3.1 Let (X, || - ||) be a reflexive Banach space and T : X — 2% be a multivalued mapping
such that:

(T1) (Condition (pmy), [19] or Condition (a), Definition 1, [4]) For each x € X, T(x) is
nonempty, convex, and closed in X*.

(T2) (Condition (pmy), [19] or Condition (c), Definition 1, [4]) If {x,} C X, {x}} C X" are
sequences such that x; € T(x,), Yn € N, x,, — x (weakly) in X, and

lim sup(x}, x, — x) < 0,
then to each y € X, there exists x*(y) € T(x) such that
liminf(x;, x, — y) = (X" (), x — y).

(T3) (Condition (pmy), [19]) For each xy € K, each bounded subset B of X, there exists a
constant N(B, xg) € R such that (x*,x — xo) = N(B, xo) for all x € B, all x* € T(x).

Assume K is a nonempty closed convex subset of X and ¢ : X — R U {oo} is a proper convex,
lower semicontinuous functional such that D(¢) N K # 0. Let f € X*.

If (T, K, ¢, f) has the following coercivity condition: There exists a € D(¢) N K such that

lim inf (x"—f,x—a)+ ¢(x)]) = o0, (3.1)

x€K,||x||[ o0 \x*€T(x)
then there exist xy € K and x;j € T(xy) such that
(x5 — fox—x0) + ¢p(x) — p(x0) = 0, Vx e K. (3.2)

Proof. Let R > ||al| and Bg = Bg(0) = {x € X : ||x]| < R} be the closed ball with radius R centered at
0. From Proposition 4.1 of [1_9], the variational inequality (3.2), restricted to K N Bg, has a solution
Xg, 1.€., there exist xg € K N By and x; € T(xg) such that

(X = fo X = Xg) + p(x) — p(xg) = 0, ¥x € K N Bg. (3.3)
Next, we prove that there exists R > ||a|| such that
Ilxgll < R, 34

where xg is any solution of (3.3). _In fact, assume otherwise that ||xg|| = R for all solutions xz of
(3.3), all R > ||a||. Letting a € K N Bg into (3.3) yields

(Xg = fra— xg) + ¢p(a) — p(xg) = 0,
ie.,
(xg = f> xr — a) + ¢(xg) < ¢P(a),
and thus
lim sup| ll’Tl(f )(x* — f,xg —a) + ¢(xg)] < ¢(a),
R—ooco X EL(xp

contradicting (3.1) since ||xg|| = R = o0 as R — oo.
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Let xg be a solution of (3.3) that satisfies (3.4). Let us show that xg is also a solution of (3.2).
In fact, let x € K. For ¢t > O sufficiently small, we have v = xp + t(x — xg) € Bg. Moreover,
v=(1-1xg +1tx € K since x, xg € K. Letting v € Bg N K in (3.3) gives

(xg = [, 1(x = xg)) + $((1 — Dxg + 1x) — p(xg) 2 0.

However,

(1 = D)xg + 1x) = P(xr) < t[P(x) = P(xp)],

and thus #[{x} — f, x — xg) + ¢(x) — ¢(xg)] > 0. Since ¢ > 0, this gives us (3.2) with xp = x. O

Remark 3.2 (a) If

. (X", x —a) + ¢(x)
lim i — | = o0,
lIxll—o0,xeK \ x*€T(x) (1|

then (3.1) is satisfied for all f € X*. Hence, Theorem 3.1 implies Theorem 4.1, [19].

(b) Since ¢ + Ik is convex, the subdifferential d(¢ + Ig) : X — 2X" is maximal monotone. The
variational inequality above can be written equivalently as the following inclusion for multivalued
operators: Find xy € X such that

T (x0) + (¢ + Ix)(x0) 3 f.

Theorem 3.1 does not follow from existence theorems for multivalued pseudomonotone perturba-
tions of maximal monotone operators such as Theorem 7 in [4], Theorem 3.2 in [19], or Theorems
2.11 and 2.12 in [24]. In those cited theorems, the coercivity conditions are solely on the pseu-
domonotone operators and not on the combinations of the pseudomonotone operators and maximal
monotone operators (or convex functionals) as considered in Theorem 3.1. Such combined coerciv-
ity conditions for variational inequalities or equalities are particularly relevant for boundary value
problems with principal terms given by Leray—Lions type operators and lower order terms given by
Niemytskii operators associated with some functions.
As an example, the p-Laplace equation with

(T(u),v) = f (VulP2VuVv + f(x, u)vldx,
Q

with sublinear lower order term f(x,u) with |f(x,u)| < a; + b1|u|*, 0 < @ < p — 1, is coercive
in the sense of (3.1) on the linear manifold K = & + Wé’p (Q), T is a pseudomonotone operator on
X = Whr(Q), but is not coercive on X = WH2(Q).

(c) As noted in [19], if T satisfied (T1), (T2), and (T3) (i.e, (pm;), (pmy), and (pmy) in [19]) then
T is pseudomonotone (the definition of multivalued pseudomonotonicity in [4] consists of (T1)-(T2)
and the weak upper semicontinuity of 7 on finite dimensional subspaces of X). On the other hand,
if T is monotone with D(T) = X or if T is bounded then T satisfies (T3). Therefore, for bounded
operators, the combination (T1)-(T2)-(T3) above is equivalent to the pseudomonotonicity of 7.

We have the following existence result for (2.9), or equivalently (2.6)-(2.7), under certain coer-
civity condition.
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Theorem 3.3 Assume f satisfies (F1)-(F2)-(F3) and there exists ug € K such that

lim { inf f [ACx, Vu)(Vu — Vug) + n(u — up)ldx — (L, u — uo>} =0, (3.5
lltllyy1.p ) —00-u€K \ nefu) Jo

or equivalently,
f[A(x, Vu)(Vu — Vug) + n(u — up)ldx — (L, u — uo) > c(llullwr ), (3.6)
Q

forallu e K, alln f(u), where ¢ : [0,00) > R, ¢(r) = oo asr — oo. Then, (2.6)-(2.7) has a
solution.

Some properties of f are need for the proof of Theorem 3.3.

Lemma 3.4 Under assumptions (F1 )—({72 )-(F3), if u € L1(Q) then, f (u) is a bounded, closed, and
convex subset of L7 (Q); in particular, fw) € K(LT (Q)). Moreover, f is a bounded mapping from
LI(Q) to K(LT (Q)).

Proof. The convexity of f(u) follows from the fact that f(x, u) is a closed interval in R. Let 7 € f(u).
From (2.5),
In(x)| < a3(x) + bslu(x)""!, ae. xe Q. 3.7

Since [ul"! € L7 (Q) due to u € LI(Q), we have the boundedness of f(x) in LY (Q). Inequality (3.7)
also proves that if W is a bounded set in LI(Q) then f(W) = |J,ew f(u) is a bounded set in L7 (Q),
that is, £ is a bounded operator from LI(Q) to 2L @),

To verify that f(u) is closed in LY (Q), let {57,} be a sequence in f(u) such that 17, — nin L7 (Q).
By passing to a subsequence, we can assume without loss of generality that 7,,(x) — n(x) for a.e.
x € Q. Since 17,(x) € f(x,u(x)) for a.e. x € Q, all n € N, and f(x,u(x)) is closed in R, we have
1n(x) € f(x,u(x)). Since this holds for a.e. x € Q, we have 5 € f(u), which proves the closedness of
f(u) in LY (Q). O

Another property of f(u) is given in the following lemma.

Lemma 3.5 Under assumptions (F1)-(F2)-(F3), f is Hausdorff upper semicontinuous (h-u.s.c.)
from LY(Q) to K (LY (Q)), that is, for each uy € L1(Q), the function

ur h;’(g)(f(u)’ fN(MO)) (38)
is continuous at ug, where
i @A B) = sup (ivgg i — v||L¢,,(Q)) , (3.9)

for A, B c LY (Q).

This property of f is given in Theorem 7.26, [17]. We only note a small misprint in the condition
related to a(-) in the statement of that theorem.
The following lemma is crucial for the proof of Theorem 3.3 as well as later developments.
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Lemma 3.6 If f satisfies condition (F3) then the operator i, fiq is pseudomonotone and bounded
from WP(Q) to K((WP(Q)]").

Proof. We first check that 7 fiq is weakly closed from W'?(Q) into W@ \ {0}, that is, if {u,} and
{n,} are sequences in W'»(Q) and [W'?(Q)]* respectively such that

u, — u (weakly) in WHr(Q), (3.10)
mn — 7 (weakly) in [W'(Q)], (3.11)
and
M € iy fig(uy), Yn €N, (3.12)
then, y
n € i; fig(u). (3.13)

In fact, assume (3.10)-(3.12). As noted in (2.8), i,(u,) = u, and i;(n,,) = Mulwir(). From (3.12),
for each n, there exists 7, € fi(u,) = f(u,) such that 5, = iy(fn) = fnlwir). From (3.10) and the
compactness of i,, we have

Uy = ig(up) = ig(u) = u (strongly) in LI(Q). (3.14)
Hence, from the h-upper semicontinuity of f from L(Q) to K(L? (Q)) (cf. Lemma 3.5), we have
1 (f ). fu)) = 0, (3.15)
where h* is given in (3.9). Since 7, € f(un),

inf |l — VilLe @ < B (Flun), fu)).
ve fu)

Hence, infvef-(u) 772 = Vil @) — 0 as n — oo, and there exists a sequence {r,} C f (u) such that
1im [, = 17l @ = 0. (3.16)

Since {1} ¢ f(u) and f(u) is a bounded subset of L7 (Q), by passing to a subsequence if necessary,
we can assume that
M, = 1o (weakly) in L (©) (3.17)

for some 19 € L7 (Q). As f(u) is closed and convex in L7 (Q), it is weakly closed there; thus
1o € f(u) as a consequence of (3.17). Hence, (3.16) and (3.17) imply that

fin — 1o (weakly) in L7 (Q). (3.18)

Since i, LY(Q) — [W"9(Q)]* is continuous (in the strong topologies), it is also continuous in
the weak topologies of both L7 (Q) and [WH4(Q)]*. From (3.18),

M = Iy(Jin) = Tialwir) = i(70) = Nolwir@) (3.19)

weakly in [W'?(Q)]*. From (3.11) and (3.19), we have 1 = ij;(no) € ij;f(u) since 17, — n and
Mn — i;(no) both in the sense of distribution. (3.13) is thus proved, which completes our proof of the
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weakly closed property of i; fig. As a direct consequence of this closedness, we see that (i fig)w)
is closed in [Wh2(Q)]*.

The above arguments show that for each u € W'(Q), (i} fig)(u) € K(W"?(Q)]*). Moreover,
since ij; is linear and bounded, ij; fiq is a bounded operator from W'?(Q) to K([W'?(Q)]*) from the
corresponding property of f from LI(Q) to K(L? (€)). In particular, Iy f ig(u) is a bounded, closed,
and nonempty convex subset of [W'?(Q)]*.

Next, we check that if {u,} ¢ W'"P(Q), {1,} € [W'P(Q)]* are sequences satisfying (3.10)-(3.12)
then

s tndpwir @ wie@) = T WIWLe @ Wie(Q)- (3.20)
Let {77,} and ng be as above. We have

s U pwirrwie@ = Falwir@)s n)iwir @ wir@)
= (i), undwio @ wie@) (3.21)
= <f]n,iq(un)>Lq’(9),Lq(Q) = <7~7n,un>Lq’(Q),Lq(g)-

From (3.14) and (3.18),

s nd e @.po ) = 0> Wir @y.re@) = Mos g 1o @).L9)
= (o), wWwrr@ wir@
= Wwre@r wie@)-

This limit, together with (3.21), proves (3.20).

The weakly closed property of i, fi, and (3.20) show that i; fi, is generalized pseudomonotone
(cf. [4]) which together with its boundedness, implies that fi ig is pseudomonotone from Whr(Q)
to its dual [W'?(Q)]* (cf. Proposition 4 and Definitions 1 and 2 in [4]). O

Proof of Theorem 3.3. Let T : W'P(Q) — 2V @ T (y) = Au) + (iflfi,,)(u). From (A1)-(A2), we
see that A is a (singlevalued) monotone and bounded operator from W'?(Q) to [W!P(Q)]*.

From Proposition 8 in [4], A is pseudomonotone (and bounded) on WP(Q). From Lemma
3.6, i,’; fiq is bounded and pseudomonotone. Hence, from Proposition 9 in [4], T = A + i; f ig is a
multivalued pseudomonotone and bounded operator from W'?(Q) to K([W'?(Q)]*). As noted in
Remark 3.2 (c), T satisfies conditions (T1)-(T3) in Theorem 3.1 with X = W'?(Q). Letting ¢ = 0
and f = L € X*, we see that condition (3.5) (or equivalently (3.6)) is the same as condition (3.1) in
our setting here. Also, in this setting (3.2) is the same as inequality (2.7). O

As an illustrating consequence of the above abstract theorem, let us prove an existence result for
a mixed nonhomogeneous Dirichlet problem with “sublinear” multivalued lower order term. Let I"
be a nonempty open subset of 9Q and

WP = {u e WHP(Q) : ulpa(x) = 0 forae. x €T}

Also, let h € W'P(Q) and let K be a nonempty closed convex subset of i + er’p . We have the
following existence theorem for (2.7).
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Theorem 3.7 Assume f satisfies (F1)-(F2) and (2.5) with
1<g<p. (3.22)

Then there exist u (and n) that satisfy (2.6)-(2.7).
Proof. Poincaré’s inequality implies that there exists Cy > 0 such that

11Vul lzr) > Collullrq), Vi€ Wi (3.23)
Therefore, there exists C; > 0 such that

1Vulllr@ = Cillullyoy. Yu € Wy
Let ug be a (fixed) element of K. We have from (2.2) that

f A, ViyVudx 2 boll Vil 1, ) — ltallz - (3.24)
Q

Since u — uy € W;’p and |Vu| > | |V(u — up)| — [Vug|| a.e. on Q, we have

HMVulllr@ = V(@ = uo)l = [Vuol e
> Cillu = uollwir) — I1Vuol llr@)
> Cillullwrr) — Ca,
2C, Cy
where C2 = C]”MQ”WLp(Q) + || |Vu0| ”LI’(Q)~ If ||u||Wl,p(Q) > C_ then ||I/tllwlp(g) Cz and thus
1
Cy
VUl llzr @) = 7||M||W1»P(Q) and
fA(x Vu)Vudx > C3||u||W1p(Q), (3.25)

2C C\
forallu € er’p, el w1y = C—2 where C3 = by (71) . (Here and in the next estimates, C stands
1

for a generic constant that does not depend on u € er”’.) On the other hand, it follows from (2.1)
that

fA(x, Vu)Vugdx
o)
< b f IVulP~ | Vuoldx + f a1 (x)|Vuoldx (3.26)
< billIVul IIU,(Q)II [VuolllLr @) + llailly @l Vuol llr @)
Using (2.5), we have for all u € W7, all € f(u),
fﬂ(u— up)dx < f(as + balul*")(ul + luol)dx
Q Q
< Nasllo el + bl g, + balllfyg luolley (359,
+||a3”Lq’(g)”uO”L‘I(Q)
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Lastly,
KL,u—uo)l < |ILllwrryp (lullwir) + llollwrr) (3.28)
< Cﬁ(”lxl”wl,p(g) + 1)
Combining (3.25)-(3.28), we see that
f[A(x, Vu)(Vu — Vug) + n(u — ug)ldx — (L, u — ug)
Q
> Callully ) = Cr (Wl + Nellwroy + il ) + il ) + 1),
2C
for all u € K with [lully,q) = C—z
1
Since ¢ < p and p > 1, this estimate immediately gives us (3.5) (or (3.6)), which in view of
Theorem 3.3, ensures the existence of solutions of (2.6)-(2.7). O

4 Noncoercive case - sub-supersolution method

In cases where the coercivity condition (3.5) (or the growth condition (3.22)) is not satisfied then
(2.6)-(2.7) may not have solutions. However, if sub- and supersolutions of (2.6)-(2.7), in a cer-
tain appropriate sense, exist and f only satisfies some local growth condition, then we still get the

solvability of (2.6)-(2.7), together with other qualitative properties of their solutions.

Definition 4.1 A function u € W'?(Q) is a subsolution of (1.2), or more precisely of (2.6)-(2.7), if
there exists g € [1, p*) and 17 € L7 (Q) such that

n(x) € f(x,u(x)) forae. xeQ, 4.1

(ie,ne LY (Qn f(w)) such that

fA(-, Vu)(Vv — Vu)dx + f n(v—uwdx—<(L,v—u) >0, “4.2)
Q ol

forallve u AK :={u Aw = min{u,w}: w e K}.
Similarly, # € W'P(Q) is a supersolution of (2.6)-(2.7) if there is g € [1, p*) and

el (Q)n fw) (4.3)

such that
f A(, Vu)(Vv — Vu)dx + f n(v—uwydx —(L,v—1u) >0, 4.4)
Q Q

forallveuVv K :={uVvw=max{u,w}:we K}.

We have the following general existence and enclosure/comparison theorem for (2.7) when sub-
and supersolutions exist.
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Theorem 4.2 Let A and f satisfy (Al)-(A2)-(A3) and (F1)-(F2). Assume there are subsolutions u,,
i=1,...,k and supersolutions uj, j=1,...,m, of (2.6)-(2.7) such that

u:=max{y,: 1 <i<k}<u:=min{y;: 1< j<mj, 4.5)

and
uVKCKu;ANKCKViell,...,k},jell,...,m}. (4.6)

Suppose f satisfies the following local growth condition: There exist q € [1, p*) and a; € LY (Q)
such that

sup{lél : € € f(x,u)} < as(x), 4.7

fora.e. x € Q, all u € [u(x), u(x)].
Then, there exists a solution u of (2.6)-(2.7) such that

u<u<ua.e. onQ. (4.8)

Proof. Note that the numbers g € [1, p*) in the definition of #; and u; and in the growth condition
(4.7) may be different. However, the conditions in the definition of sub- and supersolutions in
Definition 4.1 and in (4.7) still hold if g is replaced by gy with 1 < g < g9 < p* (thus co > ¢’ >
q,)- Hence, by replacing such numbers ¢’s in the definitions of u; and u; and in (4.7) by their
greatest value (which still is in the interval [1, p*)), we can assume without loss of generality and
for simplicity of notation that we have the same number g in (4.7) and in the conditions of n. and77;,
where n, and ﬁj are the measurable selections of f(-,%;) and f(-,u;) in Definition 4.1.

We use the usual truncation-regularization method with some essential modifications and ex-
tensions for multivalued functions, as seen below. As noted above, for each i € {1,...,k} (resp.
j e {1,...,m}), n, (resp. ﬁj) is a function in L7 (Q) satisfying (4.1) and (4.2) with n, instead
of n (resp. (4.3) and (4.4) with ﬁj instead of 77). We construct families {Q; : 1 < i < k} and
{Q/ : 1 < j < m} of subsets of Q inductively as follows. Let Q; = {x € Q : u(x) = u,(x)}, and

i-1
Q; = {x e Q\ m Q:ulx) = gl.(x)} fori = 2,...,k. Similarly, let Ql = (x e Q: uk) = u(x),
I=1

j-1

and Q/ = {x e Q\ ﬂQl cu(x) = ﬁj(x)} for j = 2,...,m. Itis clear that Q;(1 < i < k) (resp.
I=1

QJ(1 < j < m)) are disjoint measurable subsets of Q and

g:Om.

=1

k
Q=

i=1

~

Let us define
k m
n= Z nxo, and 77 = Z X
i=1 j=1

where y4 (A C Q) is the characteristic function of A. From their definitions, we see that n,77 €
L9 (Q). Moreover, since 77(x) = 1 (x) and u(x) = u,(x) for a.e. x € Q; (1 <i < k), we have

Q(x) € f(x,u(x)) forae. x € Q. 4.9)
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Similarly, 7(x) € f(x,u(x)) fora.e. x € Q.
Next, we define the truncated function for f(x, u). Let fy : Q x R — 2% be given by

) if u < u(x)
fox,w) =9 flx,u) if  uw(x) <u<u(x) (4.10)
{n(x)} if  u>u(x).

Then, fj satisfies (F'{) and (F3). In fact, we first note that

Gr(fo) {(x,u, &) e QXRXR: € € fy(x,u))

= [{(nué&) e QxRXR:u>ux)}N{(xu,é) e QxRXR : & = 5(x))]
U[{(x,u,f)EQXRXR:u<g(x)}ﬂ{(x,u,§)EQXRXszzg(x)}]
U{(x,u,&) e OXRXR:u>u(x)}N{(x,u,é) € QXRXR : u < u(x)}
N{(x,u, &) € AXRXR: £ € fx,w)}].

All sets in the right hand side belong to £(€2) X B(R) x B(R) (the last set does because f satisfies
condition (F1), the other sets are in £(Q)XB(R)xB(R) thanks to the fact that Carathéodory functions
are jointly measurable). Therefore Gr(fy) € L(2) X B(R) X B(R), i.e. fy satisfies (F1).

To verify that (£2) holds for fy, let x be any point in Q such that 77(x) € f(x,u(x)) and n(x) €
f(x, u(x)) (note that the set of all x € Q not satisfying these inclusions has measure 0 by (4.9)). We
show that the function fy(x,:) : R — R is u.s.c. at each u € R. Assume W is an open set in R such
that fo(x,u) c W.

If u > u(x) then fo(x,u) = n(x) € W. Let§ € (0,u — u(x)). If ve R, [v—u| < then v > u(x)
and thus fy(x,v) = n(x) € W. Hence, fo(x,-) is u.s.c. at u. Similar arguments show the upper
semicontinuity of fy(x, ) at every u € (—oo, u(x)). Assume now that u € [u(x), u(x)]. By the upper
semicontinuity of f(x,-) at u assumed in (F2), there exists 6 > 0 such that f(x,v) ¢ W for any
v € (u — 6, u + 0). For such ¢ and v, we have three possibilities: (i) v € [u(x), u(x)], (ii) v > u(x), and
(i) v < u(x). In case (i), we have fy(x,v) = f(x,v) € W. Incase (ii), we have fy(x,v) = {n(x)}. Since
u <u(x)<vand|u—v| =v—u < 6, one has [u(x)—u| = u(x)—u < v—u < 6, and thus from the choice
of 0, f(x,u(x)) c W. However, since 77(x) € f(x, u(x)), we have fy(x,v) = {n(x)} C f(x,u(x)) c W.
Similar proofs show that in case (iii), fo(x,v) = {n(x)} C f(x,u(x)) ¢ Wif [v —u| < § and v < u(x).
We have shown that in all cases, fy(x,v) € W whenever |v — u| < 6. The upper semicontinuity of
Jo(x,-) at u when u(x) < u < u(x) and therefore in all cases is proved. We have checked that f;
satisfies (F2).

Next, it follows from (4.7) and (4.10) that

sup{[¢] : & € fo(x, )} < as(x) + [7(x0)] + In(x)], (4.11)

fora.e. x € Q, all u € R, where ay + [77] + |5l € LY (Q). Hence, f; satisfies (2.5) in (F3) with
az = a4 + [l + |nl and b3 = 0.
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As in the singlevalued case, we also need the following regularization function b : Q X R — R,

[u — u(x)]P~! if  u>ulx)
bx,u)=1 0 it u(x) <u<ux) 4.12)
—[u(x) —ulP™" if w<u(x), forxe QueR.
We see that b is a Carathéodory function and since u, u € LP(Q),
Ib(x, u)| < as(x) + bsjulP™", (x € Q,u € R), 4.13)

with as € L (Q), bs > 0, and
f b(x, u)udx > b6||u||Z,,(Q) —ag, Yu € LP(Q), (4.14)
Q
ag, bg > 0 (see e.g. [20, 10]). Let B : LP(QQ) — LV (Q) = [LP(Q)]* be given by

(BW), v )0 = f b(:,u)vdx, Yu,v € L1(Q).
Q

Estimate (4.13) shows that B is well defined and is a bounded continuous operator from L”(€2) to
L7 (Q). Let us verify that i;Bi » 18 a (single-valued) pseudomonotone operator from WhP(Q) to its
dual. In fact, assume u, — u weakly in WP(Q). We have u,, = ig(u,) — ig(u) = u strongly in LP ().
Estimate (4.13), together with usual convergence arguments based on the Lebesgue dominated con-
vergence theorem, implies that B(u,) — B(u) in LY (Q). In particular, (B(u,), un — V)1 ) 1r@) =
(BQ), u = V)1 @y 1oy, YV € LP(Q), and thus, for all v € W'P(Q),

(B Bip(un), un = Viiwir@pwir@) = (Bn)tn = V)i )10
= (B, u = V) )

= <l;Blp(M), u-— v)[W].[!(Q)]*!WI,p(Q).

Next, let us define certain truncation functions needed for the regularization of the involved

setvalued mappings. For i € {1,...,k}, let T;(x, u) be a Carathéodory function such that for x € Q,
ueR,
x)—=nx)| if wu<u(x
Ty = ] W0 10 () 4.15)
0 if u>u(x),
and
0<Ti(x,u) < IQi(x) - Q(x)|, forae. x e Q, all u e R. (4.16)
A simple choice of such function is
u—u,(x)
Ti(x,u) = In.(x) = nlo | =——"=|> 4.17)
=i = u(x) — u,(x)
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forxe Q,ueR,whereoc € CR,R),0<0(s) <1,¥VseR,0(s)=1if s <0,and o(s) =0if s > 1.
o can be simply chosen as

1, s<0
o(s)=4 1-s5, 0<s<1 (4.18)
0, s> 1.

It is clear that 7; given by (4.17)-(4.18) is a Carathéodory function satisfying (4.15) and (4.16).
Similarly, for j = 1,...,m, we define T/ : QxR — R by

Www=@m—mwbﬂﬂiiﬂﬂﬁl (4.19)

uj(x) — u(x)

T/ is a Carathéodory function with

. 7.(x)—nx)| if u>ui(x
S G R C () @20
0 if  u<u(x),
and similarly to (4.16),
0<T/(x,u) <[, - 7(x)|, forae xeQ, alluck. 4.21)
Consequently,
Ti(,u), T'(-,u) € L7 (Q),Yu € LY(Q), 4.22)

and 7 : u — Ti(-,u), T/ : u— TI(-,u) are bounded operators from L(Q) to L7 (Q). Using standard
convergence arguments based on Lebesgue’s dominated convergence theorem and the growths in
(4.16) and (4.21), we see that 75,7 (1 < i < k, 1 < j < m) are also continuous from L4(Q2) to L7 (Q).
Hence, i;7ig and i, 7" /i, are completely continuous and are thus (singlevalued) pseudomonotone
operators from WhP(Q) to [WP(Q)]".
Let us consider the following auxiliary variational inequality of (2.7): Find u € K, n € L1(Q)
such that
n(x) € fo(x,u(x)) a.e. x € Q and (4.23)

f A(x, Vu)(Vv = Vu)dx + f n(x)(v — wydx + f b(x, u)(v — u)dx
Q Q Q

m

k
- Z f Ti(x,u)(v — u)dx + Z f TI(x, u)(v — wydx — (L,v — u) 4.24)
i=1 Y& =1 ve
>0, YveK.
This inequality is equivalent to finding u € K and 7} € (i;ﬁ)iq)(u) #= i;niq, n as in (4.23)) such that

k
<ﬂ(u) 7+ (@ Bip)w) = D T ) + ) @G T ig)u) - Ly - u> >0,¥veK. (4.25)
i=1 J=1
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This inequality is of the form (3.2) with f = L, ¢ = 0, X = W'P(Q),and T : X — 2%,

k m
T = A+ i, fig + iyBip = D ((3Tiig) + D (5T iy). (4.26)
i=1 j=1
Note that among the components of 7', only i, fi ig is multivalued. Since all the components of T are
pseudomonotone from W'?(Q) to its dual, so is T.

Next, we check that the operators in (4.25) satisfy the coercivity condition (3.1). Letting uy be
any (fixed) element of K, we have

fg A, Vu)Vudx 2 bl IVul I, ¢, = lazllps . @.27)
and
fg A(x, Viu)Vupdx| < fg (B1IVul”™ + ay) IVugldx
< DillVul| Z,T('Q)II [Vuol 1o @) + llarll . @ll IVuol e (4.28)
< Cillull?y) o+ Co.

Whr(Q)

As above, here and in the next estimates C;’s stand for positive constants that do not depend on
u € W"P(Q). From (4.11), for any 7j € (i3 foig)(w),

(i, u—uo)l < (laallze ) + Ml @) + 17l @) lull o) + luollzac)) 429)
< Ghllullwrr) + Ca.
From (4.13) and (4.14),
(@,Bi,)w),u—up) = f b(x, u)(u — up)dx
Q
> bellull) ) — a6 — llaslly o) lltollr@ = bsllull i lluollrgy 430
-1
> b6”””£p(g) - CS”I/{”[;‘,LP(Q) - CG-
From (4.16), fori € {1,...,k},
KT )0, 1 - )] = f T3 )u — )
Q
< Mg, = 1l el + 7, = 1l o lollzocen.
Hence,
k
Z (& Tiig) (W), u — uo)l < Collullwrrq) + Cs. (4.31)
i=1
Similarly,
Z K@ T ig) ), u = up)] < Collullyroiy + Co- (4.32)

J=1
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Finally,

KL, u — up)| < ”L”[WU’(Q)]’||u||W‘~/’(Q) + ||L||[W1»p(g)]*||140||W1»1’(Q)~ (4.33)
Combining the estimates from (4.27) to (4.33) shows that for any u € W'(Q) and u* € T(u), that
is,

k m
u' = [ﬂ + 0, Bi, — Z(i;;'r,-i,,) + Z(i;;'rfiq)](u) + ]
i=1 j=1

with 7 € (i, fiq)(u), we always have

* —1
= Lu—uo) = bl IVl I + bollull ) = Cur (Il ) + ladllwrogey + 1)
-1
> Coallullh i, = Cr (Il ) + Ml + 1)

Since p > 1, this implies that

lim [ inf (u"—L,u— uo)] = oo.

llly 1.y —>0 | €T )

It follows from Theorem 3.1 that inequality (4.25), or (4.23)-(4.24), has a solution u € K.
Let u € K be any solution of (4.23)-(4.24). In the next step, we prove that

u<u<u ae.onfQ. (4.34)
To verify the first inequality, we let s be any number in {1, ..., k} and prove that
u, <u ae onf 4.35)

From (4.6), we have u Vu € K. Lettingv =u Vu=u+ (u, - u)* in (4.24) yields
fA(x, Vu)V[(u, —u)*ldx + f n(u, —u) dx + f b(x, u)(u, —u)*dx
Oy e “
- Z f Ti(x, u)(u, — u)*dx + Z f T/ (x,u)(u, — u)*dx — (L, (u, — u)*) (4.36)
i=1 Y@ =1 ve
> 0.
From (4.2) with u#_and n instead of w and n, and v = u — (u, — u)* =u Au€u_ AK,we obtain
- [ ATV, 0 [ -0t w20 @
Q o

Adding inequalities (4.36) and (4.37), we get

f[A(x, Vu)—A(x,gs)]V[(gs—u)+]dx+f(r]—gv)(gs—ufdx
Q . Q )
b y - +d - Ti 5 - +d
+ fg (6, u)(u, — u)*dx ; fg (. u) (g — u)* dx (4.38)

+>) f T (x,u)(u, — uy*dx > 0.
=18
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Stampacchia’s theorem (cf. e.g. [16]) and the monotonicity of A in (A2) imply that

f [A(x, V) = ACx, u)1VI[(ug — u)*ldx

[ACx, Vi) = ACx, u)1V[(ug — u)*1dx (4.39)

{xeQuu (x)>u(x)}

> 0.

At x € Q such that u (x) > u(x), since u (x) < u(x) < u(x), we have from (4.20) that Ti(x,u(x)) =0
and thus

f T/ (x, u)(u, — u)*dx = f T/ (x, u)(u, — uydx = 0, (4.40)
Q {reQuu (x)>u(x)}
for all j € {1,...,m}. Furthermore, for x € Q such that u (x) > u(x), we have u(x) < u(x) which,
together with (4.23) and (4.10), implies that (x) € {Q(x)}, ie.,

1n(x) = n(x). (4.41)

Also, for such x, (4.15) gives
Ts(x,u(x) = In () = n(x)l. (4.42)

As a direct consequence of (4.16),

f Ti(x,u)(u, —u)'dx >0, Yie(l,... k).
Q

Thanks to (4.41) and (4.42), we get

k
- —w)tdx - Ti . —wtd
fﬂm 1), —w)'dx Z‘ fQ (o, u)aty — u)*dx

[rr-n = | T, - e s
{n(x) =1 ()] = In(x) = n (O, - u)dx

{reQuu (x)>u(x)}

< 0.

IN

Combining (4.38) with (4.39), (4.40), and (4.43), we obtain

0< f b(x, u)(u, —u)dx = f b(x, u)(u, — u)dx.
Q {reQuu (x)>u(x)}

From (4.12), if u(x) > u(x) then u > wu(x) and b(x,u(x)) = —[u(x) — u(x)]”"". Hence, 0 <
_ f [4(x) = ()] [u,(x) = u(x)]dx. Since u(x) — u(x) > 0 and u,(x) - u(x) > 0 on
{x€Quu (x)>u(x)}

the set {x € Q : u_(x) > u(x)}, this inequality implies that this set must have measure 0, which means
that u(x) = u (x) for a.e. x € Q. We have proved (4.35). Since (4.35) holds for all s € {1,...,k}, we
get the first inequality of (4.34). The second inequality of (4.34) is verified analogously.
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From (4.34) and (4.12)-(4.15)-(4.20), we have
b u) = Ti(-,u) = T/(,u) = 0 ae. on Q,

foralli e {1,...,k}, j € {l,...,m}. Also, from (4.34) and (4.10), together with (4.23), we see that
nx) € folx,u(x)) = f(x,u(x)) for a.e. x € Q. In view of these observations, (4.23)-(4.24) reduce to
(2.6)-(2.7). Our proof of Theorem 4.2 is complete. O

Letu, 1 <i<kandu;, 1 < j< m,be sub- and supersolutions that satisfy conditions (4.5),
(4.6), and (4.7), in Theorem 4.2. We have proved that the set S of solutions of (2.7) between u and
u,

S ={u € K : usatisfies (2.6)-(2.7) and u < u < u a.e. on Q},

is nonempty. As consequences of Theorem 4.2, some further properties of S are given in the fol-
lowing theorem. Since the proofs of these properties do not require substantial modifications as in
Theorem 4.2 compared to the case of singlevalued lower order terms, they are just outlined here
with the necessary changes indicated. We assume in the sequel that A is strictly monotone, that is,
strict inequality holds in (2.3) whenever &; # &.

Corollary 4.3 (a) S is a compact subset of W'"P(Q).
(b)If
SAKCK (resp. SV K CK), 4.44)

then

(i) any u € S is a subsolution (resp. supersolution) of (2.7), and

(ii) S is directed downward (resp. upward), that is, for all uy, u, € S, there exists u € S such
that

u < minfuy, up} (resp. u > max{uy, uz}).

(c) If both inclusions in (4.44) hold then S has least and greatest elements, that is, there are
U, u* €S suchthatu, <u<u*, YueS.

Proof. Since u,u € Whr(Q), it follows from (4.8) that the set {llullLr ) : u € S} is bounded. Let {u,}
be a sequence in S and {r,} be a corresponding sequence in L?(Q) that satisfies (2.6) and (2.7) (for
each u = u, and n = n,,).

From (4.7), {n,} is a bounded sequence in L?(Q). Using (2.7) with u,, 1,, and v = vy, a fixed
element of K, we see that { fQ A(, Vu,,)Vu,,dx} is a bounded sequence which thanks to (A1) implies
that the set {|||Vu,|||;x@ : n € N} is also bounded. Hence, {u,} is a bounded sequence in WhP(Q)
and there exists a subsequence {u,,} C {u,} such that u,, — uo weakly in WP(Q) for some uy € K
(note that K is weakly closed in W!*(Q)) and thus u,, — ug in LI(Q).

By passing to a subsequence if necessary, we can also assume that u,, — ug a.e. in Q and because
of the boundedness of {5} in LY (Q), n,, — 10 weakly in L7 (Q) for some 179 € LY (Q). It follows
that i;‘,nn, - 52770 weakly in [WhP(Q)]* and therefore

fnn,(un, —up)dx — 0 and (L,u,, —up) = 0 asl — oo. (4.45)
o)

From (2.7) with u = u,, and v = ug, we see that

lim inf(A(uy,), uo = tp,) > 0.
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Since A is of class (S), (cf. e.g. [3]), we must have u,, — ug (strongly) in W'P(Q). Next, we prove
that ug € S. It is evident that

u<uy<u ae.onQ. (4.46)

Let fy be defined by (4.10) in the proof of Theorem 4.2. Since u < u,, < u a.e. on Q, we see that u,
and n,, satisfy (2.6)-(2.7) with f; instead of f. From (4.45) and the fact that ijl ﬁ)iq is pseudomonotone
and thus generalized pseudomonotone from W'?(Q) to [W!?(Q)]* (see the proof of Theorem 4.2)
we have 19 € (if foig)(uo). i.e.,

n0(x) € fo(x, up(x)) = f(x,u(x)) fora.e. x € Q, (4.47)

(from (4.46)) and f My Un,dX — f nouodx. Therefore, for all v € K,
Q Q

f AC, Vit )(Vv = Vi )dx + f (9 = tn) = (L. = t)
Q

- fA(o, Vup)(Vv — Vug)dx + f no(v — ug) — (L, v — ug).
Q Q

Since u,, € S, this limit together with (4.47) shows that uy and 7 satisfy (2.6)-(2.7) which in view
of (4.46) implies that ug € S. We thus obtain the compactness of S in W!*(Q).

(b) Assume the first inclusion in (4.44). If uy € S then uy A K C K and thus u is a subsolution
of (2.7). If uy, up € S then they are subsolutions of (2.7) and Theorem 4.2 thus implies the existence
of a solution u of (2.7) such that max{u;, u} <u < min{u; : 1 < j <m} =u. Itis clear thatu € S.

(c) Since W'"P(Q) is separable, so is S with the metric generated by || - [ly1rq). Let {w,} be a
dense sequence in S. Using the directedness of S, we can construct inductively a sequence {i,} in
S such that w, < u, < ty41,¥n € N, Let u*(x) = sup{u,(x) : n € N} = lim, e tt,(x), x € Q. Asa
consequence of the compactness of S, u,, — u* in W"7(Q) and u* € S. Since u* > w, a.e. in Q for
all n € N, from the density of {w,} in S, we see that u* > u a.e. in Q for all u € S. The existence of
the smallest element u, of S is proved in a similar way. o

We conclude our paper with some remarks regarding the consideration of multivalued integral
lower order terms in (1.1) and (1.2).

Remark 4.4 (a) If f = f(u) depends only on u then the upper semicontinuity of f in condition (F2)
implies its measurability in condition (F1) (cf. e.g. [1]).

(b) Let us consider f(x,u) = 0F(x,u) where F(x,u) is a Carathéodory function which is locally
Lipschitz in u and dF (x, u) is the Clarke generalized gradient with respect to u. Since dF(x, u) is
a closed and bounded interval in R and the mapping u +— 0F(x,u) is upper semicontinuous from
R into K'(R) (cf. [13]), our discussions and existence results above and their variants are natural
extensions of several nonsmooth existence results containing Clarke’s generalized gradient (cf. [7,
9,8, 10, 5, 11]), to more general multivalued functions without nonsmooth potential functionals.

Furthermore, as seen in the above arguments, we do not need the one-sided conditions, assumed
in some works related to Clarke’s generalized gradient as in the above references. Therefore, the
concepts and results presented here are natural continuation and complements of several results in
those works.
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(c) Here are some simple examples of multivalued functions f : R — 2% that satisfy the above
conditions (F1)-(F2) (and (F3)) but are not generalized gradients of any locally Lipschitz functions
(and are not subdifferentials of any convex functions either).

1,11 if u=0
0y if u#0.

(-1} if u<0

®) fw) =4 [-2,2] if u=0

{1} if wu>0.

In Example 1(a), if f(u) = dF (u) for some locally Lipschitz function F (0F denotes Clarke’s
generalized gradient) then since F(u) = C if u < 0, F(u) = C; for u > 0 (Cy,C, = constant) and
F is continuous at 0, we must have C; = C; and thus 0F(0) = 0. Similarly, in Example 1(b), if
f(u) = 0F (u) then F(u) = —u+ C; foru < 0, F(u) = u + C, for u > 0 and again by the continuity of
F at 0, C; = C,. Therefore, F(u) = |u|, Yu € R and dF(0) = [-1, 1], not [-2, 2]. Note that in both
examples, f is upper semicontinuous at every u € R.

Example 1. (a) f(u) =

1 flu)

(a) (b)
Figure 1: Example 1
Example 2. A more general example in this vein is the following function:
{h1(u)} if u<a
[a1,B1] if u=a
J) =19 [g1(w),gw)] if a<u<b

[a’z,ﬁg] if u=»>
{ha(u)} if u>b,

where a < b,a1 < Br1,a2 < B ([@1,B1] = [a,B2]if a = b), hy € C((=0,al), hy € C([b, 0)),
with hy(a) € [a1,B1], ha(b) € [a2,B2], g1,82 € C([a,b]) with g1(u) < g (u), Yu € [a,b], and
[g1(a), g2(a)] C [a1,B1], [g1(P), g2(b)] C [@2,B2]. The graph of f is as follows.
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B

9n
hy

A\

a2

Qi

Figure 2: Example 2

Note that such function f satisfies conditions (F1), (F2), and (F3) above, but f is generally not a

Clarke’s generalized gradient.
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