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1 Introduction

In the present paper, we consider the existence of nontrivial solution for a class of
quasilinear systems of the type

-Apu = Hy(z,u,v), in{Q,
(Spq) —Ayv=—Hy(z,u,v), inQ,
u=v=0, ondN.

where Q is a smooth bounded domain in RN, N > 2, p and ¢ belong to (1, N],
Apu = div(|VulP~2Vu) is the p-Laplacian of u, Agv = div(|Vv|?72Vv) is the ¢-
Laplacian of v and H : Q x R? — R is a C" function.

For the case where p = ¢ = 2, this class of systems is called noncooperative and
many recent studies have focused on it. By using variational methods, the existence
and multiplicity of solutions for different classes of nonlinearities H(x,u,v) have
been intensively studied by various authors, see for example, [2, 4, 5, 7, 10, 16, 19, 22]
and references therein. In [22], Zuo considered the multiple existence of solutions
to (S22) in the case that the function H has an asymptotically linear growth. In
[11], Hirano established the existence of infinitely many solutions to systems like
(S22) which are perturbed from a noncooperative odd elliptic systems. In both
articles only subcritical systems have been considered. In [7], Ding and Figueiredo
considered (Sa92) allowing some supercritical growth. More precisely, the function
H(x,u,v) can assume a supercritical and subcritical growth on v and u respectively.
They established the existence of infinitely many solutions to (S22) provided the
nonlinear term H is even in (u,v). In [4], Clapp, Ding and Herndndez showed
that multiple existence of solutions to (S22) with some supercritical growth can be
established without the symmetry assumption. In all these papers, the existence
results are obtained as an application of an abstract critical point theorem for
strongly indefinite functionals.

Motivated by some results found in [4] and [7], a natural question arises whether
existence of nontrivial solutions continues to hold for (S,,) when p and ¢ are different
from 2 and H has a supercritical and critical growth on the variables v and u
respectively for N > 2. Here, for example, we will considerer two cases. The
first one, we can assume that H(x,u,v) has a supercritical growth on variable v
and has a critical growth at infinity on variable u of the type |u|p* with p* =
pN/(N — p), the critical exponent of the embedding W, *(Q) < LP"(Q). In this
case the concentration—compactness principle due to Lions [13] is crucial to overcome
the lack of compactness of the energy functional. In the second case, we assume
that p = ¢ = N and H has critical exponential growth on the variables u and
v. The variational formulation to this class of systems is given by the Trundiger
and Moser inequality (see [14]). We would like to emphasize that in the literature
rather less attention has been paid to noncooperative systems involving exponential
critical growth to the case N > 2. Nevertheless, we should also mention the article
[6], where a class of Hamiltonian systems with exponential critical growth has been
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considered.

The main difficulty in the cases above-mentioned is the lack of compactness of
the energy functional associated to system. To overcome this difficulty, we make
carefully estimates and prove that there is a Palais-Smale sequence that has a
strongly convergent subsequence. The method employed here is based on a Galerkin
type approximation developed by Bartsch and Clapp in [2] together with a linking
theorem due to Rabinowitz [15], however in the version proved here is not assumed
the Palais-Smale condition.

The main results in the present paper have concentrated on existence of non-
trivial solutions to (S,,) and can be seen as a complement of the studies developed
in [4] and [7] for multiple existence of solutions. We will pursue our investigation
of multiple existence of solutions to (Sp,) in the future.

This paper is organized as follows. In Section 2 we state and prove the linking
theorem that we will use in this work. In Section 3, we apply the linking theorem
to get a nontrivial solution to (Sp,) assuming that the nonlinear term H(x,u,v)
has double critical growth on u and v and N > 3. Finally, in Section 4, we consider
the case p = ¢ = N and we prove the existence of nontrivial solution for the
corresponding system (Syn) with double critical exponential growth on bounded
domain of RN for N > 2.

2 The linking theorem: a review

This section is devoted to establish a version of the linking theorem of Rabinowitz
[15] without Palais-Smale condition. The proof of this theorem is very similar to
the one found in [15] with few modifications; however, for convenience of the reader
we will show it here by adapting some arguments due to Kryszewski and Szulkin
[12].

Theorem 2.1 Let X be a real Banach space with X =Y & Z, where Y is finite
dimensional. Suppose ® € C1(X,R) satisfies:

(Iy) There is o > 0 such that if N ={u € Z : ||ul]| = o}, then b= ijr\l/f(p > 0.

(Iz) There are z, € ZN OBy and p > o > 0 such that

0=sup® < d=sup?,
oM M

where M={u=MXz. +y: |lu| <p, A >0,y e Y}
Then, there is a sequence (u,) C X, such that
®(uy,) — c € [b,d and  ®'(u,) — 0.

Proof. Arguing by contradiction, we suppose that the thesis is false. Then there
exist € > 0 and a > 0 such that

@ (u)|| > a forallu € ®([b— 2¢,d+ 2€]).
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Setting
A=3Y[b—2e,d+2¢) and B=d[b—¢d+e),

we have that B C A C X = {u € X;®(u) # 0}. Let V be a pseudo-gradient vector
field for ® on X, that is, for all u € X,

VWl < 212w, (2.1)
(@' (), V(w) > |19 (w)]|*. (2.2

Set
B dist(u, X \ A)
P(u) = dist(u, B) 4 dist(u, X \ A)
and
PV
Gw =4 Wa “<
0, ue X\ A

Then by construction, G is locally Lipschitz continuous on X. Thus, for each u € X,
the Cauchy problem

1w ==G(tw),  7(0,u) =u

has a unique solution (-, u) defined on R. We claim that

sup ®(n(T',u)) <b,
ueM

where T' = 2(d — b+ €)/a. In fact, if not, sup ®(n(T,u)) > b, which implies that
ueM
there exists u € M with ®(n(T,u)) > b — e. Thus,

T
be < BT =B+ [ L) i

— o) / (@' (1t ), G(n(t, w))) dt

< d——,
- 2
where in the last inequality we used (2.1), (2.2) and that n(t,u) € B. But this
contradicts the choice of T'.
Now we claim that there exists T € M such that n(7,u) € N. In fact, consider
the function G : M x [0,T] — Y @ (z,) given by

G(u,t) = P(n(t, u)) + ([Qn(t, w)|| — o)z,

where P: X — Y and @ : X — Z denote the projections. From the definition of
G, we can observe that G=1{0} "M = (). Then, applying the Brouwer topological
degree, we derive

d(G(,T), M, 0) = d(G(-,0), M, 0).
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That is,
d(G(-,T),M,0) =d(Id,M,cz.) = 1.

Therefore, there exists © € M such that G(@,T) = 0, which concludes the verifica-
tion of the claim. Finally, from the above considerations,

b < I(n(T,u)) < sup I(n(T,u)) <b,
ueM

which is impossible. This completes the proof of Theorem 2.1.

3 Systems with critical growth for N > max{p, ¢}

In this section, we study the existence of solution for the following class of quasilinear
systems:

—Apu = Hy(z,u,v), in Q
(Spq) —Agv = —Hy(z,u,v), in Q
uw=v=0, on 9N
where A, and A, denote the p and ¢ Laplacian operator, respectively, p,q > 1, Q

is a smooth bounded domain in RY, N > max{p, ¢} and H : Q x R? — R is given
by

H(z,u,v) = Z%|u|p* + G(v) + R(x,u,v),
with p* = Np/(N —p). The assumptions on the functions G and R are the following:
(G1) G € CY(R,R) and there exist constants C' > 0 and r > ¢ such that
(7) |G(s)] < C|s|", forall s € R.
If r > ¢* = Nq/(N — q), we add that
(44) (g(t) —g(s))(t—s) > CJt—s|", forallt, s e R.
where g(s) = G'(s).
(G2) There exists v € (0,q) such that

0 <vG(s) <g(s)s, for all s € R.

(R1) R € CYQ x R?), R,(x,0,0) = 0, R,(z,0,0) = 0, R(z,u,v) > 0 and

Ry(x,u,v)u >0, for all (z,u,v) € Q x R2.



542 C.0. Alves, S.H.M. Soares

(R2) There exist p; € (p,p*), ¢; € (¢,4%), i = 1,2, with max{ps2,q1 } < min{p*, ¢*}
such that

|Ru(,u,0)| < CJulPr =" 4 o] 1),

|Ry (2, u,v)| < O(JufP>~! + Jo|2271),

for all (x,u,v) € Q x R? and for some constant C' > 0.

(R3) There exist s € (p, max{p1,p2}|, a nonempty open subset Qg C 2, and a
constant a > 0 such that

R(x,u,v) > alul® for all z € Qg and (u,v) € R2.
(R4) There exists p € (p, p*) such that

1 1
—Ry(z,t,s)t + ;Rv(x,t,s)s — R(xz,t,8) >0, forall z € Q and (,s) € R?
i

where v is given by condition (G3).
The main result of this section is the following.

Theorem 3.1 If (G1) — (G2),(R1) — (R4) are satisfied, then (Spq) possesses a
nontrivial solution.

We observe that R(u,v) = |u]® 4+ Clv|* +sin |u|® sin |v|* satisfies (R;) — (R4) with
b1 =8 =Dp2, 1 = t = q2 for pi € (pvp*)v g € (qvq*)a i = 1727 and p,q > 1)
max{p, ¢} < N and N/2 < p, where C' > 1 is a real constant.

Before proving the above theorem, we have to fix some notations. In the sequel
V. stands for the space W '%(Q) N L™ () endowed with the norm

[ollr = lvllwgaiq) + [0l

where ||v||W01,q(Q) and |v|, denote the usual norms in Wy '?(2) and L"(f2), respec-
tively.
We write X for the space W, () x V,. endowed with the norm

)2 = el + ol

where ||uHW01,p(Q) denotes the usual norm in Wy (Q) and ® : X — R denotes the
functional given by

1 1
D (u,v) = 2;/ |VulPdz — a/ |Vo|ldx — / H(z,u,v)dz. (3.3)
Q ) Q

Under the assumptions (G;) and (Rz), the functional ® is well defined, belongs to
C'(X,R) and

' (u, 0)(, )

/ |Vu|P~2VuVpdr — / V|72V uVepda
Q Q

- /Q[Hu(x,u,v)gb—l—Hv(x,u,v)w}dx (3.4)
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for all (u,v), (¢,v) € X. Since (0,0) is a critical point of ®, we say that (u,v) is a
nontrivial solution of (S,q), when it is a critical point of ® and satisfies ®(u, v) # 0.

In order to apply the linking theorem, we introduce one more piece of notation.
Since (V. || - ||) is reflexive and separable, from [8] and [21], there exists a sequence
(en) C V; such that

V. = span{e, : n € N}. (3.5)

Hereafter, for each n € N we denote by V,"* and X,, the following spaces
V' =span{e;: j=1,---,n} and X, =W,"(Q)x V"

The restriction of ® to X,, will be denoted by ®,. Then ®, : X,, — R is the
functional given by

1 1
@Tb(u,v)zf/ |Vu|pdx—f/ |Vv|qda:—/H(x,u,v)da:. (3.6)
b Ja qJa Q

From the regularity of ®, it follows that ®,, belongs to C1(X,,,R) with

@' (u,v)(,v) /Q |VuP~2VuV ¢pd — /g 2 | V|92 Vo Vepda

- /Q[Hu(x,u, v)¢ + Hy(z,u,v)¢]dz (3.7)

for all (u,v), (¢,v) € X,.
In the following, we prove that ®,, satisfies the hypotheses of Theorem 2.1.

Lemma 3.1 Under the assumptions (G1)—(G2) and (R1)— (Ry), there exist o > 0
and p > o such that if u, € Wy P(Q) satisfies Hu*||W01,p(Q) =1, then

b, =inf®, >0= sup o,
Nn OM™

U

where
M = {(Aus,v) € Xt [[(Aus, 0) |2 < p?, A > 0}
and

N ={(v,0) € X, : ||U‘HW01*P(Q) =o}.

Proof. By (R;) and (R»),

1, o 1 1,
= = — > = p — —|ulP, — p1
én(uﬂo) p||u”WoLp(Q) AH(LC,’LL,O)diE = p”u”WOLP(Q) p*|u|p C|u|p17

for some positive constant C. Using the Sobolev embedding theorem,

1 P p" P1
q)n(uvo) > EHUHWOLP(Q) - ClHu”WOl»P(Q) - CQH/U’”WJJH (Q)’
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for some positive constants C; and Cy. Since p*,p; > p, there exists o > 0 suffi-
ciently small such that

1
u(,0) 2 507, for Jullypeie) =0

which implies

1
b, =inf®,, > —oP >0, forallneN. (3.8)
N, 2p
Now, for v € V],
101114
®,(0,v) = G 7 ) —/ G(v)dw—/ R(z,0,v)dx.
q Q Q

From (G3) and (Ry),
,(0,v) <0 for all v e V" (3.9)

Now, taking u, € W, () with ||u*||W01,p(Q) =1, by assumptions (G2) and (R1),

/G (3.10)
for every A > 0 and v € V,"".
If 7 < ¢*, then V, = Wy '%(2) and the norms || - ||, and || - ||W01,q(m are equivalent.
From this, there exists a positive constant C' such that

D, (A, v) S ——

|| le Q(Q |u*

*

p* -

\P
@y (M, v) < — = Clf[f -
p

Observing that ||(Au.,v)||? = A2 + ||v||? = p? implies that

2 2
p 2 P
A2 > >
- 2 or HU”T - 27
it follows that §
AP q p*
?—CHU”T— p* <0

providing p is sufficiently large. From (3.10), we conclude that there exists p > o
such that
D, (A, v) <0 (3.11)

for all (Au.,v) € X,, such that ||)\u*||W1 vyt |lv]|2 = p? and A > 0. By (3.9) and

(3.11), rﬁmx ®,, = 0 and the proof is Complete in this case.

Now, if r > ¢*, by (G1)(47) there is a positive constant C' such that

AP .
AMW—CM?

D, (A <)\p 4
e ) < 5% = 20l ~
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Observing that ||(Au,v)||? = A2 + ||v||? = p? implies that

2 2 2
p
or \U|f > T

A2 >
the same argument used in the former case implies that for p > 0 large enough
D, (Auy,v) <0

for all (Au.,v) € X, such that ||)\u*||‘2/V1,1,(Q)—|—||v\|2 = p? and \ > 0, which completes
0
the proof of Lemma 3.1.

Lemma 3.2 Suppose that G satisfies (G1)—(G2) and R satisfies (R1)—(R4). Then
there exists u, € WyP(Q) with ||u*||W01,p(Q) =1 and A € (0, %S%) such that

dn, = sup ®, < A for alln e N
Mz,

where S denotes the best Sobolev constant of the embedding Wy P (RN) < LP"(RN).
Proof. Considering Qg given by (Rs), we take zg € Qg and rg > 0 such that

Bayy(z0) C Q9. Choose ¢ € C*(RM),0 < ¢ < 1,90 =1 on B, (79) and ¢ = 0
on RN\ By, (z0). Given € > 0, consider

¢(~’0)we( )

ue(x) = , for all x € Q
where v
eN(N=p\p—11 ="
we(ac):{ = )p ifp , for all z € RV,
(e + lalP#0) 5

As proved in [9],
/ [Vu|? < S+O(e¥), as € — 0.
Q

From (G2) and (R3),

(/\U'ea S 7/ |vu6|p /|U;€

Arguing as in [17, Proposition 5.1], there exists € > 0 such that
AP AP 1
A= max{—/ |Vue|P — — —a)\s/ |u6|5} < —S7.
x>0 Lp Jo p* Q N

d, <A forallnéeN,

Therefore,

and the proof of the lemma is completed by taking u, = A
lwg P o)
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From Lemmas 3.1 and 3.2, we can apply the linking theorem to functional ®,,
using the point z, = (u.,0) and the sets

Yo = {0} x V', Z=WyP(Q) x {0} and Ny = {(u,0) € Z : [|u]l 1) = o}
Then, there exists a sequence (ug,vy) C X, with

®,, (ug,vk) — Cp € [bp,dn] and @) (ug,vx) — 0, as k — +oo. (3.12)

Lemma 3.3 The sequence (uy,vy) is bounded in X,.

Proof. From (3.12),

1 1
D, (up, vg) — @;(uk,vk)(;uk, ;vk) = ¢y + ok (1) || (ug, vk |- (3.13)

By (G2) and (Ry),

1 . 11,
ey + G el g

SRR

1 1
Dy, (U, vg) — @;(ukmk)(ﬁuk, ;vk) > (

From this,

1 1
- p
(p /,L)HUkHW()LP(Q) +(

R

Mokl 10 gy < e+ 0k (Dl (s 00

Q| =

Since V,” is a finite dimensional space, the norms || - ”W(}*Q(Q) and ||-||, are equivalent.
Thus, there is a positive constant C' = C'(n) such that

1 1
G- ;)Ilukll’;v(},p(m + Cllogllf < en + o (D)l (ur, vi)ll;

which implies that there exists a constant K = K(n) such that
[[(ug,vg)]| < K, for all k € N.

This concludes the proof of Lemma 3.3.

From Lemma 3.3, we may assume that there exists a subsequence of (ug,vy),
still denoted by itself, and (w,,y,) € X, such that

(uk,vg) = (Wn,yn) weakly in X,,, as k — +oo.

Hence,
wy, — w, weakly in W, (),
v — Yy, weakly in V.

Lemma 3.4 The sequence (wp,yy) is bounded in X. Moreover,

D, (Wn,Yn) = ¢ and P, (wp,yn) =0 in X,
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Proof. Since V;™ is a finite dimensional space, (vx) converges strongly to y, in V™.
Therefore,

/|Vvk|qu—>/ |Vyn|?de, (3.14)
Q Q

/|Vvk|q’2Vka¢1dxﬂ/ Vo |7 2Vy, Vi dz, (3.15)
Q Q

/g(vk)wdxﬂ/g(yn)wdx, (3.16)
Q Q

as k — oo, for all ¥ € V. From the Sobolev embedding and by concentration-
compactness principle due to Lions [13], we can assume

uy, converges to w, in L'(Q2), for all t € [1,p*) and a.e., (3.17)
urlP” = (= wal” + D Gbasr G >0,
iel
|vuk‘p — X 2 |vwn‘p + indww Xi > 07
iel
¢ < Xg for all i € 1, (3.18)

where ¢ and x are nonnegative measures on 2.

In the sequel we prove that I is an empty set. In fact, suppose that there exists
¢i > 0 for some i € I. Let ¢ be a cut off function satisfying ¢ = 1 on the ball B;(0),
¢ =0o0nRY\ By(0) and 0 < ¢ < 1. Given € > 0 and z; a singular point, consider
be() = ¢(**). Since

D7, (up, v) (urde, 0) = 0x (1),

a well known argument used in the scalar case shows that ¢; = x; (see for instance
[9, Lemma 2.3]). Combining this with (3.18) we reach that ¢; > SV/?. Now, (R;),
(R4), (G2) together with

1 1
Q, (ug, vg) — q)'n(uk,vk)(];uk, ;Uk) = cp + ok (1) (ug, vi)||

imply that
1 . 1 1

On the other hand, from Lemma 3.2, ¢, < %SN /P which is a contradiction.
Now, using that I = 0 , it follows that wj, converges strongly to w,, in L?" Q)

and thus
lim/|uk|p*: lim / ‘Uk|p*72ukwn:/|wn
k—o0 O k—o0 Q Q

lim R (z, ug,vi)w, = lim Ry (, ug, v )ug :/Ru(x,wn,yn)wn. (3.20)
k—oo Jq k—oo Jq Q

P (3.19)

and
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Since
/<|Vuk\p72Vuk - |an|p72an,Vuk — Vuw,)dx = / |uk|p*f
Q Q
*/ |uk|p*72ukwn*/ Ru(xaukavk)wn+/ Ry (x, up, vi)up + ox(1),
Q Q Q
it follows from (3.19) and (3.20) that

Jim (|Vug[P~2Vug, — [V, |P2Vw,, Vug — Vw,) = 0.
— 00 Q

According to

(lal*"%a — [b]°"?b,a — b) > (3.21)

for every a,b € RY (see [18]), if p > 2, we have that uj converges strongly to w,, in
WyP(€2). Now, if 1 < p < 2, we conclude that

lim C Vs — an|2
k—oo P Q (|vu1<;| + |an|)27p

=0. (3.22)

By the Holder inequality,

[Vu — Vw,|P p(2-p)
Vuy, — V[P = Vaug| + [V, )
fylom =t = [ s T+ )

\Vuk—anP )12) (/ >22
\Y% Yw,|)P
</Q (|Vug| + |[Vwy,|)2—P Q(| ug| + [Vwy|)

Combining this inequality with (3.22) and the boundedness of (uy), we obtain again
that uy converges strongly to w, in VVO1 P(Q). Hence,

(ukﬁvk) - (wnayn) in X,,.
The last limit implies that
®,, (Wn,Yn) = cp € [bp,dy] and @) (w,,y,) =0 in X,

From this,

1 1
(I)n ny Yn - P! nsYn )\~ Wn, “Yn) = Cn,
(Wi, yn) — B, (w y)(ﬂw n) =c

which combined with (R4), (G2) and (ii) of (Gy), if r > ¢*, implies that (wp,yy) is
bounded in X and proof is complete.
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3.1 Proof of Theorem 3.1

The proof of Theorem 3.1 will be carried out in two lemmas. We start observing
that since X is reflexive, there is no loss of generality in assuming that

(Wn,yn) = (w,v) in X.
The same arguments used in the proof of Lemma 3.4 can be repeated to show that
w, —u  in WyP(Q). (3.23)

However, similar limit involving the sequence (y,) and v in V. requires a careful
analysis, which is the content of the next lemma.

Lemma 3.5 The sequence (y,) verifies the following limit
Yn — v in V.
Proof. From (3.5), there is (§x) C V, such that
&k —wv in V,
and
(k)
& = Zaiei € V,,j(k)
i=1
where j(k) € N for all k € N. For each k € N, it follows that
VIR Ccvm forall n>n,

for some n, > j(k).
If ¢ > 2 and r > ¢*, from (3.21) and (G1), we have that there is C' > 0 such that

C/Q[Wyn = V&l + |yn — &|"] < /Q<|Vyn|q_2vyn — | VE&|" VL, Vi, — V&)

+ /Q(g(yn) = 9(&k)) (Yn — &k)-

Since @/ (wy, yn) = 0 in X5, we derive that

/Q (V0T 2V — [VELT 28, Vg, — VL) + / (9(5m) — 9(60)) (ym — &) =

Q

- / V&2V (T — VEL) / Ro (w0, o) + / Ro (2, wn, yn)én
Q Q Q

—/g(ﬁk)(yn—ffk)-
Q
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This equality leads to

c / [V — VEI® + lyn — &xl"] / VER T2V (Vyn — VEL)

- /Q R, s g )y + /Q Ry wn, yo)6 — /Q 9(6) (g — 0).

Taking the limit as n — 400, we reach

lim sup / 1990~ V&I + o — & < 5 / V&7 2VEL (Vo — V&)

n—-4oo

—/QRU(ZZ?,U,’U)U—F/Q u$UU§k—/ (&) (v — &)

Now, given ¢ > 0 there is kg € N such that

&l- /Q V&RV ER(VY — V) —/QRv(w,u,v)v

)
+ [ Ruwule - [ gle-a)] <3
Q Q
for all k£ > ky. Hence,
d
limsup/ IVyn — VEL|T + yn — &k|™] < 3 for all k > ky. (3.24)
n—-+4oo [9)
Now, if 1 < ¢ < 2, then by (3.21) we obtain
: [Vyn — VE|? J
lim su / + |lyn — &|"] < =, forall k > kg. 3.25
S R e v 0

Employing the Holder inequality to the first term of the left-hand side of (3.25) as
in the proof of Lemma 3.4 and using the boundedness of (y,,) and (&), we can find
a positive constant C' such that

co

limsup/ [IVyn = VE|T + |yn — &l|"] < o
Q

n—-+oo

for all k > ko. (3.26)

As a consequence of (3.24) and (3.26), there is a constant C' > 0 such that

hmbup lyn — &kllr < C [(51/‘1 + 51/“”} =o(1), forall k> k.

n—-+oo

Given € > 0, for § sufficiently small, it follows that

limsup ||yn — &kllr < i, for all k > ky.

n—-+oo
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Fixing k > k¢ sufficiently large such that
€
I — vl < <,

we obtain

€
lgm = vl < o = &l + 5,

which implies that

. . € €
limsuply, — oll, < limsup |y, — &ll, + 7 < 5.
n—-+oo n—-+4oo

From this, ¥, — v in V,, as n — oco. The case r < ¢* can be handled in much the
same way with minor modifications.

Lemma 3.6 The pair (u,v) is a nontrivial critical point of ®.
Proof. Fixing k,n € N with n > k, we have X} C X,,. Thus, for (¢,v) € Xy, it
follows that

& (wn,yn)(p,1) =0, for all n >k,

because, by Lemma 3.4, ®/ (w,,, y,) = 0. Combining Lemma 3.5 with (3.23) we get

& (u,v)(p,90) =0, for all (¢,7) € X. (3.27)

We claim that
&' (u,v)(¢,) =0, forall (¢,9) € X. (3.28)

In fact, we start observing that for all ¢ € Wol’p(Q), the pair (¢,0) € X}, for all k.
Hence, ®'(u,v)(¢,0) = 0. On the other hand, for ¢ € V,., there exists v, € v
such that

lim ¥, =1, inV,.

n—oo

From (3.27),
&' (u,v)(0,1,) =0, forall n €N,

which implies after passage to the limit as n — oo that
&' (u,v)(0,v) =0, forall 9 € V.

Thus, (3.28) is proved. Using the fact that (wp,y,) — (u,v) in X and that
D(wWnyYn) > by > 2—11707’ > 0 for all n € N, we have that ®(u,v) > ﬁa” > 0,
from where it follows that (u,v) is a nontrivial solution for (S,q), and the proof is
complete.
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4 Systems with critical growth for N =p =g¢
Our next application of Theorem 2.1 deals with systems

—Anu = H,(z,u,v), zin
(Snn) —Anyv =—H,(z,u,v),  in Q

u=v=0, on 9N

where Q € R¥ is a smooth bounded domain and H : Q x R?2 — R is a C! function
of the form
H(z,u,v) = F(z,u) + G(z,v) + R(z,u,v)

where I, G and R satisfy some subsequent conditions. In order to treat variationally
(Syn) in WEN(Q) x WEN(Q), we use the inequalities of Trudinger and Moser (see
[14], [20]), which provide

exp(ajulN VD) e LY(Q), for all u € Wy () and o > 0 (4.29)
and there exists a constant C'(Q2) > 0 such that

sup / exp(alulN VD) dz < C(Q), for all @ < ay and u € WoN (Q)  (4.30)
Q

flull<1
1/(N—1) . : . .
where ay = Nwy and wy_1 is the N — 1-dimensional surface of the unit
sphere.

Hereafter, F'(x,s) = f(z,s), G'(x,s) = g(z,s) with f and g verifying the fol-
lowing conditions

(F1) There exists a continuous function b verifying
f(@,5) = b, s) exp(an|s| /N D),

with -
cpls[P72s < b(x,8) < dp|s[P~2s, forallz € Q, s €R,

for some p > NN and constants ¢, d, > 0.
(G1) There exists a constant C' > 0 such that
lg(x, 5)| < Cexplay|s|V/ N, forall z € Q,s € R.
(G2) There exist v € (0, N) and p > N such that
0 <vG(z,s) < g(x,s)s, forall s € R and z € Q.

and
0 < uB(z,s) <b(z,s)s, for all s € R and z € Q.
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where B(z,s) = / b(x,t) dt.
0

(G3) The constants c,, v, u given by conditions (Fy) and (G2) satisty

N
vN uN p—N Sp\ 7N
— 1
oyt () (2) <
ull™

wewd N @\ oy [ulh

where

S, =

Related to function R, we assume that R € C1(2x R?,R) and that the following
conditions hold:

(R1) Ry(2,0,0) = Ry(2,0,0) =0 and R(x,u,v) >0 for all (z,u,v) € Q x R2.

(R2) Forany o,3>0

lim R, (z,u,v) o
() —+o0 exp(alul N/ N=1)) 1 exp(Blv|V/(N-1))
and i
lim v(T,u, v) —o.

|(u,0)| —+o0 exp(a|u| N/ (N=1)) 4+ exp(B|v|N/(N-1))

(R3) For v and p given by condition (G3), we assume that

1 1

;Ru(x,t, s)t+ ;Rv(x,t, s)s — R(x,t,5) >0, for all z € Q and (t,s) € R?
where v is given by condition (G3).

We observe that condition (F}) implies that

lim sup |b(z, t)] exp(—e[t| /N "Dy =0
)
and
lim sup |b(z, t)] exp(et|N/ N =) = oo,
|t] — o0 z€Q
for every € > 0, which characterizes the growth on f as critical exponential. On
the other hand, the assumption (R3) guarantees that the function R has subcritical
exponential growth. For more details we refer the reader to [1] and [6].

The main result of this section is:

Theorem 4.1 If the assumptions (F1),(G1) — (G2), (R1) — (R3) are satisfied, the
system (Snn) possesses a nontrivial solution.
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We note that the hypotheses (R1) — (R3) are satisfied by the function given by
R(u,v) = |u|se|“‘a|v\te|”‘ﬁ, where 1 < o, f < 2, s and t are positive real numbers
such that s/p +t/v > 1, where p and v are given by conditions (G2) and (G3).

We follow the same notation used in Section 3. By X we denote the space
Wy (Q) x W N (Q) endowed with the norm

(s )1 = flul® + 1ol
where || - || denotes the usual norm in W, ™ (Q) and we write ® : X — R the
functional given by
1 1
O (u,v) = —/ |Vu\Ndzf—/ |Vv|Ndx7/ H(z,u,v)dx. (4.31)
N Jo N Jao Q

Under the assumptions (G;) and (Rz), the functional ® is well defined, belongs to
C'(X,R) and

' (u,v)(9,9) = / |Vu|N2VuV pdr — / | Vol N2V uVihde
Q Q
(w00 + Hoou, o)l (432
Q
for all (u,v),(¢,v) € X. In order to apply the linking theorem, in the next we fix

some notations. Since (W, (), || -]) is reflexive and separable, by using again [8]
and [21], there exists a sequence (e,,) C Wol’N(Q) such that

Wol’N(Q) = span {e, : n € N}. (4.33)
Hereafter, for each n € N we denote by V™ and X, the following spaces
V" =span{e;: j=1,---,n} and X, =W,"(Q)x V"
Let @, : X,, — R be the functional given by

1 1
@n(u,v)zN/Q|Vu|Ndx—N/Q|VU|Ndx—/QH(x,u,v)d$. (4.34)

Under the assumptions (G1) and (Rz), the functional ®,, is well defined and belongs
to C1(X,,,R). Furthermore,

O (u,v)(p,p) = / |Vu|N2VuV pdr — / Vol N 2VuVipd
Q Q
(w00 + v (435)
Q
for all (u,v), (¢,¥) € X,,.

The following results establish some limits that are crucial in the proof of results
later on.
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Proposition 4.1 Let (¢;) be a sequence of functions in Wol’N(Q) converging to
v weakly in Wol’N(Q). Assume that |||V < § < 1 and l € C(Q x R,R)
satisfies

ll(z, 5)| < Cexp (ay|s|N/N=D), for all (z,s) € A xR

and for some C > 0. Then,

lim l(m,goj)wdx:/l(x,cp)wdx, (4.36)
Q

j—4o0 Q

for every w e WyN(Q), and
lim l(x7<pj)<pjdx:/l(x7go)cpdx. (4.37)
J=teo Jo Q

Proof. Consider ¢ > 1 so that gé < 1. From the hypothesis on [,

N/(N— 1) N/(N=1)(1eil \N/(N=1)
/ Uz, ¢)|1dx < C/ edon|eil c/ aenliesl (re;m) dx
Q Q

5 n N/(N 1)
<C/ aon dz.

By Trudinger and Moser inequality, there exists M; > 0 such that

/ (2, 0,)[%dz < My, ¥n € N, (4.38)
Q

Combining Sobolev embeddings with Egoroff theorem, given ¢ > 0 there exists
E C Q such that |E| < € and ¢;(z) — ¢(x) uniformly on Q\ E. By Hélder
inequality and using (4.38), we get

‘/ (x, ) wda:’ </ Uz, ;) — Uz, o)||w|dx + 0.(1)
O\E
where o(1) — 0 as € — 0. As € > 0 is arbitrary and I(z,¢;) — I(z, ) uniformly

on Q\ E, we conclude the proof of (4.36). Similar argument shows that the limit
(4.37) holds.

Lemma 4.1 Suppose that R satisfies the condition (R2) and let (p;,&;) be a se-
quence weakly convergent to (¢, &) in Wol’N(Q) X Wol’N(Q). Then,

Q Q

Q Q
[ Butwor&ods — [ Ruep9)ods
Q Q

/mw%@mmH/mm%&m
Q Q
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and

| Buteongppds = [ Rig.vd
Jor all ¢, € WyV ().
Proof. Since (p;,&;) is weakly convergent, there is M > 0 such that
leills g1 < M for all j € N.

Now from (Ry), given 0 < «, 3 < M~N/(N=Dqy there exists a constant C' > 0
such that

|Ru(z,0,6)| < C (eaw”/w*“ + emalN“N*”) , (4.39)
and
|Ru(z,05,6)| < C (ea‘W‘N”N”) + eﬂ‘&"N”N’”) . (4.40)
As a consequence,
JIN/(N=1) N/ (N=1)
[R(2, 05,€)| < € (1™ 4 ST (0] 1 g5, (4.41)

Taking ¢ > 1 such that qaMN/N=1 ¢3MN/(N=1) < oy, from Trudinger and
Moser inequality there exists K > 0 such that

/eaqlw\N/(Nfl)’/ PGV oy e N
Q Q

This combining with (4.39)-(4.41) and Sobolev embeddings imply that the above
limits hold. This concludes the proof.

In the following, we prove that ®,, satisfies the hypotheses of Theorem 2.1.

Lemma 4.2 Suppose that the assumptions (F1),(G1) — (Ga2), (R1) — (R3) hold.
Then there exist 0 > 0 and p > o such that if u, € WolN(Q) s a monnegative
function and satisfies ||u*||W01,N(Q) =1, then

b, =inf®,, >0= sup &,
Nn aMn

Us

where
u

M = {(M,v) € X ¢ |, 0) |2 < 02, A > 0}

and
Ny ={(u,0) € X, : ||ul| = o}

Proof. We start observing that, from (F}),

|N/(N=1)

|F(z,t)| < dy|t/Peent , forallz € Q, t eR.
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Thus, from (4.29),

1 _
P (1, 0) = Jul ¥ ~ /QF(x,u)dx > Y —d, / fufre T

Y]

1
%”U”N*dp|u|§p{/{262aN|u‘N/(N—1)dx}2

1
Ml = dyfuf { [ o OGN g
Q

By Trudinger and Moser inequality (4.30), if [ju[|"/(V=1 < L then

1 1
(1, 0) > L[ull™ = Cluly, > Lllul™ = Cllull”
Hence, by choosing o sufficiently small, we derive that
1
®,,(u,0) > ZaN >0 if ||lul| =0

and, therefore, b, > iaN > 0 for all n € N.

Now fixing a nonnegative function u, € Wy (Q) with [Ju.| = 1, from (F}),
there is a constant C' > 0 such that
[ [
q)n()\u*,v) S T - N - C|)\u*|£

On OM? we have that [ Aus]|? + [|[v]|? = p?, either |[Au.| > "2—2 or ||lv]|? > "2—2. If

|lv]|? > % holds, we obtain

[ A |V pN
@ (M, v) € H— — O - E

Considering
Q) = LTNT —Ct?, fort >0
- ) i

where C' = C |ux|p. It is straightforward to show directly that there is M > 0 such
that
Q(t) <M, forallt>0.
From this,
pN
N92N/2

D, (Auy,v) < M — <0

provided that p is sufficiently large. Now assuming that [|Au.|? > é, it follows

that
[N |V AN

B, (M, v) < = Ol = = - CNP.
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Since A2 > é and p > N, it follows that
Py (Aus,v) <0
provided that p is sufficiently large.

Lemma 4.3 Suppose that the assumptions (F1),(G1) — (G2), (R1) — (R3) hold.

Then there exists a nonnegative function u, € WOI’N(Q) with ||u.]| = 1 such that
1 1 S‘“fN
dy, = sup ®, < (= — —)Z—. (4.42)
Mz N p C;)FN

Proof. In the sequel, @ is a nonnegative function verifying

o _
Tl
From (F}),
F(x,s) > %|s|p, for all (z,s) € Q x R.
Thus,
M n e AN c
U < Z TN — 2P| < {7~N_7Pp~p}
B, (N 0) < 1Y - vl < max { S Y~ <2l

1 1.1 (||m\N)pr

=5 - =%
Ny g

for all A > 0 and v € W™ (Q). This gives

- 1 1 1
swp BN, v) < (- — ) ——
220, veW, N (@) N P w

IITLIIN> N
Jaly

Therefore, the proof of the lemma is completed by taking u. = i\l

|w

From Lemmas 4.2 and 4.3, we can apply the linking theorem for the functional
®,,, the point z, = (u.,0) and the sets

Y,={0} xV", Z= Wol’N(Q) x {0} and N, ={(u,0)€ Z: ||U||W01,N(Q) =o}.
Then, there exists a sequence (ug,vy) C X, with
D, (up,vk) = Cn € [bp,dn], @ (ug,vg) — 0, as k — +oo. (4.43)

The principal significance of the following lemma is that it allows us to apply
the Trudinger and Moser inequalities to the sequences (ux) and (vy).
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Lemma 4.4 The sequence (uy,vg) s bounded in X,. Moreover, there is kg € N
and m € (0,1) such that

Jug |V o |V <y for all k> k. (4.44)
Proof. We start observing that the condition (G2) implies that

0 < puF(x,s) < f(x,s)s, for all s € R and x € Q.

As in the proof of Lemma 3.3,

1 1., .o~ 1 1. .x
U - T X7 < mn 1 b b
(N u)”“k” +(1/ N)||Uk|| < dy + or (1) || (up, i)l

from where it follows that (ug,vy) is bounded in X,,. Consequently,

Nd
lim sup | ¥ < 2290
k—o0 H—= N

and

Nd
limsup ||lvg ||V < v
k—oo N—-v

From (G3) and (4.42), we get

lim sup [|ug||V, limsup [jvg||V < 1.

k—oo k—o0

Therefore, there are kg € N and m € (0, 1) such that
g ||/ Do [N < for all k> ko,

which proves the lemma.

From Lemma 4.4, we may assume that there exists a subsequence of (ug,vg),
still denoted by itself, and (wy,y,) € X, such that

(ug,vi) = (Wn, yn) weakly in X,,, as k — +oo.
Hence,
up — w, weakly in Wol’N(Q)
v — yn weakly in V.
Lemma 4.5 The sequence (W, yn) is bounded in X. Moreover,

D, (wn,yn) = ¢ and P, (wp,yn) =0 in X,..
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Proof. Let m be the constant given by Lemma 4.4. Since m is independent of n,
the weak convergence implies that

llwn | Ny |V VD <, for all ne N. (4.45)
Since V" is a finite dimensional space, for some subsequence, still denoted by itself,

(vx) converges strongly to y, in V™. We now verify that (ug) converges strongly
to wy,. To this end, we start recalling that

/(\Vuk|N_2Vuk — |Vw, [N 2V w,,, Vug — Vw,) dz = / fz up)uk—
Q Q

/ f (@, u)wy, +/ Ry (z, ug, vg Jug, — / R (2, i, v )wn, + 0 (1).
Q Q Q
On the other hand,

HukHN/(N_l) <m<1, forallk?> kg,

thus, by Proposition 4.1 and Lemma 4.1 it follows that

flz,up)wpde — | f(x, wy)w,dz,
Q Q

/f(a:,uk)ukdxe/f(x,wn)wndx,
Q Q

/Ru(x,Uk7vk)ukdx—>/Ru(:c,wn,yn)wndaf
Q Q

and

/Ru(x,uk,vk)wndzﬂ/Rv(o:,wn,yn)wndx,
Q Q

as k — oo. Consequently,

klirn (|Vuk|N_2Vuk — |an|N_2an7 Vug — Vw,) = 0.

Combining this with (3.21) yields

/|Vuk7an|NHO, as k — oo,
Q

that is, (ug) converges strongly to w, in VVO1 N(Q) The strong convergence of
(ug, Vi) t0 (W, yn) together with (4.43) lead to @y, (wy, yn) = ¢ and @, (wn, yn) =
0, and the proof is complete.
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4.1 Proof of Theorem 4.1

As in Section 3.1, the proof of Theorem 4.1 is divided into two lemmas. We start
observing that since X is reflexive, without loss of generality, we may assume that

(Wn, yn) = (u,v) in X.
The same arguments used in the proof of Lemma 4.5 yield
w, —u in WM Q). (4.46)

On the other hand, as observed in Section 2, the convergence of the sequence
(yn) to v in V, is not immediate. The following lemma establishes this convergence.

Lemma 4.6 The sequence (y,) verifies the following limit
Yn — U N Wol’N(Q).
Proof. From (3.5), there is (&) € Wy (€2) such that
& —v in WyN(Q)
and
(k)

&= ae; € VIW

i=1
where j(k) € N for all k£ € N. For each k € N, it follows that

Vikl Ccym forall n>n,
for some n, > j(k). From 3.21, there is C' > 0 such that
¢ [ 1V = V&l < [ (93 2Vm ~ V612 Ver, Vi — V).

Since @), (wp,yn) =0 in X!

~, we derive that

/Q<|Vyn|N*QVyn VN Ve, Vi — VE) = /ﬂ V& N2V E (Vi — VER)+

/QRv(winayn)yn_/QRv(wimyn)fk“"/g(xayn)(fk_yn)'

Q

This equality leads to

c /Q [V — VN < — /Q V&Y 2V (Vg — VE) + /Q R, w0, g ) —

_/ Rv(aj»wvuyn)gk"_/g(x’yn)(fk_yn)'
Q Q
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From (4.45) together with Proposition 4.1 and Lemma 4.1, we reach

lim sup / 199~ Ve&l™] < & / V& N2V (Vo — Ver)

n—-4o0o
+/QR (2, u,v)v /R (x,u,v)fk—k/ﬂg(xm)(fk —v)].
Now, given § > 0 there is ky € N such that
- /Q VRN 2V E(Vo — VEL) + /Q R, (x,u,v)v
- [ Aufewotg+ [ atooe o) <

for all k£ > kg, from where it follows that

, forall k > k.

N

limsup/ (VY — VE&IN] <
Q

n—-+o0o

As a resut,

S\
lmsup ||y — &kl < <2) =o(1).
n—-+4oo

Hence, given € > 0, for ¢ sufficiently small, it follows

limsup ||y, — &kl < E, for all k > ko.

n—-+oo

W~

Fixing k > kg such that

€
||§k - UH < Za
we get
€
lyn — vl < llyn — &kl + 1
Thus

€ €
limsup ||y, —v|| < hmsup lyn — &kl + 1 < =

n—-+o00 n— 2

which implies that y, — v in WO’ (©2) as n — oo. The proof of the lemma is
complete.

Lemma 4.7 The pair (u,v) is a nontrivial critical point of ®.

Proof. The proof follows by applying the same arguments used in the proof of
Lemma 3.6.
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