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1 Introduction

In the present paper, we consider the existence of nontrivial solution for a class of
quasilinear systems of the type

(Spq)


−∆pu = Hu(x, u, v), in Ω,

−∆qv = −Hv(x, u, v), in Ω,

u = v = 0, on ∂Ω.

where Ω is a smooth bounded domain in RN , N ≥ 2, p and q belong to (1, N ],
∆pu = div(|∇u|p−2∇u) is the p-Laplacian of u, ∆qv = div(|∇v|q−2∇v) is the q-
Laplacian of v and H : Ω× R2 → R is a C1 function.

For the case where p = q = 2, this class of systems is called noncooperative and
many recent studies have focused on it. By using variational methods, the existence
and multiplicity of solutions for different classes of nonlinearities H(x, u, v) have
been intensively studied by various authors, see for example, [2, 4, 5, 7, 10, 16, 19, 22]
and references therein. In [22], Zuo considered the multiple existence of solutions
to (S22) in the case that the function H has an asymptotically linear growth. In
[11], Hirano established the existence of infinitely many solutions to systems like
(S22) which are perturbed from a noncooperative odd elliptic systems. In both
articles only subcritical systems have been considered. In [7], Ding and Figueiredo
considered (S22) allowing some supercritical growth. More precisely, the function
H(x, u, v) can assume a supercritical and subcritical growth on v and u respectively.
They established the existence of infinitely many solutions to (S22) provided the
nonlinear term H is even in (u, v). In [4], Clapp, Ding and Hernández showed
that multiple existence of solutions to (S22) with some supercritical growth can be
established without the symmetry assumption. In all these papers, the existence
results are obtained as an application of an abstract critical point theorem for
strongly indefinite functionals.

Motivated by some results found in [4] and [7], a natural question arises whether
existence of nontrivial solutions continues to hold for (Spq) when p and q are different
from 2 and H has a supercritical and critical growth on the variables v and u
respectively for N ≥ 2. Here, for example, we will considerer two cases. The
first one, we can assume that H(x, u, v) has a supercritical growth on variable v
and has a critical growth at infinity on variable u of the type |u|p∗ with p∗ =
pN/(N − p), the critical exponent of the embedding W 1,p

0 (Ω) ↪→ Lp∗(Ω). In this
case the concentration–compactness principle due to Lions [13] is crucial to overcome
the lack of compactness of the energy functional. In the second case, we assume
that p = q = N and H has critical exponential growth on the variables u and
v. The variational formulation to this class of systems is given by the Trundiger
and Moser inequality (see [14]). We would like to emphasize that in the literature
rather less attention has been paid to noncooperative systems involving exponential
critical growth to the case N ≥ 2. Nevertheless, we should also mention the article
[6], where a class of Hamiltonian systems with exponential critical growth has been
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considered.
The main difficulty in the cases above-mentioned is the lack of compactness of

the energy functional associated to system. To overcome this difficulty, we make
carefully estimates and prove that there is a Palais-Smale sequence that has a
strongly convergent subsequence. The method employed here is based on a Galerkin
type approximation developed by Bartsch and Clapp in [2] together with a linking
theorem due to Rabinowitz [15], however in the version proved here is not assumed
the Palais-Smale condition.

The main results in the present paper have concentrated on existence of non-
trivial solutions to (Spq) and can be seen as a complement of the studies developed
in [4] and [7] for multiple existence of solutions. We will pursue our investigation
of multiple existence of solutions to (Spq) in the future.

This paper is organized as follows. In Section 2 we state and prove the linking
theorem that we will use in this work. In Section 3, we apply the linking theorem
to get a nontrivial solution to (Spq) assuming that the nonlinear term H(x, u, v)
has double critical growth on u and v and N ≥ 3. Finally, in Section 4, we consider
the case p = q = N and we prove the existence of nontrivial solution for the
corresponding system (SNN ) with double critical exponential growth on bounded
domain of RN for N ≥ 2.

2 The linking theorem: a review

This section is devoted to establish a version of the linking theorem of Rabinowitz
[15] without Palais-Smale condition. The proof of this theorem is very similar to
the one found in [15] with few modifications; however, for convenience of the reader
we will show it here by adapting some arguments due to Kryszewski and Szulkin
[12].

Theorem 2.1 Let X be a real Banach space with X = Y ⊕ Z, where Y is finite
dimensional. Suppose Φ ∈ C1(X,R) satisfies:

(I1) There is σ > 0 such that if N = {u ∈ Z : ‖u‖ = σ}, then b
.= inf
N

Φ > 0.

(I2) There are z∗ ∈ Z ∩ ∂B1 and ρ > σ > 0 such that

0 = sup
∂M

Φ < d
.= sup

M
Φ,

where M = {u = λz∗ + y : ‖u‖ ≤ ρ, λ ≥ 0, y ∈ Y }.

Then, there is a sequence (un) ⊂ X, such that

Φ(un) → c ∈ [b, d] and Φ′(un) → 0.

Proof. Arguing by contradiction, we suppose that the thesis is false. Then there
exist ε > 0 and a > 0 such that

‖Φ′(u)‖ ≥ a for all u ∈ Φ−1([b− 2ε, d+ 2ε]).
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Setting
A = Φ−1([b− 2ε, d+ 2ε]) and B = Φ−1([b− ε, d+ ε]),

we have that B ⊂ A ⊂ X̃
.= {u ∈ X; Φ′(u) 6= 0}. Let V be a pseudo-gradient vector

field for Φ on X̃, that is, for all u ∈ X̃,

‖V (u)‖ ≤ 2‖Φ′(u)‖, (2.1)
(Φ′(u), V (u)) ≥ ‖Φ′(u)‖2. (2.2)

Set

φ(u) =
dist(u,X \A)

dist(u,B) + dist(u,X \A)

and

G(u) =


φ(u)V (u)
‖V (u)‖

, u ∈ A,

0, u ∈ X \A.
Then by construction, G is locally Lipschitz continuous on X. Thus, for each u ∈ X,
the Cauchy problem

d

dt
η(t, u) = −G(η(t, u)), η(0, u) = u,

has a unique solution η(·, u) defined on R. We claim that

sup
u∈M

Φ(η(T, u)) < b,

where T = 2(d − b + ε)/a. In fact, if not, sup
u∈M

Φ(η(T, u)) ≥ b, which implies that

there exists u ∈M with Φ(η(T, u)) > b− ε. Thus,

b− ε < Φ(η(T, u)) = Φ(u) +
∫ T

0

d

dt
Φ(η(t, u)) dt

= Φ(u)−
∫ T

0

(Φ′(η(t, u)),G(η(t, u))) dt

≤ d− Ta

2
,

where in the last inequality we used (2.1), (2.2) and that η(t, u) ∈ B. But this
contradicts the choice of T .

Now we claim that there exists u ∈M such that η(T, u) ∈ N . In fact, consider
the function G : M× [0, T ] → Y ⊕ 〈z∗〉 given by

G(u, t) = P (η(t, u)) + (‖Q(η(t, u)‖ − σ)z∗,

where P : X → Y and Q : X → Z denote the projections. From the definition of
G, we can observe that G−1{0}∩∂M = ∅. Then, applying the Brouwer topological
degree, we derive

d(G(·, T ),M, 0) = d(G(·, 0),M, 0).
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That is,
d(G(·, T ),M, 0) = d(Id,M, σz∗) = 1.

Therefore, there exists u ∈M such that G(u, T ) = 0, which concludes the verifica-
tion of the claim. Finally, from the above considerations,

b ≤ I(η(T, u)) ≤ sup
u∈M

I(η(T, u)) < b,

which is impossible. This completes the proof of Theorem 2.1.

3 Systems with critical growth for N > max{p, q}
In this section, we study the existence of solution for the following class of quasilinear
systems:

(Spq)


−∆pu = Hu(x, u, v), in Ω

−∆qv = −Hv(x, u, v), in Ω

u = v = 0, on ∂Ω

where ∆p and ∆q denote the p and q Laplacian operator, respectively, p, q > 1, Ω
is a smooth bounded domain in RN , N > max{p, q} and H : Ω× R2 → R is given
by

H(x, u, v) =
1
p∗
|u|p

∗
+G(v) +R(x, u, v),

with p∗ = Np/(N−p). The assumptions on the functions G and R are the following:

(G1) G ∈ C1(R,R) and there exist constants C > 0 and r ≥ q such that

(i) |G(s)| ≤ C|s|r, for all s ∈ R.

If r ≥ q∗ = Nq/(N − q), we add that

(ii) (g(t)− g(s))(t− s) ≥ C|t− s|r, for all t, s ∈ R.

where g(s) = G′(s).

(G2) There exists ν ∈ (0, q) such that

0 ≤ νG(s) ≤ g(s)s, for all s ∈ R.

(R1) R ∈ C1(Ω × R2), Ru(x, 0, 0) = 0, Rv(x, 0, 0) = 0, R(x, u, v) ≥ 0 and
Ru(x, u, v)u ≥ 0, for all (x, u, v) ∈ Ω× R2.
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(R2) There exist pi ∈ (p, p∗), qi ∈ (q, q∗), i = 1, 2, with max{p2, q1} < min{p∗, q∗}
such that

|Ru(x, u, v)| ≤ C(|u|p1−1 + |v|q1−1),

|Rv(x, u, v)| ≤ C(|u|p2−1 + |v|q2−1),

for all (x, u, v) ∈ Ω× R2 and for some constant C > 0.

(R3) There exist s ∈ (p,max{p1, p2}], a nonempty open subset Ω0 ⊂ Ω, and a
constant a > 0 such that

R(x, u, v) ≥ a|u|s for all x ∈ Ω0 and (u, v) ∈ R2.

(R4) There exists µ ∈ (p, p∗) such that

1
µ
Ru(x, t, s)t+

1
ν
Rv(x, t, s)s−R(x, t, s) ≥ 0, for all x ∈ Ω and (t, s) ∈ R2,

where ν is given by condition (G2).

The main result of this section is the following.

Theorem 3.1 If (G1) − (G2), (R1) − (R4) are satisfied, then (Spq) possesses a
nontrivial solution.

We observe that R(u, v) = |u|s +C|v|t +sin |u|s sin |v|t satisfies (R1)− (R4) with
p1 = s = p2, q1 = t = q2 for pi ∈ (p, p∗), qi ∈ (q, q∗), i = 1, 2, and p, q > 1,
max{p, q} < N and N/2 < p, where C > 1 is a real constant.

Before proving the above theorem, we have to fix some notations. In the sequel
Vr stands for the space W 1,q

0 (Ω) ∩ Lr(Ω) endowed with the norm

‖v‖r = ‖v‖W 1,q
0 (Ω) + |v|r,

where ‖v‖W 1,q
0 (Ω) and |v|r denote the usual norms in W 1,q

0 (Ω) and Lr(Ω), respec-
tively.

We write X for the space W 1,p
0 (Ω)× Vr endowed with the norm

‖(u, v)‖2 = ‖u‖2
W 1,p

0 (Ω)
+ ‖v‖2r,

where ‖u‖W 1,p
0 (Ω) denotes the usual norm in W 1,p

0 (Ω) and Φ : X → R denotes the
functional given by

Φ(u, v) =
1
p

∫
Ω

|∇u|pdx− 1
q

∫
Ω

|∇v|qdx−
∫

Ω

H(x, u, v)dx. (3.3)

Under the assumptions (G1) and (R2), the functional Φ is well defined, belongs to
C1(X,R) and

Φ′(u, v)(φ, ψ) =
∫

Ω

|∇u|p−2∇u∇φdx−
∫

Ω

|∇v|q−2∇v∇ψdx

−
∫

Ω

[Hu(x, u, v)φ+Hv(x, u, v)ψ]dx (3.4)
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for all (u, v), (φ, ψ) ∈ X. Since (0, 0) is a critical point of Φ, we say that (u, v) is a
nontrivial solution of (Spq), when it is a critical point of Φ and satisfies Φ(u, v) 6= 0.

In order to apply the linking theorem, we introduce one more piece of notation.
Since (Vr, ‖ · ‖r) is reflexive and separable, from [8] and [21], there exists a sequence
(en) ⊂ Vr such that

Vr = span {en : n ∈ N}. (3.5)

Hereafter, for each n ∈ N we denote by V n
r and Xn the following spaces

V n
r = span {ej : j = 1, · · · , n} and Xn = W 1,p

0 (Ω)× V n
r .

The restriction of Φ to Xn will be denoted by Φn. Then Φn : Xn → R is the
functional given by

Φn(u, v) =
1
p

∫
Ω

|∇u|pdx− 1
q

∫
Ω

|∇v|qdx−
∫

Ω

H(x, u, v)dx. (3.6)

From the regularity of Φ, it follows that Φn belongs to C1(Xn,R) with

Φ′n(u, v)(φ, ψ) =
∫

Ω

|∇u|p−2∇u∇φdx−
∫

Ω

|∇v|q−2∇v∇ψdx

−
∫

Ω

[Hu(x, u, v)φ+Hv(x, u, v)ψ]dx (3.7)

for all (u, v), (φ, ψ) ∈ Xn.
In the following, we prove that Φn satisfies the hypotheses of Theorem 2.1.

Lemma 3.1 Under the assumptions (G1)−(G2) and (R1)−(R4), there exist σ > 0
and ρ > σ such that if u∗ ∈W 1,p

0 (Ω) satisfies ‖u∗‖W 1,p
0 (Ω) = 1, then

bn = inf
Nn

Φn > 0 = sup
∂Mn

u∗

Φn

where
Mn

u∗ = {(λu∗, v) ∈ Xn : ‖(λu∗, v)‖2 ≤ ρ2, λ ≥ 0}

and
Nn = {(u, 0) ∈ Xn : ‖u‖W 1,p

0 (Ω) = σ}.

Proof. By (R1) and (R2),

Φn(u, 0) =
1
p
‖u‖p

W 1,p
0 (Ω)

−
∫

Ω

H(x, u, 0)dx ≥ 1
p
‖u‖p

W 1,p
0 (Ω)

− 1
p∗
|u|p

∗

p∗ − C|u|p1
p1
,

for some positive constant C. Using the Sobolev embedding theorem,

Φn(u, 0) ≥ 1
p
‖u‖p

W 1,p
0 (Ω)

− C1‖u‖p∗

W 1,p
0 (Ω)

− C2‖u‖p1

W
1,p1
0 (Ω)

,
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for some positive constants C1 and C2. Since p∗, p1 > p, there exists σ > 0 suffi-
ciently small such that

Φn(u, 0) ≥ 1
2p
σp, for ‖u‖W 1,p

0 (Ω) = σ,

which implies

bn = inf
Nn

Φn ≥
1
2p
σp > 0, for all n ∈ N. (3.8)

Now, for v ∈ V r
n ,

Φn(0, v) = −
‖v‖q

W 1,q
0 (Ω)

q
−

∫
Ω

G(v)dx−
∫

Ω

R(x, 0, v)dx.

From (G2) and (R1),
Φn(0, v) ≤ 0 for all v ∈ V n

r . (3.9)

Now, taking u∗ ∈W 1,p
0 (Ω) with ‖u∗‖W 1,p

0 (Ω) = 1, by assumptions (G2) and (R1),

Φn(λu∗, v) ≤
λp

p
− 1
q
‖v‖q

W 1,q
0 (Ω)

− λp∗

p∗
|u∗|p

∗

p∗ −
∫

Ω

G(v) dx, (3.10)

for every λ > 0 and v ∈ V n
r .

If r ≤ q∗, then Vr = W 1,q
0 (Ω) and the norms ‖ ·‖r and ‖ ·‖W 1,q

0 (Ω) are equivalent.
From this, there exists a positive constant C such that

Φn(λu∗, v) ≤
λp

p
− C‖v‖q

r −
λp∗

p∗
|u∗|p

∗

p∗ .

Observing that ‖(λu∗, v)‖2 = λ2 + ‖v‖2r = ρ2 implies that

λ2 ≥ ρ2

2
or ‖v‖2r ≥

ρ2

2
,

it follows that
λp

p
− C‖v‖q

r −
λp∗

p∗
|u∗|p

∗

p∗ < 0

providing ρ is sufficiently large. From (3.10), we conclude that there exists ρ > σ
such that

Φn(λu∗, v) ≤ 0 (3.11)

for all (λu∗, v) ∈ Xn such that ‖λu∗‖2W 1,p
0 (Ω)

+ ‖v‖2r = ρ2 and λ > 0. By (3.9) and

(3.11), max
∂Mn

u∗

Φn = 0 and the proof is complete in this case.

Now, if r > q∗, by (G1)(ii) there is a positive constant C such that

Φn(λu∗, v) ≤
λp

p
− 1
q
‖v‖q

W 1,q
0 (Ω)

− λp∗

p∗
|u∗|p

∗

p∗ − C|v|rr.
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Observing that ‖(λu∗, v)‖2 = λ2 + ‖v‖2r = ρ2 implies that

λ2 ≥ ρ2

2
, ‖v‖2

W 1,q
0 (Ω)

≥ ρ2

4
or |v|2r ≥

ρ2

4
,

the same argument used in the former case implies that for ρ > 0 large enough

Φn(λu∗, v) ≤ 0

for all (λu∗, v) ∈ Xn such that ‖λu∗‖2W 1,p
0 (Ω)

+‖v‖2 = ρ2 and λ > 0, which completes
the proof of Lemma 3.1.

Lemma 3.2 Suppose that G satisfies (G1)−(G2) and R satisfies (R1)−(R4). Then
there exists u∗ ∈W 1,p

0 (Ω) with ‖u∗‖W 1,p
0 (Ω) = 1 and A ∈ (0, 1

N S
N
p ) such that

dn = sup
Mn

u∗

Φn ≤ A for all n ∈ N

where S denotes the best Sobolev constant of the embedding W 1,p
0 (RN ) ↪→ Lp∗(RN ).

Proof. Considering Ω0 given by (R3), we take x0 ∈ Ω0 and r0 > 0 such that
B2r0(x0) ⊂ Ω0. Choose φ ∈ C∞(RN ), 0 ≤ φ ≤ 1, φ ≡ 1 on Br0(x0) and φ ≡ 0
on RN \B2r0(x0). Given ε > 0, consider

uε(x) =
φ(x)wε(x)
|φwε|p∗

, for all x ∈ Ω

where

wε(x) =
{εN(N−p

p−1 )p−1}
N−p

p2

(ε+ |x|
p

p−1 )
N−p

p

, for all x ∈ RN .

As proved in [9], ∫
Ω

|∇uε|p ≤ S +O(ε
N−p

p ), as ε→ 0.

From (G2) and (R3),

Φn(λuε, v) ≤
λp

p

∫
Ω

|∇uε|p −
λp∗

p∗
− aλs

∫
Ω

|uε|s.

Arguing as in [17, Proposition 5.1], there exists ε > 0 such that

A
.= max

λ≥0

{λp

p

∫
Ω

|∇uε|p −
λp∗

p∗
− aλs

∫
Ω

|uε|s
}
<

1
N
S

N
p .

Therefore,
dn ≤ A for all n ∈ N,

and the proof of the lemma is completed by taking u∗ = uε

‖uε‖
W

1,p
0 (Ω)

.
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From Lemmas 3.1 and 3.2, we can apply the linking theorem to functional Φn

using the point zn = (u∗, 0) and the sets

Yn = {0} × V n
r , Z = W 1,p

0 (Ω)× {0} and Nn = {(u, 0) ∈ Z : ‖u‖W 1,p
0 (Ω) = σ}.

Then, there exists a sequence (uk, vk) ⊂ Xn with

Φn(uk, vk) → cn ∈ [bn, dn] and Φ′n(uk, vk) → 0, as k → +∞. (3.12)

Lemma 3.3 The sequence (uk, vk) is bounded in Xn.

Proof. From (3.12),

Φn(uk, vk)− Φ′n(uk, vk)(
1
µ
uk,

1
ν
vk) = cn + ok(1)‖(uk, vk)‖. (3.13)

By (G2) and (R4),

Φn(uk, vk)− Φ′n(uk, vk)(
1
µ
uk,

1
ν
vk) ≥ (

1
p
− 1
µ

)‖uk‖p

W 1,p
0 (Ω)

+ (
1
ν
− 1
q
)‖vk‖q

W 1,q
0 (Ω)

.

From this,

(
1
p
− 1
µ

)‖uk‖p

W 1,p
0 (Ω)

+ (
1
ν
− 1
q
)‖vk‖q

W 1,q
0 (Ω)

≤ cn + ok(1)‖(uk, vk)‖.

Since V n
r is a finite dimensional space, the norms ‖·‖W 1,q

0 (Ω) and ‖·‖r are equivalent.
Thus, there is a positive constant C = C(n) such that

(
1
p
− 1
µ

)‖uk‖p

W 1,p
0 (Ω)

+ C‖vk‖q
r ≤ cn + ok(1)‖(uk, vk)‖,

which implies that there exists a constant K = K(n) such that

‖(uk, vk)‖ ≤ K, for all k ∈ N.

This concludes the proof of Lemma 3.3.

From Lemma 3.3, we may assume that there exists a subsequence of (uk, vk),
still denoted by itself, and (wn, yn) ∈ Xn such that

(uk, vk) ⇀ (wn, yn) weakly in Xn, as k → +∞.

Hence, {
uk ⇀ wn weakly in W 1,p

0 (Ω),
vk ⇀ yn weakly in V n

r .

Lemma 3.4 The sequence (wn, yn) is bounded in X. Moreover,

Φn(wn, yn) = cn and Φ′n(wn, yn) = 0 in X∗
n.
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Proof. Since V n
r is a finite dimensional space, (vk) converges strongly to yn in V n

r .
Therefore, ∫

Ω

|∇vk|q dx→
∫

Ω

|∇yn|q dx, (3.14)∫
Ω

|∇vk|q−2∇vk∇ψ dx→
∫

Ω

|∇yn|q−2∇yn∇ψ dx, (3.15)∫
Ω

g(vk)ψ dx→
∫

Ω

g(yn)ψ dx, (3.16)

as k → ∞, for all ψ ∈ V n
r . From the Sobolev embedding and by concentration-

compactness principle due to Lions [13], we can assume

uk converges to wn in Lt(Ω), for all t ∈ [1, p∗) and a.e., (3.17)

|uk|p
∗
⇀ ζ = |wn|p

∗
+

∑
i∈I

ζiδxi , ζi > 0,

|∇uk|p ⇀ χ ≥ |∇wn|p +
∑
i∈I

χiδxi
, χi > 0,

ζ
p/p∗

i ≤ χi

S
, for all i ∈ I, (3.18)

where ζ and χ are nonnegative measures on Ω.
In the sequel we prove that I is an empty set. In fact, suppose that there exists

ζi > 0 for some i ∈ I. Let φ be a cut off function satisfying φ = 1 on the ball B1(0),
φ = 0 on RN \B2(0) and 0 ≤ φ ≤ 1. Given ε > 0 and xi a singular point, consider
φε(x) = φ(x−xi

ε ). Since

Φ′n(uk, vk)(ukφε, 0) = ok(1),

a well known argument used in the scalar case shows that ζi = χi (see for instance
[9, Lemma 2.3]). Combining this with (3.18) we reach that ζi ≥ SN/p. Now, (R1),
(R4), (G2) together with

Φn(uk, vk)− Φ′n(uk, vk)(
1
p
uk,

1
ν
vk) = cn + ok(1)‖(uk, vk)‖

imply that

cn ≥
1
N

lim
k→∞

∫
Ω

|uk|p
∗
dx ≥ 1

N
ζi ≥

1
N
SN/p.

On the other hand, from Lemma 3.2, cn < 1
N S

N/p, which is a contradiction.
Now, using that I = ∅ , it follows that uk converges strongly to wn in Lp∗(Ω)

and thus
lim

k→∞

∫
Ω

|uk|p
∗

= lim
k→∞

∫
Ω

|uk|p
∗−2ukwn =

∫
Ω

|wn|p
∗

(3.19)

and

lim
k→∞

∫
Ω

Ru(x, uk, vk)wn = lim
k→∞

∫
Ω

Ru(x, uk, vk)uk =
∫

Ω

Ru(x,wn, yn)wn. (3.20)
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Since∫
Ω

〈|∇uk|p−2∇uk − |∇wn|p−2∇wn,∇uk −∇wn〉 dx =
∫

Ω

|uk|p
∗
−

−
∫

Ω

|uk|p
∗−2ukwn −

∫
Ω

Ru(x, uk, vk)wn +
∫

Ω

Ru(x, uk, vk)uk + ok(1),

it follows from (3.19) and (3.20) that

lim
k→∞

∫
Ω

〈|∇uk|p−2∇uk − |∇wn|p−2∇wn,∇uk −∇wn〉 = 0.

According to

〈|a|s−2a− |b|s−2b, a− b〉 ≥


Cs|a− b|s if s ≥ 2,

Cs
|a− b|2

(|a|+ |b|)2−s
if 1 < s < 2,

(3.21)

for every a, b ∈ RN (see [18]), if p ≥ 2, we have that uk converges strongly to wn in
W 1,p

0 (Ω). Now, if 1 < p < 2, we conclude that

lim
k→∞

Cp

∫
Ω

|∇uk −∇wn|2

(|∇uk|+ |∇wn|)2−p
= 0. (3.22)

By the Hölder inequality,∫
Ω

|∇uk −∇wn|p =
∫

Ω

|∇uk −∇wn|p

(|∇uk|+ |∇wn|)p(2−p)/2
(|∇uk|+ |∇wn|)

p(2−p)
2

≤
(∫

Ω

|∇uk −∇wn|2

(|∇uk|+ |∇wn|)2−p

) p
2

(∫
Ω

(|∇uk|+ |∇wn|)p

) 2−p
2

.

Combining this inequality with (3.22) and the boundedness of (uk), we obtain again
that uk converges strongly to wn in W 1,p

0 (Ω). Hence,

(uk, vk) → (wn, yn) in Xn.

The last limit implies that

Φn(wn, yn) = cn ∈ [bn, dn] and Φ′n(wn, yn) = 0 in X∗
n.

From this,

Φn(wn, yn)− Φ′n(wn, yn)(
1
µ
wn,

1
ν
yn) = cn,

which combined with (R4), (G2) and (ii) of (G1), if r > q∗, implies that (wn, yn) is
bounded in X and proof is complete.
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3.1 Proof of Theorem 3.1

The proof of Theorem 3.1 will be carried out in two lemmas. We start observing
that since X is reflexive, there is no loss of generality in assuming that

(wn, yn) ⇀ (u, v) in X.

The same arguments used in the proof of Lemma 3.4 can be repeated to show that

wn → u in W 1,p
0 (Ω). (3.23)

However, similar limit involving the sequence (yn) and v in Vr requires a careful
analysis, which is the content of the next lemma.

Lemma 3.5 The sequence (yn) verifies the following limit

yn → v in Vr.

Proof. From (3.5), there is (ξk) ⊂ Vr such that

ξk → v in Vr

and

ξk =
j(k)∑
i=1

αiei ∈ V j(k)
r

where j(k) ∈ N for all k ∈ N. For each k ∈ N, it follows that

V j(k)
r ⊆ V n

r for all n ≥ no

for some no ≥ j(k).
If q ≥ 2 and r ≥ q∗, from (3.21) and (G1), we have that there is C > 0 such that

C

∫
Ω

[|∇yn −∇ξk|q + |yn − ξk|r] ≤
∫

Ω

〈|∇yn|q−2∇yn − |∇ξk|q−2∇ξk,∇yn −∇ξk〉

+
∫

Ω

(g(yn)− g(ξk))(yn − ξk).

Since Φ′n(wn, yn) = 0 in X∗
n, we derive that∫

Ω

〈|∇yn|q−2∇yn − |∇ξk|q−2∇ξk,∇yn −∇ξk〉+
∫

Ω

(g(yn)− g(ξk))(yn − ξk) =

−
∫

Ω

|∇ξk|q−2∇ξk(∇yn −∇ξk)−
∫

Ω

Rv(x,wn, yn)yn +
∫

Ω

Rv(x,wn, yn)ξk

−
∫

Ω

g(ξk)(yn − ξk).
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This equality leads to

C

∫
Ω

[|∇yn −∇ξk|q + |yn − ξk|r] ≤ −
∫

Ω

|∇ξk|q−2∇ξk(∇yn −∇ξk)

−
∫

Ω

Rv(x,wn, yn)yn +
∫

Ω

Rv(x,wn, yn)ξk −
∫

Ω

g(ξk)(yn − ξk).

Taking the limit as n→ +∞, we reach

lim sup
n→+∞

∫
Ω

[|∇yn −∇ξk|q + |yn − ξk|r] ≤
1
C

[
−

∫
Ω

|∇ξk|q−2∇ξk(∇v −∇ξk)

−
∫

Ω

Rv(x, u, v)v +
∫

Ω

Rv(x, u, v)ξk −
∫

Ω

g(ξk)(v − ξk)
]
.

Now, given δ > 0 there is k0 ∈ N such that

1
C

[
−

∫
Ω

|∇ξk|q−2∇ξk(∇v −∇ξk)−
∫

Ω

Rv(x, u, v)v

+
∫

Ω

Rv(x, u, v)ξk −
∫

Ω

g(ξk)(v − ξk)
]
<
δ

2

for all k ≥ k0. Hence,

lim sup
n→+∞

∫
Ω

[|∇yn −∇ξk|q + |yn − ξk|r] ≤
δ

2
, for all k ≥ k0. (3.24)

Now, if 1 < q < 2, then by (3.21) we obtain

lim sup
n→+∞

∫
Ω

[
|∇yn −∇ξk|2

(|∇yn|+ |∇ξk|)2−q
+ |yn − ξk|r] ≤

δ

2
, for all k ≥ k0. (3.25)

Employing the Hölder inequality to the first term of the left-hand side of (3.25) as
in the proof of Lemma 3.4 and using the boundedness of (yn) and (ξk), we can find
a positive constant C such that

lim sup
n→+∞

∫
Ω

[|∇yn −∇ξk|q + |yn − ξk|r] ≤
Cδ

2
, for all k ≥ k0. (3.26)

As a consequence of (3.24) and (3.26), there is a constant C > 0 such that

lim sup
n→+∞

‖yn − ξk‖r ≤ C
[
δ1/q + δ1/r

]
= o(1), for all k ≥ k0.

Given ε > 0, for δ sufficiently small, it follows that

lim sup
n→+∞

‖yn − ξk‖r ≤
ε

4
, for all k ≥ k0.
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Fixing k ≥ k0 sufficiently large such that

‖ξk − v‖r <
ε

4
,

we obtain

‖yn − v‖r ≤ ‖yn − ξk‖r +
ε

4
,

which implies that

lim sup
n→+∞

‖yn − v‖r ≤ lim sup
n→+∞

‖yn − ξk‖r +
ε

4
<
ε

2
.

From this, yn → v in Vr as n → ∞. The case r < q∗ can be handled in much the
same way with minor modifications.

Lemma 3.6 The pair (u, v) is a nontrivial critical point of Φ.

Proof. Fixing k, n ∈ N with n ≥ k, we have Xk ⊂ Xn. Thus, for (φ, ψ) ∈ Xk, it
follows that

Φ′n(wn, yn)(φ, ψ) = 0, for all n ≥ k,

because, by Lemma 3.4, Φ′n(wn, yn) = 0. Combining Lemma 3.5 with (3.23) we get

Φ′(u, v)(φ, ψ) = 0, for all (φ, ψ) ∈ Xk. (3.27)

We claim that

Φ′(u, v)(φ, ψ) = 0, for all (φ, ψ) ∈ X. (3.28)

In fact, we start observing that for all φ ∈ W 1,p
0 (Ω), the pair (φ, 0) ∈ Xk for all k.

Hence, Φ′(u, v)(φ, 0) = 0. On the other hand, for ψ ∈ Vr, there exists ψn ∈ V
k(n)
r

such that

lim
n→∞

ψn = ψ, in Vr.

From (3.27),

Φ′(u, v)(0, ψn) = 0, for all n ∈ N,

which implies after passage to the limit as n→∞ that

Φ′(u, v)(0, ψ) = 0, for all ψ ∈ Vr.

Thus, (3.28) is proved. Using the fact that (wn, yn) → (u, v) in X and that
Φ(wn, yn) ≥ bn ≥ 1

2pσ
p > 0 for all n ∈ N, we have that Φ(u, v) ≥ 1

2pσ
p > 0,

from where it follows that (u, v) is a nontrivial solution for (Spq), and the proof is
complete.
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4 Systems with critical growth for N = p = q

Our next application of Theorem 2.1 deals with systems

(SNN )


−∆Nu = Hu(x, u, v), x in Ω

−∆Nv = −Hv(x, u, v), x in Ω

u = v = 0, on ∂Ω

where Ω ⊂ RN is a smooth bounded domain and H : Ω×R2 → R is a C1 function
of the form

H(x, u, v) = F (x, u) +G(x, v) +R(x, u, v)

where F,G and R satisfy some subsequent conditions. In order to treat variationally
(SNN ) in W 1,N (Ω)×W 1,N (Ω), we use the inequalities of Trudinger and Moser (see
[14], [20]), which provide

exp(α|u|N/(N−1)) ∈ L1(Ω), for all u ∈W 1,N
0 (Ω) and α > 0 (4.29)

and there exists a constant C(Ω) > 0 such that

sup
‖u‖≤1

∫
Ω

exp(α|u|N/(N−1)) dx ≤ C(Ω), for all α ≤ αN and u ∈W 1,N
0 (Ω) (4.30)

where αN = Nω
1/(N−1)
N−1 and ωN−1 is the N − 1-dimensional surface of the unit

sphere.
Hereafter, F ′(x, s) = f(x, s), G′(x, s) = g(x, s) with f and g verifying the fol-

lowing conditions

(F1) There exists a continuous function b verifying

f(x, s) = b(x, s) exp(αN |s|N/(N−1)),

with
cp|s|p−2s ≤ b(x, s) ≤ dp|s|p−2s, for all x ∈ Ω, s ∈ R,

for some p > N and constants cp, dp > 0.

(G1) There exists a constant C > 0 such that

|g(x, s)| ≤ C exp(αN |s|N/(N−1)), for all x ∈ Ω, s ∈ R.

(G2) There exist ν ∈ (0, N) and µ > N such that

0 ≤ νG(x, s) ≤ g(x, s)s, for all s ∈ R and x ∈ Ω.

and
0 ≤ µB(x, s) ≤ b(x, s)s, for all s ∈ R and x ∈ Ω.
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where B(x, s) =
∫ s

0

b(x, t) dt.

(G3) The constants cp, ν, µ given by conditions (F1) and (G2) satisfy

max
{

νN

N − ν
,
µN

µ−N

} (
p−N

pN

) (
Sp

cp

) N
p−N

< 1,

where

Sp = inf
u∈W 1,N

0 (Ω)\{0}

‖u‖N

|u|Np
.

Related to function R, we assume that R ∈ C1(Ω×R2,R) and that the following
conditions hold:

(R1) Ru(x, 0, 0) = Rv(x, 0, 0) = 0 and R(x, u, v) ≥ 0 for all (x, u, v) ∈ Ω× R2.

(R2) For any α, β > 0

lim
|(u,v)|→+∞

Ru(x, u, v)
exp(α|u|N/(N−1)) + exp(β|v|N/(N−1))

= 0

and

lim
|(u,v)|→+∞

Rv(x, u, v)
exp(α|u|N/(N−1)) + exp(β|v|N/(N−1))

= 0.

(R3) For ν and µ given by condition (G3), we assume that

1
µ
Ru(x, t, s)t+

1
ν
Rv(x, t, s)s−R(x, t, s) ≥ 0, for all x ∈ Ω and (t, s) ∈ R2,

where ν is given by condition (G3).

We observe that condition (F1) implies that

lim
|t|→∞

sup
x∈Ω

|b(x, t)| exp(−ε|t|N/(N−1)) = 0

and
lim
|t|→∞

sup
x∈Ω

|b(x, t)| exp(ε|t|N/(N−1)) = ∞,

for every ε > 0, which characterizes the growth on f as critical exponential. On
the other hand, the assumption (R2) guarantees that the function R has subcritical
exponential growth. For more details we refer the reader to [1] and [6].

The main result of this section is:

Theorem 4.1 If the assumptions (F1), (G1) − (G2), (R1) − (R3) are satisfied, the
system (SNN ) possesses a nontrivial solution.
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We note that the hypotheses (R1)− (R3) are satisfied by the function given by
R(u, v) = |u|se|u|α |v|te|v|β , where 1 < α, β < 2, s and t are positive real numbers
such that s/µ+ t/ν ≥ 1, where µ and ν are given by conditions (G2) and (G3).

We follow the same notation used in Section 3. By X we denote the space
W 1,N

0 (Ω)×W 1,N
0 (Ω) endowed with the norm

‖(u, v)‖2 = ‖u‖2 + ‖v‖2,

where ‖ · ‖ denotes the usual norm in W 1,N
0 (Ω) and we write Φ : X → R the

functional given by

Φ(u, v) =
1
N

∫
Ω

|∇u|Ndx− 1
N

∫
Ω

|∇v|Ndx−
∫

Ω

H(x, u, v)dx. (4.31)

Under the assumptions (G1) and (R2), the functional Φ is well defined, belongs to
C1(X,R) and

Φ′(u, v)(φ, ψ) =
∫

Ω

|∇u|N−2∇u∇φdx−
∫

Ω

|∇v|N−2∇v∇ψdx

−
∫

Ω

[Hu(x, u, v)φ+Hv(x, u, v)ψ]dx (4.32)

for all (u, v), (φ, ψ) ∈ X. In order to apply the linking theorem, in the next we fix
some notations. Since (W 1,N

0 (Ω), ‖ · ‖) is reflexive and separable, by using again [8]
and [21], there exists a sequence (en) ⊂W 1,N

0 (Ω) such that

W 1,N
0 (Ω) = span {en : n ∈ N}. (4.33)

Hereafter, for each n ∈ N we denote by V n and Xn the following spaces

V n = span {ej : j = 1, · · · , n} and Xn = W 1,p
0 (Ω)× V n.

Let Φn : Xn → R be the functional given by

Φn(u, v) =
1
N

∫
Ω

|∇u|Ndx− 1
N

∫
Ω

|∇v|Ndx−
∫

Ω

H(x, u, v)dx. (4.34)

Under the assumptions (G1) and (R2), the functional Φn is well defined and belongs
to C1(Xn,R). Furthermore,

Φ′n(u, v)(φ, ψ) =
∫

Ω

|∇u|N−2∇u∇φdx−
∫

Ω

|∇v|N−2∇v∇ψdx

−
∫

Ω

[Hu(x, u, v)φ+Hv(x, u, v)ψ]dx (4.35)

for all (u, v), (φ, ψ) ∈ Xn.

The following results establish some limits that are crucial in the proof of results
later on.
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Proposition 4.1 Let (ϕj) be a sequence of functions in W 1,N
0 (Ω) converging to

ϕ weakly in W 1,N
0 (Ω). Assume that ‖ϕj‖N/(N−1) ≤ δ < 1 and l ∈ C(Ω × R,R)

satisfies
|l(x, s)| ≤ C exp (αN |s|N/(N−1)), for all (x, s) ∈ Ω× R

and for some C > 0. Then,

lim
j→+∞

∫
Ω

l(x, ϕj)wdx =
∫

Ω

l(x, ϕ)wdx, (4.36)

for every w ∈W 1,N
0 (Ω), and

lim
j→+∞

∫
Ω

l(x, ϕj)ϕjdx =
∫

Ω

l(x, ϕ)ϕdx. (4.37)

Proof. Consider q > 1 so that qδ < 1. From the hypothesis on l,∫
Ω

|l(x, ϕj)|qdx ≤ C

∫
Ω

eqαN |ϕj |N/(N−1)
dx = C

∫
Ω

e
qαN‖ϕj‖N/(N−1)(

|ϕj |
‖ϕj‖

)N/(N−1)

dx

≤ C

∫
Ω

e
qαN δ(

|ϕn|
‖ϕj‖

)N/(N−1)

dx.

By Trudinger and Moser inequality, there exists M1 > 0 such that∫
Ω

|l(x, ϕj)|qdx ≤M1, ∀n ∈ N. (4.38)

Combining Sobolev embeddings with Egoroff theorem, given ε > 0 there exists
E ⊂ Ω such that |E| < ε and ϕj(x) → ϕ(x) uniformly on Ω \ E. By Hölder
inequality and using (4.38), we get∣∣∣ ∫

Ω

(l(x, ϕj)− l(x, ϕ))wdx
∣∣∣ ≤ ∫

Ω\E
|l(x, ϕj)− l(x, ϕ)||w|dx+ oε(1)

where oε(1) → 0 as ε → 0. As ε > 0 is arbitrary and l(x, ϕj) → l(x, ϕ) uniformly
on Ω \ E, we conclude the proof of (4.36). Similar argument shows that the limit
(4.37) holds.

Lemma 4.1 Suppose that R satisfies the condition (R2) and let (ϕj , ξj) be a se-
quence weakly convergent to (ϕ, ξ) in W 1,N

0 (Ω)×W 1,N
0 (Ω). Then,∫

Ω

R(x, ϕj , ξj) dx→
∫

Ω

R(x, ϕ, ξ) dx,

∫
Ω

Ru(x, ϕj , ξj)ϕj dx→
∫

Ω

Ru(x, ϕ, ξ)ϕdx,

∫
Ω

Ru(x, ϕj , ξj)φdx→
∫

Ω

Ru(x, ϕ, ξ)φdx,

∫
Ω

Rv(x, ϕj , ξj)ξj dx→
∫

Ω

Rv(x, ϕ, ξ)ξ dx
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and ∫
Ω

Rv(x, ϕj , ξj)ψ dx→
∫

Ω

Rv(x, ϕ, ξ)ψ dx,

for all φ, ψ ∈W 1,N
0 (Ω).

Proof. Since (ϕj , ξj) is weakly convergent, there is M > 0 such that

‖ϕj‖, ‖ξj‖ ≤M for all j ∈ N.

Now from (R2), given 0 < α, β < M−N/(N−1)αN , there exists a constant C > 0
such that

|Ru(x, ϕj , ξj)| ≤ C
(
eα|ϕj |N/(N−1)

+ eβ|ξj |N/(N−1)
)
, (4.39)

and
|Rv(x, ϕj , ξj)| ≤ C

(
eα|ϕj |N/(N−1)

+ eβ|ξj |N/(N−1)
)
. (4.40)

As a consequence,

|R(x, ϕj , ξj)| ≤ C
(
eα|ϕj |N/(N−1)

+ eβ|ξj |N/(N−1)
)

(|ϕj |+ |ξj |). (4.41)

Taking q > 1 such that qαMN/(N−1), qβMN/(N−1) < αN , from Trudinger and
Moser inequality there exists K > 0 such that∫

Ω

eαq|ϕj |N/(N−1)
,

∫
Ω

eβq|ξj |N/(N−1)
≤ K ∀n ∈ N.

This combining with (4.39)-(4.41) and Sobolev embeddings imply that the above
limits hold. This concludes the proof.

In the following, we prove that Φn satisfies the hypotheses of Theorem 2.1.

Lemma 4.2 Suppose that the assumptions (F1), (G1) − (G2), (R1) − (R3) hold.
Then there exist σ > 0 and ρ > σ such that if u∗ ∈ W 1,N

0 (Ω) is a nonnegative
function and satisfies ‖u∗‖W 1,N

0 (Ω) = 1, then

bn = inf
Nn

Φn > 0 = sup
∂Mn

u∗

Φn

where
Mn

u∗ = {(λu∗, v) ∈ Xn : ‖(λu∗, v)‖2 ≤ ρ2, λ ≥ 0}

and
Nn = {(u, 0) ∈ Xn : ‖u‖ = σ}.

Proof. We start observing that, from (F1),

|F (x, t)| ≤ dp|t|peαN |t|N/(N−1)
, for all x ∈ Ω, t ∈ R.
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Thus, from (4.29),

Φn(u, 0) = 1
N ‖u‖

N −
∫

Ω

F (x, u)dx ≥ 1
N
‖u‖N − dp

∫
Ω

|u|peαN |u|N/(N−1)
dx

≥ 1
N ‖u‖

N − dp|u|p2p

{∫
Ω

e2αN |u|N/(N−1)
dx

} 1
2

= 1
N ‖u‖

N − dp|u|p2p

{∫
Ω

e2αN‖u‖N/(N−1)(
|u|
‖u‖ )N/(N−1)

dx
} 1

2
.

By Trudinger and Moser inequality (4.30), if ‖u‖N/(N−1) < 1
2 , then

Φn(u, 0) ≥ 1
N
‖u‖N − C|u|p2p ≥

1
N
‖u‖N − C‖u‖p

Hence, by choosing σ sufficiently small, we derive that

Φn(u, 0) ≥ 1
4
σN > 0 if ‖u‖ = σ

and, therefore, bn ≥ 1
4σ

N > 0 for all n ∈ N.
Now fixing a nonnegative function u∗ ∈ W 1,N

0 (Ω) with ‖u∗‖ = 1, from (F1),
there is a constant C > 0 such that

Φn(λu∗, v) ≤
‖λu∗‖N

N
− ‖v‖N

N
− C|λu∗|pp.

On ∂Mn
z∗ we have that ‖λu∗‖2 + ‖v‖2 = ρ2, either ‖λu∗‖ ≥ ρ2

2 or ‖v‖2 ≥ ρ2

2 . If
‖v‖2 ≥ ρ2

2 holds, we obtain

Φn(λu∗, v) ≤
‖λu∗‖N

N
− C|λu∗|pp −

ρN

N2N/2
.

Considering

Q(t) =
tN

N
− C̃tp, for t ≥ 0,

where C̃ = C|u∗|pp. It is straightforward to show directly that there is M > 0 such
that

Q(t) ≤M, for all t ≥ 0.

From this,

Φn(λu∗, v) ≤M − ρN

N2N/2
< 0

provided that ρ is sufficiently large. Now assuming that ‖λu∗‖2 ≥ ρ2

2 , it follows
that

Φn(λu∗, v) ≤
‖λu∗‖N

N
− C|λu∗|pp =

λN

N
− C̃λp.
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Since λ2 ≥ ρ2

2 and p > N , it follows that

Φn(λu∗, v) < 0

provided that ρ is sufficiently large.

Lemma 4.3 Suppose that the assumptions (F1), (G1) − (G2), (R1) − (R3) hold.
Then there exists a nonnegative function u∗ ∈W 1,N

0 (Ω) with ‖u∗‖ = 1 such that

dn = sup
Mn

u∗

Φn ≤ (
1
N
− 1
p
)
S

p
p−N
p

c
N

p−N
p

. (4.42)

Proof. In the sequel, ũ is a nonnegative function verifying

Sp =
‖ũ‖N

|ũ|Np
.

From (F1),
F (x, s) ≥ cp

p
|s|p, for all (x, s) ∈ Ω× R.

Thus,

Φn(λũ, v) ≤ λN

N
‖ũ‖N − cp

p
λp|ũ|pp ≤ max

λ≥0

{λN

N
‖ũ‖N − cp

p
λp|ũ|pp

}

= (
1
N
− 1
p
)

1

c
N

p−N
p

(‖ũ‖N

|ũ|Np

) p
p−N

for all λ > 0 and v ∈W 1,N
0 (Ω). This gives

sup
λ≥0, v∈W 1,N

0 (Ω)

Φn(λũ, v) ≤ (
1
N
− 1
p
)

1

c
N

p−N
p

(‖ũ‖N

|ũ|Np

) p
p−N

.

Therefore, the proof of the lemma is completed by taking u∗ = ũ
‖ũ‖ .

From Lemmas 4.2 and 4.3, we can apply the linking theorem for the functional
Φn, the point zn = (u∗, 0) and the sets

Yn = {0} × V n, Z = W 1,N
0 (Ω)× {0} and Nn = {(u, 0) ∈ Z : ‖u‖W 1,N

0 (Ω) = σ}.

Then, there exists a sequence (uk, vk) ⊂ Xn with

Φn(uk, vk) → cn ∈ [bn, dn], Φ′n(uk, vk) → 0, as k → +∞. (4.43)

The principal significance of the following lemma is that it allows us to apply
the Trudinger and Moser inequalities to the sequences (uk) and (vk).
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Lemma 4.4 The sequence (uk, vk) is bounded in Xn. Moreover, there is k0 ∈ N
and m ∈ (0, 1) such that

‖uk‖N/(N−1), ‖vk‖N/(N−1) ≤ m, for all k ≥ k0. (4.44)

Proof. We start observing that the condition (G2) implies that

0 ≤ µF (x, s) ≤ f(x, s)s, for all s ∈ R and x ∈ Ω.

As in the proof of Lemma 3.3,

(
1
N
− 1
µ

)‖uk‖N + (
1
ν
− 1
N

)‖vk‖N ≤ dn + ok(1)‖(uk, vk)‖,

from where it follows that (uk, vk) is bounded in Xn. Consequently,

lim sup
k→∞

‖uk‖N ≤ µNdn

µ−N

and

lim sup
k→∞

‖vk‖N ≤ νNdn

N − ν
.

From (G3) and (4.42), we get

lim sup
k→∞

‖uk‖N , lim sup
k→∞

‖vk‖N < 1.

Therefore, there are k0 ∈ N and m ∈ (0, 1) such that

‖uk‖N/(N−1), ‖vk‖N/(N−1) ≤ m, for all k ≥ k0,

which proves the lemma.

From Lemma 4.4, we may assume that there exists a subsequence of (uk, vk),
still denoted by itself, and (wn, yn) ∈ Xn such that

(uk, vk) ⇀ (wn, yn) weakly in Xn, as k → +∞.

Hence, {
uk ⇀ wn weakly in W 1,N

0 (Ω)
vk ⇀ yn weakly in V n.

Lemma 4.5 The sequence (wn, yn) is bounded in X. Moreover,

Φn(wn, yn) = cn and Φ′n(wn, yn) = 0 in X∗
n.
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Proof. Let m be the constant given by Lemma 4.4. Since m is independent of n,
the weak convergence implies that

‖wn‖N/(N−1), ‖yn‖N/(N−1) ≤ m, for all n ∈ N. (4.45)

Since V n is a finite dimensional space, for some subsequence, still denoted by itself,
(vk) converges strongly to yn in V n. We now verify that (uk) converges strongly
to wn. To this end, we start recalling that∫

Ω

〈|∇uk|N−2∇uk − |∇wn|N−2∇wn,∇uk −∇wn〉 dx =
∫

Ω

f(x, uk)uk−

∫
Ω

f(x, uk)wn +
∫

Ω

Ru(x, uk, vk)uk −
∫

Ω

Ru(x, uk, vk)wn + ok(1).

On the other hand,

‖uk‖N/(N−1) ≤ m < 1, for all k ≥ k0,

thus, by Proposition 4.1 and Lemma 4.1 it follows that∫
Ω

f(x, uk)wndx→
∫

Ω

f(x,wn)wndx,

∫
Ω

f(x, uk)uk dx→
∫

Ω

f(x,wn)wndx,

∫
Ω

Ru(x, uk, vk)uk dx→
∫

Ω

Ru(x,wn, yn)wn dx

and ∫
Ω

Ru(x, uk, vk)wn dx→
∫

Ω

Rv(x,wn, yn)wn dx,

as k →∞. Consequently,

lim
k→∞

∫
Ω

〈|∇uk|N−2∇uk − |∇wn|N−2∇wn,∇uk −∇wn〉 = 0.

Combining this with (3.21) yields∫
Ω

|∇uk −∇wn|N → 0, as k →∞,

that is, (uk) converges strongly to wn in W 1,N
0 (Ω). The strong convergence of

(uk, vk) to (wn, yn) together with (4.43) lead to Φn(wn, yn) = cn and Φ′n(wn, yn) =
0, and the proof is complete.
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4.1 Proof of Theorem 4.1

As in Section 3.1, the proof of Theorem 4.1 is divided into two lemmas. We start
observing that since X is reflexive, without loss of generality, we may assume that

(wn, yn) ⇀ (u, v) in X.

The same arguments used in the proof of Lemma 4.5 yield

wn → u in W 1,N
0 (Ω). (4.46)

On the other hand, as observed in Section 2, the convergence of the sequence
(yn) to v in Vr is not immediate. The following lemma establishes this convergence.

Lemma 4.6 The sequence (yn) verifies the following limit

yn → v in W 1,N
0 (Ω).

Proof. From (3.5), there is (ξk) ⊂W 1,N
0 (Ω) such that

ξk → v in W 1,N
0 (Ω)

and

ξk =
j(k)∑
i=1

αiei ∈ V j(k)

where j(k) ∈ N for all k ∈ N. For each k ∈ N, it follows that

V j(k) ⊆ V n for all n ≥ no

for some no ≥ j(k). From 3.21, there is C > 0 such that

C

∫
Ω

[|∇yn −∇ξk|N ] ≤
∫

Ω

〈|∇yn|N−2∇yn − |∇ξk|N−2∇ξk,∇yn −∇ξk〉.

Since Φ′n(wn, yn) = 0 in X∗
n, we derive that∫

Ω

〈|∇yn|N−2∇yn − |∇ξk|N−2∇ξk,∇yn −∇ξk〉 = −
∫

Ω

|∇ξk|N−2∇ξk(∇yn −∇ξk)+

∫
Ω

Rv(x,wn, yn)yn −
∫

Ω

Rv(x,wn, yn)ξk +
∫

Ω

g(x, yn)(ξk − yn).

This equality leads to

C

∫
Ω

[|∇yn −∇ξk|N ] ≤ −
∫

Ω

|∇ξk|N−2∇ξk(∇yn −∇ξk) +
∫

Ω

Rv(x,wn, yn)yn−

−
∫

Ω

Rv(x,wn, yn)ξk +
∫

Ω

g(x, yn)(ξk − yn).
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From (4.45) together with Proposition 4.1 and Lemma 4.1, we reach

lim sup
n→+∞

∫
Ω

[|∇yn −∇ξk|N ] ≤ 1
C

[
−

∫
Ω

|∇ξk|N−2∇ξk(∇v −∇ξk)

+
∫

Ω

Rv(x, u, v)v −
∫

Ω

Rv(x, u, v)ξk +
∫

Ω

g(x, v)(ξk − v)
]
.

Now, given δ > 0 there is k0 ∈ N such that

1
C

[
−

∫
Ω

|∇ξk|N−2∇ξk(∇v −∇ξk) +
∫

Ω

Rv(x, u, v)v

−
∫

Ω

Rv(x, u, v)ξk +
∫

Ω

g(x, v)(ξk − v)
]
<
δ

2

for all k ≥ k0, from where it follows that

lim sup
n→+∞

∫
Ω

[|∇yn −∇ξk|N ] ≤ δ

2
, for all k ≥ k0.

As a resut,

lim sup
n→+∞

‖yn − ξk‖ ≤
(
δ

2

)1/N

= o(1).

Hence, given ε > 0, for δ sufficiently small, it follows

lim sup
n→+∞

‖yn − ξk‖ ≤
ε

4
, for all k ≥ k0.

Fixing k ≥ k0 such that
‖ξk − v‖ < ε

4
,

we get
‖yn − v‖ ≤ ‖yn − ξk‖+

ε

4
.

Thus
lim sup
n→+∞

‖yn − v‖ ≤ lim sup
n→+∞

‖yn − ξk‖+
ε

4
<
ε

2

which implies that yn → v in W 1,N
0 (Ω) as n → ∞. The proof of the lemma is

complete.

Lemma 4.7 The pair (u, v) is a nontrivial critical point of Φ.

Proof. The proof follows by applying the same arguments used in the proof of
Lemma 3.6.
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