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Abstract

We study the quasilinear Schrodinger equation
ize = Az + W(2)z —n(lz|")z — w [Ap(1z[)] P'(|2[))z  in R?,

where W : R? — R is a positive potential and the nonlinearity 7 : R> x R — R
has critical or sub-critical exponential growth. Quasilinear Schrodinger equations
of this type have been studied as models of several physical phenomena such as
superfluid film equation, in the theory of Heisenberg ferromagnets and magnons,
in dissipative quantum mechanics and in condensed matter theory. In a suitable
Orlicz space together with Trudinger-Moser inequality we establish an existence
of standing wave solutions for this problem. The second order nonlinearity
considered in this paper corresponds to the superfluid equation in plasma physics.
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1 Introduction
We study quasilinear Schrédinger equations of the form
iz = —Az 4+ W(z)z —n(|2[*)z — & [Ap(|2]*)] ' (|2[*)z  in R, (1.1)

where z : R x R? — C, W is a given potential, x is a real constant, and 1 and p are
real functions. Such equations arise in various branches of mathematical physics
and have been a subject of extensive studies in the past few years corresponding to
various types of p. The superfluid film equation in plasma physics has this structure
for p(s) = s, see [20]. In the case p(s) = (1 + s)'/2, equation (1.1) models the self-
channeling of a high-power ultra short laser in matter, see [35]. Equation (1.1)
also appears in fluid mechanics [21], in the theory of Heisenberg ferromagnets and
magnons [22], in dissipative quantum mechanics and in condensed matter theory
[27].

We consider the case where p(s) = s. However, our approach is quite general
and goes beyond this nonlinearity. Here our special interest is in the existence of
standing wave solutions, that is, solutions of type

z(t,z) = exp(—iEt)u(x),

where E' € R and u > 0 is a real function. It is well known that z satisfies (1.1) if
and only if the function u(x) solves the following equation of elliptic type with the
formal variational structure

—Au+V(z)u—k[AW)]u=n) in R?

where V(z) := W(z) — E is the new potential, x > 0,  is the new nonlinearity
and without loss of generality we assume x = 1. Indeed, we intend to consider
a more general situation involving non-autonomous nonlinearities. More precisely,
our purpose is to study the following quasilinear equation of elliptic type

—Au+V(z)u— [A(lul*)] u = h(z,u) in R (1.2)

We establish the existence of positive solutions for the above quasilinear elliptic
equation when V : R? — R is a positive potential bounded away from zero and it
can be large at infinity, and the nonlinearity h(z, ) has the maximal growth which
allows us to treat problem (1.2) variationally in a suitable function space. In fact
the subcritical and also the critical case will be considered. We say that h has
subcritical growth at +oo if for all « > 0

lim Wiz, 1)

t——+o0 eat4

=0
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and h has critical growth at 4oo if there exists ag > 0, such that

h(:l?,t) . { 0 if a> «ap,

im 400 if a<ag.

t—too eot?t

In the case of critical growth, we say that aq is the critical exponent of h. We
believe that the exponential growth above is the critical growth for this problem
when N = 2, as the counterpart of the case N > 3 in which the critical exponent is
2(2*) = 4AN/(N — 2) (see [24] and [9]).

We note that such notion is motivated by Trudinger-Moser estimates [31, 38]
which provide

el e LNQ) forall we HY(Q) and a>0,

and
sup / elul® qg <C forall «a<d4m,
Q

lull 7y <1

where Q C R? is a bounded smooth domain. Subsequently Cao [5] proved a version
of Trudinger-Moser inequality in the whole space, which was improved in [13, 37],
namely,

el —1e LYR?) forall we HY(R?) and o> 0.

Moreover, if o < 47 and |u|p2rey < C, there exists a constant Cy = C3(C, ) such
that

sup / (eo““lz - 1) dz < 0. (1.3)
R2

HV““LQ(R?)Sl

Recent mathematical studies on the subject have been focused on the existence
of solutions to quasilinear Schrodinger equations of the form

—Au+V(z)u— [A(lul*)] u = h(z,u) inRY.

In dimension one, see [32] (indeed the first paper on the subject) and [1, 7]. For N =
2, see [16, 28]; and finally for N > 3 see, for example, [9, 17, 24, 26, 25, 29, 30, 32].
For existence and concentration of solitary waves for this quasilinear Schrodinger
equation we refer to [6] and [18]. In recent years, the related semilinear equations
for k = 0 have been extensively studied. See e.g. [4, 33, 36], and references therein.

Quasilinear Schrédinger equations in dimension two and involving sub-critical
and critical exponential growth have been considered recently in [16] and [28]
where the potential V' is bounded. 1In [16], by using a change of variable,
the quasilinear equations are reduced to semilinear equations, whose respective
associated functionals are well defined in the usual Sobolev space H'(R?) and satisfy
the geometric hypotheses of the mountain-pass theorem. Using this fact, there was
obtained a Cerami sequence converging weakly to a solution v. In the proof that v
is nontrivial, the main tool is the concentration-compactness principle due to P. L.
Lions [23], combined with test functions connected with optimal Trudinger-Moser



482 J.M. do O, A. Moameni

inequality. In [28] the case of periodic potential was considered and the existence
of at least one weak solution was proved. Indeed, the mountain-pass theorem in a
suitable Orlicz space together with the Trudinger-Moser inequality were employed
to establish this result.

The main motivation for the present paper is to deal with equations with more
general class of potentials and nonlinearities involving critical growth. As a direct
consequence we extend and complement the results in [16] and [28].

This paper contains a delicate Orlicz space approach introduced in [24] and
[6] together with the ingredients from several recent papers on elliptic problems
involving critical growth in the Trudinger-Moser case, see [5, 11, 12, 13, 16, 28] and
references therein.

Throughout the paper, we assume the following basic hypothesis on the
potential:

(Vo) V is a continuous function and

V(x) > Vo >0 for all x € R?.

We consider the situation in which the potential V() is unbounded from above.
Indeed, we prove the existence under either of the following assumptions on the
potential.

(V1) V(z) — oo as |z| — oo; or more generally, for every M > 0, the set
{r eR*: V() < M}

has finite Lebesgue measure.

(V) The function [V (x)]~! belongs to L(R?), that is,

1
—— dx < 0.
r2 V()

We now introduce the following assumptions on the nonlinear term h(z,u).
(Ho) h:R? x R — R is continuous, h(z,0) = 0 and
()] < bilu| + b (eaolu\4 - 1) for all (z,u) € R? x [0, +00),
for some constants «q, by, by > 0.
This assumption is motivated by the Trudinger-Moser inequality together with

the presence of the term [A(u?)u in order to study the problem with maximum
exponential growth of h(x,u) in the whole two-dimensional space.



Quasilinear Schrodinger equations 483

Let s
H(zx,s) ::/ h(z,t)dt and
0

Sz [(1+22)[Vul? + V(@)u?] do

A1 = i
! ueHll(%z)\{O} Jge u? da

It is easy to see from our assumptions on the potential V' that A; > 0.

2H (x,u)

(Hy) limsup,_ o+ 2 < A1 uniformly in x € R2.

(Hs) There exists @ > 4 such that

0 < pH(z,s) < h(z,s)s for all (z,s) € R? x (0,00).

The main results are the following.

Theorem 1.1 (The subcritical case) Suppose (Vo) and (V1) (or (Va)). If h has
subcritical growth and (Ho) — (Hz) are satisfied, then (1.2) possesses a positive
solution.

Theorem 1.2 (The critical case) Suppose (Vo) and (V1) (or (Vz2)) are satisfied
and that h has critical growth. If (Hy) — (H2) and also the following condition hold

(Hg) there exists A > 0 such that

h(x,s) > s for all (z,s) € R? x [0, +00),

then, there exists Moo such that for A\ > A, problem (1.2) possesses a positive
solution.

Note that (H;) weakens the following standard condition used in the literature,

2H (z,u)

5 =0 uniformly in z € R2.

lim sup
u—0+ u

Condition (Hj), used for this class of quasilinear Schrédinger equations, is the
counter part to the classical Ambrosetti-Rabinowitz condition and it is already
used in [9], [16], [24] and [30]. Assumption (Hj) is technical and leaves room for
improvement, although it is more general than the following one used in [16]

lim uh(u)e_o‘“4 > (3 > 0 for some constants «, 5 > 0. (1.4)

U—00

Notice that the hypotheses of Theorems 1.1 and 1.2 are, for instance, satisfied by
nonlinearities of the following forms:

(a) Subcritical growth: h(u) = 5ul(e®” — 1) + 3u7e®’.
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(b) Critical growth with V(z) < C(1 + |z|):

h(u) =

u4 3 u4 s
5ut + cos(u)(e® — 1) + 20(1 + sin(u))u3(e® — 1), u> 3
5ul, 0<u<?3r,

Note that Example (b) does not verify the condition (1.4).

A main difficulty in treating this class of quasilinear Schrédinger equations in R?
involving critical growth is the possible lack of compactness besides the quasilinear
term. Moreover, there is no natural functions spaces for the associated energy
functional to be well defined and this is due to the super-critical growth condition
on the nonlinearity.

Remark 1.1 Using elliptic regularity theory (see [19]) one can see that the
solutions of (1.2) are of C? class and decay to zero at infinity, for details see [16].

Remark 1.2 It is readily seen that our method applies to other potentials, for
example, radially symmetric potentials, namely V (z) = V(|z|), for all z € R? (see
(4], [23], [36])-

Outline of the paper: Motivated by the argument used in [24] the forthcoming
section contains a reformulation of the problem and some preliminary results on
the function space setting. In Section 3, by using a version of the mountain-pass
theorem, which is a consequence of the Ekeland Variational Principle, we prove
Theorems 1.1 and 1.2.
Notation.— In this paper we make use of the following notations:

e C, Cy, C1, Cy, ... denote positive (possibly different) constants.

e For 1 < p < oo, LP(R?) denotes Lebesgue spaces with the norm ||u]|,.

e H'(R?) denotes the Sobolev spaces modeled in L?(IR?) with its usual norm

1/2
lulli2 == (Vull3 + ull3) -

Cg°(R?) denotes the functions infinitely differentiable with compact support
in R2.

2 Preliminaries

First, since we look for positive solutions of (1.2) we assume h(z,s) = 0 for all
(x,8) € R? x (—00,0].

We observe that, formally (1.2) is the Euler-Lagrange equation associated to the
following functional

1 1
J(u) = 5/RQ(l—|—u2)|Vu|2dgc—i— 5/{;@2 V(z)u? de — . H(x,u)dz
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where H(x, s) fo x,t) dt. From the variational point of view, the first difficulty
we have to deal with is to find an appropriate function space where the above
functional is well defined. Following the idea introduced in [24] (see also [8] [9]), we
recall the function space setting of [6]. We reformulate the problem by means of
the following change of variable

=1+ u2du,

which can be rewritten as
1 1
v=f(u):= U 1+u2+§1n(u+ 1+u2)
and since f is strictly monotone, it is well defined and so is the inverse function

g = f~! with .

1+ g%(v)

The following asymptotic behaviors will be fundamental in the sequel

8, |s] =0 s ls| =0
f(s)~ 91 s g8~ 3
5slsl, s i

g (v) =

|s| — oo 18 Is| — o0
Moreover,
52, s|—0
Gls) i= *(s) ~ ¢
2|s], |s| — o0
and note that
2g(v) 2
G (v) = ——F2—t—, G'(v)= ——. 2.1
W)= W)= T ewe @1

By exploiting this change of variable, we can rewrite the functional J in the following
form

1 1
I(v) == J(g(v)) = f/ Vol2 dz + 7/ V)G de — | H(z,gw)dz (22)
2 R2 2 R2 R2
which has finite energy provided that
/ |Vv|?de < oo and V(z)G(v)dz < co.
R2 R2

Observe that G is convex, G(0) = 0, G(s) / o0, as § — oo so that (up to
extending G on (—00,0) by G(—s) = G(s)) it is a Young function and one can
consider the Orlicz class (see [34]), which we denote by L (R?), of measurable
functions v : R? — R such that

/ G(|v|)dp < o0, dp=V(z)dz
R2
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Remark 2.1 The Young function G satisfies the As-condition globally (see [34]),
that is: there exists K > 0 such that G(2s) < KG(s) for all s > 0. As a consequence,
one has that Lg is a linear space on which one can define the following norm

ol s=sup{ [ losldn sz e Ly, [ Gzt @

where (G, G) denotes a Young pair.

Thus, the new functional I in (2.2) turns out to be well defined in a natural
fashion on the Banach space

E = {u € LEL(R?) / Vo2 de < oo}
R2
which can be obtained as the completion of C§°(R?) with respect to the norm
[ofl := [[Vollz + [lvlle-

We also consider the closed subspace of H!(R?)

H) = {u c H'(R?) : [ V(z)u?dx < oo}

R2

equipped with the norm

1/2
|u||v=( [ v | V(x)umx) |
R2 R2

Remark 2.2 Under the condition (Vp) for all ¢ > 2,
Hy(R?) — H'(R?) — LY(R?)

with continuous embedding and with compact embedding if V' satisfies condition
(V1) or (V2) (see [10] and [33]).

In the following proposition we state some facts about the Banach space E and
the nonlinear map v — g(v) which are useful in the sequel.

Proposition 2.1 (1) (E,]| - ||) — L%(R?) for all ¢ > 2.

(2) Let u=g(v) and v € E. Then the following estimate holds:

1/4 Ko/2
lully < [IVolls + [o]l&* + 25072 |lo]| 5/

where Ky is a positive constant which does not depend on v nor on u.

(3) The map v — g(v) from E to LY(R?) is weak to strong continuous.
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Proof. For part (1) by exploiting the asymptotic behavior of the strictly increasing
and strictly convex function G, from (2.1) we have

2
G(t) > At*, te0,7)
Att, t € [r,+00)

for a positive constant A and 7 > 0 sufficiently small. Hence for v € E we get

/ G(lv|)dp > C / v? dac—i—/ |v| dx
R2 Ql:={zeR?: |v|<T} Q2:={ze€R?: |v|>T}

for a positive constant C' which does not depend on v. It follows that v € L?(R?)
from which together with the fact that ||Vl < |lv]| we obtain v € H'(R?). Now
the result follows from the Sobolev embedding H!(R?) C L4(RR?) for all ¢ > 2.

We proceed the proof of part (2) in several steps:

Step 1. First we prove that

1
lvlle <+ (1 +/ G(kv) du) . Vk>0. (2.4)
R2

Indeed, by (2.3) and using the Young inequality zy < G(z) + G(y) one has

lolle = ,iup{/ ozl = [ Gel)du < 1}
< ;up{/ Goko) + Gllal)dn = [ G(elydn < 1}

< 1( G(kv)du—i—l).
o \ e

Step 2. We next show that there exists a constant Ky > such that

Yo € LG (R?). (2.5)

2%0lollg°,  lvlle > 1

lvlle, [vllc <1
G(v)du <
- (v) {

We recall from [34, Proposition 3, p. 60] that if v € LY (R?), v # 0, one has

(i) e
k2 \lvlle

and in particular (2.5) follows if ||v||¢ = 1. Otherwise we distinguish when ||v||¢ < 1
and ||v]|¢ > 1. In the first case, v < v/||v||¢ and since G is increasing, we get

G(v)du §/ G (v) dp < 1.
R? k2 \llvle

Moreover, since G is strictly convex, we have

G (vlvlle) =G (v]lvlle + (1 = [vlla)0)
<G()|vle + GO)1 = [lvlle) = G)|vle
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thus
[ €lle) du< ol [ G du < ol

Now we set w = v||v||¢ to get

[ Gw)dn= [ Golvle)dn < lolle = Il Vuls <1

If |v[lg > 1, let n := 1/||v||g and ¥ := nv. Since 0 < 7 < 1, we can find
n =n(v) € N such that 1/2" < 7 < 1/2""1 and since G is increasing we have

G (2%) < Qi) = G(%). (2.6)

By exploiting As-condition in Remark 2.1 with a constant K > 1, we obtain

Gv) =G (2"2%) < K"G (2%) (2.7)

and then joining (2.6) and (2.7) we obtain

G)du < K™ | G(@)du < K" < KFlexvlle < oKo| ) Ko
R2 R2

for a constant K, such that 250 > K. We complete the proof of the lemma by
evaluating for u = g(v)

Jul <(/ L vod )1/2+( G(v)d )1/2
u e a— v X v
V= ]R21+G(U) R2 H

1/4 Ko/2
<[Vl + [l * + 250 2o £/,
This proves part (2).

Part (3) follows from the inclusion E C HY (R?), due to part (2), together with
Remark 2.2.

The following proposition states some properties of the functional I. See [6] and
[28] for the proof.

Proposition 2.2 The functional I is well defined on E. Moreover,
(i) I is continuous on E.
(ii) I is Gateaux differentiable on E and for each v € E, I'(v) € E*.

(iii) If v € E is a critical point for I, then v € C} (RN) and u = g(v) is a classical
solution of equation (1.2).
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3 Existence results via mountain-pass

We will achieve the existence result by using the following version of the mountain—
pass theorem which is a consequence of the Ekeland Variational Principle as
developed in [2].

Theorem 3.1 Let E be a Banach space and ® € C(E;R), Gdteaux differentiable
for all v € E, with G-derivative ®'(v) € E* continuous from the norm topology of
E to the weak*—topology of E* and ®(0) = 0. Let S be a closed subset of E which
disconnects (archwise) E. Let vg = 0 and vy € E be points belonging to distinct
connected components of E\ S. Suppose that

igf®2a>0 and ®(v1) <0

and let
I'={y€C([0,1; E) [v(0) = 0 andy(1) = v1}.
Then
;= inf P(~(t)) >
¢i= Inf max (v(1) = e

and there exists a Palais-Smale sequence for ® at level ¢ (Denoted by(P.-S.).
sequence), that is: (u,) C E such that, as n — 00,

®(u,) —c and ®(u,)—0 in E*.

3.1 Mountain-pass geometry

Lemma 3.1 Under conditions (Vy), (Ho) and (Hz), there ezists v € E \ {0} such
that I(v) < 0.

Proof. Let u € C§°(R?) \ {0}, v > 0, K is the support of u and |K| denotes
the Lebesgue measure of K. We are going to prove that lim; . J(tu) = —oo,
consequently I(v) < 0 for v = f(tu) and t large enough. Notice that by (Hz), it is
easy to see that there exist positive constants ¢, d such that

H(z,s)>ecs* —d, V (z,s)€ K x[0,+00).

Thus for the large values of ¢,

1 2
J(tu) = = / (14 2u?) | VulPdz + = | V(z)u’dz — | H(z,tu)dx
2 R2 2 R2 R2
t* 2 2 t? 2
< = (1+u?) |[VulPde + = [ V(z)u’dz—t* | u'dz+dK]|,
2 R2 2 R2 R2

which together with p > 4 implies that lim;_, o J(tu) = —oc.
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Lemma 3.2 Assume (Vy), (Ho) and (Hy). Let p > 0 and define the following
closed subset of E

S(p) == {v €eE ‘ |Vo|? da +/ V(x)g?(v) dx = p? } .
R2 R2
Then, there exist constants p, a > 0, such that
I(v) > « for all v € S(p).

Proof. It is easy to see that using the change of variable we have the following
equivalent formulation for A; in our Orlicz space setting:

JelVOI? + V(@)g? (v)] dae

A =
LT eB\(o0} Jg2 92 (v) dx

Thus

[ e < [ VP 4 V@) de
R2 R2
= p2_
Combining conditions (Hp) and (Hy), for n < Ay and ¢ > 2 we obtain
1
H(,t) < ont” + Ca(eP —1).

Notice that

IVg* ()2 = 1129(v)g’ (v) Vvll2 = < 2[[Vol2.

ezl

Thus, taking p > 0 sufficiently small, we have
IVg*(v)ll2 < 2| Vol < 2p° < 1.

Using Trudinger-Moser inequality (1.3) and proceeding as in the proof of [13,
Lemma 3], we obtain

lg(v)]? (69(1))4 _ 1) da < Cpl.
R2
Hence, for all v € S(p),

1 n 9
Iv)>=(1—- — — Cpa.
(v) 2( )\1>p Cp

Now, choosing p > 0 sufficiently small we have

I(v) > i (1—;’) 2

which proves the lemma.
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3.2 On the mountain-pass level
As a consequence of Lemmas 3.1 and 3.2, and Theorem 3.1 we have

Co = inf sup I(7(t)) > a >0,
7€l tel0,1]

where
I = {y€C([0,1], H'(R?)); 7(0) = 0,~(1) # 0, I((1)) < 0}.

Lemma 3.3 Assume that h has critical growth and satisfies (Hyp), (H2) and (Hs).
Then there exists Aoy such that for X > Ao, the critical value Cy is bounded from

above by (1 —4)/4p.
Proof. Fix a positive function ¢ € H{ such that $»* € H'. Take Ay large enough

in such a way that
[ p—4
b - Y < 3.1
Moo Jop 1010z =2 [o 92V o2 dw ~ (3:1)
Consider a large number n such that J(ng) < 0. Set ¢(x) = ng(x) and () :=

f(to). It follows from the characterization of the mountain-pass level that

Co = inf sup I(y(t)) < sup I(n(t)) = sup I(f(t¢)) = sup J(i¢).
7€l telo0,1] te[0,1] te0,1] te[0,1]

0<

Therefore, it suffices to show that sup,cjo 1 J/(t¢) < (1 — 4)/4p. Indeed,

Co < sup J(to)

t€(0,1]
et 2 2
< sup §H¢||v t3 ¢*|Vol“dx — | H(z,td)dx .
te[0,1] R2 R2
It follows from (Hjs) with A > A that
t2 tt At
Co< s {510l + 5 [ #ivotae- 20 [ otas]
tefo,1] L 2 2 Jpe 4 Jre
2.t 4 2 2
= sup {0l — O\ | ¢'de—2 [ ¢7|V¢|°dx)
te€[0,1] 2 4 R2 R2
) 613
4(A [go lo|* dx — 2[5, 92|V |2 d)
1213

< = = =
T 4o f2 |91 dr = 2 [po ¢%|V | da)
from which together with (3.1) we obtain

—4
C() < L R
4p

and the proof is complete.
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3.3 Palais-Smale sequences

Proposition 3.1 Suppose (v,,) is a Palais-Smale sequence for I at level Cy, that
is, (vn) C E such that, as n — oo,

I(v,) = Co and I'(v,) —0 in E*.
Then (vy,) is bounded in E.

Proof. Since (v,,) is a (P.-S.)¢, sequence, we have

Co

/|vvn\ do + = / (2)g (vn)?dx_/H(x,g(vn))dx )

- C’0 + 6717
and
(I (vn), @)| = ‘/an Vodr + /V g’ (vn)pdx
(3.3)
~ [ o gtoa))g' (n)ods| < o]
where d,,, €, — 0 as n — oo. Next, we pick
g(vn)
= =1+ g(v,)%9(vn
©= T 9(vn)?g(vn)
as a test function in (3.3). One can easily deduce that
_ g(vn)®
[¢llc < Cllonllg and  [Vo| = |1+ ﬁ [Vun| < 2[Vun|,
which implies ||¢]| < Cljvn]|- Substituting ¢ in (3.3) gives
| (I'(vn), 0) | = ’/ [1—|— 1+U” NP } [V, dJ;—!—/V )g(vn)?dx
(3.4)

< enllvnll-

- / B, 9(0n)) g (vn)da

Taking into account assumption (Hz) and (3.2)—(3.4), we have

1 1
Co +0n + enllon]l 22 / Vou2de + = [ V(2)g(vn)?de
2 Rz 2 ]RZ

_%/R? [1 + %] |V, |2de — %/]Rz V(2)g(v,)?dx

—F/]R2 Uh(x,g(vn))g(vn) - H(w,g(un))} dx

A

laa) fove
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Now by considering (2.4), with k = 1, we have [o, V(2)g(v,)*dz > [Jvn|l¢ — 1 and
therefore we obtain

1 2 1 1
Co + 6, + €n]|vn 2(—)/ an2dx+(—)/ngvn2dx
; ol > (5-=) [ IVoudat (5-+) [ Vi@t

(1n—4) o |2 2alv)?] de
U2 [ Ve + Vi@g(w,?] d

—4
S=4) )(/ |an|2dx—|—||vn||g—1>,
2,[,L R2

from which together with the elementary inequality ||[Vu,|l2 < [|[Vu, |3 + 1 we have

(k—4)
2p
(k—4)

- ol —2).
o (llvnlle —2)

Co + 0 + enllvnll >

(IVonllz + [[vnlle —2)
(3.5)

Since p > 4 it follows from the above estimate that
Co + 0n + €nllvnll = Cilvnll,
which implies that (v,,) is bounded in E.

Remark 3.1 Even though the space E is not reflexive, we may assume by
Proposition 2.1 that, up to a subsequence, Vv, — Vv in L2(RY) and g(v,,) — g(v)
in LP(R?) and then v, (z) — v(x) almost everywhere. By a result due to Berestycki,
Capuzzo-Dolcetta and Nirenberg, (see [3, Proposition 8]) we may assume that
v, > 0.

Proposition 3.2 Let (vy,) be a (P.-S.)c, sequence. Then the following statements
hold.

(a) Assuming that h has critical growth, (Hg) and (Hs), and taking a subsequence,
if necessary, we have ||[Vo,|2 < K < 1.

(b) If v, > 0 converges weakly to v in E, then for every nonnegative test function
¢ € E we have

lim (I'(vn), ¢) = (I'(v), 9) .

n—-+o00

Proof. In order to prove part (a) we notice that from estimates in (3.5) and Lemma
3.3 we have

QALCO
1.
1 <

limsup [ |Vu,|?dz dv = K <
R2

n—oo

To prove (b) note first that
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(I'(vy,), /an V¢ dx
/V vn)¢d:v—/h(%g(vn))g’(vn)qﬁd:ﬁ.

Now by the result of part (a) and Trudinger-Moser inequality, there exists ¢ > 1

(3.6)

sufficiently close to one that T}, (z) := 09" _ 1 i bounded in LY. Since, v, — v
a.e. in R? so T),(v) — T(x) = ¢09()* _ 1 weakly in L?. Now for each ¢ € E, since
E C L for t > 2, we have

/ <Z)d$—>/ x)pda.

Since ¢ is increasing and g(0) = 0, hence g(v,) > 0 and g(v) > 0. Now it follows
from Hj that

h(.’l?, g(”n)).gl(vnyz) < blg(vn)(b + bQTn(-T)(b

Hence, the dominated convergence theorem implies

/hxgvn (vn qbdx—>/hxg (v)¢p dx. (3.7)
For the second term on the right hand side of (3.6), we have
V(2)g(vn)g' (va)d < V(2)g(vn) ¢,

and since v, — v weakly in F, for the right hand side of the above inequality we
have

lim V(x)g(vn)d)dx:/V(x)g(v)¢dx.

n—oo

Hence by the dominated convergence theorem and the fact that v, — v a.e. we
obtain

n—oo

tin [ Viz)g(va)g ()ode = [ Vizlg)g'w)oda. (3.
It follows from (3.6), (3.7) and (3.8) that
lim <I/(Un)7¢> = <I/(U)’¢>a

n—-—+00

and the proof is complete.

Lemma 3.4 Assume conditions (Hp) and (Hz). If (vy,) is a (P.-S.)c, sequence for
I and v, — 0 then, taking subsequence if necessary, we have

lim h(z,g(vn))g(vn) dr = 0 and

n—oo [po

lim H(z,g(vy)) dz = 0.

n—oo [po
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Proof. Tt follows from (Hj) that

/ W, g(vn))g(vn) de
<t [ gon)? d -+ [0~ 1)g(0,) do (3.9)

Sbl /g(vn)2 d$+b2(/(62a0g(vn’)4 — 1) da:)§||g(vn)||Lz(R2).

It follows from v, — 0 that ||Vv,||z2(r2) is bounded and ||g(vy,)||z2(r2) — 0 due to
part (3) of Proposition 2.1. Notice that

IVg? (wa)l2 < 2llg(vn) Vonll2 < 2]lg(v) ]2 Vonll2 — 0
from which together with Trudinger-Moser inequality (1.3) we obtain for large n,

(e220l9(vn)l* _ 1) is bounded in L!(R2). Therefore it follows from (3.9) that

lim h(z,g(vy))g(v,) de = 0,

n—oo [po

and consequently from (Hz),

lim H(z,g(v,))dz = 0

n—0oo [po

which proves the lemma.

3.4 Proofs of theorems 1.1 and 1.2

It follows from Lemmas 3.1 and 3.2 that the functional I has the geometry of the
mountain-pass theorem. Therefore applying Theorem 3.1 we obtain a bounded
Palais-Smale sequence (cf. Proposition 3.1) (v,) in E, that is,

I(v,) — Cy and I'(v,) — 0.

Using Proposition 3.2 and taking a subsequence if necessary we can conclude that
(vn,) converges weakly to a critical point v € E of I. Thus, it remains only to prove
that v is nontrivial. Assume by contradiction that v = 0 and take

g(vn)
g'(vn)

as a test function in (3.3) and using Lemma 3.4 we conclude that

¢ = =41 +g(vn)29(vn)

lim [ |Vo,|*dz + /V(z)g(vn)zdx =0.

On the other hand, from (3.2) and using once more Lemma 3.4 we conclude that
Co = 0, which is a contradiction.
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