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Abstract

Given a bounded, open set Ω in RN (N ≥ 3), ψ ∈ W 1,p(Ω) (p > N ) such that ψ+ ∈
H1

0 (Ω) ∩ L∞(Ω) and a suitable strictly positive (see (1.4)) function a ∈ Lq(Ω) with
q > N/2, we prove the existence of positive solution w ∈ H1

0 (Ω) of some variational
inequality with a singular nonlinearity whose typical model is

w(x) ≥ ψ(x) a.e. x ∈ Ω

|∇w|2
w

∈ L1
loc(Ω),

|∇w|2
w

(w − ψ+) ∈ L1(Ω)

Z

Ω

∇w∇(v − w) +

Z

Ω

|∇w|2
w

(v − w) ≥
Z

Ω

a(x)(v − w), ∀v ∈ K1.

9
>>>>>>>=
>>>>>>>;

where the set of test functions K1 consists of all functions v ∈ H1
0 (Ω)∩L∞(Ω) such that

v(x) ≥ ψ(x) a.e. x ∈ Ω and supp (v − ψ+) ⊂⊂ Ω. Bigger classes of test functions
are also studied. We also recover the case in which the variational inequality reduces to an
equation.

2000 Mathematics Subject Classification. 35J85, 35J65, 47J20.
Key words. Quasilinear elliptic equations, unilateral problems, singular lower order terms, critical growth of the gradient term.

1 Introduction

We study the existence of bounded and positive solutions of obstacle problems involving
the quasilinear differential operator

Aw = −∆w + g(w)|∇w|2

in an open and bounded subset Ω in RN with N ≥ 3 and g a real continuous function. One
of the main difficulties in proving the existence of solution stems from the quadratic growth
in ∇w. Indeed, this implies that A does not map the Sobolev space H1

0 (Ω) into its dual
H−1(Ω).

The obstacle problem for quadratic nonlinear operators appears, for instance, in stochas-
tic control problems where simultaneously a continuous and an impulse control are consid-
ered (see [3]).

In [2] and [9], the authors consider more general operators than A. Specifically, the
Laplace operator is replaced by a Leray-Lions operator and a general operator g(x,w,∇w)
substitutes g(w)|∇w|2. In the particular case of the operator A, their results can be formu-
lated in the following way. Consider a function a ∈ L1(Ω) and assume that g : R −→ R is
a continuous function satisfying the sign condition

g(s)s ≥ 0,

for every s ∈ R. Under these conditions, it is proved in [2] that if ψ : Ω −→ [−∞,+∞) is
a measurable function such that the convex set

K ≡ {v ∈ H1
0 (Ω) ∩ L∞(Ω) : v(x) ≥ ψ(x) a.e. x ∈ Ω} 6≡ ∅ (1.1)
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then there exists a solution w ∈ H1
0 (Ω) of the obstacle problem

w(x) ≥ ψ(x) a.e. x ∈ Ω, g(w)|∇w|2, g(w)|∇w|2w ∈ L1(Ω)

∫

Ω

∇w∇(v − w) +
∫

Ω

g(w)|∇w|2(v − w) ≥
∫

Ω

a(x)(v − w) ∀v ∈ K





(1.2)

On the other hand, in [9] it is also proved that if the obstacle ψ ∈ L∞(Ω) satisfies

{v ∈ H1
0 (Ω) / v(x) ≥ ψ(x) a.e. x ∈ Ω} 6= ∅,

then there exists a solution w ∈ H1
0 (Ω)∩L∞(Ω) of (1.2). If, in addition to the boundedness

of the obstacle, ψ ∈ W 1,p(Ω) and a ∈ Lq(Ω) with p > N and q > N/2, then the solution
w is locally Hölder continuous in Ω.

More existence results are given in [4, 5]. In this case, the term a0(x)w is added to the
operator A, where a0(x) is bounded from below and above by positive constants.

To the best knowledge of the authors, the case of nonlinearities g having a singularity at
s = 0 has not been treated in the literature. Our purpose is to study the existence of bounded
and positive solutions w provided that the continuous function g : (0, +∞) −→ [0, +∞)
satisfies that

lim sup
s→0

sg(s) < +∞ (1.3)

and the function a is strictly positive in the sense that

ess inf {a(x) / x ∈ ω} > 0, ∀ω ⊂⊂ Ω. (1.4)

Thus, this paper can be considered as an extension of the previous results in [1] for the
boundary value problem associated to the operator A with zero Dirichlet boundary condi-
tions. Roughly speaking, condition (1.3) implies that the term g(w)|∇w|2 could blow-up
as w(x) tends to zero. This is the reason why the techniques in the previous papers does
not work in our setting. Even more, the convex set K of test functions has to be modified
in order to guarantee that the term

∫
Ω

g(w)|∇w|2(v−w) is well-defined. To do this, let us
take the convex set

K1 ≡
{

v ∈ H1
0 (Ω) ∩ L∞(Ω) :

v(x) ≥ ψ(x) a.e. x ∈ Ω
supp (v − ψ+) ⊂⊂ Ω

}
.

Observe that if ψ : Ω −→ R is a measurable function such that ψ+ ∈ H1
0 (Ω) ∩ L∞(Ω),

then K1 6= ∅. Hence, we are considering the existence of w ∈ H1
0 (Ω) satisfying

w(x) ≥ ψ(x) a.e. x ∈ Ω

g(w)|∇w|2 ∈ L1
loc(Ω), g(w)|∇w|2(w − ψ+) ∈ L1(Ω)

∫

Ω

∇w∇(v − w) +
∫

Ω

g(w)|∇w|2(v − w) ≥
∫

Ω

a(x)(v − w), ∀v ∈ K1.





(1.5)

To solve this problem, we introduce a sequence of continuous functions g in R which
approximate g in (0, +∞) and the sequence of approximated operators Anw = −∆w +
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gn(w)n|∇w|2/(n + |∇w|2) for n ∈ N. The solutions wn ∈ H1
0 (Ω) of the variational

inequalities associated to them are given by the Leray-Lions theorem [8, Téorème 8.2].
Then, one of the key points is to prove that wn is away from zero at every compactly
embedded subset Ω0 in Ω (see Proposition 3.2 below). In order to do accomplish this,
we need the continuity of wn, and thus we impose the natural assumptions to have locally
Hölder solutions wn, i.e. we suppose that a ∈ Lq(Ω) for some q > N/2 and that ψ ∈
W 1,p(Ω), with1 p > N . Finally, passing to the limit n → ∞, we obtain the existence of
solution of (1.5). In conclusion, we prove the following theorem.

Theorem 1.1 Assume that ψ ∈ W 1,p(Ω) with p > N and ψ+ ∈ H1
0 (Ω)∩L∞(Ω). Let

a ∈ Lq(Ω) with q > N/2 and satisfying (1.4). Suppose also that g : (0,+∞) −→
[0, +∞) is a continuous function verifying (1.3). Then, there exists w ∈ H1

0 (Ω) ∩
L∞(Ω) that solves (1.5). Moreover, if ψ ∈ W 1,p

0 (Ω) ∩ L∞(Ω) then w also solves

w(x) ≥ ψ(x) a.e. x ∈ Ω

g(w)|∇w|2 ∈ L1
loc(Ω), g(w)|∇w|2(w − ψ) ∈ L1(Ω)

∫

Ω

∇w∇(v − w) +
∫

Ω

g(w)|∇w|2(v − w) ≥
∫

Ω

a(x)(v − w), ∀v ∈ K2





(1.6)

where the nonempty set K2 is defined as

K2 ≡
{

v ∈ H1
0 (Ω) ∩ L∞(Ω) : v(x) ≥ ψ(x) a.e. x ∈ Ω

supp (v − ψ) ⊂⊂ Ω

}
.

Furthermore, if ψ ∈ W 1,p
0 (Ω) with p > N and supp ψ ⊂⊂ Ω, then w also solves

the problem (1.2) and we extend to singular nonlinearities g the results of [2] (for the case
ψ ∈ W 1,p

0 (Ω), a ∈ Lq(Ω) with p > N , q > N/2 and supp ψ ⊂⊂ Ω). Specifically, we
prove the following theorem.

Theorem 1.2 Assume that ψ ∈ W 1,p(Ω) with p > N and supp ψ+ ⊂⊂ Ω. For q >
N/2, let a ∈ Lq(Ω) be a function satisfying (1.4). Suppose also that g : (0, +∞) −→
[0, +∞) is a continuous function verifying (1.3). Then the solution w given by
Theorem 1.1 is such that g(w)|∇w|2 ∈ L1(Ω). In particular, if supp ψ ⊂⊂ Ω, then
w solves (1.2).

As a by-product, we improve a previous result of [1], where the existence of solution
of the boundary value problem

−∆w + g(w)|∇w|2 = a(x) x ∈ Ω
w = 0 x ∈ ∂Ω

}
(1.7)

is studied in the particular case when a ∈ L∞(Ω).

1We remark explicitly that since we are not assuming the smoothness of the boundary ∂Ω, we
can not assure that ψ ∈ L∞(Ω) from the inequality p > N .
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Theorem 1.3 Assume that a ∈ Lq(Ω) with q > N/2 and satisfies (1.4). Suppose
also that g : (0, +∞) −→ [0,+∞) is a continuous function verifying (1.3). Then,
there exists w ∈ H1

0 (Ω) ∩ L∞(Ω) solution of (1.7) in the sense
∫

Ω

∇w∇ϕ +
∫

Ω

g(w)|∇w|2ϕ =
∫

Ω

a(x)ϕ, ∀ϕ ∈ C∞0 (Ω).

The paper is organized as follows: in the second section we recall the proof of the
Cα-regularity of solutions for some linear obstacle problems that will be useful in the third
section, in which we prove the existence results.

2 A regularity result

In this section, we include, for the convenience of the reader, the proof of the well-known
Cα-regularity of solutions for some linear obstacle problems (see [6] and references therein).

Theorem 2.1 Let ψ be a function in W 1,p(Ω) with p > N and ψ+ ∈ H1
0 (Ω). Suppose

also that a1 ∈ Lq(Ω), where q > N
2 . If α ∈ (0,min{1−N/p, 2−N/q}), then every

solution w ∈ H1
0 (Ω) of

∫

Ω

∇w∇(v − w) ≥
∫

Ω

a1(x)(v − w), ∀v ∈ H1
0 (Ω) : v(x) ≥ ψ(x) a.e. x ∈ Ω

w(x) ≥ ψ(x) a.e. x ∈ Ω,
(2.1)

is locally Hölder continuous with exponent α in Ω.

Remark 2.1 In the case when ∂Ω is smooth (for instance, Lipschitz) then it is pos-
sible to show that w ∈ Cα(Ω).

Proof. Fix 0 < α < min{1 − N/p, 2 − N/q}. Let Ω0 be an open subset with smooth
boundary which is compactly embedded in Ω. We are going to prove that every solution
w ∈ H1

0 (Ω) of (2.1) belongs to Cα(Ω0). To do that, if we denote by B(x0, r) the ball in
RN of centre x0 and radius r > 0, it suffices to show for some positive constants C1 and
C2 and σ := min{N − 2N/p,N + 2− 2N/q} that

∫

B(x0,ρ)

|∇w|2 ≤ C1

(ρ

r

)N
∫

B(x0,r)

|∇w|2 + C2r
σ, (2.2)

for every x0 ∈ Ω0 and 0 < ρ < r < dist (x0, ∂Ω).
Indeed, by [7, A useful lemma, p. 44], this implies that for a new positive constant C3,

∫

B(x0,ρ)

|∇w|2 ≤ C3

(ρ

r

)N
∫

B(x0,r)

|∇w|2 + C2ρ
σ,
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for every x0 ∈ Ω0 and 0 < ρ < r < dist (x0, ∂Ω). Therefore, taking λ = N + 2α, we
have

ρ−(λ−2)

∫

Ω0∩B(x0,ρ)

|∇w|2 ≤ C3
ρN+2−λ

rN

∫

B(x0,r)

|∇w|2 + C2ρ
σ+2−λ

and using that σ + 2 > λ, we deduce that ∇w belongs to the Morrey space L2,λ−2(Ω0) of
all functions u ∈ L2(Ω0) such that

sup
x∈Ω0

0<ρ<diam Ω0

ρ−(λ−2)

∫

Ω0∩B(x,ρ)

|u|2 < ∞.

In particular (see [7, Conclusion 5, p. 44]), w is in the Campanato space L2,λ(Ω0) given
by

L2,λ(Ω0) =



u ∈ L2(Ω0) : sup

x∈Ω0
0<ρ<diam Ω0

ρ−λ

∫

Ω0∩B(x,ρ)

∣∣∣∣∣u−−
∫

Ω0∩B(x,ρ)

u

∣∣∣∣∣

2

< ∞


 ,

where −∫
Ω0∩B(x,ρ)

u = [1/meas (Ω0 ∩B(x, ρ))]
∫
Ω0∩B(x,ρ)

u.
Since N < λ < N + 2 and ∂Ω0 is smooth (for instance Lipschitz), by Campanato

theorem [7, Theorem 3.1] we know that L2,λ(Ω0) is isomorphic to C(λ−N)/2(Ω0) and
thus w ∈ C(λ−N)/2(Ω0). The proof will be concluded by observing that α = λ−N

2 .
To prove (2.2), we fix x0 ∈ Ω0 and 0 < r < dist (x0, ∂Ω), and we take w, w ∈

H1(B(x0, r)) satisfying

−∆(w − ψ) = 0 x ∈ B(x0, r)
w = w x ∈ ∂B(x0, r)

}
(2.3)

and
−∆w = 0 x ∈ B(x0, r)

w = w x ∈ ∂B(x0, r).

}
(2.4)

For every ρ ∈ (0, r) we have
∫

B(x0,ρ)

|∇w|2 ≤ 2
∫

B(x0,r)

|∇(w − w)|2 + 2
∫

B(x0,ρ)

|∇w|2

≤ 2
∫

B(x0,r)

|∇(w − w)|2

+4
∫

B(x0,r)

|∇(w − w)|2 + 4
∫

B(x0,ρ)

|∇w|2.

Using the weak Harnack inequality (see [7]) for the derivatives of the harmonic function
w, we have ∫

B(x0,ρ)

|∇w|2 ≤ c
(ρ

r

)N
∫

B(x0,r)

|∇w|2,



Elliptic Obstacle Problems 305

and consequently
∫

B(x0,ρ)

|∇w|2 ≤ 2
∫

B(x0,r)

|∇(w − w)|2 + 4
∫

B(x0,r)

|∇(w − w)|2

+4c
(ρ

r

)N
∫

B(x0,r)

|∇w|2. (2.5)

The three integrals on the right hand side of this inequality will be studied in the fol-
lowing three steps respectively. We denote by C1, C2, C3, ... positive constants independent
from w.
Step 1: Study of

∫

B(x0,r)

|∇(w − w)|2.

We observe that w−w ∈ H1
0 (B(x0, r)) and the maximum principle assures that w ≥ ψ

in B(x0, r).
In particular,

v =
{

w x ∈ B(x0, r),
w x ∈ Ω \B(x0, r)

satisfies that v − w ∈ H1
0 (Ω) and v(x) ≥ ψ(x). Now we can take v ∈ H1

0 (Ω) as test
function in (2.1) to obtain

∫

B(x0,r)

∇w∇(w − w) ≥
∫

B(x0,r)

a1(x)(w − w).

Thus,
∫

B(x0,r)

|∇(w − w)|2 =
∫

B(x0,r)

∇w∇(w − w)−
∫

B(x0,r)

∇w∇(w − w)

≤
∫

B(x0,r)

a1(x)(w − w)−
∫

B(x0,r)

∇(w − ψ)∇(w − w)

−
∫

B(x0,r)

∇ψ∇(w − w)

=
∫

B(x0,r)

a1(x)(w − w)−
∫

B(x0,r)

∇ψ∇(w − w),

where the last equality is consequence of taking w−w as test function in (2.3). Hölder and
Sobolev inequalities (with S the best constant in the Sobolev imbedding) imply that
∫

B(x0,r)

|∇(w − w)|2 ≤ ‖w − w‖L2∗ (B(x0,r))‖a1‖Lq(B(x0,r))|B(x0, r)|
1
2+ 1

N− 1
q

+‖∇(w − w)‖L2(B(x0,r))‖∇ψ‖Lp(Ω)|B(x0, r)|
1
2− 1

p

≤ S‖∇(w − w)‖L2(B(x0,r))‖a1‖Lq(B(x0,r))|B(x0, r)|
1
2+ 1

N− 1
q

+‖∇(w − w)‖L2(B(x0,r))‖∇ψ‖Lp(Ω)|B(x0, r)|
1
2− 1

p

≤ ‖∇(w − w)‖L2(B(x0,r))C3r
min{N

2 −N
p , N

2 +1−N
q },
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for r > 0 small enough. Applying the Young inequality, we deduce that
∫

B(x0,r)

|∇(w − w)|2 ≤ 1
2

∫

B(x0,r)

|∇(w − w)|2 +
C2

3

2
rσ,

i.e.,
∫

B(x0,r)

|∇(w − w)|2 ≤ C4r
σ. (2.6)

Step 2: Study of
∫

B(x0,r)

|∇(w − w)|2.

Taking w − w as test function in the problems (2.3) and (2.4), we get
∫

B(x0,r)

|∇(w − w)|2 =
∫

B(x0,r)

∇w∇(w − w)−
∫

B(x0,r)

∇w∇(w − w)

=
∫

B(x0,r)

∇w∇(w − w)−
∫

B(x0,r)

∇(w − ψ)∇(w − w)

−
∫

B(x0,r)

∇ψ∇(w − w)

= −
∫

B(x0,r)

∇ψ∇(w − w).

Using again the Hölder and Young inequalities,
∫

B(x0,r)

|∇(w − w)|2 ≤ ‖∇(w − w)‖L2(B(x0,r))‖∇ψ‖Lp(Ω)|B(x0, r)|
1
2− 1

p

= ‖∇(w − w)‖L2(B(x0,r))C2r
N
2 −N

p

≤ 1
2

∫

B(x0,r)

|∇(w − w)|2 +
C2

2

2
rN− 2N

p ,

i.e.,
∫

B(x0,r)

|∇(w − w)|2 ≤ C5r
σ. (2.7)

Step 3: Study of
∫

B(x0,r)

|∇w|2.

Choosing w − w as test function in (2.4), we obtain
∫

B(x0,r)

|∇w|2 =
∫

B(x0,r)

∇w∇w.

Hence,

0 ≤
∫

B(x0,r)

|∇(w − w)|2 =
∫

B(x0,r)

∇w∇(w − w)−
∫

B(x0,r)

∇w∇(w − w)

= −
∫

B(x0,r)

∇w∇w +
∫

B(x0,r)

|∇w|2 = −
∫

B(x0,r)

|∇w|2 +
∫

B(x0,r)

|∇w|2,
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or equivalently
∫

B(x0,r)

|∇w|2 ≤
∫

B(x0,r)

|∇w|2.

On the other hand, taking w − w as test function in (2.3), we have
∫

B(x0,r)

|∇w|2 =
∫

B(x0,r)

∇w∇w +
∫

B(x0,r)

∇ψ∇w −
∫

B(x0,r)

∇ψ∇w,

and applying the Young inequality in each term of the right hand side, we get
∫

B(x0,r)

|∇w|2 ≤ 1
2

∫

B(x0,r)

|∇w|2 +
3
2

∫

B(x0,r)

|∇ψ|2 +
3
2

∫

B(x0,r)

|∇w|2,

that is,
∫

B(x0,r)

|∇w|2 ≤ 3
∫

B(x0,r)

|∇ψ|2 + 3
∫

B(x0,r)

|∇w|2

≤
∫

B(x0,r)

|∇w|2 + 3‖∇ψ‖2Lp(Ω)

∣∣∣ωN

N
rN

∣∣∣
1− 2

p

= 3
∫

B(x0,r)

|∇w|2 + C6r
N− 2N

p

≤ 3
∫

B(x0,r)

|∇w|2 + C6r
σ.

Consequently,
∫

B(x0,r)

|∇w|2 ≤ 3
∫

B(x0,r)

|∇w|2 + C6r
σ. (2.8)

Step 4: Conclusion. Using (2.6), (2.7) and (2.8) in (2.5) we derive that

∫

B(x0,ρ)

|∇w|2 ≤ 2C4r
σ + 4C5r

σ + 4c
(ρ

r

)N
(

3
∫

B(x0,r)

|∇w|2 + C6r
σ

)

≤ C7

(ρ

r

)N
∫

B(x0,r)

|∇w|2 + C8r
σ.

which is the required estimate (2.2). 2

3 Proof of the main results

We recall that S is denoting the Sobolev constant,

S = inf
u∈H1

0 (Ω)−{0}

‖u‖2
H1

0 (Ω)

‖u‖2
L2∗ (Ω)

,
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where, as usual, 2∗ = 2N/(N − 2) and ‖u‖H1
0 (Ω) = ‖∇u‖L2(Ω). For β = 2∗ − 1 − 1/q,

we consider the constant

Cq = (S−1)2
∗‖a‖2∗Lq(Ω)|Ω|β−122∗ β

β−1 . (3.1)

We consider the following approximated obstacle problems

w ∈ H1
0 (Ω), w(x) ≥ ψ(x) a.e. x ∈ Ω

∫

Ω

∇w∇(v − w) +
∫

Ω

gn(w)
|∇w|2

1 + 1
n |∇w|2 (v − w) ≥

∫

Ω

a(x)(v − w)

∀v ∈ H1
0 (Ω) : v(x) ≥ ψ(x) a.e. x ∈ Ω





(3.2)

where gn is the continuous function given by

gn(s) :=





g(s), s ≥ 1
n

,

n2s2g(s), 0 < s ≤ 1
n

,

0, s = 0,
−gn(−s), s < 0.

We remark that gn satisfies that

gn(s) n→+∞−→ g(s), ∀s > 0

gn(s) ≤ g(s), ∀s > 0.

gn(s)s ≥ 0, ∀s ∈ R.

We prove the existence of solution for the approximated obstacle problems and their
basic properties.

Proposition 3.1 Let us assume the hypotheses of Theorem 1.1. Then (3.2) admits a
non-negative solution wn ∈ H1

0 (Ω) satisfying

1. there exists C̃q > 0 such that

‖wn‖H1
0 (Ω) ≤ C̃q, ∀n ∈ N.

2. wn ∈ L∞(Ω) and ‖wn‖L∞(Ω) ≤ Cq.

3. wn ∈ Cα
loc(Ω), for every 0 < α < min{1−N/p, 2−N/q}.

4. wn(x) > 0 a.e. x ∈ Ω.
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Proof. The existence of wn may be deduced from the classical results in [8]. Consider
K̃ = {w ∈ H1

0 (Ω) : w ≥ ψ} and the operator A : K̃ −→ H−1(Ω) given by

A(w)(v) =
∫

Ω

∇w∇v +
∫

Ω

gn(w)
|∇w|2

1 + 1
n |∇w|2 v, ∀v ∈ H1

0 (Ω), ∀w ∈ K̃.

Note that K̃ is a nonempty closed and convex set and A is pseudo-monotone. In addition,
A is coercive in the sense that there exists v0 ∈ K̃ such that

lim
‖v‖

H1
0(Ω)→∞

A(v)(v − v0)
‖v‖H1

0 (Ω)

= +∞.

Thus, by [8, Téorème 8.2] we deduce the existence of wn.
Moreover, taking v = w+

n as test function in (3.2), we have

∫

Ω

∇wn∇(w+
n − wn) +

∫

Ω

gn(wn)
|∇wn|2

1 + 1
n |∇wn|2

(w+
n − wn) ≥

∫

Ω

a(x)(w+
n − wn),

or equivalently

∫

Ω

|∇w−n |2 +
∫

Ω

gn(wn)
|∇wn|2

1 + 1
n |∇wn|2

w−n ≤
∫

Ω

a(x)w−n ,

where w−n = min{wn, 0}. Thus, using the fact that the functions gn(s)s and a(x) are
non-negative, we get ∫

Ω

|∇w−n |2 ≤
∫

Ω

a(x)w−n ≤ 0,

i.e. w−n ≡ 0 and hence wn ≥ 0.
Now we deal with the proof of case 1. First, observe that we can use v = ψ+ as test

function in (3.2) to obtain
∫

Ω

∇wn∇(ψ+ − wn) +
∫

Ω

gn(wn)
|∇wn|2

1 + 1
n |∇wn|2

(ψ+ − wn) ≥
∫

Ω

a(x)(ψ+ − wn).

Since wn ≥ ψ+, the term
∫

Ω

gn(wn)
|∇wn|2

1 + 1
n |∇wn|2

(ψ+ − wn) is non-positive and we

deduce that

‖wn‖2H1
0 (Ω) =

∫

Ω

|∇wn|2 =
∫

Ω

∇wn∇(wn − ψ+) +
∫

Ω

∇wn∇ψ+

≤
∫

Ω

a(x)wn −
∫

Ω

a(x)ψ+ +
∫

Ω

∇wn∇ψ+

≤
∫

Ω

a(x)wn +
∫

Ω

∇wn∇ψ+

≤ ‖a‖Lq(Ω)‖wn‖Lq′ (Ω) + ‖wn‖H1
0 (Ω)‖∇ψ‖L2(Ω).
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Using the Hölder inequality and the Sobolev embedding, we obtain

‖wn‖2H1
0 (Ω) ≤

[
‖a‖Lq(Ω)|Ω|eβS−

1
2 + ‖∇ψ‖L2(Ω)

]
‖wn‖H1

0 (Ω),

with β̃ = 1
q′ − 1

2∗ , that is

‖wn‖H1
0 (Ω) ≤ ‖a‖Lq(Ω)|Ω|eβS−

1
2 + ‖∇ψ‖L2(Ω) ≡ C̃q,

and the proof of case 1 is completed.
In order to prove case 2, we consider the real functions

Tk(s) =




−k if s ≤ −k,
s if − k < s < k,
k if k ≤ s,

(3.3)

and Gk(s) = s− Tk(s), for every s ∈ R. For k > 0 large enough, we take v = Tk(wn) as
test function in (3.2) to obtain

∫

Ω

∇wn∇[−Gk(wn)] +
∫

Ω

gn(wn)|∇wn|2
1 + 1

n |∇wn|2
[−Gk(wn)] ≥

∫

Ω

a(x)[−Gk(wn)].

In particular, taking into account that gn(wn)Gk(wn) ≥ 0, we have
∫

Ω

|∇Gk(wn)|2 ≤
∫

Ω

a(x)Gk(wn).

Using this inequality and the Stampacchia method [10], we deduce that

‖wn‖L∞(Ω) ≤ Cq

and case 2 is proved.
Choosing

a1(x) = a(x)− gn(wn(x))
|∇wn(x)|2

1 + 1
n |∇wn(x)|2 ,

the solution wn verifies (2.1) and thus, by Theorem 2.1 we conclude case 3.
To prove case 4, we use wn ∈ L∞(Ω) to choose kn > 0 such that

gn(wn(x)) ≤ knwn(x), ∀x ∈ Ω.

Let ϕ ∈ H1
0 (Ω) be a non-negative function. Taking v = wn + ϕ as test function in (3.2),

we have
∫

Ω

∇wn∇ϕ +
∫

Ω

knnwnϕ ≥
∫

Ω

∇wn∇ϕ +
∫

Ω

gn(wn)
|∇wn|2

1 + 1
n |∇wn|2

ϕ ≥
∫

Ω

a(x)ϕ.

In particular, the solution wn satisfies (in the weak sense)

0 � a(x) ≤ −∆wn + knnwn, x ∈ Ω,
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wn ≥ 0, x ∈ ∂Ω.

Then the strong maximum principle assures that wn(x) > 0, for every x ∈ Ω and the proof
of case 4 is also concluded. 2

The next proposition is the keystone to pass to the limit in the approximated obstacle
problems.

Proposition 3.2 Suppose that the hypotheses of Theorem 1.1 are fulfilled and let Ω0

be a compactly embedded subset of Ω. Then there exists cΩ0 > 0 independent of n
such that every solution wn given by Proposition 3.1 satisfies

wn ≥ cΩ0 , ∀x ∈ Ω0.

Proof. Since g is a continuous function satisfying (1.3), there exists Λ > 1 such that

g(s) ≤ Λ
s

, ∀s ∈ (0, Cq]. (3.4)

The result follows from [1, Proposition 2.3], once we prove that wn is a supersolution for
the quasilinear problem

−∆w + Λ
w |∇w|2 = a(x), x ∈ Ω

w ∈ H1
0 (Ω).

In order to do that, let ϕ ∈ H1
0 (Ω) be a non-negative function. We use v = wn + ϕ as test

function in (3.2) and, taking into account that gn(s) ≤ g(s) ≤ Λ/s for every s ∈ (0, Cq],
we deduce that wn ∈ H1

0 (Ω) ∩ C(Ω) satisfies in the weak sense

0 ≤ a(x) ≤ −∆wn + gn(wn)
|∇wn|2

1 + 1
n |∇wn|2

≤ −∆wn +
Λ
wn
|∇wn|2, x ∈ Ω.

2

Proof of Theorem 1.1. We begin by showing the existence of solution of (1.5). The proof
will be made in two steps. First we obtain that, up to a subsequence, wn has a limit w in
H1

loc(Ω) and then we can pass to the limit in the approximated obstacle problems to prove
that w is a solution of (1.5) (Step 2).
Step 1: Strongly convergence to w in H1(Ω0) for every compactly embedded open
Ω0 in Ω. Thanks to Proposition 3.1, passing to a subsequence, we can assume that the
sequence {wn} is weakly converging to some w in H1

0 (Ω), strongly converging to w in
L2(Ω) and almost everywhere converging to w(x) in Ω with ψ ≤ w ∈ L∞(Ω) and
‖w‖L∞(Ω) ≤ Cq . To prove that wn is strongly convergent to w in H1

loc(Ω), it suffices
to show that

lim
n→+∞

∫

Ω

|∇(wn − w)+|2ξ = 0, (3.5)

and
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lim
n→+∞

∫

Ω

|∇(wn − w)−|2ξ = 0, (3.6)

for every ξ ∈ C∞0 (Ω) with ξ ≥ 0.
To verify (3.5), we take v = wn − [wn − w]+ as test function in (3.2) to obtain

−
∫

Ω

∇wn∇[wn − w]+ −
∫

Ω

gn(wn)
|∇wn|2

1 + 1
n |∇wn|2

[wn − w]+ ≥ −
∫

Ω

a(x)[wn − w]+.

Using that gn(wn) ≥ 0, this implies that
∫

Ω

|∇[wn − w]+|2 =
∫

Ω

∇wn∇[wn − w]+ −
∫

Ω

∇w∇[wn − w]+

≤
∫

Ω

a(x)[wn − w]+ −
∫

Ω

∇w∇[wn − w]+. (3.7)

Using the almost everywhere convergence of wn(x) to w(x), it is proved that 0 is the unique
accumulation point of the sequence {[wn − w]+} in the weak topology of H1

0 (Ω). By this
and the boundedness of {[wn − w]+}, we derive the weak convergence of {[wn − w]+} to
0 in H1

0 (Ω). Then, we conclude from (3.7) that

lim
n→+∞

∫

Ω

|∇ [wn − w]+ |2 = 0,

i.e., the strong convergence of (wn − w)+ to zero in H1
0 (Ω). From this it is easy to show

that (3.5) holds.
Now we deal with (3.6). Let ξ ∈ C∞0 (Ω) be a non-negative function. Choose Ω0 ⊂⊂ Ω

such that supp ξ ⊂ Ω0. By Proposition 3.2, there exists c0 > 0 such that

wn(x) ≥ c0 > 0, ∀x ∈ Ω0.

Since gn(wn) ≤ g(wn) ≤ 1/c0 := c, we have

gn(wn)
|∇wn|2

1 + 1
n |∇wn|2

≤ c|∇wn|2 ∀x ∈ Ω0. (3.8)

For γ ≥ c2

4 , consider the real function ϕγ(s) = seγs2
for every s ∈ R. For zn ≡ [wn−w]−,

take v = wn − ϕγ(zn)ξ ≥ wn ≥ ψ as test function in (3.2) to deduce that

−
∫

Ω0

∇wn∇zn ϕ′γ(zn)ξ −
∫

Ω0

∇wn∇ξϕγ(zn)

−
∫

Ω0

gn(wn)
|∇wn|2

1 + 1
n |∇wn|2

ϕγ(zn)ξ ≥ −
∫

Ω0

a(x)ϕγ(zn)ξ.

Hence, from (3.8) we obtain
∫

Ω0

|∇zn|2ϕ′γ(zn)ξ +
∫

Ω0

c|∇wn|2ϕγ(zn)ξ

≤ −
∫

Ω0

∇w∇znϕ′γ(zn)ξ −
∫

Ω0

∇wn∇ξϕγ(zn) +
∫

Ω0

aϕγ(zn)ξ.



Elliptic Obstacle Problems 313

By using this and the fact that ϕ′γ(s) + cϕγ(s) = eγs2 [
1 + 2γs2 + sc

] ≥ 1/2, for all
s < 0, we get

∫

Ω

|∇(wn − w)−|2ξ =
∫

Ω0

|∇zn|2ξ

≤ 2
∫

Ω0

|∇zn|2
{
ϕ′γ(zn) + cϕγ(zn)

}
ξ

≤ 2
∫

wn−w<0

c|∇w|2ϕγ(zn)ξ − 2c

∫

wn−w<0

∇wn∇wϕγ(zn)ξ

−2
∫

Ω0

∇w∇znϕ′γ(zn)ξ − 2
∫

Ω0

∇wn∇ξϕγ(zn)

+2
∫

Ω0

aϕγ(zn)ξ. (3.9)

Then, by Lebesgue dominated convergence theorem, we can observe that every term in
the right hand side of (3.9) converges to zero and we conclude the proof of (3.5) and Step 1.
Step 2. We prove, in this step, that w is a solution of (1.5). To make it, choose v ∈ K1 and
take it as test function in (3.2) to obtain

∫

Ω

∇wn∇v +
∫

Ω

gn(wn)
|∇wn|2

1 + 1
n |∇wn|2

(v − ψ+)−
∫

Ω

a(x)(v − wn)

≥
∫

Ω

[
|∇wn|2 +

gn(wn)|∇wn|2
1 + 1

n |∇wn|2
(wn − ψ+)

]
. (3.10)

Since wn is weakly convergent to w in H1
0 (Ω), the sequence

∫
Ω
∇wn∇v tends to∫

Ω
∇w∇v. It also implies the strong convergence of wn to w in L2(Ω) and hence the

convergence of
∫
Ω

a(x)(v − wn) to
∫
Ω

a(x)(v − w). On the other hand, choosing an open
subset Ω0 compactly embedded in Ω, such that supp (v − ψ+) ⊂ Ω0 and using Proposi-
tion 3.2, we have wn(x) ≥ c0 > 0 for every x ∈ Ω0 for some c0 > 0. Therefore, by using
gn ≤ g, (3.4) and Step 1, we have

gn(wn)
|∇wn|2

1 + 1
n |∇wn|2

(v−ψ+) ≤ g(wn)
|∇wn|2

1 + 1
n |∇wn|2

|v−ψ+| ≤ Λ
c0

h2
Ω0
‖v−ψ+‖L∞(Ω),

and we can apply the Lebesgue theorem to deduce that

lim
n→+∞

∫

Ω

gn(wn)|∇wn|2
1 + 1

n |∇wn|2
(v − ψ+) = lim

n→+∞

∫

Ω0

gn(wn)|∇wn|2
1 + 1

n |∇wn|2
(v − ψ+)

=
∫

Ω0

lim
n→+∞

gn(wn)|∇wn|2
1 + 1

n |∇wn|2
(v − ψ+)

=
∫

Ω0

g(w)|∇w|2(v − ψ+)

=
∫

Ω

g(w)|∇w|2(v − ψ+)
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Consequently, taking limits in (3.10) as n tends to infinity, we conclude from Fatou’s
lemma that

∫

Ω

∇w∇v +
∫

Ω

g(w)|∇w|2(v − ψ+)−
∫

Ω

a(x)(v − w)

≥ lim inf
n→∞

∫

Ω

[
|∇wn|2 +

gn(wn)|∇wn|2
1 + 1

n |∇wn|2
(wn − ψ+)

]

≥
∫

Ω

[|∇w|2 + g(w)|∇w|2(w − ψ+)
]
,

i.e., ∫

Ω

∇w∇(v − w) +
∫

Ω

g(w)|∇w|2(v − w) ≥
∫

Ω

a(x)(v − w),

for every v ∈ K1, and hence that w is a solution of (1.5).
Finally, to prove that if, in addition, ψ ∈ W 1,p

0 (Ω) ∩ L∞(Ω), then w is also a solution
of (1.6), we only have to repeat the argument used in the previous Step 2 by replacing ψ+

by ψ and K1 by K2. 2

Proof of Theorem 1.2. Let w and wn be the solutions given respectively by Theorem 1.1
and Proposition 3.1. Observe that if supp ψ+⊂ ⊂ Ω, then there exists Ω0 ⊂⊂ Ω, such that

ψ(x) ≤ 0, ∀x ∈ Ω \ Ω0. (3.11)

We take Ω1 ⊂⊂ Ω, with Ω0 ⊂⊂ Ω1, and ϕ ∈ C∞(Ω) such that

ϕ(x) = 0 x ∈ Ω0.

0 ≤ ϕ(x) ≤ 1 x ∈ Ω1 \ Ω0

ϕ(x) = 1 x ∈ Ω \ Ω1.

Choosing v = wn − T 1
n
(wn)ϕ ∈ H1

0 (Ω) as test function in (3.2), we obtain

∫

Ω\Ω1

gn(wn)|∇wn|2
1 + 1

n |∇wn|2
T 1

n
(wn) ≤

∫

Ω

gn(wn)
|∇wn|2

1 + 1
n |∇wn|2

T 1
n
(wn)ϕ

≤
∫

Ω

a(x)T 1
n
(wn)ϕ +

∫

Ω

∇wn∇
[
T 1

n
(wn)ϕ

]

≤
∫

Ω

a(x)T 1
n
(wn)ϕ−

∫

Ω

[
∇wn∇T 1

n
(wn)

]
ϕ

−
∫

Ω

[∇wn∇ϕ] T 1
n
(wn)

≤
∫

Ω

a(x)T 1
n
(wn)ϕ−

∫

Ω

[∇wn∇ϕ] T 1
n
(wn).
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Multiplying by n and using that Tn(s) ≤ n for every s > 0, we get
∫

Ω\Ω1

gn(wn)|∇wn|2
1 + 1

n |∇wn|2
T 1

n
(wn)
1
n

≤
∫

Ω

a(x)
T 1

n
(wn)
1
n

ϕ−
∫

Ω

∇wn∇ϕ

[
T 1

n
(wn)
1
n

]

≤
∫

Ω

a(x)ϕ(x) + ‖wn‖H1
0 (Ω)‖ϕ‖H1

0 (Ω) ≤ c,

for some positive constant c. Taking lim inf as n tends to infinity and using Fatou’s Lemma
we deduce from the Step 1 of Theorem 1.1 that

∫

Ω\Ω1

g(w)|∇w|2 ≤ c,

that is, g(w)|∇w|2 ∈ L1(Ω\Ω1). In addition, Proposition 3.2 implies that g(w) is bounded
in Ω1 and thus g(w)|∇w|2 ∈ L1(Ω1). In conclusion, we have shown that g(w)|∇w|2 ∈
L1(Ω).

Now we prove that in the particular case supp ψ⊂ ⊂ Ω, w solves (1.2). Since ψ ∈
W 1,p

0 (Ω) ∩ L∞(Ω), by Theorem 1.1, the function w also solves (1.6) and hence we have

w(x) ≥ ψ(x) a.e. x ∈ Ω

g(w)|∇w|2 ∈ L1
loc(Ω), g(w)|∇w|2(w − ψ) ∈ L1(Ω)

∫

Ω

∇w∇(ϕ + ψ − w) +
∫

Ω

g(w)|∇w|2(ϕ + ψ − w) ≥
∫

Ω

a(x)(ϕ + ψ − w),

∀ϕ ∈ C∞0 (Ω), ϕ(x) ≥ 0 a.e. x ∈ Ω.





Using that g(w)|∇w|2 ∈ L1(Ω), we deduce from the density of C∞0 (Ω) into H1
0 (Ω) that

w satisfies

w(x) ≥ ψ(x) a.e. x ∈ Ω

g(w)|∇w|2 ∈ L1(Ω), g(w)|∇w|2w ∈ L1(Ω)

∫

Ω

∇w∇(ϕ + ψ − w) +
∫

Ω

g(w)|∇w|2(ϕ + ψ − w) ≥
∫

Ω

a(x)(ϕ + ψ − w),

∀ϕ ∈ H1
0 (Ω), ϕ(x) ≥ 0 a.e. x ∈ Ω





Clearly, this is equivalent to (1.2). 2

Proof of Theorem 1.3. We denote by w the solution of (1.6) given by Theorem 1.1
with ψ = −1, and let wn be the solutions of the approximated problems (3.2) given by
Proposition 3.1. Observe that Theorem 1.3 follows once we prove that

∫

Ω

∇w∇ϕ +
∫

Ω

g(w)|∇w|2ϕ =
∫

Ω

a(x)ϕ,
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for every ϕ ∈ C∞0 (Ω) such that ‖ϕ‖L∞(Ω) ≤ 1. Given such a ϕ, we have

ψ − wn = −1− wn ≤ −1 ≤ ϕ ≤ 1 ≤ 1 + wn = wn − ψ.

Choosing v = −ϕ + wn, respectively, v = ϕ + wn, as test function in (3.2) and taking
limits as n goes to infinity, we deduce from the strong convergence (up to a subsequence)
of wn to w in H1

loc(Ω) (Step 1 of Theorem 1.1), that
∫

Ω

∇w∇(−ϕ) +
∫

Ω

g(w)|∇w|2(−ϕ) ≥
∫

Ω

a(x)(−ϕ),

respectively, ∫

Ω

∇w∇ϕ +
∫

Ω

g(w)|∇w|2ϕ ≥
∫

Ω

a(x)ϕ.

Hence we conclude that
∫

Ω

∇w∇ϕ +
∫

Ω

g(w)|∇w|2ϕ =
∫

Ω

a(x)ϕ.

2
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linéaires, Dunod, Paris, 1969.

[9] J.M. Rakotoson and R. Temam, Relative rearrangement in quasilinear elliptic
variational inequalities, Indiana Univ. Math. J. 36 (1987), 757–810.

[10] G. Stampacchia, Equations elliptiques du second ordre à coefficients discontinuos,
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