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Abstract

We look for standing waves of nonlinear Schrödinger equation

i~∂ψ

∂t
+
~2

2m
∆ψ + |ψ|p−2 ψ = g(x) eiωt

coupled with Maxwell’s equations. We use the variational formulation introduced by Benci
and Fortunato in 1992 for studying an eigenvalue problem for the Schrödinger-Maxwell
system in bounded domains. We establish the existence of multiple standing waves both
in the homogeneous and the non-homogeneous cases by means of the fibering method
introduced by Pohozaev.
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1 Introduction

In this paper we state the existence of multiple radial solutions for the following perturbed
system of Schrödinger-Maxwell equations

{
− ~2

2m∆u + (eΦ + ~ω)u− |u|p−2
u = g(x), x ∈ R3,

−∆Φ = 4πeu2, x ∈ R3,
(1.1)

with u, Φ : R3 × R → R, g : R3 → R, p > 2, e = ±1 and ~, m, ω real positive
constants. Such a system was first introduced in [2] as a model describing solitary waves
for the nonlinear stationary Schrödinger equation in R3 interacting with the electrostatic
field. Here, u is the wave associated with the particle, while ~ is the Planck’s constant, m
the mass of the particle, e the electric charge and ω the phase of the wave (for more details,
see Section 2).

If g = 0, in [2] the existence of infinitely many radial solutions of an eigenvalue
problem for the Schrödinger-Maxwell equations in bounded domains was established if
4 < p < 6. More recently, the existence of infinitely many radial solutions of (1.1) in all
R3 was established in [6] if 4 < p < 6; while in [7] it was shown that a nontrivial radial
solution exists if 4 ≤ p < 6. Moreover, the existence of a non radially symmetric solution
was established in [8] if 4 < p < 6.

If g 6= 0, the existence of infinitely many radial solutions of the coupled Schrödinger–
Maxwell system in a bounded symmetric domain was proved in [5]. On the other hand, to
the author’s knowledge, no existence and multiplicity results for (1.1) have been obtained
in all ofR3 if g 6= 0. Now, using the fibering method introduced by Pohozaev in [9, 10, 11],
we will give the following multiplicity results in the homogeneous and non-homogeneous
case.

Theorem 1.1 Let m, ω and ~ be real positive numbers, e = ±1 and 4 < p < 6.
Taken g = 0, system (1.1) has infinitely many radially symmetric solutions (un, Φn),
un ∈ H1(R3), Φn ∈ L6(R3) and |∇Φn| ∈ L2(R3), with un 6= 0 and Φn 6= 0, eΦn ≥ 0.
Moreover, there exist two solutions (u±, Φ), u± 6= 0 and Φ 6= 0, with u+ ≥ 0, u− ≤ 0
and eΦ ≥ 0.

Theorem 1.2 Let m, e, ω, ~ and p be as in Theorem 1.1. Taken g(x) = g(|x|),
g ∈ L2(R3) with L2–norm small enough, system (1.1) has at least three radially
symmetric solutions (ui,Φi), ui ∈ H1(R3), Φi ∈ L6(R3) and |∇Φi| ∈ L2(R3),
ui 6= 0 and Φi 6= 0, eΦi ≥ 0.

Remark 1.3 As already observed, if g = 0 a multiplicity result like the one stated in
Theorem 1.1 has been obtained in [6] by exploiting the symmetry of the problem.
On the contrary, a different type of result holds if g 6= 0. In fact, by using a
suitable perturbative method, infinitely many solutions have been found in [5] for
all g(x) = g(|x|), g ∈ L2(Ω), and 4 < p < 6, but only if the charged particle lies in
a bounded symmetric space region Ω.

This paper is organized as follows. In Section 2 we deduce system (1.1), describing a
quantum particle interacting with an electrostatic field. In Section 3 we give a variational



Multiple solitary waves 159

principle, as stated in [5], which allows us to reduce system (1.1) to an elliptic equation in
the only variable u. Moreover, we recall the Pohozaev fibering method, usefull in order to
state our multiplicity results. Finally, in Sections 4 and 5 we give the proofs of Theorems
1.1 and 1.2.

2 The Schrödinger-Maxwell equations

In this section we show that system (1.1) arises in the study of solitary waves for non-
linear Schrödinger equations coupled with Maxwell equations. To this aim, we adapt the
arguments used in [2] (see also [7]) if g = 0 to the case g 6= 0.

Let us consider the following nonlinear Schrödinger type equation

i~
∂ψ

∂t
= − ~

2

2m
∆ψ − |ψ|p−2

ψ − g(x) eiωt, x ∈ R3,

where ψ : R3 × R→ C is the wave function. The associated Lagrangian density is

LS(ψ)(x, t) =
1
2

(
i~

∂ψ

∂t
ψ̄ − ~2

2m
|∇ψ|2

)
+

1
p
|ψ|p + Re

(
g(x) eiωtψ̄

)
.

The interaction of ψ with the electromagnetic field is described by the minimal coupling
rule, that is by the formal substitution

∂

∂t
→ ∂

∂t
+ i

e

~
Φ, ∇ → ∇− i

e

~
A,

where A : R3 × R → R3 and Φ : R3 × R → R are the gauge potentials. As in [2], we
do not assume that the electromagnetic field (E,H) is assigned. Then not only the wave
function ψ = ψ(x, t) but also the gauge potentials A and Φ which are related to E, H by
Maxwell’s equations

E = −∇Φ− ∂A
∂t

, H = ∇×A

are unknown. Thus, the Lagrangian takes the form

LSM (ψ, Φ,A)(x, t) =
1
2

(
i~

∂ψ

∂t
ψ̄ − eΦ |ψ|2 − ~2

2m

∣∣∣∇ψ − i
e

~
Aψ

∣∣∣
2
)

+
1
p
|ψ|p + Re

(
g(x) eiωtψ̄

)
.

If ψ is written in polar form

ψ(x, t) = u(x, t) eiS(x,t)�~,

with u, S : R3 × R→ R, the Lagrangian density becomes

LSM (u, S, Φ,A)(x, t) = −1
2

(
∂S

∂t
+ eΦ +

1
2m

|∇S − eA|2
)

u2

+
1
2

(
i~u

∂u

∂t
− ~2

2m
|∇u|2

)
+

1
p
|u|p + g(x)u cos

(
ωt− S

~

)
.
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Now, consider the Lagrangian density of the electromagnetic field (E,H)

L0(Φ,A)(x, t) =
|E|2 − |H|2

16π
=

1
16π

(∣∣∣∣∇Φ +
∂A
∂t

∣∣∣∣
2

− |∇ ×A|2
)

.

Hence, the total action of the system “particle-electromagnetic field” is given by

L(u, S, Φ,A) =
∫

(LSM + L0)dxdt.

Making the first variation of L with respect to u, S, Φ and A respectively, we obtain
the following system of equations:

− ~
2

2m
∆u +

(
∂S

∂t
+ eΦ +

1
2m

|∇S − eA|2
)

u− |u|p−2
u = g cos

(
ωt− S

~

)
, (2.1)

u
∂u

∂t
+

1
2m

div
[
(∇S − eA) u2

]
= −gu

~
sin

(
ωt− S

~

)
, (2.2)

4πeu2 + div

(
∇Φ +

∂A
∂t

)
= 0, (2.3)

4πe

m
(∇S − eA)u2 − ∂

∂t

(
∇Φ +

∂A
∂t

)
+∇× (∇×A) = 0. (2.4)

For simplicity, we restrict ourselves to look for standing waves with the same frequency
ω of the source in the electrostatic case, or better, we limit ourselves to consider

u(x, t) = u(x), S(x, t) = ~ω t, Φ(x, t) = Φ(x), A(x, t) = 0.

Then, equations (2.2) and (2.4) are identically satisfied while (2.1) and (2.3) reduce to
system (1.1).

3 The variational principles

Our aim is to find solutions (u, Φ) of (1.1) with

u ∈ H1, Φ ∈ D1,

where H1 = H1(R3) is the usual Sobolev space with norm

‖u‖H1 =
(∫

R3
(u2 + |∇u|2)dx

) 1
2

and D1 = D1(R3) denotes the completion of C∞0 (R3) with respect to the inner product

(v, w)D1 =
∫

R3
(∇v,∇w) dx.
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From now on, all the integrals are taken onR3 and ‖·‖s is the norm in Ls(R3). By Sobolev
imbedding theorems,

H1 ↪→ Ls(R3) for all 2 ≤ s < 6

and
D1 ↪→ L6(R3).

Let us point out that system (1.1) has a variational structure; in fact, if we consider the
functional

Fg(u, Φ) =
~2

4m

∫
|∇u|2 dx− 1

16π

∫
|∇Φ|2 dx +

1
2

∫
(~ω + eΦ) u2dx

−1
p

∫
|u|p dx−

∫
gudx

defined on H1 ×D1, standard arguments show that Fg is C1 on H1 ×D1 and its critical
points are solutions of system (1.1). Since Fg is strongly indefinite, i.e. it is neither bounded
from below nor from above even modulo compact perturbations, arguing as in [2] and [3]
we reduce the problem to studying the critical points of a new functional of the only variable
u. To this aim, we recall the following result.

Lemma 3.1 There exists a map Φ : H1 → D1 such that for any u ∈ H1, the function
Φ(u) ∈ D1 is the unique weak solution of

−∆Φ = 4πeu2, x ∈ R3. (3.1)

Moreover, Φ(u) satisfies the following properties:

(i) eΦ(u) ≥ 0;

(ii) Φ(su) = s2Φ(u) for all s ∈ R, in particular Φ(u) = Φ(−u);

(iii) if u is radially symmetric, then Φ(u) is radial.

Proof. The function Φ was introduced in [2] while its properties (i)–(ii), respectively (iii),
were proved in [7], respectively [3]. However, for completeness, we give here the proof of
this lemma.

For fixed u ∈ H1, let us consider the linear map ψ ∈ D1 → ∫
u2ψdx, which is

continuous since by Hölder inequality and Sobolev imbeddings a constant a0 > 0 exists
such that ∣∣∣∣

∫
u2ψ dx

∣∣∣∣ ≤ ‖u2‖ 6
5
‖ψ‖6 ≤ a0‖u‖212

5
‖ψ‖D1 .

By Lax-Milgram’s lemma a unique Φ ∈ D1 exists such that
∫
∇Φ · ∇ψ dx = 4πe

∫
u2ψ dx for all ψ ∈ D1, (3.2)
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i.e. Φ(u) = −4πe∆−1u2 is the unique solution of (3.1). Moreover, Φ is the minimum
point of the associated functional, that is

min
ψ∈D1

{
1
2

∫
|∇ψ|2 dx− 4πe

∫
u2ψdx

}
=

1
2

∫
|∇Φ|2 dx− 4πe

∫
u2Φdx.

If e = ±1, and ± |Φ| achieves such a minimum, then by uniqueness we have Φ = ± |Φ|
and therefore eΦ(u) ≥ 0. Clearly, for all s ∈ R

−∆Φ(su) = 4πes2u2 = −s2∆Φ(u) = −∆(s2Φ(u)),

and, again by uniqueness, Φ(su) = s2Φ(u) and, in particular, Φ(u) = Φ(−u). Finally,
property (iii) follows by arguing as in the proof of [3, Lemma 4.2].

Remark 3.2 For fixed u ∈ H1, by (3.2) it follows that
∫
|∇Φ(u)|2 dx = 4πe

∫
u2Φ(u)dx.

Hence,

‖Φ(u)‖2D1 = 4π

∫
u2 |Φ(u)| dx ≤ 4π‖u2‖ 6

5
‖Φ(u)‖6 ≤ 4πa0‖u‖212

5
‖Φ(u)‖D1

and therefore

‖Φ(u)‖D1 ≤ 4πa0‖u‖212
5

,

∫
u2 |Φ(u)| dx ≤ 4πa2

0‖u‖412
5

. (3.3)

Now, we can state the following proposition (see also [2, Proposition 5]).

Proposition 3.3 There exists a C1 functional Jg : H1 → R, defined as

Jg(u) =
~2

4m

∫
|∇u|2dx+

ω~
2

∫
u2dx+

e

4

∫
u2Φ(u)dx− 1

p

∫
|u|pdx−

∫
gudx, (3.4)

such that the following statements are equivalent:

(i) (u,Φ) ∈ H1 ×D1 is a critical point of Fg,

(ii) u is a critical point of Jg and Φ = Φ(u).

Proof. Standard arguments imply that the map Φ defined in Lemma 3.1 is C1 on H1;
moreover, by definition, its graph GΦ is given by

GΦ =
{

(u, Φ) ∈ H1 ×D1 :
∂Fg

∂Φ
(u,Φ) = 0

}
. (3.5)

Now, let us introduce the functional Jg : H1 → R defined as

Jg(u) = Fg(u, Φ(u)) =
~2

4m

∫
|∇u|2 dx− 1

16π

∫
|∇Φ(u)|2 dx

+
1
2

∫
(~ω + eΦ(u)) u2dx− 1

p

∫
|u|p dx−

∫
gudx.
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By (3.5), Jg is as in (3.4), it is C1 and

J ′g(u) =
∂Fg

∂u
(u, Φ(u)) = − ~

2

2m
∆u + (~ω + eΦ(u)) u− |u|p−2

u− g

(as an operator in H−1). Thus, the proof is completed.

Hence, looking for solutions of system (1.1) is equivalent to studying critical points
of functional Jg depending only on variable u. However, since the embedding of H1 in
Ls(R3), 2 ≤ s < 6, is not compact, we cannot study directly critical points of the func-
tional Jg , as also this functional is strongly indefinite, i.e. it is neither bounded from above
nor from below on H1 modulo compact perturbation. Consequently, Jg does not satisfy a
compactness condition of the Palais-Smale type in an obvious way. Hence, we will restrict
Jg to the subspace of the radial functions

Hr =
{
u ∈ H1 : u(x) = u(|x|)} .

By virtue of Lemma 3.1(iii), it follows easily that Hr is a natural constraint for Jg, i.e.
any critical point of Jg|Hr

is also a critical point of Jg . Therefore, from now on we will
look for critical points of Jg|Hr

, still denoted by Jg. It has been proved (see [4] and [12])
that

Hr ↪→↪→ Ls
r 2 < s < 6, (3.6)

where Ls
r = Ls(R3)∩Hr. Hence, (3.4), (3.6) and Lemma 3.1(i) imply that Jg is bounded

from below modulo the compact perturbation

u 7−→ 1
p

∫
|u|p dx.

So, it is possible to prove that for 4 ≤ p < 6 Jg satisfies the Palais-Smale condition
(see [7, Proposition 3.3] if g = 0 and [5] if g 6= 0). Whence, at least if g = 0, the
existence of a non trivial critical point of J0 follows by a direct application of the classical
Mountain Pass theorem (see [1] and [7]). Moreover, since in this case J0 is even, estimate
(3.3) on the growth at infinity of the nonlinear term

∫
u2Φ(u)dx allows one to prove that if

4 < p < 6, Jg satisfies a symmetric version of a linking theorem (see [6]), then infinitely
many solutions of system (1.1) can be found. On the contrary, if g 6= 0, the problem
loses its symmetry and existence and multiplicity results cannot be stated in general. In the
next sections we shall prove Theorems 1.1 and 1.2 using the “algebraic” approach based
on the fibering method, more precisely on the “spherical fibering” method, introduced by
Pohozaev (see [9, 10, 11]). For completeness, here we recall it briefly.

Let Y be a real Banach space with a norm which is differentiable for w 6= 0, and let
E be a functional on Y of class C1(Y \ {0}). To functional E we can associate a new
functional Ẽ defined on R× Y by

Ẽ(t, v) = E(tv).

Denoted by S, the unit sphere in Y , the following result holds (see in [10, Theorem
1.2.1]).
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Theorem 3.4 Let Y be a real Banach space with norm differentiable on Y \ {0}, and
let (t, v) ∈ (R \ {0})× S be a conditionally stationary point of the functional Ẽ on
R×S. Then, the vector u = tv is a nonzero “free” stationary point of the functional
E, that is, E′(u) = 0.

The previous theorem says that any critical point (t, v) of Ẽ restricted on (R\{0})×S
generates the free nontrivial critical point u = tv of E and vice versa, that is equation

E′(u) = 0, u 6= 0,

is equivalent to the system 



∂Ẽ

∂t
(t, v) = 0

∂Ẽ

∂v
(t, v) = 0

for ‖v‖ = 1.
In the following, the first scalar equation of the previous system will be called a “bifur-

cation equation”.

4 Proof of Theorem 1.1

Let us assume g = 0. Then by Lemma 3.1(ii), the functional J0 is even. From now on, as
ω > 0, we denote by ‖ · ‖ the equivalent norm in H1

‖u‖ =
(
~2

2m

∫
|∇u|2 dx + ω

∫
u2dx

) 1
2

.

According to the spherical fibering method, we look for critical points u ∈ Hr of J0 in the
form

u = tv where t ∈ R, t 6= 0, and v ∈ S, with S = {v ∈ Hr : ‖v‖ = 1} .

Then, by Lemma 3.1(ii), the functional J0 can be extended to the space R×Hr by setting

J̃0(t, v) = J0(tv) =
t2

2
‖v‖2 +

t4e

4

∫
v2Φ(v)dx− |t|p

p

∫
|v|pdx.

Clearly, the restriction of J̃0 on R× S, still denoted by J̃0, becomes

J̃0(t, v) =
t2

2
+

t4e

4

∫
v2Φ(v)dx− |t|p

p
‖v‖p

p.

Hence the bifurcation equation ∂J̃0
∂t (t, v) = 0 takes the form

t + t3e

∫
v2Φ(v)dx− |t|p−2

t ‖v‖p
p = 0
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or, equivalently, for t 6= 0,

1 + t2e

∫
v2Φ(v)dx− |t|p−2 ‖v‖p

p = 0. (4.1)

Let us point out that for any v ∈ S equation (4.1) has at least two nontrivial solutions
±t(v). In fact, setting

ϕv(t) = 1 + t2e

∫
v2Φ(v)dx− |t|p−2 ‖v‖p

p,

lim
|t|→+∞

ϕv(t) = −∞ (as p > 4), ϕv(0) = 1 and, for t 6= 0, ϕ′v(t) = 0 if and only if

t̄(v) = ±
(

2e
∫

v2Φ(v)dx

(p− 2) ‖v‖p
p

) 1
p−4

.

Hence, the functional Ĵ0(v) = J̃0(t(v), v) becomes

Ĵ0(v) =
t2(v)

2
+

t4(v) e

4

∫
v2Φ(v)dx− |t(v)|p

p
‖v‖p

p

on the unit sphere S of Hr, or, equivalently, by bifurcation equation (4.1)

Ĵ0(v) =
(

1
2
− 1

p

)
t2(v) +

(
1
4
− 1

p

)
t4(v)e

∫
v2Φ(v)dx. (4.2)

Obviously, by (4.2) and p > 4 it follows that Ĵ0 is bounded from below. We claim that Ĵ0

is weakly continuous on S. Let (vn)n ⊂ S and v ∈ Hr be such that vn converges weakly
to v in Hr. By (3.6) and 2 < s < 6 we have

‖vn‖s → ‖v‖s as n → +∞. (4.3)

Now, we need to prove that
∫

v2
nΦ(vn)dx →

∫
v2Φ(v)dx. (4.4)

To this aim, let us note that
∣∣∣∣
∫ (

v2
nΦ(vn)− v2Φ(v)

)
dx

∣∣∣∣ ≤
∫ ∣∣v2

n − v2
∣∣ |Φ(vn)| dx

+
∫

v2 |Φ(vn)− Φ(v)| dx.
(4.5)

Clearly, by Hölder inequality and (3.3) a positive constant c exists such that
∫ ∣∣v2

n − v2
∣∣ |Φ(vn)| dx ≤ ‖vn − v‖3‖vn + v‖2‖Φ(vn)‖6

≤ a0‖vn − v‖3‖vn + v‖2‖Φ(vn)‖D1

≤ 4πa2
0‖vn − v‖3(1 + ‖v‖2)‖vn‖212

5
≤ c‖vn − v‖3.



166 A. Salvatore

Hence (4.3) implies ∫ ∣∣v2
n − v2

∣∣ |Φ(vn)| dx → 0. (4.6)

On the other hand, denoted L : Hr → H ′
r as Lv = −∆v, we have Φ(v) = L−1(−4πev2).

Since (vn)n ⊂ S, it is bounded in L3
r. Thus

(
v2

n

)
n

is bounded in L
3
2
r ↪→↪→ H ′

r, where H ′
r

denotes the dual of Hr. Hence,

L−1(v2
n) → L−1(v2) in Hr,

and therefore
Φ(vn) → Φ(v) in Hr ↪→ L

3
2
r .

Since ∫
v2 |Φ(vn)− Φ(v)| dx ≤ ‖v2‖3‖Φ(vn)− Φ(v)‖ 3

2

we have that ∫
v2 |Φ(vn)− Φ(v)| dx → 0. (4.7)

Now, (4.4) follows by (4.5) - (4.7). Since (4.3) and (4.4) hold, by the implicit function the-
orem, the sequence of solutions (t(vn))n of equation (4.1) converges to the corresponding
solution t(v), and therefore

Ĵ0(vn) → Ĵ0(v).

Hence, we conclude that Ĵ0 is weakly continuous on S. Clearly, by the Weierstrass theorem,
Ĵ0 attains its minimum at a point v̄ which belongs to the closed unit ball B in Hr. Now,
we prove that v̄ ∈ S. In fact, taking θ > 0, by the bifurcation equation we obtain

d

dθ
Ĵ0(θv) =

[
t(θv)v + t3(θv)vθ4e

∫
v2Φ(v)dx− |t(θv)|p−2

t(θv)v‖θv‖p
p

]
×

d

dθ
t(θv) + t4(θv)θ3e

∫
v2Φ(v)dx− |t(θv)|p θp−1‖v‖p

p

= − t2(θv)
θ

< 0.

Then, Ĵ0(θv) decreases with respect to θ ∈]0, 1] and attains its minimum for θ = 1, i.e.
v̄ ∈ S. As, by definition, Φ(v) = Φ(|v|), we have Ĵ0(v) = Ĵ0(|v|). So, according to the
fibering method, we conclude that

u+ = t (|v̄|) |v̄| , u− = −t (|v̄|) |v̄|
are a positive and a negative critical point of J0 respectively. By Proposition 3.3 it follows
that (u+,Φ(u+)) and (u−, Φ(u−)) are two nontrivial solutions of system (1.1) if g =
0. Moreover, since Ĵ0 is even, positive, weakly continuous and of class C1 on S, by
applying the classical Lusternik-Schnirelmann theory, we prove that Ĵ0 has a sequence of
geometrical different constrained critical points v1, v2, . . . , vn, . . . on S with Ĵ0(vn) →
+∞ as n → +∞. Hence, by fibering method, J0 has a sequence of geometrically different
critical points ±u1, ±u2, ...,±un, ... with un(x) = t(vn)vn such that J0(vn) → +∞. So,
the conclusion of the proof of Theorem 1.1 follows again by Proposition 3.3.
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5 Proof of Theorem 1.2

Let us consider the case g 6= 0. According to the notations introduced in the previous
section, let us denote by J̃g both the extension of Jg to space R×Hr, that is

J̃g(t, v) = Jg(tv) =
t2

2
‖v‖2 +

t4e

4

∫
v2Φ(v)dx− |t|p

p

∫
|v|pdx− t

∫
gvdx,

and its restriction to “unit sphere” R× S, that is

J̃g(t, v) =
t2

2
+

t4e

4

∫
v2Φ(v)dx− |t|p

p

∫
|v|pdx− t

∫
gvdx.

Now, we will prove that, if g is small enough, for any v ∈ S the bifurcation equation

t + t3e

∫
v2Φ(v)dx− |t|p−2

t‖v‖p
p −

∫
gvdx = 0 (5.1)

has at least three different roots ti(v), i = 1, 2, 3. To this aim, set

ψv(t) = t + t3e

∫
v2Φ(v)dx− |t|p−2

t‖v‖p
p.

Obviously, ψv(t) is odd, lim
t→+∞

ψv(t) = −∞ (since p > 4) and ψ′v(t) = 0 has exactly two

solutions since it reduces to an equation like (4.1). Whence, ψv has a local maximum Mv

and a local minimum mv = −Mv and equation (5.1) has three distinct roots if
∣∣∣∣
∫

gvdx

∣∣∣∣ < Mv.

We are not able to calculate the local maximum Mv. However, by Lemma 3.1(i), for all
v ∈ S we have

ψv(t) ≥ ψ̄v(t) = t− |t|p−2
t‖v‖p

p for all t ≥ 0

and direct calculations show that ψ̄v(t) has a local maximum M̄v and a local minimum
m̄v = −M̄v with

M̄v = ψ̄v

((
(p− 1)‖v‖p

p)
− 1

p−2

))
= (p− 2)(p− 1)−

p−1
p−2 ‖v‖−

p
p−2

p .

As M̄v ≤ Mv, it follows that the bifurcation equation possesses three isolated smooth
branches of solutions ti = ti(v), i = 1, 2, 3, if we take

sup
v∈S

{∣∣∣∣
∫

gvdx

∣∣∣∣ ‖v‖
p

p−2
p

}
< (p− 2)(p− 1)−

p−1
p−2 . (5.2)

Hence, we obtain three distinct functionals

Ĵg,i(v) = J̃g(ti(v), v)

=
1
2
t2i (v) +

t4i (v)
4

e

∫
v2Φ(v)dx− 1

p
|ti(v)|p ‖v‖p

p − ti(v)
∫

gvdx
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defined on B \ {0} . We will prove that for each i = 1, 2, 3, Ĵg,i attains its minimum at a
point v̄i ∈ S such that ti(v̄i) 6= 0. Indeed, given a minimizing sequence (vn,i) ⊂ S for
functional Ĵg,i on S, there exists v̄i ∈ B such that, passing to a subsequence,

vn,i ⇀ v̄i in Hr.

Arguing as in the case g = 0, it is easy to prove that Ĵg,i is weakly continuous, and thus

Ĵg,i(v̄i) = inf
v∈S

Ĵg,i(v) < 0,

and, therefore, ti(v̄i) 6= 0. Moreover, for all θ > 0 we have

d

dθ
Ĵg,i(θv) =

[
ti(θv)v + t3i (θv)vθ4e

∫
v2Φ(v)dx

]
d

dθ
ti(θv)

−
[
|ti(θv)|p−2

ti(θv)v‖θv‖p
p + v

∫
gθvdx

]
d

dθ
ti(θv)

+ t4i (θv)θ3e

∫
v2Φ(v)dx− |ti(θv)|p θp−1‖v‖p

p − ti(θv)
∫

gvdx.

Hence, by the bifurcation equation, we deduce

d

dθ
Ĵg,i(θv) = −1

θ
t2i (θv) < 0 for any θ > 0.

Then, Ĵg,i(θv) decreases with respect to θ ∈]0, 1] and attains its minimum for θ = 1, i.e.
v̄i ∈ S. Theorem 3.4 implies that the original action functional Jg has at least three critical
points of the form ūi(x) = tiv̄i(x); hence, the proof of Theorem 1.2 follows again from
Proposition 3.3. Finally, as the sign of ti(v̄i) depends on the sign of

∫
gv̄idx, we have

∫
gv̄1dx ≤ 0,

∫
gv̄2dx ≥ 0,

∫
gv̄3dx ≥ 0.

Remark 5.1 Let us point out that inequality (5.2) is satisfied if the L2–norm of g is
small enough, the estimate for ‖g‖2 depending on p and on the embedding constant
of Hr into Lp

r .
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