Some Elliptic Problems With Degenerate Coercivity

Lucio Boccardo *

Dipartimento di Matematica,
Università di Roma 1, Piazza A. Moro 2, Roma
e-mail: boccardo@mat.uniroma1.it

Received in revised form 16 September 2005 Communicated by Ireneo Peral

Abstract

In this paper we are interested in existence of solutions for some nonlinear elliptic equations with principal part having degenerate coercivity. The model case is

$$\left\{ \begin{array}{ll} -\mathrm{div} \left(\frac{\nabla u}{1+a(x)|u|} \right) = f(x) & \text{in } \Omega, \\ u=0 & \text{on } \partial \Omega \end{array} \right.$$

with Ω bounded open subset of \mathbb{R}^N , $N \geq 2$ and f a datum in some Lebesgue space.

1991 Mathematics Subject Classification. 35J60, 35J70.

Key words. elliptic problems, degenerate coercivity, infinite energy solutions.

1 Introduction

In this paper we study the existence of solutions of the following elliptic problem (with degenerate coercivity):

$$\begin{cases} \operatorname{div}(a(x,u)\nabla u) = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega \end{cases}$$
 (1.2)

^{*}The author acknowledges the support of national group "Calcolo delle Variazioni"

where Ω is a bounded, open subset of \mathbb{R}^N , with N>2, and $a(x,s):\Omega\times\mathbb{R}\to\mathbb{R}$ is a Caratheodory function (that is, measurable with respect to x for every $s\in\mathbb{R}$, and continuous with respect to s for almost every $x\in\Omega$) satisfying the following conditions:

$$\frac{\alpha}{(1+|s|)} \le a(x,s) \le \beta, \tag{1.3}$$

for almost every $x \in \Omega$, for every $s \in \mathbb{R}$, where α and β are positive constants.

The main difficulty in dealing with problem (1.2) is the fact that, because of assumption (1.3), the differential operator $A(v) = -\text{div}(a(x,v)\nabla v)$ is not coercive on $W_0^{1,2}(\Omega)$. This implies that the classical methods used in order to prove the existence of a solution for problem (1.2) cannot be applied in general, even if the datum f is regular.

In [4], it is proved that, if the datum f belongs to $L^m(\Omega)$, with $m > \frac{N}{2}$, then there exists a weak solution of (1.2) u in $W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega)$.

Here, we study the existence of solutions under the assumption $f \in L^m(\Omega)$, $1 \le m \le \frac{N}{2}$, with particular care to the case $f(x) = \frac{A}{|x|^2}$, which is an important borderline case, as Theorems 3.1, 4.1 and following Remark show.

Remark 1.1 Consider the model problem (0.1) in $\Omega = B(0,1)$, with a(x) = 1, $f(x) = \frac{A}{|x|^2}$:

$$\begin{cases} -\operatorname{div}\left(\frac{\nabla u}{1+|u|}\right) = \frac{A}{|x|^2} & \text{in } B(0,1), \\ u = 0 & \text{on } \partial B(0,1). \end{cases}$$

Then, if we look for radial solutions of the type $u(x) = |x|^{-\rho} - 1$, our differential problem has a solution if $\rho(N-2) = A$. Thus $u(x) = |x|^{-\frac{A}{N-2}} - 1$, so that the regularity of u and ∇u depends on A. Moreover, this example shows that the assumptions of Theorems 3.1 and 4.1 are optimal.

Furthermore, if we consider the model problem (0.1) in $\Omega = B(0,1)$, with a(x) = 1, $f(x) = \frac{A}{|x|^{\frac{N}{m}}}$, $m < \frac{N}{2}$:

$$\begin{cases} -\operatorname{div}\left(\frac{\nabla u}{1+|u|}\right) = \frac{A}{|x|^{\frac{N}{m}}} & \text{in } B(0,1), \\ u = 0 & \text{on } \partial B(0,1), \end{cases}$$

and we look for radial solutions of the type $u(x) = e^{\mu|x|^{\rho}} - 1$, our differential problem has a solution if

$$\begin{cases} \rho - 2 = -\frac{N}{m} \\ -\mu \rho(\rho - 1) = A. \end{cases}$$

Thus we have $\log(1+|u|) = \mu|x|^{2-\frac{N}{m}}$ (see Theorem 4.1).

If we replace the assumption (1.3) with

$$\frac{\alpha}{(1+|s|)^{\theta}} \le a(x,s) \le \beta, \quad 0 < \theta < 1$$

existence results can be found in [5], [4], [1] (in this paper is also studied a problem with $\theta > 1$).

Our results can be generalized, in the direction of a nonlinear operator with respect to the gradient, thanks to a combined use of our a priori estimate and of some techniques of [1]. Uniqueness results are studied in [8].

The proofs of the existence results will be obtained by approximation. Let f be a function in $L^m(\Omega)$, with $1 \leq m \leq \frac{N}{2}$ and $\{f_n\}$ be a sequence of smooth functions converging to f in $L^m(\Omega)$, such that

$$\|f_n\|_{L^m(\Omega)} \le \|f\|_{L^m(\Omega)}, \quad \forall n \in \mathbb{N}.$$
 (1.4)

Recall the following definition of truncation:

$$T_k(s) = \begin{cases} s, & \text{if } |s| \le k \\ k \frac{s}{|s|}, & \text{if } |s| > k. \end{cases}$$

Let us define the following sequence of problems:

$$\begin{cases}
-\operatorname{div}(a(x, T_n(u_n))\nabla u_n) = f_n & \text{in } \Omega, \\
u_n = 0 & \text{on } \partial\Omega.
\end{cases}$$
(1.5)

Take, for instance, $f_n = T_n(f)$.

The existence of weak solutions u_n in $W_0^{1,2}(\Omega)$ of the Dirichlet problem (1.5) is classical, since the differential operator in (1.5) is uniformly elliptic. Moreover, for any $n \in \mathbb{N}$, u_n is a bounded function.

The use of $T_k(u_n)$ as test function in (1.5) yields the following main estimate.

Lemma 1.1

$$\frac{\alpha}{1+k} \int_{\{x \in \Omega: |u_n(x)| \le k\}} |\nabla u_n|^2 \le \int_{\Omega} T_k(u) f_n \le k \|f\|_1, \quad \forall k > 0.$$
 (1.6)

2 Weak solutions

Theorem 2.1 Assume (1.3). If f belongs to $L^{\frac{N}{2}}(\Omega)$, there exists a weak solution of the boundary value problem (1.2); that is

$$u \in W_0^{1,2}(\Omega): \int_{\Omega} a(x,u) \nabla u \cdot \nabla v = \int_{\Omega} f v, \qquad \forall v \in W_0^{1,2}(\Omega).$$
 (2.7)

Moreover $u \in L^p(\Omega)$, for any $1 \le p < \infty$.

Proof. First of all, use $[\log(1+|u_n|)] \operatorname{sgn}(u_n)$ as test function in (1.5). Then, if S is Sobolev constant,

$$S^{2}\alpha \left[\int\limits_{\Omega} \log(1+|u_{n}|)^{2^{*}} \right]^{\frac{2}{2^{*}}} \leq \alpha \int\limits_{\Omega} \frac{|\nabla u_{n}|^{2}}{(1+|u_{n}|)^{2}} \leq \|f\|_{\frac{2N}{N+2}} \left[\int\limits_{\Omega} \log(1+|u_{n}|)^{2^{*}} \right]^{\frac{1}{2^{*}}}$$

and

$$S^2 \alpha \Big[\int_{\Omega} \log(1 + |u_n|)^{2^*} \Big]^{\frac{1}{2^*}} \le ||f||_{\frac{2N}{N+2}}$$

which implies

$$\max\{x \in \Omega : |u_n| \ge k\} \le \left(\frac{\|f\|_{\frac{2N}{N+2}}}{S^2 \alpha} \cdot \frac{1}{\log(1+k)}\right)^{2^*}.$$
 (2.8)

Thus, so far, we cannot say that the sequence $\{u_n\}$ is bounded in $L^1(\Omega)$. However, we have $\lim_{k\to\infty} \operatorname{meas}\{x\in\Omega: |u_n|\geq k\}=0$.

Let M > 1. We shall use the following inequality.

$$t^2 - 1 \le M(t - 1)^2 + \frac{1}{M - 1}, \quad t \in \mathbb{R}$$
 (2.9)

Use

$$[(1+|u_n|)^{2(\gamma+1)}-(1+k)^{2(\gamma+1)}]^+sgn(u_n)$$

as test function. We have

$$2(\gamma+1)\alpha \int_{\{x\in\Omega:k\leq |u_n(x)|\}} (1+|u_n|)^{2\gamma} |\nabla u_n|^2$$

$$\leq \int_{\{x\in\Omega:k\leq |u_n(x)|\}} |f||(1+|u_n|)^{2(\gamma+1)} - (1+k)^{2(\gamma+1)}|$$

$$\leq M \int_{\{x\in\Omega:k\leq |u_n(x)|\}} |f||(1+|u_n|)^{\gamma+1} - (1+k)^{\gamma+1}|^2 + \frac{1}{(M-1)} \int_{\Omega} |f|$$

that is

$$\left[2(\gamma+1)\alpha - \frac{M}{S^2} \left(\int_{\{x \in \Omega: k \le |u_n(x)|\}} |f|^{\frac{N}{2}} \right)^{\frac{N}{2}} \right] \int_{\{x \in \Omega: k \le |u_n(x)|\}} |\nabla u_n|^2 (1+|u_n|)^{2(\gamma+1)} \\
\le \frac{1}{(M-1)} \int_{\Omega} |f|.$$

Thanks to the absolute continuity of the integral, we can take k_0 such that

$$\frac{M}{S^2} \left(\int_{\{x \in \Omega: k_0 \le |u_n(x)|\}} |f|^{\frac{N}{2}} \right)^{\frac{N}{2}} \le \alpha(\gamma + 1).$$

Then

$$\int_{\{x \in \Omega: k_0 \le |u_n(x)\}} |\nabla u_n|^2 (1 + |u_n|)^{2\gamma} \le \frac{1}{\alpha(\gamma + 1)(M - 1)} \int_{\Omega} |f|, \quad k_0 = k_0 (\|f\|_{\frac{N}{2}}, \gamma)$$
(2.10)

Now we use the previous estimate for $\gamma = 0$. On one hand (1.6) gives, for any k > 0,

$$\int_{\{x \in \Omega: |u_n(x)| \le k\}} |\nabla u_n|^2 \le \frac{2k^2}{\alpha} ||f||_1.$$

Then the sequence $\{u_n\}$ is bounded in the Sobolev spaces $W_0^{1,2}(\Omega)$. Thus, up to a subsequence, it converges weakly to some function $u\in W_0^{1,2}(\Omega)$. Moreover, u_n converges to u almost everywhere in Ω as a consequence of the Rellich theorem. Let v be a function in $W_0^{1,2}(\Omega)$, and take v as test function in (1.5). We obtain

$$\int_{\Omega} a(x, T_k(u_n)) \nabla u_n \cdot \nabla v = \int_{\Omega} f_n v.$$

The left hand side side passes to the limit as n tends to infinity since $a(x, T_k(u_n)) \rightharpoonup a(x, u)$ in $L^{\infty}(\Omega)$ (and almost everywhere in Ω) and $\nabla u_n \rightharpoonup \nabla u$ in $L^2(\Omega)$, so that we have $a(x, T_k(u_n)) \nabla u_n \rightharpoonup a(x, u) \nabla u$ in $L^2(\Omega)$. Hence, since $\int_{\Omega} f_n v \to \int_{\Omega} f v$, u is a weak solution of (1.2).

Now use (2.10) for $\gamma > 0$. Sobolev inequality implies

$$\left[\int_{\Omega} |G_{k_0}(u_n)|^{\gamma 2^*}\right]^{\frac{2}{2^*}} \leq \frac{1}{\alpha(\gamma+1)(M-1)} \int_{\Omega} |f|, \quad k_0 = k_0(\|f\|_{\frac{N}{2}}, \gamma).$$

Use the previous estimate together with (1.6) in order to prove that u belongs to $L^p(\Omega)$, for any $p < \infty$.

Now, if 0 belongs to Ω , on the datum f, we put a slightly weaker assumption:

$$|f| \le \frac{A}{|x|^2}.$$

Recall that $\frac{A}{|x|^2}$ does not belong to the Lebesgue space $L^{\frac{N}{2}}(\Omega)$, but, for any $v \in W^{1,2}_0(\Omega)$

$$\int_{\Omega} \frac{|v|^2}{|x|^2} < \infty,$$

thanks to the following proposition (see [6], [7]).

Proposition 2.1 [Hardy inequality] Assume that 0 belongs to Ω . If $v \in W_0^{1,2}(\Omega)$, then

$$\int_{\Omega} \frac{|v|^2}{|x|^2} \le \left(\frac{N-2}{2}\right)^2 \int_{\Omega} |\nabla v|^2. \tag{2.11}$$

Moreover, $H^2 = \left(\frac{N-2}{2}\right)^2$ is optimal.

Lemma 2.1 Assume that 0 belongs to Ω ,

$$|f| \le \frac{A}{|x|^2},\tag{2.12}$$

and $1 \le \gamma < \frac{2\alpha H^2}{A}$. Then there exixts L > 0 such that

$$||u_n||_{\gamma_2^*} \le L, ||u_n||_{W_0^{1,2}(\Omega)} \le L.$$

Proof. Use $[(1+|u_n|)^{2\gamma}-1] \operatorname{sgn}(u_n)$, $\gamma>1$, as test function. Let M>1 be such that $2\alpha>\gamma\frac{AM}{H^2}$. We have

$$2\alpha\gamma \int_{\Omega} |\nabla u_n|^2 (1+|u_n|)^{2\gamma-2} \le A \int_{\Omega} \frac{[(1+|u_n|)^{2\gamma}-1]}{|x|^2}$$

$$\le AM \int_{\Omega} \frac{((1+|u_n|)^{\gamma}-1)^2}{|x|^2} + \frac{A}{(M-1)} \int_{\Omega} \frac{1}{|x|^2}$$

$$\le \gamma^2 \frac{AM}{H^2} \int_{\Omega} |\nabla u_n|^2 (1+|u_n|)^{2\gamma-2} + \frac{A}{(M-1)} \int_{\Omega} \frac{1}{|x|^2}.$$

Then

$$(2\alpha - \gamma \frac{AM}{H^2}) \int_{\Omega} |\nabla u_n|^2 (1 + |u_n|)^{2\gamma - 2} \le \frac{A}{(M - 1)} \int_{\Omega} \frac{1}{|x|^2}$$
$$S(2\alpha - \gamma \frac{AM}{H^2}) \left[\int_{\Omega} ((1 + |u_n|)^{\gamma} - 1)^{2^*} \right]^{\frac{2}{2^*}} \le \frac{A}{(M - 1)} \int_{\Omega} \frac{1}{|x|^2}.$$

So

$$S(2\alpha - \gamma \frac{AM}{H^2}) \left[\int_{\Omega} |u_n|^{2^* \gamma} \right]^{\frac{2}{2^*}} \le C_0.$$

Now it is possible to repeat the proof of previous theorem in order to obtain a second existence results:

Theorem 2.2 Assume that 0 belongs to Ω , (2.12) and $1 \leq \gamma < \frac{2\alpha H^2}{A}$. Then there exists a weak solution u of the boundary value problem (1.2). Moreover, u belongs to $L^{\gamma 2^*}(\Omega)$.

3 Distributional solutions

Lemma 3.1 Assume that 0 belongs to Ω , (2.12) and

$$\left\{ \begin{array}{l} \frac{N-2}{2(N-1)} < \theta \leq 1 \\ \theta < \frac{2\alpha H^2}{A}. \end{array} \right.$$

Then there exixts L > 0 such that

$$||u_n||_{W_0^{1,q}(\Omega)} \le L, \quad q = \frac{2N\theta}{N - 2(1 - \theta)}.$$

Proof. Use $[(1+|u_n|)^{2\theta}-1]$ sgn (u_n) , $0<\theta<1$, as test function. Let M>1 be such that $2\alpha>\theta\frac{AM}{H^2}$. Then

$$2\alpha\theta \int_{\Omega} |\nabla u_n|^2 (1+|u_n|)^{2\theta-2} \le A \int_{\Omega} \frac{[(1+|u_n|)^{2\theta}-1]}{|x|^2}$$

$$\le AM \int_{\Omega} \frac{((1+|u_n|)^{\theta}-1)^2}{|x|^2} + \frac{A}{(M-1)} \int_{\Omega} \frac{1}{|x|^2}$$

$$\le \theta^2 \frac{AM}{H^2} \int_{\Omega} |\nabla u_n|^2 (1+|u_n|)^{2\theta-2} + \frac{A}{(M-1)} \int_{\Omega} \frac{1}{|x|^2}.$$

Hence

$$(2\alpha - \theta \frac{AM}{H^2}) \int_{\Omega} \frac{|\nabla u_n|^2}{(1 + |u_n|)^{2(1-\theta)}} \le \frac{A}{(M-1)} \int_{\Omega} \frac{1}{|x|^2}.$$
 (3.13)

So, if q < 2,

$$\int_{\Omega} |\nabla u_n|^q = \int_{\Omega} \frac{|\nabla u_n|^q}{(1+|u_n|)^{q(1-\theta)}} \cdot (1+|u_n|)^{q(1-\theta)}$$

$$\leq C_1 \left[\int_{\Omega} (1+|u_n|)^{\frac{2q(1-\theta)}{2-q}} \right]^{\frac{2-q}{2}}.$$

Definition of q gets

$$q^* = \frac{2q(1-\theta)}{2-q}$$

so that

$$\int\limits_{\Omega} |\nabla u_n|^q \le C_1 \Big[\int\limits_{\Omega} (1 + |u_n|)^{\frac{2q(1-\theta)}{2-q}} \Big]^{\frac{2-q}{2q(1-\theta)}[q(1-\theta)]} \le C_2 + C_3 \Big[\int\limits_{\Omega} |\nabla u_n|^q \Big]^{\frac{1}{q}[q(1-\theta)]}$$

that is

$$\int\limits_{\Omega} |\nabla u_n|^q \le L^q,$$

which implies the following existence theorem.

Theorem 3.1 Assume that 0 belongs to Ω , (2.12) and

$$\left\{ \begin{array}{l} \frac{N-2}{2(N-1)} < \theta \leq 1 \\ \theta < \frac{2\alpha H^2}{A}. \end{array} \right.$$

Then there exists a distributional solution $u \in W_0^{1,q}(\Omega)$, $q = \frac{2N\theta}{N-2(1-\theta)}$, of the boundary value problem (1.2), that is

$$u \in W_0^{1,q}(\Omega): \int_{\Omega} a(x,u) \, \nabla u \cdot \nabla v = \int_{\Omega} f \, v \,, \qquad \forall v \in C_0^{\infty}(\Omega) \,. \tag{3.14}$$

4 Entropy solutions

Lemma 4.1 Assume that 0 belongs to Ω , (2.12) and

$$\begin{cases} 0 \le \theta \le \frac{N-2}{2(N-1)} \\ \theta < \frac{2\alpha H^2}{A}. \end{cases}$$

Then there exixts L > 0 such that

$$\int\limits_{\Omega} |u_n|^{\theta 2^*} \le L.$$

Proof. Estimate (3.13) yields (recall that any u_n is a bounded function)

$$\left(2\alpha - \theta \frac{AM}{H^2}\right) \frac{1}{\theta^2} \int_{\Omega} \left| |\nabla [(1 + |u_n|)^{\theta} - 1]| \right|^2 = \int_{\Omega} \left| \frac{|\nabla u_n|}{(1 + |u_n|)^{(1-\theta)}} \right|^2 \le C_1,$$

so that

$$\left(2\alpha - \theta \frac{AM}{H^2}\right) \frac{1}{\theta^2} \left[\int_{\Omega} \left[(1 + |u_n|)^{\theta} - 1 \right]^{2^*} \right]^{\frac{2}{2^*}} \le C_1.$$

Lemma 4.2 Assume $f \in L^m(\Omega)$, $\frac{2N}{N+2} \leq m < \frac{N}{2}$. Then

$$\|\log(1+|u_n|)\|_{\infty^*} \le C_{\alpha,m} \|f\|_{\infty}$$

Proof. Use $[\log(1+|u_n|)]^{2\gamma-1}sgn(u_n)$ as test function in (1.5), with $\gamma=\frac{m^{**}}{2^*}$. Then

$$S^{2}\alpha(2\gamma - 1) \left[\int_{\Omega} \log(1 + |u_{n}|)^{2^{*}\gamma} \right]^{\frac{2}{2^{*}}} \leq \alpha(2\gamma - 1) \int_{\Omega} \frac{|\nabla u_{n}|^{2} \log(1 + |u_{n}|)^{2\gamma - 2}}{(1 + |u_{n}|)^{2}}$$
$$\leq ||f||_{m} \left[\int_{\Omega} \log(1 + |u_{n}|)^{(2\gamma - 1)m'} \right]^{\frac{1}{m'}}.$$

Lemma 4.3 Assume $f \in L^m(\Omega)$, $1 < m < \frac{2N}{N+2}$. Then

$$\|\log(1+|u_n|)\|_{m^{**}} \le C_{\alpha,m} \|f\|_{m}.$$

Proof. Use $\left[\log \frac{1+|u_n|}{1+k}\right]_{+}^{2\theta-1} sgn(u_n)$ as test function in (1.5), with $\theta=\frac{m^{**}}{2^*}$.

$$S^{2}\alpha(2\theta - 1) \left[\int_{\Omega} \left[\log \frac{1 + |u_{n}|}{1 + k} \right]_{+}^{\theta 2^{*}} \right]^{\frac{2}{2^{*}}}$$

$$\leq \alpha(2\theta - 1) \int_{\{x \in \Omega: k \leq |u_{n}(x)|\}} \frac{|\nabla u_{n}|^{2} \log(1 + |u_{n}|)^{2\theta - 2}}{(1 + |u_{n}|)^{2}}$$

$$\int_{\Omega} |f| \left[\log \frac{1 + |u_{n}|}{1 + k} \right]_{+}^{2\theta - 1} \leq ||f||_{m} \left(\int_{\Omega} |f| \left[\log \frac{1 + |u_{n}|}{1 + k} \right]_{+}^{(2\theta - 1)m'} \right)^{\frac{1}{m'}}.$$

Lemma 4.4 Assume $f \in L^1(\Omega)$. Then

$$|\{x: |u_n(x)| > k\}^{\frac{2}{2^*}}| \le \frac{1}{\log(1+k)} \int_{\Omega} |f|.$$
 (4.15)

Proof. Use $\log(1 + |T_k(u_n)|)sgn(u_n)$ as test function in (1.5).

$$S^{2} \left[\int_{\{x \in \Omega: k \le |u_{n}(x)|\}} \log(1+k)^{2^{*}} \right]^{\frac{2}{2^{*}}} \le S^{2} \left[\int_{\Omega} \log(1+|T_{k}(u_{n})|)^{2^{*}} \right]^{\frac{2}{2^{*}}}$$

$$\le \int_{\Omega} \frac{|\nabla T_{k}(u_{n})|^{2}}{\log(1+|T_{k}(u_{n})|)^{2}} \le \int_{\Omega} \log(1+|T_{k}(u_{n})||f| \le \log(1+k) \int_{\Omega} |f|.$$

Recall (see (1.6)) that the truncation $T_k(u)$ belongs to $W_0^{1,2}(\Omega)$, and the following result (see [2], Lemma 2.1).

Proposition 4.1 Let u be a measurable function such that $T_k(u)$ belongs to $W_0^{1,2}(\Omega)$ for every k > 0. Then there exists a unique measurable function $v : \Omega \to \mathbb{R}^N$ such that

$$v\chi_{\{|u| < k\}} = \nabla T_k(u), \quad \text{for almost every } x \in \Omega, \ \forall k > 0,$$
 (4.16)

where χ_E is the characteristic function of a measurable set E. If, moreover, u belongs to $W_0^{1,1}(\Omega)$, then v coincides with the standard distributional gradient of u.

In view of the above result, for every measurable function u such that $T_k(u)$ belongs to $W_0^{1,2}(\Omega)$ for every k>0, we define ∇u , the weak gradient of u, as the unique function v which satisfies (4.16). The definition of weak gradient allows us to give the following definition of entropy solution for problem (1.2) (see [2]).

Definition 4.1 (see [2]) Let f be in $L^m(\Omega)$, $m \ge 1$. A measurable function u is an entropy solution of (1.2) if $T_k(u)$ belongs to $W_0^{1,2}(\Omega)$ for every k > 0, and if

$$\int_{\Omega} a(x, u) \nabla u \cdot \nabla T_k(u - \varphi) \le \int_{\Omega} f T_k(u - \varphi), \qquad (4.17)$$

for every k > 0 and for every $\varphi \in W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega)$.

Proposition 4.2 Let $\{v_n\}$ be a sequence of measurable functions such that $T_k(v_n)$ is bounded in $W_0^{1,2}(\Omega)$ for every k > 0. Then there exists a measurable function v, with $T_k(v)$ belonging to $W_0^{1,2}(\Omega)$, for every k > 0, and a subsequence, still denoted by $\{v_n\}$, such that $v_n(x) \to v(x)$ a. e. in Ω and $\nabla T_k(v_n) \to \nabla T_k(v)$, in $W_0^{1,2}(\Omega)$.

Thanks to Main Estimate (1.6) and the previous Proposition, we can state the following

Corollary 4.1 There exists a measurable function u, with $T_k(u)$ belonging to $W_0^{1,2}(\Omega)$, for every k > 0, and a subsequence, still denoted by $\{u_n\}$, such that $u_n(x) \to u(x)$ a. e. in Ω , and $\nabla T_k(u_n) \rightharpoonup \nabla T_k(u)$ weakly in $W_0^{1,2}(\Omega)$.

Note that the left hand side is well defined, since the integral is only on the set $\{x \in \Omega : |u(x) - \varphi(x)| \le k\}$ and on this set $|u| \le k + \|\varphi\|_{L^{\infty}(\Omega)}$.

Theorem 4.1 Under the assumptions either of Lemma 4.1, or of Lemma 4.2, or of Lemma 4.3, or of Lemma 4.4, there exists an entropy solution of the boundary value problem (1.2).

Proof. Let $\varphi \in W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega)$. Choosing $T_k[u_n - \varphi]$ as test function in (1.5), we have

$$\int_{\Omega} a(x, T_k(u_n)) \nabla u_n \cdot \nabla T_k[u_n - \varphi] = \int_{\Omega} f_n T_k[u_n - \varphi].$$

The right hand side easily passes to the limit as n tends to infinity. As for the left hand side, we can write it as

$$\int_{\Omega} a(x, T_k(u_n)) |\nabla(u_n - \varphi)|^2 + \int_{\Omega} a(x, T_k(u_n)) \nabla \varphi \cdot \nabla T_k[u_n - \varphi].$$

In the first term we use the weak lower semicontinuty of the quadratic forms; while the second converges to

$$\int_{\Omega} a(x,u) \, \nabla \varphi \cdot \nabla T_k[u_n - \varphi] \,,$$

as n tends to infinity. Putting together the terms, we thus have

$$\int_{\Omega} a(x, u) \nabla u \cdot \nabla T_k[u - \varphi] \le \int_{\Omega} f T_k[u - \varphi],$$

for every $\varphi \in W_0^{1,2}(\Omega) \cap L^{\infty}(\Omega)$ and so u is an entropy solution of (1.2).

Corollary 4.2 Under the assumptions of Lemma 4.1 entropy solution u is such that

$$\int\limits_{\Omega} |u|^{\theta 2^*} \le L$$

which implies that

$$\max\{x \in \Omega : |u(x)| > k\} \le \frac{L}{k^{\frac{1}{\theta^{2^*}}}}.$$

Moreover, we can repeat the proof of Lemma 3.2 in [5] (see also [2]) to prove that there exists $\Lambda > 0$ such that, for any h > 0 we have

$$\max\{x \in \Omega : |\nabla u(x)| > h\} \le \frac{\Lambda}{h^{\frac{2N\theta}{2N\theta+N-2}}}.$$

Corollary 4.3 Under the assumptions of Lemmas 4.2, 4.3, 4.4, the decay with respect to k of the measure of the sets $\{x \in \Omega : |u(x)| > k\}$, $\{x \in \Omega : |\nabla u(x)| > h\}$ of entropy solution u is of logarithmic type.

Proof. We follow the lines of the proof of [2], Lemma 4.2 (see also [5]). Lemmas 4.2, 4.3, 4.4 imply that

$$\operatorname{meas}\{x\in\Omega:|u(x)|>k\}\leq \frac{C_1}{[\log k]^{m^{**}}},$$

Let h be a fixed positive real number. We have, for every k > 0,

$$|\{x \in \Omega : |\nabla u(x)| > h\}| \le |\{|\nabla u| > h, |u| \le k\}| + |\{|u| > k\}| \le C_2 \left(\frac{k^2}{h^2} + \frac{1}{[\log k]^{m^{**}}}\right).$$

Now, if we take $k = h^{\lambda}$, $\lambda < 1$, we have

$$|\{x \in \Omega : |\nabla u(x)| > h\}| \le C_3 \frac{1}{[\log k]^{m^{**}}}.$$

References

- [1] A. Alvino, L. Boccardo, V. Ferone, L. Orsina, and G. Trombetti, Existence results for non-linear elliptic equations with degenerate coercivity, Ann. Mat. Pura Appl. 182 (2003), 53–79.
- [2] P. Bénilan, L. Boccardo, T. Gallouet, R. Gariepy, M. Pierre, and J.L. Vazquez, $An\ L^1$ theory of existence and uniqueness of solutions of nonlinear elliptic equations, Annali Sc. Norm. Sup. Pisa **22** (1995), 241-273.
- [3] L. Boccardo, Hardy Potentials and quasi-linear elliptic problems having natural growth terms, Proceedings of Fifth European Conference on Elliptic and Parabolic Problems: A Special Tribute to the Work of Haim Brezis (Gaeta, May 30–June 3 2004), to appear.
- [4] L. Boccardo, and H. Brezis, Some remarks on a class of elliptic equations with degenerate coercivity, Boll. Unione Mat. Ital. 6 (2003), 521–530.
- [5] L. Boccardo, A. Dall'Aglio, and L. Orsina, Existence and regularity results for some elliptic equations with degenerate coercivity, Atti Sem. Mat. Fis. Univ. Modena 46-suppl. (1998), 51–81.
- [6] H. Brezis, and M. Marcus, Hardy's inequalities revisited, Dedicated to Ennio De Giorgi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997), 217–237 (1998).

[7] J. P. Garcia Azorero, and I. Peral, *Hardy inequalities and some critical elliptic and parabolic problems*, J. Differential Equations **144** (1998), 441–476.

- [8] A. Porretta, Uniqueness and homogenization for a class of noncoercive operators in divergence form, Atti Sem. Mat. Fis. Univ. Modena 46-suppl. (1998), 915–936.
- [9] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), 189–258.