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Abstract

The paper is concerned with an eigenvalue problem for the prescribed mean curvature
equation. We formulate the problem as a variational inequality and show that under some
growth conditions on the lower order term, the relaxed problem has at least two nontrivial
solutions in a space of functions of bounded variation when the parameter is small.
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1 Introduction

We are concerned here with an eigenvalue problem for the prescribed mean curvature equa-
tion, namely, the equation

−div

(
∇u√

1 + |∇u|2

)
= λf(x, u) in Ω, (1.1)

with Dirichlet boundary condition

u = 0 on ∂Ω, (1.2)

here,Ω is a bounded domain inRN (N ≥ 2) with sufficiently smooth boundary,∇u =
(∂1u, . . . , ∂Nu) andλ is a positive parameter, and we are interested in the existence of
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nontrivial solutions (eigenfunctions) of the boundary value problem (1.1)-(1.2), and fur-
thermore in nonnegative solutions, that is solutionsu such that

u ≥ 0 in Ω. (1.3)

The prescribed mean curvature problem and, in particular, the minimal surface prob-
lem, have been studied extensively with different approaches. Classical existence theorems
and gradient estimates are presented in [22] with references to the original works by Finn,
Bombieri/De Giorgi/Miranda, Jenkins, Serrin, etc. In this paper, we start with the vari-
ational approach for the problem in the space of functions of bounded variation. This
approach was developed in e.g. [5, 38, 19, 20, 21]. In the existence theorems established in
most of those works, the solutions of the prescribed mean curvature problem are considered
as global minimizers of the corresponding energy functionals.

We propose here a new formulation of the relaxed problem for (1.1)-(1.2) as a varia-
tional inequality which can be seen as a “hybrid” from equations and minimization prob-
lems. This allows us to study other types of solutions for the problem, such as saddle points,
as well. This formulation is simple and elementary, yet it gives some new insights to prob-
lem (1.1)-(1.2). It also seems suitable for the application of recent results in Nonsmooth
Analysis and the theory of variational inequalities (cf. e.g. [43, 15, 12, 26, 16, 33, 30, 34,
31, 35] and the references therein) to the classical problem of prescribed mean curvature.
We consider here homogeneous Dirichlet boundary conditions; hence the question of the
existence of nontrivial solutions is crucial.

Our main goal here is the inequality formulation and the existence of nontrivial so-
lutions of problem (1.1)-(1.2) as local minimizers and as saddle points of the potential
functional. The existence of nonzero local minimizers is proved by using appropriate es-
timates. On the other hand, the existence of saddle points is based on a version of the
Moutain Pass theorem for variational inequalities. Mountain Pass theorems for inequalities
seem to have been first developed in [40] and [10] to study unstable minimal surfaces. The
inequalities considered in [40] and [10] consist of the Dirichlet integral over appropriate
closed and convex sets. We need here a different version of the Mountain Pass theorem for
inequalities with convex functionals which are not indicator functions of convex sets. Also,
since it seems rather difficult to verify the Palais–Smale (PS) condition for inequalities in
our case, we shall prove and use a version of the theorem without the (PS) condition.

Concerning prescribed mean curvature equations with parameters (eigenvalue prob-
lems), the existence of radial solutions has been studied extensively in the case thatΩ is
radially symmetric (cf. e.g. [39, 4, 27] and the references therein). The general case of non-
symmetric domains and nonradial solutions seems not to have been investigated to such an
extent. An existence result for nontrivial solutions of the problem div

(
∇u√

1 + |∇u|2

)
− µu + λf(u) = 0 in Ω

u = 0 on ∂Ω,

(1.4)

whereµ ≥ 0, f ∈ C[0,∞) satisfies the Nehari condition, was obtained in [11]. By using an
extension of Nehari’s method to partial differential equations, Coffman and Ziemer showed
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that under certain growth conditions, for eachµ fixed, (1.4) has a nontrivial nonnegative
C1-solution forλ sufficiently large.

In this paper, we concentrate on equation (1.1) with a general lower-order termf(x, u).
Using a different approach, we show that under certain growth conditions onf , problem
(1.1)-(1.2) has at least two nontrivial solutions forλ sufficiently small.

The paper is organized as follows. In the next section, we formulate the relaxed problem
for (1.1)-(1.2) as a variational inequality in an appropriate space of functions of bounded
variation. In section 3, we show the existence of nontrivial solutions of the relaxed problem
of (1.1)-(1.2) as local minimizers of certain potential functionals. Section 4 is devoted to
the existence of saddle points of Mountain Pass type of the problem.

2 Variational inequality formulation

In this section, we shall formulate (1.1)-(1.2) as a variational inequality which is more
convenient for using variational arguments. First, note that the operator

u 7→ −div

(
∇u√

1 + |∇u|2

)

hasJ0(u) =
∫
Ω
(
√

1 + |∇u|2 − 1) dx as a potential functional (withJ0(0) = 0), at least
for u with∇u satisfying certain growth conditions (for example, foru ∈ W 1,1(Ω)). Let F
be the anti-derivative off (with respect to the second variable) withF (·, 0) = 0,

F (x, u) =
∫ u

0

f(x, s) ds, x ∈ Ω, u ∈ R, (2.1)

and

F(u) =
∫

Ω

F (x, u(x)) dx.

We have

〈F ′(u), v〉 =
∫

Ω

f(x, u)v dx

for all u, v in some appropriate function space (to be specified later). Therefore, solutions
of (1.1) are critical points of the functional

I0 = J0 − λF ,

subject to zero boundary conditions. As already well-known, the choice of a suitable func-
tion space is very important for the solving of problem (1.1)-(1.2). A choice of such space
should be such that the functionalJ0 is coercive and has certain appropriate continuity
properties.

A simple and natural choice of such a function space isW 1,1
0 (Ω) with the usual norm

‖u‖W 1,1 = ‖u‖L1 + ‖ |∇u| ‖L1 .



136 V.K. Le

Then,J0 is coercive in the sense that

J0(u) →∞ as ‖u‖W 1,1 →∞.

However,J0 is not lower semicontinuous with respect to the weak topology in this space.
To overcome this difficulty, a popular way is to consider the relaxed functional ofJ0 in the
space of functions of bounded variation (cf. e.g. [17, 13, 6, 14]). As usual,BV (Ω) denotes
the set of all functions inL1(Ω) with bounded variation, that is,∇u (in the distributional
sense) is a (vector) bounded Radon measure. In other words,BV (Ω) is the set of all
u ∈ L1(Ω) such that∫

Ω

|∇u| :=

sup
{∫

Ω

udiv gdx : g = (g1, . . . , gN ) ∈ C1
0 (Ω, RN ) and max

x∈Ω
|g(x)| ≤ 1

}
< ∞,

(2.2)

(div g =
∑N

i=1 ∂igi). The usual norm onBV (Ω) is defined as

‖u‖ = ‖u‖BV (Ω) =
∫

Ω

|u|dx +
∫

Ω

|∇u|, (2.3)

where
∫

Ω

|∇u| is defined in (2.2). Note that
∫

Ω

|∇u| is the total variation of the measure

∇u. BV (Ω) with the norm (2.3) is a Banach space. The relaxed functional associated with
J0(u) and the boundary conditionu = 0 on∂Ω is given by (cf. [6, 7, 8, 25, 24, 1, 17]):

J1(u) =
∫

Ω

√
1 + |∇u|2 +

∫
∂Ω

|u|∂Ω| dHN−1, (2.4)

for u ∈ BV (Ω), wheredHN−1 is the(N − 1)-dimensional Hausdorff measure on∂Ω and∫
Ω

√
1 + |∇u|2 is given by∫
Ω

√
1 + |∇u|2

= sup
{∫

Ω

(gn+1 + udiv g)dx : g = (g1, g2, . . . , gn+1) ∈ C1
0 (Ω, Rn+1),

max
x∈Ω

|g(x)| ≤ 1
}

.

(2.5)

As shown in [25, 8],
∫

Ω

√
1 + |∇u|2 can be defined equivalently as∫

Ω

√
1 + |∇u|2 =

∫
Ω

√
1 + |(∇u)a|2dx +

∫
Ω

|(∇u)s|, (2.6)

where(∇u)a ∈ [L1(Ω)]N and(∇u)s ∈ BV (Ω) are, respectively, the absolutely continu-
ous part and the singular part of∇u with respect to theN -dimensional Lebesgue measure
dx = dLN .
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This leads us to the study of critical points of the relaxed functional associated toI0:

I1 = J1 − λF (2.7)

in BV (Ω). However, the continuous differentiability ofJ1 cannot be established inBV (Ω).
SinceJ1 is convex inBV (Ω), we can consider critical pointsu of I1 as points such that

0 ∈ ∂J1 − λF ′, (2.8)

where∂J1 is the subdifferential ofJ1 in BV (Ω) in the sense of convex analysis (andF ′

is the usual Fŕechet derivative ofF). The inclusion (2.8) is equivalent to the variational
inequality  J1(v)− J1(u)− λ

∫
Ω

f(x, u)(v − u)dx ≥ 0, ∀v ∈ BV (Ω)

u ∈ BV (Ω).
(2.9)

Our goal here is to study (2.9) (and its equivalent inclusion) by using variational methods.
We note that (2.9) is, in some sense, a “hybrid” from an equation and a minimization
problem. In fact, (2.9) can be seen as the Euler–Lagrange equation for the minimization
problem ofJ1−λF . On the other hand, iff does not depend onu, then (2.9) is equivalent

to the minimization ofJ1(u) − λ

∫
Ω

fu. Moreover, ifJ1 is Gâteaux differentiable in a

directionh, then from (2.9) withv = u + th (and lett → 0+), we have that

〈J ′1(u), h〉 − λ

∫
Ω

f(x, u)hdx = 0.

Another step is needed for our final formulation of the problem. LetB be a ball (or a
bounded region with smooth boundary) inRN such thatΩ ⊂ B. Foru ∈ BV (Ω), put

ũ =
{

u in Ω
0 in B \ Ω.

Then,ũ ∈ BV (Ω). As in Section 14.4 of [24], we have∫
B

√
1 + |∇ũ|2 =

∫
Ω

√
1 + |∇u|2 +

∫
∂Ω

|u|∂Ω| dHN−1 = J1(u). (2.10)

Let us put
X = {u ∈ BV (B) : u(x) = 0 for a.e.x ∈ B \ Ω} (2.11)

and

J(u) =
∫
B

√
1 + |∇u|2, u ∈ BV (B). (2.12)

Then, in view of (2.10) and (2.12), the inequality (2.9) is equivalent to the following in-
equality inX:  J(v)− J(u)− λ

∫
Ω

f(x, u)(v − u)dx ≥ 0, ∀x ∈ X

u ∈ X.
(2.13)
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By moving from (2.9) to (2.13) and replacingJ1 in (2.4) byJ in (2.12), we get a sim-
pler representation for the relaxed functional ofJ0 (without involving the integral on the
boundary ofΩ). Moreover,X is a closed subspace ofBV (Ω). In fact, assume{un} ⊂ X
andun → u in BV (B). We haveun → u in L1(B) and by passing to a subsequence, if
necessary, we can assume that

un → u a.e. inB.

It follows thatu = 0 a.e. inB \ Ω, i.e.,u ∈ X. Thus, (2.13) is equivalent to the following
variational inequality inBV (B): (J + IX)(v)− (J + IX)(u)− λ

∫
Ω

f(x, u)(v − u)dx ≥ 0, ∀v ∈ BV (B)

u ∈ BV (B).
(2.14)

We also use an equivalent form of (2.13) withJ given, instead of (2.13), by

J(u) =
∫
B
(
√

1 + |∇u|2 − 1)

=
∫
B
[
√

1 + |(∇u)a|2 − 1]dx +
∫
B
|(∇u)s|.

(2.15)

From this formula, we see thatJ(u) ≥ 0 for all u ∈ BV (B), J(0) = 0, and moreover

J(u) = 0, u ∈ X ⇐⇒ u = 0.

In fact, assumeJ(u) = 0 for someu ∈ X. We have|(∇u)s|(B) = 0 and
√

1 + |∇u|2 −
1 = 0 a.e. inB. The first equation implies that(∇u)s is a zero measure onB. Since√

1 + |∇u|2 − 1 ≥ 0 onB, it follows from the second equation that(∇u)a = 0 a.e. inB.
Thus,∇u = 0 in B (as a measure). This shows thatu is a constant. Sinceu ∈ X, this
constant must be zero.

Assume that
f(x, 0) = 0 for a.e.x ∈ B. (2.16)

Hence,u = 0 is a trivial solution of (2.13) for allλ(> 0). We are interested here in the
existence of nonzero solutions of (2.13) inX.

3 Existence of nontrivial solutions as local mini-
mizers

We study the existence of nontrivial critical points of the functional

I(u)(= Iλ(u)) = J(u)− λ

∫
B

F (x, u)dx, u ∈ X,

whereJ is given by (2.15) andF given by (2.1). We assume the following conditions.
(A1) f : B × R → R is a Carath́eodory function.
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(A2) There existsq ∈
(

1,
N

N − 1

)
such that

|f(x, ξ)| ≤ d1ξ
q−1 + d2, for a.e.x ∈ B, all ξ ∈ R, (3.1)

with d1, d2 > 0. Assume furthermore thatq < 2 (this holds ifN ≥ 2) and there exist
r ∈ (1, 2), d3, ξ0 > 0 such that

f(x, ξ) ≥ d3ξ
r−1 (3.2)

for a.e.x ∈ B, all ξ ∈ [0, ξ0).

First, we need an estimate for
∫
B

√
1 + |∇u|2.

Lemma 3.1 We have

∫
B

√
1 + |∇u|2 ≥

√
|B|2 +

(∫
B
|∇u|

)2

, ∀u ∈ BV (B). (3.3)

Proof. First, note that (3.3) holds for allu ∈ W 1,1(B). In fact, foru ∈ W 1,1(B), we have
|∇u| ∈ L1(B) and Jensen’s inequality, applied to the convex functionΦ(x) =

√
1 + x2,

gives

Φ


∫
B
|∇u|dx∫
B

dx

 ≤

∫
B

Φ(|∇u|)dx∫
B

dx

,

that is, √
1 +

1
|B|2

(∫
B
|∇u|

)2

≤ 1
|B|

∫
B

√
1 + |∇u|2,

which is the same as (3.3). Now, assumeu ∈ BV (B). From Theorem 3.3, [8], there exists
a sequence{un} in W 1,1(B) such thatun → u in L1(B) and∫

B

√
1 + |∇un|2 →

∫
B

√
1 + |∇u|2. (3.4)

It follows from the lower semicontinuity of the total variation
∫
B
|∇u| (cf. e.g. [24], Theo-

rem 1.9) that ∫
B
|∇u| ≤ lim inf

∫
B
|∇un|.

Therefore, √
|B|2 +

(∫
B
|∇u|

)2

≤ lim inf

√
|B|2 +

(∫
B
|∇un|

)2

. (3.5)
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Applying (3.3) to eachun and using (3.3), (3.4), we get∫
B

√
1 + |∇u|2 = lim

∫
B

√
1 + |∇un|2

≥ lim inf

√
|B|2 +

(∫
B
|∇un|

)2

≥

√
|B|2 +

(∫
B
|∇u|

)2

.

Hence, (3.3) is proved foru ∈ BV (B). 2

We need the following Poincaré inequality for functions inX (based on e.g. Theorem
1.28, [24]), whose proof is included for completeness.

Theorem 3.1 For each β ∈
[
1,

N

N − 1

]
, there exists Cβ > 0 such that

(∫
B
|u|βdx

) 1
β

≤ Cβ

∫
B
|∇u|, ∀u ∈ X. (3.6)

Proof. Foru ∈ X, we extendu to a function inBV (RN ) as

ũ =
{

u in B
0 in RN \ B.

Then, ũ ∈ BV (RN ) and the traces of̃u on ∂B both inside and outside ofB are 0 (cf.
Chapter 2, [24]), i.e.,

ũ+|∂B = ũ−|∂B = u−|∂B = 0.

From Theorem 1.28, [24], it follows that(∫
RN

|ũ|
N

N−1

)N−1
N

≤ C1

∫
RN

|∇ũ|, (3.7)

and from Remark 2.14, [24], we conclude that∫
RN

|∇ũ| =
∫
B
|∇u|+

∫
∂B
|u−|∂B|dHN−1 =

∫
B
|∇u|. (3.8)

It is clear that ∫
RN

|ũ|
N

N−1 =
∫
B
|u|

N
N−1 . (3.9)

Combining (3.7), (3.8), (3.9), we get (3.6) for the caseβ = N
N−1 . Forβ ∈ [1, N

N−1 ), using
Hölder’s inequality, we get∫

B
|u|βdx ≤ |Ω|1−β N−1

N

(∫
B
|u|

N
N−1

) β(N−1)
N

.
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Therefore, (∫
B
|u|β

)1/β

≤ Cβ

(∫
B
|u|

N
N−1

)N−1
N

.

This and (3.6) in the caseβ = N
N−1 imply (3.6) forβ ∈ [1, N

N−1 ]. 2

From the Poincaŕe inequality (3.6) (withβ = 1), we know that, withinX, the norm
‖ · ‖BV (B) defined above is equivalent to the norm

‖u‖0 =
∫
B
|∇u|.

Now, we are ready to prove the existence of a nonzero local minimizer ofIλ.

Theorem 3.2 Under assumptions (A1)-(A2) and (3.2), there exists λ∗ > 0 such that
for all λ ∈ (0, λ∗), the functional Iλ has a nonzero local minimum point u in the
open ball {u ∈ X : ‖u‖0 < λα} with 0 < α < 1.

Proof. From (3.1), there existsC1 > 0 such that

|F (x, ξ)| ≤ C1(|ξ|q + |ξ|) (3.10)

for a.e.x ∈ B, all ξ ∈ R. Using (3.6) withβ = q andβ = 1, one gets∫
B
|F (x, u)|dx ≤ C1

(∫
B
|u|q +

∫
B
|u|
)

≤
[(∫

B
|∇u|

)q

+
∫
B
|∇u|

]
, ∀u ∈ X,

(3.11)

for someC2 > 0. Forρ > 0, let us consider the sphere

Sρ = {u ∈ X : ‖u‖0 = ρ}. (3.12)

From (3.3) and (3.11), we have, foru ∈ Sρ,

Iλ(u) = J(u)− λ

∫
B

F (x, u)dx

≥ (|B|2 + ρ2)1/2 − |B| − C2λ(ρq + ρ).
(3.13)

Choosingρ = λα (α > 0 will be chosen later), we have, foru ∈ Sλα ,

Iλ(u) ≥ (B|2 + λ2α)1/2 − |B| − C2(λqα+1 + λα+1). (3.14)

By takingα ∈ (0, 1), we have

2α < α + 1 ≤ qα + 1.

Since

(|B|2 + λ2α)1/2 − |B| = λ2α

(|B|2 + λ2α)1/2 + |B|
' λ2α

2|B|
,
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asλ → 0, there existsλ∗ > 0 such that the right hand side of (3.14) is positive for all
λ ∈ (0, λ∗]. Consequently,

Iλ(u) > 0 onSλα for all λ ∈ (0, λ∗]. (3.15)

Let Bρ = {u ∈ X : ‖u‖0 ≤ ρ}. From (3.13),

inf{Iλ(u) : u ∈ Bλα} > −∞.

Let us choose a functionφ = φλ ∈ C∞
0 (Ω) such that

‖φ‖0 ≤ λα,

and
0 ≤ φ(x) < ξ0, ∀x ∈ Ω,

whereξ0 is given in (3.2). Forε ∈ (0, 1), we haveεφ(x) ∈ [0, ξ0) and

F (x, εφ(x)) =
∫ εφ(x)

0

f(x, ξ)dξ ≥ C3ε
r[φ(x)]r (C3 = d3r

−1). (3.16)

Also, by extendingφ to B (by puttingφ(x) = 0 for x ∈ B \ Ω), one hasφ ∈ C∞
0 (B) ∩X

and furthermoreφ ∈ Bλα .
Sinceεφ ∈ C∞

0 (B),

J(εφ) =
∫
B

(√
1 + |∇(εφ)(x)|2 − 1

)
dx

≤ 1
2
ε2
∫
B
|∇φ(x)|2 dx,

(because
√

1 + ξ2 − 1 ≤ 1
2
ξ2, ∀ξ ∈ R). Thus, from (3.16), we may deduce that

Iλ(εφ) =
∫
B
(
√

1 + |∇(εφ)|2 − 1)− λ

∫
B

F (x, εφ)dx

≤ εr

2

(
ε2−r

∫
B
|∇φ|2dx− λC3

∫
B

φrdx

)
.

(3.17)

Sincer < 2, we haveε2−r → 0 asε → 0. Therefore, the right hand side of (3.17) is
negative forε > 0 sufficiently small. This proves thatinf{Iλ(u) : u ∈ Bλα} < 0. Now,
since the embedding

BV (B) ↪→ Lβ(B)

is compact forβ ∈ [1, N
N−1 ) (cf. Section 1.19, [24]), (3.10) shows that the mapping

u 7→
∫
B

F (x, u)dx

is completely continuous fromBV (B) to R in the sense that ifun → u in L1(B) and{un}
is bounded inBV (B) then ∫

B
F (x, un)dx →

∫
B

F (x, u)dx. (3.18)
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Let {un} be a sequence inBλα such that

Iλ(un) → inf{Iλ(u) : u ∈ Bλα}.

Since{un} is bounded inBV (B), by passing to a subsequence, if necessary, we have
u ∈ BV (B) such that

un → u in L1(B), and
∇un ⇀∗ ∇u in M(B). (3.19)

It is clear from (3.19) thatu ∈ X. From the lower semicontinuity of the norm‖ · ‖0 with
respect to theL1-topology (Theorem 1.9, [24]), we have∫

B
|∇u| ≤ lim inf

∫
B
|∇un| ≤ λα.

Hence,u ∈ Bλα . We also note thatJ is lower semicontinuous with respect to theL1-
topology inBV (Ω) (Theorem 14.2, [24]). It follows that

J(u) ≤ lim inf J(un).

Together with (3.18), this shows that

Iλ(u) ≤ lim inf Iλ(un).

Consequently,Iλ has a minimum atu in Bλα . We haveIλ(u) < 0. This implies thatu
cannot be on the boundarySλα of Bλα (by (3.15)). Also,u 6= 0 (sinceIλ(0) = 0). Thus,
u is a nontrivial, local minimum point ofIλ. 2

Remark 3.1 Since ‖u‖0 ≤ λα, we immediately have∫
B
|∇u| → 0 as λ → 0+.

That the local minimum pointu of the above theorem (Theorem 3.2) is a nontrivial
solution of (2.13) follows from the following lemma.

Lemma 3.2 Assume V is a Banach space, J : V → R ∪ {∞} is convex, and F :
V → R is Gâteaux differentiable. If u ∈ V is a local minimum point of I = J −F ,
then u is a solution of the variational inequality

J(v)− J(u)− 〈F ′(u), v − u〉 ≥ 0, ∀v ∈ V. (3.20)

The proof is straightforward and is omitted. From the growth condition (3.10), it follows
thatF is Fŕechet differentiable fromLq(B) to R. Since the embedding mapping ofBV (B)
into Lq(B) is continuous,F is also Fŕechet and thus Ĝateaux differentiable fromBV (B)
to R. As a consequence of Theorem 3.2 and Lemma 3.2, one has the following existence
result for nontrivial solutions of (2.13).

Corollary 3.1 Under assumptions (A1), (A2), and (3.2), there exists λ∗ > 0 such
that for all λ ∈ (0, λ∗), the variational inequality (2.13) has a solution uλ 6= 0,
which is a local minimizer of the functional Iλ. Moreover,∫

B
|∇uλ| → 0 as λ → 0. (3.21)
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4 Existence of nontrivial solutions as saddle points

Under certain conditions, we can find another nontrivial solution of (2.13) as a saddle point
of the energy functional. For this purpose, we shall use a version of the Mountain Pass
Theorem for variational inequalities (cf. [2, 43]), without the Palais–Smale (compactness)
condition. This modification is crucial for our purpose, since, different from Sobolev spaces
which are normally reflexive (and uniformly convex),BV (B) is not. Hence, compactness
properties for functions of bounded variation seem less convenient than their counterparts
in Sobolev spaces (more comments are given in Remark 4.1).

Our tools here consist of some concepts of slopes of nonsmooth functionals, together
with a critical point theory for nonsmooth functionals developed recently by M. Degio-
vanni and his collaborators (cf. e.g. [15, 12]), also independently by Ioffe and Schwartzman
([26]). First, we recall some definitions (cf. [15, 12, 26]).

Definition 4.1 Let (X, d) be a metric space, u ∈ X, and f : X → R be continuous.
One denotes by |df |(u) (in [0,∞], called the weak slope of f at u) the supremum of
the σ’s in [0,∞) such that there exist δ > 0, an open neighborhood U of u in X,
and a continuous function H : U × [0, δ] → X such that

(1) d(H(v, t), v) ≤ t, and
(2) f(H(v, t)) ≤ f(v)− σt, ∀(v, t) ∈ U × [0, δ].

Definition 4.2 Let (X, d) be as in Definition 4.1 and f : X → R ∪ {∞} be a lower
semicontinous function.

(a) The effective domain of f is D(f) = {u ∈ X : f(u) < ∞}.
(b) The epigraph of f is the set epi(f) = {(u, ξ) ∈ X × R : f(u) ≤ ξ}. epi(f) is

a metric space with the metric d((u, ξ), (v, η)) = [d(u, v)2 + (ξ − η)2]1/2.
(c) We denote by Gf the projection of epi(f) to R:

Gf : epi(f) → R, Gf (u, ξ) = ξ.

Note thatGf is Lipschitz continuous on epi(f) with the Lipschitz constant1 and it is
easy to check that|dGf |(u, ξ) ≤ 1. Hence, in the casef is merely lower semicontinous,
one can define|df | (in terms of|dGf |) as follows.

Definition 4.3 Let (X, d) be a metric space and f : X → R ∪ {∞} be lower semi-
continuous. We set

|df |(u) =


|dGf |(u, f(u))√

1− |dGf |(u, f(u))2
if |dGf |(u, f(u)) < 1

∞ if |dGf |(u, f(u)) = 1.

(4.1)

As shown in [15], this definition extends that in Definition 4.1. For functionals that are
perturbations of convex functionals byC1 functionals, we propose some simpler, more
direct measurements for their slopes. Assume now that(X, ‖ · ‖) is a Banach space and
φ = J−F : X → R∪{∞}, whereJ : X → R∪{∞} is a convex, lower semicontinuous,
proper functional andF ∈ C1(X, R). It is clear thatD(φ) = D(J).
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Definition 4.4 For u ∈ D(J), we define

|∇φ|(u) = max

{
0, sup

v∈X\{u}

J(u)− J(v)− 〈F ′(u), u− v〉
‖u− v‖

}
, (4.2)

and
‖∇φ‖(u) = sup

v∈X,‖u−v‖≤1

[J(u)− J(v)− 〈F ′(u), u− v〉], (4.3)

(〈·, ·〉 denotes the pairing betweenX and its dualX∗). The above definitions of slopes for
φ are closely related to the following variational inequality:{

J(v)− J(u)− 〈F ′(u), v − u〉 ≥ 0, ∀v ∈ X
u ∈ X.

(4.4)

Some properties of the slopes defined above are given in the following result.

Proposition 4.1 (a) For any R > 0, we have

|∇φ|(u) = max

{
0, sup
‖v−u‖≤R,v 6=u

J(u)− J(v)− 〈F ′(u), u− v〉
‖u− v‖

}

=

 lim sup
v→u

φ(u)− φ(v)
‖u− v‖

if u is not a local minimum of φ

0 if u is a local minimum of φ.

(4.5)

In particular, |∇φ|(u) defined in (4.2) coincides with the concept of strong slope
of φ defined in [23].

(b) For every u ∈ D(J),

‖∇φ‖(u) ≤ |∇φ|(u) = |dφ|(u). (4.6)

(c) For u ∈ D(J), ‖∇φ‖(u) = 0 if and only if |∇φ|(u) = 0. We call such u a
critical point of φ.

(d) u is a critical point of φ if and only if u is a solution of the variational
inequality (4.4).

(e) For every u ∈ D(J),

J(v)− J(u)− 〈F ′(u), v − u〉 ≥ −|∇φ|(u)‖v − u‖, ∀v ∈ X, (4.7)

and

J(v)− J(u)− 〈F ′(u), v − u〉 ≥ −‖∇φ‖(u) max{1, ‖v − u‖}, ∀v ∈ X. (4.8)

Proof. (a) Let R > 0. For v such that‖v − u‖ > R, we put z = x + R(v−u)
‖v−u‖ .

Then,‖z − u‖ = R andJ(z) ≤ ‖v − u‖−1RJ(v) + (1 − ‖v − u‖−1R)J(u). Thus,
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‖z−u‖−1[J(z)−J(u)] ≤ ‖v−u‖−1[J(v)−J(u)]. Because‖u− v‖−1〈F ′(u), u−v〉 =
‖u− z‖−1〈F ′(u), u− z〉, we have

J(u)− J(v)− 〈F ′(u), u− v〉
‖u− v‖

≤ J(u)− J(z)− 〈F ′(u), u− z〉
‖u− z‖

≤ sup
‖w−u‖≤R,w 6=u

J(u)− J(w)− 〈F ′(u), u− w〉
‖u− w‖

.

Since this holds for everyv ∈ X with ‖v − u‖ > R, we have the first identity in (4.5). As
a consequence, one gets

sup
v 6=u

J(u)− J(v)− 〈F ′(u), u− v〉
‖u− v‖

= lim sup
v→u(v 6=u)

J(u)− J(v)− 〈F ′(u), u− v〉
‖u− v‖

.

Now, since

lim
v→u

F (u)− F (v)− 〈F ′(u), u− v〉
‖u− v‖

= 0,

one has

lim sup
v→u

J(u)− J(v)− 〈F ′(u), u− v〉
‖u− v‖

= lim sup
v→u

J(u)− J(v)− [F (u)− F (v)]
‖u− v‖

= lim sup
v→u

φ(u)− φ(v)
‖u− v‖

.

We have shown that

sup
v 6=u

J(u)− J(v)− 〈F ′(u), u− v〉
‖u− v‖

= lim sup
v→u

φ(u)− φ(v)
‖u− v‖

. (4.9)

If φ has a local minimum atu then

lim sup
v→u

φ(u)− φ(v)
‖u− v‖

= sup
v 6=u

J(u)− J(v)− 〈F ′(u), u− v〉
‖u− v‖

≤ 0.

Hence,|∇φ|(u) = 0 and the second equality in (4.5) is proved in this case. Assume now
thatφ does not have a local minimum atu. Thus, there exists a sequence{vn} converging
to u such thatφ(vn) < φ(u), ∀n. We have

sup
v 6=u

J(u)− J(v)− 〈F ′(u), u− v〉
‖u− v‖

≥ lim sup
n→∞

φ(u)− φ(vn)
‖u− vn‖

≥ 0.

Therefore,|∇φ|(u) = lim sup
v→u

φ(u)− φ(v)
‖u− v‖

. The second equality in (4.5) is proved.

(b) Since|∇φ|(u) is the same as the strong slope ofφ at u, Theorem 2.11 in [15]
shows that|∇φ|(u) = |dφ|(u) for all u ∈ D(J).

If ‖∇φ‖(u) = 0, thenJ(u)− J(v)− 〈F ′(u), u− v〉 ≤ 0 for all v with ‖v − u‖ ≤ 1.
It follows from the definition of|∇φ|(u) that |∇φ|(u) = 0 = ‖∇φ‖(u). Assume now that
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‖∇φ‖(u) > 0. Considerv such thatv 6= u and‖v−u‖ ≤ 1. If J(u)−J(v)−〈F ′(u), u−
v〉 ≥ 0 then

J(u)− J(v)− 〈F ′(u), u− v〉 ≤ J(u)− J(v)− 〈F ′(u), u− v〉
‖u− v‖

.

Thus,

‖∇φ‖(u) = sup{J(u)− J(v)− 〈F ′(u), u− v〉 :
‖v − u‖ ≤ 1, J(u)− J(v)− 〈F ′(u), u− v〉 ≥ 0}

≤ sup{J(u)− J(v)− 〈F ′(u), u− v〉
‖u− v‖

:

‖v − u‖ ≤ 1, v 6= u, J(u)− J(v)− 〈F ′(u), u− v〉 ≥ 0}

= sup{J(u)− J(v)− 〈F ′(u), u− v〉
‖u− v‖

: ‖v − u‖ ≤ 1, v 6= u} = |∇φ|(u).

(c) If ‖∇φ‖(u) = 0 then, as shown in (b),|∇φ|(u) = 0. Conversely, assume
|∇φ|(u) = 0. Since0 ≤ ‖∇φ‖(u) ≤ |∇φ|(u) = 0, one must have‖∇φ‖(u) = 0.

(d) and (e) follow immediately from the definition of‖∇φ‖(u) and|∇φ|(u). 2

We now prove the following version of the Mountain Pass Theorem for the inequality
(4.4).

Theorem 4.1 Let X, φ, J, F be as above. Assume K is a compact metric space and
K0 is a closed proper subset of K. Let χ ∈ C(K, X) and define

M = {g ∈ C(K, X) : g(s) = χ(s), ∀s ∈ K0}, (4.10)

c = inf
g∈M

sup
s∈K

φ(g(s)), (4.11)

and
c0 = sup

s∈K0

φ(χ(s)).

Assume that there exists a function h ∈ C(K, R) such that

φ(χ(s)) ≤ h(s), ∀s ∈ K, (4.12)

and
sup

s∈K0

h(s) = sup
s∈K0

φ(χ(s)). (4.13)

If c0 < c < ∞ then there exists a sequence {un} in D(J) such that

lim
n→∞

φ(un) = c̄ ≥ c, (4.14)

and
lim

n→∞
|∇φ|(un) = lim

n→∞
‖∇φ‖(un) = 0. (4.15)
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Proof. First, we need the following version of the Mountain Pass Theorem for continuous
functionals.

Theorem 4.2 Assume X1 is a complete metric space and φ1 ∈ C(X1, R). Let K be
a compact metric space, K0 be a closed proper subset of K and χ1 ∈ C(K, R). Put

M1 = {g ∈ C(K, X1) : g(s) = χ1(s), ∀s ∈ K0},

c1 = inf
g∈M1

sup
s∈K

φ1(g(s)),

and
c01 = sup

s∈K0

φ1(χ1(s)).

If c01 < c1, then there exists a sequence {un} in X1 such that

lim
n→∞

φ1(un) = c1,

and
lim

n→∞
|dφ1|(un) = 0.

The proof of Theorem 4.2 was basically presented in [28] (Theorem 5.1). It is an
adaptation of the proof given in Theorem 4.2, [37], for theC1 version of the Mountain
Pass Theorem. In [28], the proof is for the classical case whereK = [0, 1], K0 = {0, 1}
and the (PS) condition is assumed. However, it is clear from the arguments there and from
the original proof in [37] that we can extend it to the more general case stated in Theorem
4.2 without any substantial modifications.

Now, assume thatX andφ satisfy the conditions in Theorem 4.1. We show that the
metric spaceX1 = epi(φ) and the continuous functionalφ1 = Gφ satisfy the conditions
in Theorem 4.2. It is clear thatX1 is a complete metric space with the metric defined in
Definition 4.2. Let us define

χ1(s) = (χ(s), h(s)), s ∈ K. (4.16)

From (4.12),χ1(s) ∈ epi(φ), for all s ∈ K, and alsoχ1 ∈ C(K, X1). Furthermore, from
(4.13),

max
s∈K0

φ1(χ1(s)) = max
s∈K0

Gφ((χ(s), h(s)) = max
s∈K0

h(s) = sup
s∈K0

φ(χ(s)) = c0. (4.17)

Now, we observe that

(c =) inf
g∈M

sup
s∈K

φ(g(s)) ≤ inf
g1∈M1

max
s∈K

φ1(g1(s)). (4.18)

First, note thatM1 6= ∅ sinceχ1 ∈ M1. Assumeg1 belongs toM1,

g1(s) = (α(s), β(s)), s ∈ K.
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Then,α ∈ C(K, X), β ∈ C(K, R), and

β(s) ≥ φ(α(s)), ∀s ∈ K. (4.19)

Becauseg1 = χ1 onK0, we haveα = χ onK0. Hence,α ∈ M . (4.19) implies that

sup
s∈K

φ1(g1(s)) ≥ sup
s∈K

φ(α(s)) ≥ inf
g∈M

sup
s∈K

φ(g(s)) = c.

Since this holds for everyg1 ∈ M1, we obtain (4.18). Sincec > c0, (4.17) and (4.18) show
that

inf
g1∈M1

max
s∈K

φ1(g1(s)) > max
s∈K0

φ1(χ1(s)). (4.20)

This means thatX1, φ1,M1, andχ1 satisfy the conditions in Theorem 4.2. According to
this theorem, there exists a sequence{(un, ξn)} in epi(φ) such that

Gφ(un, ξn) = ξn → c1(≥ c), (4.21)

and
|dGφ|(un, ξn) → 0. (4.22)

We haveun ∈ D(J) andξn ≥ φ(un), ∀n. Moreover, according to Theorem 3.13 in [15],
one always has|dGφ|(u, ξ) = 1 wheneveru ∈ D(φ) andξ > φ(u). (4.22) thus implies
that

ξn = φ(un), for all n sufficiently large. (4.23)

It follows from (4.1), (4.21), (4.22), and (4.23) that

φ(un) → c1(≥ c), (4.24)

and

|dφ|(un) =
|dGφ|(un, φ(un))√

1− |dGφ|(un, φ(un))2
→ 0. (4.25)

From Proposition 4.1, it immediately follows that|∇φ|(un), ‖∇φ‖(un) → 0 asn → ∞.
2

In the classical case whereK = [0, 1] andK0 = {0, 1}, we have the following result,
which is a direct consequence of Theorem 4.1 and Proposition 4.1(e). We just note that
conditions (4.12)–(4.13) are clearly satisfied in this case.

Corollary 4.1 Suppose (X, ‖ · ‖) is a Banach space and F ∈ C1(X, R), J : X →
R ∪ {∞} is a convex, proper, lower semicontinuous functional. Put φ = J − F .
Assume that

(i) φ(0) = 0 and there exist α, ρ > 0 such that

φ(x) ≥ α, for all x ∈ X with ‖x‖ = ρ. (4.26)

(ii) There exists e ∈ X such that

‖e‖ > ρ and φ(e) ≤ 0. (4.27)
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Let
c = inf

f∈Γ
sup

t∈[0,1]

I(f(t))(≥ α), (4.28)

where
Γ = {f ∈ C([0, 1], X) : f(0) = 0, f(1) = e}. (4.29)

Then, there exist sequences {un} ⊂ X and {εn} ⊂ (0,∞) such that

εn → 0+, φ(un) → c̄(≥ c ≥ α), (4.30)

and

J(v)− J(un)− 〈F ′(un), v − un〉 ≥ −εn‖v − un‖, ∀v ∈ X,∀n ∈ N. (4.31)

Some remarks are in order to put the above concepts and results in perspective.

Remark 4.1 (a) In the case J = IK , the indicator function of a close convex set
K ⊂ X, the inequality (4.4) becomes{

〈F ′(u), v − u〉 ≥ 0, ∀v ∈ K
u ∈ K,

(4.32)

and the norm in (4.3) is

‖∇φ‖(u) = sup
v∈K,‖u−v‖≤1

〈F ′(u), v − u〉. (4.33)

The inequality (4.32), which is a suitable model for the minimal surface problem,
was studied in [40] and [9, 10], where the norm (4.33) was introduced (see also [42]
and [36]). Versions of the Mountain Pass theorem were derived in these papers for
(4.32), which resulted in the existence of unstable solutions of the minimal surface
problem. The definition in (4.3) is motivated by that in [40, 10] and extends it
to more general convex functionals (not necessarily over a convex set). Although
related, it seems that the approach used in the above works for the Plateau problem
cannot be applied to our problem here, in which the mean curvature depends on
both the position x and the displacement u. This extension is necessary for the
equation of prescribed mean curvature (1.1) that we consider here since in the case
the curvature is not zero, a variational inequality with the convex functional being
the area functional seems more appropriate for the formulation.

(b) Using the slopes in (4.2) or (4.3), one can define in a straightforward manner
the (PS) conditions for inequalities of type (4.4), by requiring that if a sequence
{un} in X satisfies

φ(un) → c0,

and
|∇φ|(un) → 0 (or ‖∇φ‖(un) → 0),
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then {un} has a convergent subsequence (cf. [40, 10], also [36]). In Theorem 4.1 or
Corollary 4.1, if a (PS) condition is assumed then one immediately has the existence
of a critical point. Corollary 4.1 and Theorem 4.1 are extended versions of the result
in [43] and [32], without the (PS) condition. Furthermore, we use here a different
approach for the proof which is based on recent developments in nonsmooth analysis
and seems to require fewer technical arguments than that in [43]. The norm |∇φ|
is defined here directly from the functional φ, which makes the (PS) condition and
the condition for (PS) sequences in inequalities more like the classical case of C1

functionals.
(c) In [41], Struwe studied the generic existence of multiple solutions of the pre-

scribed mean curvature problem. In [41], Dirichlet problems with nonhomogeneous
boundary conditions were considered and the curvature does not depend on the
displacement as we consider here. The problem and approach we consider here are
different from those in [41].

(d) The potential (energy) functional here is a C1 perturbation of a convex
functional (the area functional). Since the area functional is also continuous (in
fact, Lipschitz continuous) on the space of functions of bounded variation, we can
prove and use versions of the Mountain Pass Theorem without the (PS) condition
for continuous or Lipschitz functionals. As proved above, this will be equivalent
to what we consider here. However, we adopt the convex functional version due
to the simpler and more direct representations of the norms ‖∇φ‖ and |∇φ| rather
than that of |dφ| in Definitions 4.1 and 4.3. Furthermore, convexity of the area
functional and the formulation of the problem as a variational inequality, rather
than as a pointwise inclusion, will be extensively exploited later to obtain critical
points from (PS) sequences.

We are now ready for the proof of the existence of saddle points. Assume, in addition to
(A1)–(A2), the following growth condition (“super-linear” condition): There existsγ > 1
andξ1 > 0 such that

f(x, ξ)ξ ≥ γ

∫ ξ

0

f(x, η)dη, (4.34)

for a.e.x ∈ B, all ξ ∈ [ξ1,∞). Forξ > 0, let us put

gξ(t) =
t

[(1 + t2)1/2 + 1](tq−1 + ξ)
(t > 0). (4.35)

It is easy to check thatsup0<t<∞ gξ(t) ∈ (0,∞) for everyξ ∈ (0,∞). We define the
functionM : (0,∞) → (0,∞) by

M(ξ) = sup
0<t<∞

gξ(t). (4.36)

Theorem 4.3 Assume (A1), (A2), and the growth condition (4.34). Suppose fur-
thermore that

M

(
C1d2q

d1C
q
q |B|q−1

)
>

λ

q
d1C

q
q |B|q−1, (4.37)
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where d1, d2, q are given in (A2) and C1, Cq are in Theorem 3.1. Then, there exists
a nontrivial solution u of the inequality (2.13) which is the weak∗-limit of a sequence
{un} satisfying

lim
n→∞

Iλ(un) > 0 and lim
n→∞

|∇Iλ|(un) = 0.

Proof. We show that under the assumptions stated above in Theorem 4.3, all conditions
in Corollary 4.1 are satisfied, withφ = J − λF . First, let us check condition (i) in
Corollary4.1. From (3.1), we have

|F (x, ξ)| ≤ d1

q
|ξ|q + d2|ξ| (for a.e.x ∈ B, all ξ ∈ R), (4.38)

and thus, ∫
B
|F (x, u)|dx ≤ d1

q

∫
B
|u|q + d2

∫
B
|u|

≤ d1

q
Cq

q

(∫
B
|∇u|

)q

+ d2C1

∫
B
|∇u|,

(4.39)

(Cq andC1 are given in Theorem 3.1). Let us consider the function

φ(ρ) =
(|B|2 + ρ2)1/2 − |B|

D1ρq + D2ρ
(ρ > 0),

whereD1 =
d1

q
Cq

q (> 0), D2 = d2C1(> 0). Forρ = t|B|, one has

φ(ρ) =
1

D1|B|q−1

t

[(1 + t2)1/2 + 1](tq−1 + D3)
,

with D3 = D2D
−1
1 |B|1−q(> 0). Then,

φ(ρ) = φ(t|B|) = D−1
1 |B|1−qgD2D−1

1 |B|1−q (t). (4.40)

From the definitions ofM andgξ, one gets

sup
0<ρ<∞

φ(ρ) = sup
0<t<∞

φ(t|B|)

=
1

D1|B|q−1
M

(
D2

D1|B|q−1

)
=

q

d1C
q
q |B|q−1

M

(
C1d2q

d1C
q
q |B|q−1

)
.

It follows from (4.37) that
sup

0<ρ<∞
φ(ρ) > λ. (4.41)

Therefore, there existρ0 andλ1 > λ such that

(|B|2 + ρ2
0)

1/2 − |B| > λ1(D1ρ
q
0 + D2ρ0). (4.42)
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Foru ∈ X such that‖u‖0 = ρ0, one has, from (3.3), (4.39) and (4.42),

Iλ(u) = J(u)− λ

∫
B

F (x, u)dx

≥ (|B|2 + ρ2
0)

1/2 − |B| − λ(D1ρ
q
0 + D2ρ0)

≥ (λ1 − λ)(D1ρ
q
0 + D2ρ0)(> 0).

(4.43)

This shows (4.26) withρ = ρ0 andα = (λ1 − λ)(D1ρ
q
0 + D2ρ0).

To check (ii), we fix a functionφ ∈ C∞
0 (Ω) such thatφ ≥ 0 andφ 6≡ 0. By assigning

φ(x) = 0 for x ∈ B \ Ω, we can considerφ as a function onB. It is clear thatrφ ∈ X for
all r > 0. On the other hand, it follows from (4.34) that

f(x, ξ) ≥ d4ξ
γ−1 − d5,

for a.e.x ∈ B, all ξ ≥ 0 (with somed4, d5 > 0). It follows that

F (x, ξ) ≥ d4

γ
ξγ − d5ξ,

for a.e.x ∈ B, all ξ ≥ 0. Then, forr > 0,

Iλ(rφ) =
∫
B

r2|∇φ|2√
1 + r2|∇φ|2 + 1

dx− λ

∫
B

F (x, rφ)dx

≤ r

∫
B
|∇φ|dx− d4r

γ

γ

∫
B
|φ|γdx + λrd5

∫
B
|φ| dx.

Sinceγ > 1, I(rφ) → −∞ asr → ∞. Hence,Iλ(rφ) < 0 for r > 0 sufficiently large.
We have checked condition (ii) in Corollary 4.1.

From Corollary 4.1 it follows that there exist sequences{un} in BV (B) and{εn} in
(0,∞) such thatεn → 0 and

Iλ(un) → c(≥ α > 0), (4.44)

and

J(v)− J(un)− λ

∫
B

f(x, un)(v − un)dx ≥ εn‖v − un‖BV (B), (4.45)

for all v ∈ BV (B), n ∈ N.
Let us prove that the sequence{un} is bounded inBV (B). In fact, (4.30) implies∫

B

√
1 + |∇un|2 − λ

∫
B

F (x, un)dx = c + |B|+ sn, (4.46)

with {sn} being a bounded sequence inR. From (4.31), one has∫
B

√
1 + |∇v|2 −

∫
B

√
1 + |∇un|2 − λ

∫
B

f(x, un)(v − un)dx

≥ −εn

∫
B
|∇(v − un)|, ∀v ∈ X.

(4.47)
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Note that forv = 2un, we have the estimate∫
B

√
1 + |∇v|2 =

∫
B

√
1 + 4|(∇un)a|2dx + 2

∫
B
|(∇un)s|

≤ 2
∫
B

√
1 + |(∇un)a|2dx + 2

∫
B
|(∇un)s|

= 2
∫
B

√
1 + |∇un|2.

Lettingv = 2un in (4.47) and using this estimate, one gets∫
B

√
1 + |∇un|2 ≥

∫
B

√
1 + |∇(2un)|2 −

∫
B

√
1 + |∇un|2

≥ λ

∫
B

f(x, un)undx− εn

∫
B
|∇un|.

Using (4.46), we have

λ

∫
B

F (x, un)dx + c + |B|+ sn ≥ λ

∫
B

f(x, un)undx− εn

∫
B
|∇un|,

that is,

λ

∫
B
[f(x, un)un − F (x, un)]dx ≤ C + |B|+ sn + εn

∫
B
|∇un|. (4.48)

(4.34) implies that there existsd6 > 0 such that∫
B

f(x, un)undx ≥ γ

∫
B

F (x, un)− d6, ∀n.

Thus, ∫
B
[f(x, un)un − F (x, un)]dx ≥ (γ − 1)

∫
B

F (x, un)dx− d6. (4.49)

It follows from (4.46), (4.48), and (4.49) that∫
B
|∇un| ≤

∫
B

√
1 + |∇un|2

= λ

∫
B

F (x, un)dx + c + |B|+ sn

≤ λ

γ − 1

∫
B
[f(x, un)un − F (x, un)]dx + c + |B|+ sn +

d6

γ − 1

≤
(

1 +
λ

γ − 1

)
(c + |B|+ sn) +

εn

γ − 1

∫
B
|∇un|+

d6

γ − 1
.

Therefore,(
1− εn

γ − 1

)∫
B
|∇un| ≤

d6

γ − 1
+
(

λ

γ − 1

)
(c + |B|+ max

n∈N
|sn|).
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Sinceεn → 0, this estimate shows that the sequence

{∫
B
|∇un|

}
is bounded. Thus,{un}

is bounded inBV (B). By passing to a subsequence, if necessary, we can assume that

un → u in Lβ(Ω), β ∈
[
1,

N

N − 1

)
, (4.50)

un → u a.e. onΩ, (4.51)

and
∇un ⇀ ∇u in [M(Ω)]N (−weak∗). (4.52)

Let us show thatu is a solution of (2.13). From (4.50)–(4.52) and the lower semi-continuity
of J (cf. e.g. [24]), one has

J(u) ≤ lim inf J(un). (4.53)

From the compactness of the embeddingBV (B) ↪→ Lβ(B), for 1 ≤ β < N
N−1 , and the

growth condition (3.1), we haveun → u in Lq(B) andf(·, un) → f(·, u) in Lq′(B).
Therefore, ∫

B
f(·, un)(v − un)dx →

∫
B

f(·, u)(v − u)dx, ∀v ∈ BV (B). (4.54)

It is clear that
εn‖v − un‖BV (B) → 0. (4.55)

Letting n → ∞ in (4.45) and using (4.53)-(4.55), we see thatu satisfies (2.13) for all
v ∈ BV (B).

Now, let us show thatu 6= 0. Assume otherwise thatu = 0 in (4.50)-(4.52). Letting
v = 0 in (2.13), we get ∫

B
f(·, un)undx ≥ J(un)(≥ 0), ∀n.

Letting n → ∞ in this inequality, we havelim J(un) = 0. On the other hand, it follows
from (3.18) that ∫

B
F (x, un)dx →

∫
B

F (x, 0)dx = 0.

Thus,Iλ(un) = J(un) − λ

∫
B

F (·, un)dx → 0, contradicting (4.44). Hence, (2.13) has a

solutionu 6= 0. 2

Remark 4.2 Note that for a given function F , inequality (4.37) always holds when
λ is sufficiently small. That is, there exists λ∗ > 0 such that (4.26) is true for all
λ ∈ (0, λ∗). λ∗ can be chosen as

λ∗ =
q

d1C
q
q |B|q−1

M

(
C1d2q

d1C
q
q |B|q−1

)
.
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On the other hand, if λ is fixed, for example, λ = 1 (the equation does not depend
on a parameter), then (4.37) holds if

g C1d2q

d1C
q
q |B|q−1

(t0) >
1
q
d1C

q
q |B|q−1,

for some t0 > 0 (with gξ defined in (4.35)). In the case t0 = 1, this inequality
becomes

d1C
q
q |B|q−1

(1 +
√

2)(C1d2q + d1C
q
q |B|q−1)

>
1
q
d1C

q
q |B|q−1,

that is,
C1d2q + d1C

q
q |B|q−1 <

q

1 +
√

2
. (4.56)

This sufficient condition is satisfied if the coefficients d1 and d2 in (3.1) are small,
i.e., f is sufficiently small.

As a consequence of Theorem 4.3 and the above remark, one has the following exis-
tence t of eigenfunctions of (2.13) for small values ofλ:

Corollary 4.2 Under assumptions (A1), (A2), and the growth condition (4.34), there
exists λ∗ > 0 such that for all λ ∈ (0, λ∗), (2.13) has at least one nontrivial solution
uλ ∈ X. Moreover, if f(x, u) satisfies:

(A3) For a.e. x ∈ Ω,

f(x, u)
{
≥ 0 if u ∈ [0,∞)
= 0 if u ∈ (−∞, 0],

then ∫
B
|∇uλ| → ∞ as λ → 0+. (4.57)

Proof. The existence ofuλ follows directly from Theorem 4.3 and Remark 4.2. Let us
check the limit (4.57). It follows from (A3) that, for a.e.x ∈ Ω,

F (x, ξ) ≥ 0 for ξ ≥ 0, F (x, ξ) = 0 for ξ ≤ 0. (4.58)

For λ ∈ (0, λ∗), we denote byuλ the nontrivial solution of (2.13) and by{uλn} the
sequence that converges weakly∗ to uλ as mentioned in Theorem 4.3. We have, from
(4.58) and (4.43),

(λ∗ − λ)(D1ρ
q
0 + D2ρ0) ≤ lim

n→∞
Iλ(uλn)

≤ lim sup
n→∞

J(uλn). (4.59)

For simplicity of notation, we putun = uλn. Sinceun satisfies (4.45), one can letv = 0
in (4.45) to get

−J(un) + λ

∫
B

f(x, un)un ≥ −εn‖un‖BV (B).
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Since{un} is bounded,εn‖un‖BV (B) → 0. (4.54) implies that

λ

∫
B

f(x, uλ)uλdx = lim
n→∞

∫
B

λf(x, un)undx

≥ lim sup J(un).
(4.60)

Hence, from (3.1), (4.59), (4.60), it follows that

(λ∗ − λ)(D1ρ
q
0 + D2ρ0) ≤ λ

∫
B

f(x, uλ)uλdx

≤ λ

∫
B

(d1|uλ|q + d2|uλ|) dx

≤ λ

[
(d1 + d2)

∫
B
|uλ|q + d2|B|

]
.

Consequently, ∫
B
|uλ|q ≥ (λ∗ − λ)(D1ρ

q
0 + D2ρ0)

λ(d1 + d2)
− d2|B|

d1 + d2
.

This holds for everyλ ∈ (0, λ∗), implying that

lim
λ→0+

∫
B
|uλ|q = ∞.

Using Poincaŕe’s inequality, we obtain

‖uλ‖BV (B) =
∫
B
|∇uλ| → ∞ as λ → 0+. (4.61)

2

Note that this last estimate on‖uλ‖BV (B) (cf. (4.61) and (3.21)) shows that for allλ > 0
sufficiently small, the solutionuλ obtained by the min-max arguments in Theorem 4.3 is
different from the local minimizer solution in Corollary 3.1. We thus have the following
result.

Corollary 4.3 Assume conditions (A1), (A2), (A3), (3.2), and (4.34) are satisfied.
Then, there exists λ0 > 0 such that for all λ ∈ (0, λ0), the inequality (2.13) has at
least two nontrivial solutions.

Notes on nontrivial nonnegative solutions

In this last part, we study the existence of nonnegative solutions of the inequality (2.13).
Here, we also assume thatf satisfies (A3). Suppose thatu is a nontrivial solution of (2.13)
whose existence is shown in Theorem 4.3 or Corollary 3.1. We show thatu+ = max{u, 0}
is also a nontrivial solution of (2.13). First, let us check thatu+ ∈ BV (B) and

J(u+) ≤ J(u). (4.62)

In fact, from Theorem 3.3, [8], there exists a sequence{un} in W 1,1(Ω) such that

un → u in L1(B) and J(un) → J(u). (4.63)
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Moreover, as noted in [3], by using an approximation result by Anzellotti and Giaquinta,
one can show thatu+ ∈ BV (B) and

|∇(u+)|(E) ≤ |∇u|(E),

for all Borel subsetsE of B. From (4.63) and Stampachia’s theorem (cf. e.g. [29]), one has
u+

n ∈ W 1,1(B) and
u+

n → u+ in L1(B).

We have
J(u+) ≤ lim inf J(u+

n ). (4.64)

Sinceu+
n ∈ W 1,1(B),∇u+

n = (∇un)χ{x:un(x)>0}, and thus

J(u+
n ) =

∫
{x:un(x)>0}

(√
1 + |∇un|2 − 1

)
dx

≤
∫
B

(√
1 + |∇un|2 − 1

)
dx = J(un), ∀n ∈ N.

Therefore, by (4.63),

lim inf J(u+
n ) ≤ lim inf J(un) = J(u).

Combining this inequality with (4.64), one obtains (4.62).
Sinceu+ = 0 a.e. inB \ Ω, we haveu+ ∈ X. Lettingv = u+ in (2.13), one gets

J(u+)− J(u) ≥ λ

∫
B

f(x, u)(u+ − u)dx ≥ 0.

Together with (4.62), this implies that

J(u+) = J(u). (4.65)

Let v ∈ X. Becausef(x, 0) = 0,∫
B

f(x, u+)(v − u+)dx =
∫
{x∈B:u(x)>0}

f(x, u+)(v − u+)dx

=
∫
{x∈B:u(x)>0}

f(x, u)(v − u)dx

=
∫
B

f(x, u)(v − u)dx.

(4.66)

It follows from (4.65) and (4.66) thatu+ also satisfies (2.13), wheneveru does. Moreover,
u+ 6≡ 0. In fact, if u+ ≡ 0 thenJ(u) = J(u+) = 0. Therefore,∫

B
(
√

1 + |(∇u)a|2 − 1)dx =
∫
B
|(∇u)s| = 0.

We thus have(∇u)s = 0, i.e.∇u = (∇u)a ∈ [L1(B)]N and∫
B
(
√

1 + |∇u|2 − 1)dx = 0.
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This implies that∇u = 0 a.e. onB and thereforeu = 0 (sinceu = 0 onB \ Ω). Using the
arguments in the proof of Theorem 4.3, we obtain from this a contradiction. Hence,u+ is
not identically zero. We have thus shown that ifu is a nontrivial solution of (2.13) thenu+

is also a nonnegative, nontrivial solution of (2.13).
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