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Abstract

The paper is concerned with an eigenvalue problem for the prescribed mean curvature
equation. We formulate the problem as a variational inequality and show that under some
growth conditions on the lower order term, the relaxed problem has at least two nontrivial
solutions in a space of functions of bounded variation when the parameter is small.
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1 Introduction

We are concerned here with an eigenvalue problem for the prescribed mean curvature equa-
tion, namely, the equation

. Vu _ o) i
—div <W> = Af(x,u) in Q, (1.1)

with Dirichlet boundary condition
u=0 on 99, (1.2)

here,2 is a bounded domain iRY (N > 2) with sufficiently smooth boundaryyu =
(O1u,...,0nu) and X is a positive parameter, and we are interested in the existence of
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134 V.K. Le

nontrivial solutions (eigenfunctions) of the boundary value problem (1.1)-(1.2), and fur-
thermore in nonnegative solutions, that is solutiorsich that

uw>0inQ. (1.3)

The prescribed mean curvature problem and, in particular, the minimal surface prob-
lem, have been studied extensively with different approaches. Classical existence theorems
and gradient estimates are presented in [22] with references to the original works by Finn,
Bombieri/De Giorgi/Miranda, Jenkins, Serrin, etc. In this paper, we start with the vari-
ational approach for the problem in the space of functions of bounded variation. This
approach was developed in e.g. [5, 38, 19, 20, 21]. In the existence theorems established in
most of those works, the solutions of the prescribed mean curvature problem are considered
as global minimizers of the corresponding energy functionals.

We propose here a new formulation of the relaxed problem for (1.1)-(1.2) as a varia-
tional inequality which can be seen as a “hybrid” from equations and minimization prob-
lems. This allows us to study other types of solutions for the problem, such as saddle points,
as well. This formulation is simple and elementary, yet it gives some new insights to prob-
lem (1.1)-(1.2). It also seems suitable for the application of recent results in Nonsmooth
Analysis and the theory of variational inequalities (cf. e.g. [43, 15, 12, 26, 16, 33, 30, 34,
31, 35] and the references therein) to the classical problem of prescribed mean curvature.
We consider here homogeneous Dirichlet boundary conditions; hence the question of the
existence of nontrivial solutions is crucial.

Our main goal here is the inequality formulation and the existence of nontrivial so-
lutions of problem (1.1)-(1.2) as local minimizers and as saddle points of the potential
functional. The existence of nonzero local minimizers is proved by using appropriate es-
timates. On the other hand, the existence of saddle points is based on a version of the
Moutain Pass theorem for variational inequalities. Mountain Pass theorems for inequalities
seem to have been first developed in [40] and [10] to study unstable minimal surfaces. The
inequalities considered in [40] and [10] consist of the Dirichlet integral over appropriate
closed and convex sets. We need here a different version of the Mountain Pass theorem for
inequalities with convex functionals which are not indicator functions of convex sets. Also,
since it seems rather difficult to verify the Palais—Smale (PS) condition for inequalities in
our case, we shall prove and use a version of the theorem without the (PS) condition.

Concerning prescribed mean curvature equations with parameters (eigenvalue prob-
lems), the existence of radial solutions has been studied extensively in the caQeighat
radially symmetric (cf. e.g. [39, 4, 27] and the references therein). The general case of non-
symmetric domains and nonradial solutions seems not to have been investigated to such an
extent. An existence result for nontrivial solutions of the problem

Vu i
Y (W) —pu+Af(u) =0 in Q (1.4)

u =0 on 0,

wherep > 0, f € C|0, o) satisfies the Nehari condition, was obtained in [11]. By using an
extension of Nehari’'s method to partial differential equations, Coffman and Ziemer showed
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that under certain growth conditions, for eaeliixed, (1.4) has a nontrivial nonnegative
C'-solution for\ sufficiently large.

In this paper, we concentrate on equation (1.1) with a general lower-ordef {erm).

Using a different approach, we show that under certain growth conditiorfs problem
(1.1)-(1.2) has at least two nontrivial solutions fosufficiently small.

The paper is organized as follows. In the next section, we formulate the relaxed problem
for (1.1)-(1.2) as a variational inequality in an appropriate space of functions of bounded
variation. In section 3, we show the existence of nontrivial solutions of the relaxed problem
of (1.1)-(1.2) as local minimizers of certain potential functionals. Section 4 is devoted to
the existence of saddle points of Mountain Pass type of the problem.

2 Variational inequality formulation

In this section, we shall formulate (1.1)-(1.2) as a variational inequality which is more
convenient for using variational arguments. First, note that the operator

ai Vu
U r— —div | —F/————————
V14 |Vul?
hasJy(u) = [,(v/1+ |Vu|? — 1) dx as a potential functional (withy(0) = 0), at least

for u with Vu satisfying certain growth conditions (for example, foe W1(€)). Let F
be the anti-derivative of (with respect to the second variable) wili-, 0) = 0,

F(z,u) = /Ou f(z,s)ds, x € QueR, (2.1)

and

We have

(F' (), 0) = /Q s u)o da

for all u, v in some appropriate function space (to be specified later). Therefore, solutions
of (1.1) are critical points of the functional

Ip = Jo — \F,

subject to zero boundary conditions. As already well-known, the choice of a suitable func-
tion space is very important for the solving of problem (1.1)-(1.2). A choice of such space
should be such that the function&} is coercive and has certain appropriate continuity
properties.

A simple and natural choice of such a function spadé’(ﬂsl(ﬂ) with the usual norm

ullwrr = llullr + [[TVal |21
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Then,.J, is coercive in the sense that
Jo(u) — oo as |Jullyr1 — oo.

However,.Jy is not lower semicontinuous with respect to the weak topology in this space.
To overcome this difficulty, a popular way is to consider the relaxed functiongj of the
space of functions of bounded variation (cf. e.g. [17, 13, 6, 14]). As uSlJ4({2) denotes

the set of all functions i (2) with bounded variation, that i§/« (in the distributional
sense) is a (vector) bounded Radon measure. In other wBU$() is the set of all

u € L'(Q) such that

| vl =

o {/ udivgde : g = (g1, gv) € CH(2RY) and max |g(x)] < 1} Y
Q T
< 00,
(divg:Z 1 0ig;). The usual norm oBV () is defined as
o / fulde + / 1V, (2.3)

Where/ |[Vu| is defined in (2.2). Note tha/ |Vu| is the total variation of the measure
Q

Vu. BV () with the norm (2.3) is a Banach space. The relaxed functional associated with
Jo(u) and the boundary conditioln= 0 on 992 is given by (cf. [6, 7, 8, 25, 24, 1, 17]):

Ji(u) = / 1+ |Vul? +/ luloq| dHN T, (2.4)
Q [219)
foru € BV(Q), wheredH¥N—! is the(N — 1)-dimensional Hausdorff measure 8f and
/ V' 1+ |Vu|? is given by
Q
/ V14 |Vul?
Q
= sup { / (gn+l + Udlvg)dl’ g = (gla927 cee 7gn+1) € 001(Q7Rn+1)a (25)
Q
<1y.
maxlg(o)] <1}

As shown in [25, 8],/ v/1+ |Vu|? can be defined equivalently as
Q

/«/1+\Vu|2:/ \/1+\(Vu)a|2dx+/ (Vu)l, (2.6)
Q Q Q

where(Vu), € [LY(Q)]Y and(Vu)s € BV(Q) are, respectively, the absolutely continu-
ous part and the singular part ©fu with respect to theéV-dimensional Lebesgue measure
dr = dLn.
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This leads us to the study of critical points of the relaxed functional associafgd to
I =J1 - \F (2.7)

in BV (§2). However, the continuous differentiability df cannot be established BV (2).
SinceJ; is convex inBV (Q2), we can consider critical pointsof I; as points such that

0€dJ — AF, (2.8)

wheredJ; is the subdifferential of/; in BV (2) in the sense of convex analysis (afd
is the usual Fechet derivative ofF). The inclusion (2.8) is equivalent to the variational
inequality

Ji(v) — Ji(u) — )\/ fz,u)(v —u)dx >0, Yv € BV(Q) (2.9)

Q .

u € BV(Q).
Our goal here is to study (2.9) (and its equivalent inclusion) by using variational methods.
We note that (2.9) is, in some sense, a “hybrid” from an equation and a minimization

problem. In fact, (2.9) can be seen as the Euler—Lagrange equation for the minimization
problem of.J; — AF. On the other hand, if does not depend an then (2.9) is equivalent

to the minimization of/; (u) — )\/ fu. Moreover, if.J; is Gateaux differentiable in a

Q
directionh, then from (2.9) withv = u + th (and lett — 07), we have that

(J1(u), h) — )\/Qf(x,u)hdz =0.

Another step is needed for our final formulation of the problem. £ &g a ball (or a
bounded region with smooth boundary)RA" such that) ¢ B. Foru € BV (), put

- fu inQ
“Z10 inB\Q.
Then,u € BV (Q). As in Section 14.4 of [24], we have

/ VIVl = / 15 Va2 +/ luloal dHY 1 = 1 (u). (2.10)
B Q 09
Let us put

X ={ue BV(B):u(z)=0fora.e.x € B\ Q} (2.11)
and

() :/B\/l—&- VP, uc BV(B). (2.12)

Then, in view of (2.10) and (2.12), the inequality (2.9) is equivalent to the following in-
equality inX:

J(v) — J(u) — /\/Q f(@,u)(v —u)de >0, Vo € X (2.13)
ue X.
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By moving from (2.9) to (2.13) and replacing in (2.4) by J in (2.12), we get a sim-
pler representation for the relaxed functionalJgf(without involving the integral on the
boundary of2). Moreover,X is a closed subspace 8V (Q2). In fact, assuméu, } C X
andu,, — win BV (B). We haveu,, — w in L'(B) and by passing to a subsequence, if
necessary, we can assume that

u, — u a.e. inBb.

It follows thatu = 0 a.e. inB\ Q, i.e.,u € X. Thus, (2.13) is equivalent to the following
variational inequality inBV (B):

{<J+way—u+wmao—Néf@ﬂW”‘“”mzmV”erw) (214)
u € BV (B).

We also use an equivalent form of (2.13) wittgiven, instead of (2.13), by

/(\/1+|Vu|2—1)
f;[\/l-i-(Vu)a|2—1]dl'+/8|(VU)s.

From this formula, we see thdi{w) > 0 for allu € BV (B), J(0) = 0, and moreover

J(u)

(2.15)

Ju)=0ue X < u=0.

In fact, assume/ (u) = 0 for someu € X. We have|(Vu)|(B) = 0 and /1 + |[Vu|? —
1 = 0 a.e. inB. The first equation implies thdfVu), is a zero measure ofi. Since
V14 |Vu|? =1 > 0onB, it follows from the second equation th&¥ u), = 0 a.e. in53.
Thus,Vu = 0 in B (as a measure). This shows thais a constant. Since € X, this
constant must be zero.
Assume that
f(z,0) =0 fora.e.x € B. (2.16)

Hence,u = 0 is a trivial solution of (2.13) for alh\(> 0). We are interested here in the
existence of nonzero solutions of (2.13)Xh

3 Existence of nontrivial solutions as local mini-
mizers

We study the existence of nontrivial critical points of the functional
I0)(= B(w) = J(w) ~ A [ Fa.de, ue X,
B

whereJ is given by (2.15) and” given by (2.1). We assume the following conditions.
(A1) f : B x R — Ris a Caratbodory function.
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. N
(A2) There existg € (1, 1) such that

|f(z,6)] < d1€97 ! 4+ do, forae.xc B, allé € R, (3.1)

with dy,ds > 0. Assume furthermore that < 2 (this holds if N > 2) and there exist
€ (1,2), ds, & > 0 such that

fla,€) > ds€™ (3.2)
fora.e.x € B,all£ € [0,&).
First, we need an estimate fy[r V1+|Vul?
B

Lemma 3.1 We have

/B\/mz \/IBP + (/B |Vu|>2, Yu € BV (B). (3.3)

Proof. First, note that (3.3) holds for all € W' (B). In fact, foru € W!(B), we have
|Vu| € L'(B) and Jensen’s inequality, applied to the convex functign) = /1 + 22,

gives
/|Vu\da: /¢(|Vu|)d:c
o | =B < /B

/dx - /dx
B B

\/1+|B|2</ V“') i8] J, VI

which is the same as (3.3). Now, assume BV (B). From Theorem 3.3, [8], there exists
a sequencéu,, } in Wh1(B) such thats,, — uin L'(B) and

/B«/l—i-|Vun|2—>/B\/1+|Vu|2. (3.4)

that is,

It follows from the lower semicontinuity of the total variatioﬁ |Vu| (cf. e.g. [24], Theo-
B

rem 1.9) that
/\Vu| gliminf/ [V, |.
B B

\/|B|2 + </B |Vu|>2 < liminf \/|5’|2 + (/B |Vun|>2. (3.5)

Therefore,
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Applying (3.3) to eachu,, and using (3.3), (3.4), we get

/ V14 |Vul|? 1im/ V1+|Vu,|?
B B
2
lim inf \/|B|2 + (/ Vun|)
B
2
|B|2 + </ Vu|> )
B

Hence, (3.3) is proved far € BV (B). |

We need the following Poincaninequality for functions inX (based on e.g. Theorem
1.28, [24]), whose proof is included for completeness.

Y

Y

N
Theorem 3.1 For each 3 € [1, _1] , there exists Cg > 0 such that

N

3
(/Bu|ﬁdx) gcﬁ/3|vu|, u € X, (3.6)

Proof. Foru € X, we extend: to a function inBV (RY) as

. fuw in B
“Z10 in RV\B.

Then,a € BV(RY) and the traces of on 913 both inside and outside df are 0 (cf.
Chapter 2, [24]), i.e.,
"o =0 o =u" |9 = 0.

From Theorem 1.28, [24], it follows that

(/ |u) <o [ vl (3.7)
RN RN

and from Remark 2.14, [24], we conclude that

[l = [ uls [ loslar = = [ v, (3.8)
RN B oB B
/ |g|NZX1 :/|u|%. (3.9)
RN B

Combining (3.7), (3.8), (3.9), we get (3.6) for the case: . For3 € [1, ° ), using
Holder's inequality, we get

/ u|?de < Q' 05 (/ ulNNl)
B B

It is clear that

B(N—1)
N
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Therefore,

() V<o ([ =) =

This and (3.6) in the casé = -~ imply (3.6) for3 € [1, i~ ]. ]

From the Poincd inequality (3.6) (with3 = 1), we know that, withinX, the norm
| - [l v (B) defined above is equivalent to the norm

lullo = / Vul.
B

Now, we are ready to prove the existence of a nonzero local minimizgy. of

Theorem 3.2 Under assumptions (A1)-(A2) and (3.2), there exists \* > 0 such that
for all X € (0,\*), the functional Iy has a nonzero local minimum point u in the
open ball {u € X : |ullo < A*} with 0 < o < 1.

Proof. From (3.1), there exist§; > 0 such that
|F(2,8)] < Cr(l€]7 + [¢]) (3.10)

fora.e.x € B, all ¢ € R. Using (3.6) with3 = ¢ and = 1, one gets

/BIF(:c,U)Ide s G (/BM”/BW) (3.11)

([Liva) + [19ul] e x,

IN

for someC; > 0. Forp > 0, let us consider the sphere
S, ={ue€ X :|ullo=p} (3.12)

From (3.3) and (3.11), we have, farc S,

() = J(u) -\ / Fla,u)de

B (3.13)

> (IB]? + ") = B = CoA(p? + p).

Choosingp = A% (« > 0 will be chosen later), we have, farc S)«,
Iv(u) > (B> + X292 —|B| — Cy(X10FL 4 \othy, (3.14)

By takinga € (0,1), we have

2a<a+1<ga+1.
Since \2a \20
(B2 + 322)72 + 18] ~ 2]’

(IB]? + X212 — |B| =
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as\ — 0, there exists\* > 0 such that the right hand side of (3.14) is positive for all
A € (0, A*]. Consequently,

Iy (u) >0 onSye forall A € (0, \"]. (3.15)
LetB, = {u € X : |Ju|o < p}. From (3.13),
inf{I)\(u) : w € Bya} > —00.
Let us choose a functiopn = ¢, € C§°(©2) such that
[6llo < A%,

and
0 < ¢(z) < &, Vo € Q,

whereg is given in (3.2). Foe € (0, 1), we havesg(x) € [0,&) and
()
Flaeo(@) = [ f0.0de 2 o] (€ =dur™). (316)
Also, by extendings to B (by putting¢(x) = 0 for x € B\ ), one hasp € C§*(B) N X

and furthermore> € Bja.
Sinceep € C3°(B),

J(ed) = /B( T V) @P ~1) do
3¢ [ Vo) .

IN

(because/1+ &2 —1 < %52, V¢ € R). Thus, from (3.16), we may deduce that

Li(ed) = / (V1T —1) - A /B F(, cd)da

B
< < (&’“/ |V¢>|2dz—)\03/¢7”dgc).
2 B B

Sincer < 2, we havee?~" — 0 ase — 0. Therefore, the right hand side of (3.17) is
negative fore > 0 sufficiently small. This proves thanf{I)(u) : v € By} < 0. Now,
since the embedding

(3.17)

BV (B) — L?(B)
is compact fors € [1, %) (cf. Section 1.19, [24]), (3.10) shows that the mapping

U / F(x,u)dx
B

is completely continuous fromBV (B) to R in the sense that if,, — « in L*(B) and{u,, }
is bounded inBV (B) then

/B F(z,up)dz — /B F(z, u)dz. (3.18)
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Let {u, } be a sequence iB,. such that
I)\(un) — inf{b\(u) U e B,\a}.

Since{u, } is bounded inBV (B), by passing to a subsequence, if necessary, we have
u € BV(B) such that
u, — win L*(B), and
Vu, —* Vuin M(B).

It is clear from (3.19) that. € X. From the lower semicontinuity of the norjn || with
respect to thd.'-topology (Theorem 1.9, [24]), we have

/|Vu| gnminf/ Vatn| < A%
B B

Hence,u € By.. We also note thaf is lower semicontinuous with respect to thé-
topology inBV (£2) (Theorem 14.2, [24]). It follows that

J(u) < liminf J(up).
Together with (3.18), this shows that

I (u) < liminf Iy (uy,).

(3.19)

Consequently/, has a minimum at in By.. We havel,(u) < 0. This implies that:
cannot be on the boundaBj. of By« (by (3.15)). Alsou # 0 (sincel(0) = 0). Thus,
w is @ nontrivial, local minimum point of . O

Remark 3.1 Since ||ullp < A%, we immediately have
/|Vu|—>0 as A\ — 0.
B

That the local minimum point. of the above theorem (Theorem 3.2) is a nontrivial
solution of (2.13) follows from the following lemma.

Lemma 3.2 Assume V is a Banach space, J : V. — R U {oco} is convex, and F :
V — R is Gateauz differentiable. If u € V is a local minimum point of [ = J — F,
then u 1s a solution of the variational inequality

J(v) = J(u) — (F'(u),v —u) >0, Vv € V. (3.20)

The proof is straightforward and is omitted. From the growth condition (3.10), it follows
thatF is Fréchet differentiable froni.?(B) to R. Since the embedding mapping BV (5)

into L7(B) is continuous,F is also Féchet and thus &eaux differentiable fronBV (5)

toR. As a consequence of Theorem 3.2 and Lemma 3.2, one has the following existence
result for nontrivial solutions of (2.13).

Corollary 3.1 Under assumptions (A1), (A2), and (3.2), there exists \* > 0 such
that for all A € (0,\*), the variational inequality (2.13) has a solution uy # 0,
which is a local minimizer of the functional Iy. Moreover,

/ |[Vux| = 0 as A — 0. (3.21)
B
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4 Existence of nontrivial solutions as saddle points

Under certain conditions, we can find another nontrivial solution of (2.13) as a saddle point
of the energy functional. For this purpose, we shall use a version of the Mountain Pass
Theorem for variational inequalities (cf. [2, 43]), without the Palais—Smale (compactness)
condition. This modification is crucial for our purpose, since, different from Sobolev spaces
which are normally reflexive (and uniformly convexyV (B) is not. Hence, compactness
properties for functions of bounded variation seem less convenient than their counterparts
in Sobolev spaces (more comments are given in Remark 4.1).

Our tools here consist of some concepts of slopes of nhonsmooth functionals, together
with a critical point theory for nonsmooth functionals developed recently by M. Degio-
vanni and his collaborators (cf. e.g. [15, 12]), also independently by loffe and Schwartzman
([26]). First, we recall some definitions (cf. [15, 12, 26]).

Definition 4.1 Let (X, d) be a metric space, u € X, and f : X — R be continuous.
One denotes by |df|(u) (in [0, oc], called the weak slope of f at u) the supremum of
the ¢’s in [0,00) such that there exist 6 > 0, an open neighborhood U of u in X,
and a continuous function H : U x [0,d] — X such that

(1) d(H(v,t),v) < t, and

(2) f(H(v,t)) < f(v) —at, Y(v,t) € U x [0,0].

Definition 4.2 Let (X, d) be as in Definition 4.1 and f : X — R U {oo} be a lower
semicontinous function.

(a) The effective domain of f is D(f) ={u € X : f(u) < oo}.

(b) The epigraph of f is the set epi(f) = {(u,&) € X x R: f(u) < &}. epi(f) is
a metric space with the metric d((u,£), (v, 7)) = [d(u, v)* + (€ — n)2]V/2.

(c) We denote by G the projection of epi(f) to R:

Gy repi(f) = R, Gy(u,§) =&

Note thatG is Lipschitz continuous on eff) with the Lipschitz constarit and it is
easy to check thatlG|(u,&) < 1. Hence, in the cas¢ is merely lower semicontinous,
one can definglf| (in terms of|dG|) as follows.

Definition 4.3 Let (X, d) be a metric space and f : X — R U {oco} be lower semi-
continuous. We set
|dG|(u, f(u))
jdf|(u) = ¢ /1= 1dGy[(u, f(u))?
00

it |dGsl(u, f(u)) <1
it dGs|(u, f(u)) = 1.

(4.1)

As shown in [15], this definition extends that in Definition 4.1. For functionals that are
perturbations of convex functionals l&y* functionals, we propose some simpler, more
direct measurements for their slopes. Assume now (tRaf| - ||) is a Banach space and
¢p=J—F:X — RU{oo}, whereJ: X — RU{co} is a convex, lower semicontinuous,
proper functional and” € C*(X,R). Itis clear thatD(¢) = D(J).
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Definition 4.4 For u € D(J), we define

|[Vo|(u) = max< 0, sup () = J(v) —_(F’(u),u —v) ) (4.2)
veX\{u} l[u =]
and
IVell(u) = sup  [J(u) = J(v) = (F'(u),u - v)], (4.3)

veX,u—v||<1

({-, -y denotes the pairing betweén and its dualX*). The above definitions of slopes for
¢ are closely related to the following variational inequality:

(4.4)

{ J(w) —Jw) — (F'(u),v—u) >0, Vv e X
ue X.

Some properties of the slopes defined above are given in the following result.

Proposition 4.1 (a) For any R > 0, we have

|v¢|(u) — max?0 sup J(U) — J(’U) — <F/(U),U B U>
o—ull <Rvu l[u— vl (4.5)
lim sup W if u is not a local minimum of ¢ '
- V—U u—v
if u is a local minimum of ¢.

In particular, |Vo|(u) defined in (4.2) coincides with the concept of strong slope
of ¢ defined in [23].
(b) For every u € D(J),

IVl (u) < V| (u) = |do|(u)- (4.6)

(c) For w € D(J), [Vo|(u) = 0 if and only if |V¢|(u) = 0. We call such u a
critical point of ¢.

(d) w is a critical point of ¢ if and only if u is a solution of the variational
inequality (4.4).

(e) For every u € D(J),

JW) — J(u) — (F'(u),v —u) > —|Vé|(u)||v — ul, Vv € X, (4.7)
and
J(v) = J(u) = (F'(u),v — u) > —[|V¢l|(u) max{1, [Jv — ul }, Vv € X. (4.8)

R(v—u)
lo—ull *

z—u| = RandJ(z) < [jv —ul| *RJ(v) + (1 — ||v — u|| "' R)J(u). Thus,

Proof. (@) LetR > 0. Forwv such that|v — u|| > R, we putz = z +
Then,
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Iz = ul| 7 [T (2) = J(u)] < [lv—u| 7 [J(v) = J (u)]. Becausdiu—v|| = (F"(u), u—v) =
llu— z||7H{F'(u),u — z), we have

J(u) = J() = (F'(u)yu—v) _ J() = J(z) = (F'(u),u — 2)

el
W@ (Fw,u—w)
lw—u|| <Rw#u [u —wl|

lu = o]

Since this holds for every € X with ||v — u|| > R, we have the first identity in (4.5). As
a consequence, one gets

J(u) = J(v) = (F'(u),u —v) J(u) = J(v) = (F'(u),u —v)

sup = limsup
vF#u ”u - UH v—u(vF£u) HU - UH
Now, since
F — —(F’ —
lim (u) — F(v) — (F'(u),u — v) o,
v lu—|
one has
— J— / — — J— J—
lim sup J(u) = J() = (F'(u),u —v) = limsup J(u) = J(v) = [F(u) = F(v)]
v ||U—U|| v—u HU—UH
— limsup 2 00
vouJlu =l
We have shown that
J— — / — J—
J(u) — J(v) — (F'(u),u — v) Jim sup M (49)
vEU ||U_U|| v—u HU—’UH

If ¢ has a local minimum at then

limsupM = sup J(u) — J(v) = (F'(u),u — v) “0
v ol fu=el ~

Hence,|V¢|(u) = 0 and the second equality in (4.5) is proved in this case. Assume now
that¢ does not have a local minimum at Thus, there exists a sequereg, } converging
to u such that(v,,) < ¢(u), Vn. We have

20 = T0) — (Pl
iy =] = u=

Therefore|V¢|(u) = limsup o(u) — ¢(v)

v—u u—2v
(b) Since|Vg|(u) is the sgme a! the strong slopegofit v, Theorem 2.11 in [15]
shows thatVe|(u) = |d¢|(u) for all w € D(J).
If |Vo|(u) =0, thenJ(u) — J(v) — (F'(u),u — v) < 0 forall v with ||v — u|| < 1.
It follows from the definition of V| (u) that|Ve|(u) = 0 = ||V¢||(u). Assume now that

o) = 6loa) _ |

. The second equality in (4.5) is proved.



Solutions of prescribed mean curvature equation 147

[IVo|(u) > 0. Considen such that # v and|jv —u|| < 1. If J(u) — J(v) — (F'(u),u—
v) > 0then

J(u) = J(v) = (F'(u),u = v)

[ — o

J(u) — J(v) — (F'(u),u —v) <

Thus,

IVl|(u) = sup{J(u) = J(v) — (F'(u),u—v):

[v—ul <1,J(u) = J(v) = (F'(u),u —v) > 0}
J(u) — J(v) = (F'(u),u —v) |

upt o= ol

[lv —u] < 1,0 #wu,J(u) — J(v) = (F'(u),u —v) >0}

— sup{ L= J(jfu_fﬂ(“)’“ " o < Lu#u} = [Vel(u).

IN

() If |Vo|(u) = 0 then, as shown in (b),V¢|(u) = 0. Conversely, assume
[V|(u) = 0. Sinced < ||[Vo|(u) < |V¢|(u) = 0, one must havéVe||(u) = 0.
(d) and (e) follow immediately from the definition §% || (u) and|V¢|(u). ]

We now prove the following version of the Mountain Pass Theorem for the inequality
(4.4).

Theorem 4.1 Let X, ¢, J, F' be as above. Assume K is a compact metric space and
Ky is a closed proper subset of K. Let x € C(K,X) and define

M={geC(K,X):g(s)=x(s), Vs € Ky}, (4.10)
c= inf sup ?(9(s)), (4.11)

and

co = sup p(x(s)).
seKo

Assume that there exists a function h € C(K,R) such that

d(x(s)) < h(s), Vs € K, (4.12)
and

sup h(s) = sup ¢(x(s)). (4.13)

seKo s€Ky

If ¢y < ¢ < oo then there exists a sequence {uy} in D(J) such that

lim ¢(u,) =¢>c, (4.14)

n—0o0

and
lim [V](u) = lim_[Vl(un) = 0. (4.15)
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Proof. First, we need the following version of the Mountain Pass Theorem for continuous
functionals.

Theorem 4.2 Assume X1 is a complete metric space and ¢1 € C(X1,R). Let K be
a compact metric space, Ky be a closed proper subset of K and x; € C(K,R). Put

M, = {g € C(Kle) :g(S) = Xl(s)v Vs € KO}v

c1 = inf su s)),
L= int sup1(9(s)

and

Co1 = sup ¢1(X1(5))-
seKy

If co1 < c1, then there exists a sequence {u,} in X1 such that

lim ¢ (up) = ¢1,

n—oo

and
lim |d¢q|(u,) = 0.

The proof of Theorem 4.2 was basically presented in [28] (Theorem 5.1). It is an
adaptation of the proof given in Theorem 4.2, [37], for th& version of the Mountain
Pass Theorem. In [28], the proof is for the classical case wRete [0, 1], Ky = {0,1}
and the (PS) condition is assumed. However, it is clear from the arguments there and from
the original proof in [37] that we can extend it to the more general case stated in Theorem
4.2 without any substantial modifications.

Now, assume thak and¢ satisfy the conditions in Theorem 4.1. We show that the
metric spaceX; = epi(¢) and the continuous functional = G, satisfy the conditions
in Theorem 4.2. It is clear thaX; is a complete metric space with the metric defined in
Definition 4.2. Let us define

x1(s) = (x(s), h(s)), s € K. (4.16)

From (4.12),x1(s) € epi(¢), forall s € K, and alsoy; € C(K, X;). Furthermore, from
(4.13),

max ¢1(x1(s)) = max Go((x(s), h(s)) = max h(s) = sup o(x(s)) = co.  (4.17)

Now, we observe that

(c=) gigjg sup #(g(s)) < glingwl max #1(g1(s)). (4.18)

First, note that\/; # () sincey; € M;. Assumey; belongs taM,

g1(s) = (a(s),B(s)), s € K.
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Then,a € C(K, X), 8 € C(K,R), and
B(s) > ¢la(s)). Vs € K. (4.19)
Becauseg; = 1 on Ky, we havew = x on K. Hencen € M. (4.19) implies that

sup ¢1(g1(s)) > sup ¢(a(s)) > inf sup ¢(g(s)) = c.

s€K s€K 9eEM sc K
Since this holds for every; € M, we obtain (4.18). Since > ¢y, (4.17) and (4.18) show
that

oinf max ¢y (91()) > max ¢ (xa(s))- (4.20)

This means thak, ¢;, M1, andx; satisfy the conditions in Theorem 4.2. According to
this theorem, there exists a sequelite,, &)} in epi(¢) such that

Go(un,&n) =& — a1(= o), (4.21)

and
|G| (un, &) — 0. (4.22)

We haveu,, € D(J) and&,, > ¢(u,,), Vn. Moreover, according to Theorem 3.13 in [15],
one always ha§iG,|(u, &) = 1 wheneveruw € D(¢) andé > ¢(u). (4.22) thus implies
that

&n = ¢(uy,), forall n sufficiently large (4.23)

It follows from (4.1), (4.21), (4.22), and (4.23) that
o(up) — c1(> ¢), (4.24)

and

|dg¢|(una¢(u"))
do|(un) =
|de|(un) V1= 1dGy]|(un, d(uy))?

From Proposition 4.1, it immediately follows th&f ¢|(u.,), [Vl (u,) — 0 asn — oc.
O

In the classical case whefé = [0,1] and K, = {0, 1}, we have the following result,
which is a direct consequence of Theorem 4.1 and Proposition 4.1(e). We just note that
conditions (4.12)—(4.13) are clearly satisfied in this case.

— 0. (4.25)

Corollary 4.1 Suppose (X, | - ||) is a Banach space and F € CY(X,R), J : X —
R U {o} is a convex, proper, lower semicontinuous functional. Put ¢ = J — F.
Assume that

(i) #(0) = 0 and there exist , p > 0 such that

o(x) >, forallx € X with ||z| = p. (4.26)
(i) There exists e € X such that

lle]l > p and ¢(e) <O0. (4.27)



150 V.K. Le

Let
c=inf sup I(f(t))(> ), 4.28
ot s TGO)E o (1.29
where
I'={reC((0,1,X): £(0) =0, f(1) = e}. (4.29)
Then, there exist sequences {u,} C X and {e,} C (0,00) such that
en — 07, @(un) — (> c> ), (4.30)
and
J() = J(up) — (F'(upn), v — up) > —€u)Jv — uy||, Yo € X,Vn € N. (4.31)

Some remarks are in order to put the above concepts and results in perspective.

Remark 4.1 (a) In the case J = I, the indicator function of a close convex set
K C X, the inequality (4.4) becomes

{ iFE’(}L():v—mZO, Yo e K (4.32)
and the norm in (4.3) is
IVell(u) = sup  (F'(u),v —u). (4.33)

veK,Ju—vf|<1

The inequality (4.32), which is a suitable model for the minimal surface problem,
was studied in [40] and [9, 10], where the norm (4.33) was introduced (see also [42]
and [36]). Versions of the Mountain Pass theorem were derived in these papers for
(4.32), which resulted in the existence of unstable solutions of the minimal surface
problem. The definition in (4.3) is motivated by that in [40, 10] and extends it
to more general convex functionals (not necessarily over a convex set). Although
related, it seems that the approach used in the above works for the Plateau problem
cannot be applied to our problem here, in which the mean curvature depends on
both the position z and the displacement w. This extension is necessary for the
equation of prescribed mean curvature (1.1) that we consider here since in the case
the curvature is not zero, a variational inequality with the convex functional being
the area functional seems more appropriate for the formulation.

(b) Using the slopes in (4.2) or (4.3), one can define in a straightforward manner
the (PS) conditions for inequalities of type (4.4), by requiring that if a sequence
{u,} in X satisfies

P(un) — co,

and
Vol (un) — 0 (or [[Vll(un) — 0),
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then {u,} has a convergent subsequence (cf. [40, 10], also [36]). In Theorem 4.1 or
Corollary 4.1, if a (PS) condition is assumed then one immediately has the existence
of a critical point. Corollary 4.1 and Theorem 4.1 are extended versions of the result
in [43] and [32], without the (PS) condition. Furthermore, we use here a different
approach for the proof which is based on recent developments in nonsmooth analysis
and seems to require fewer technical arguments than that in [43]. The norm |V¢|
is defined here directly from the functional ¢, which makes the (PS) condition and
the condition for (PS) sequences in inequalities more like the classical case of C!
functionals.

(c) In [41], Struwe studied the generic existence of multiple solutions of the pre-
scribed mean curvature problem. In [41], Dirichlet problems with nonhomogeneous
boundary conditions were considered and the curvature does not depend on the
displacement as we consider here. The problem and approach we consider here are
different from those in [41].

(d) The potential (energy) functional here is a C!' perturbation of a convex
functional (the area functional). Since the area functional is also continuous (in
fact, Lipschitz continuous) on the space of functions of bounded variation, we can
prove and use versions of the Mountain Pass Theorem without the (PS) condition
for continuous or Lipschitz functionals. As proved above, this will be equivalent
to what we consider here. However, we adopt the convex functional version due
to the simpler and more direct representations of the norms [|[V¢|| and |V¢| rather
than that of |d¢| in Definitions 4.1 and 4.3. Furthermore, convexity of the area
functional and the formulation of the problem as a variational inequality, rather
than as a pointwise inclusion, will be extensively exploited later to obtain critical
points from (PS) sequences.

We are now ready for the proof of the existence of saddle points. Assume, in addition to
(A1)-(A2), the following growth condition (“super-linear” condition): There exigts- 1
and¢; > 0 such that

3
f@fﬁZWAf@mﬂm (4.34)

fora.e.x € B, all £ € [§1,00). Foré > 0, let us put

t
T+ )P+ 1 +9)

gelt) = T (t > 0). (4.35)

It is easy to check thatup,.,. ., g:(t) € (0,00) for every¢ € (0,00). We define the
function M : (0,00) — (0, 00) by

M(E) = sup geld). (4.36)

0<t<oo

Theorem 4.3 Assume (A1), (A2), and the growth condition (4.34). Suppose fur-
thermore that

Cidaq A 1
M (k824 ) 2y o 4.37
(g ) > e 37
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where dy,dz, q are given in (A2) and C1,Cy are in Theorem 3.1. Then, there exists
a nontrivial solution u of the inequality (2.13) which is the weak*-limit of a sequence
{un} satisfying

nlingol)\(un) >0 and nlLrI;C |VI)|(up) = 0.
Proof. We show that under the assumptions stated above in Theorem 4.3, all conditions
in Corollary 4.1 are satisfied, with = J — AF. First, let us check condition (i) in
Corollary4.1. From (3.1), we have

d
|F(z,8)| < ?1|g|q + dolé| (fora.ex € B,all¢ € R), (4.38)
and thus,
[ e < & / ul? + d / u
b (4.39)
(Cy andC are given in Theorem 3.1). Letus consuder the functlon
(18> +p*)'/* — |8
= > 0),
¢(p) S T )
whereD; = %Cg(> 0), Dy = d2C (> 0). Forp = t|B|, one has
1 t
¢(l)) - D1|B|q71 [(1 +t2)1/2 + 1](tq—1 +D3)’
with D3 = Do D71 B|*~%(> 0). Then,
d(p) = ¢(t|B]) = D1_1|B|17qu2D;1‘3|1—q(t)' (4.40)
From the definitions of\/ andg,, one gets
sup ¢(p) = sup ¢(t|B|)
0<p<oo 0<t<oo
1 Do
= M
Dy [B|a—t <D1|B|q_1)
_ q 1024
dng\B\q* d1C3|B|q*1 '
It follows from (4.37) that
sup o(p) > A (4.41)

0<p<co

Therefore, there exigly and\; > A such that

(IBI> + p3)*/? — |B| > M (D1p} + D2po). (4.42)
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Foru € X such that|u|lo = po, one has, from (3.3), (4.39) and (4.42),

I(u) = J(u)f)\/F(x,u)dx

5
(IBI* + pp)'/* = |B| = A(D1p + D2po)
(A1 = A)(D1pg + D2po)(> 0).

(4.43)

IV IV

This shows (4.26) withy = po anda = (A; — \)(D1pd + Dapo).

To check (ii), we fix a functiony € C§°(£2) such thatp > 0 and¢ # 0. By assigning
¢(z) = 0forz € B\ Q, we can considep as a function orB. Itis clear thatr¢ € X for
all » > 0. On the other hand, it follows from (4.34) that

f(xag) > d4£’y_1 - d5a

fora.e.x € BB, all £ > 0 (with somedy, ds; > 0). It follows that
dy .,
F(z,§) > 75 — d5&,

fora.e.x € B, all¢ > 0. Then, forr > 0,
r|VoP /
I(r = de — X [ F(x,r¢)dx
A(ro) s VIT 2N 11 ; (z,79)
d47‘,y
7‘/ IV 6|da — /|¢|vdx+xrd5/ 16| da.
B 7 JB B

IN

Sincey > 1, I(r¢) — —oo asr — oo. Hence,I\(r¢) < 0 for r» > 0 sufficiently large.
We have checked condition (ii) in Corollary 4.1.

From Corollary 4.1 it follows that there exist sequen¢eg} in BV (B) and{e,} in
(0, 00) such thak,, — 0 and

In(up) — (> a>0), (4.44)

and
J(0) = J(un) — A /B F ()0 — wn)dz > enllv — unll 5y s), (4.45)

forallv € BV(B),n € N.
Let us prove that the sequenge, } is bounded inBV (B). In fact, (4.30) implies

/ \/1+\Vun|2—)\/F(a:,un)dx:c+|8\+sn, (4.46)
B B
with {s,,} being a bounded sequencelin From (4.31), one has

/W JVTFTP A [t - w)da

4.47
/|Vv7un)| Yv e X. 47
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Note that forv = 2u,,, we have the estimate
JVIFE = [ VISPl [ (T,
< 2 [ VIFTVu)Par+2 [ |(Tu)
- o viFar
Lettingv = 2u,, in (4.47) and using this estimate, one gets
JVIFRRP = [ VNP - [ VTP
> /f T, Up, ) UpdT — / [V,
Using (4.46), we have
)\/qun)da:+c+\3|+sn>/\/fxun Yupdx — /|Vun|7
that is,
)\/B[f(%un)un — F(z,up)]de < C+|B|+ s, + €, /B |V, (4.48)
(4.34) implies that there existg > 0 such that
/ [z, up)upde > 7/ F(x,uy) — dg, Vn.
B B
Thus,
/B[f(ac, Up Uy — F(x,uy)]de > (v — 1) /B F(z,u,)dr — dg. (4.49)
It follows from (4.46), (4.48), and (4.49) that
[vel < [ VIFwp
= )\/BF(x,un)dm +c+ |B| + sy
% [f (2, up)un — F(z,up)|de + c+ |B| + sp + s 1
<

A

Therefore,

€n dg A
— < P .
(1 Py1>/B|Vun_71+(71>(c+6+17{1€a&<|sn|)
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Sincee,, — 0, this estimate shows that the seque{tf |Vun|} is bounded. Thusju, }
B

is bounded inBV (B). By passing to a subsequence, if necessary, we can assume that

u, —u in LP(Q), e {1, N]\il> : (4.50)
Uy, — u a.e. ongl, (4.51)

and
Vu, — Vu in [M(Q)]" (—weak). (4.52)

Let us show that: is a solution of (2.13). From (4.50)—(4.52) and the lower semi-continuity
of J (cf. e.g. [24]), one has

J(u) < liminf J(uy). (4.53)
From the compactness of the embeddBy (B) — L?(B), for 1 < 8 < -, and the
growth condition (3.1), we have, — w in LY(B) and f(-,u,) — f(-,u) in LY (B).
Therefore,

/ Flrun) (W — up)da — / Feou)(v —u)dz, Yo € BV(B).  (4.54)
B B

Itis clear that
enllv — unllBv ) — 0. (4.55)

Lettingn — oo in (4.45) and using (4.53)-(4.55), we see thasatisfies (2.13) for all
v € BV(B).

Now, let us show that: # 0. Assume otherwise that = 0 in (4.50)-(4.52). Letting
v =01in(2.13), we get

/Bf(»un)undx > J(un)(>0), Vn.

Lettingn — oo in this inequality, we havéim J(u,) = 0. On the other hand, it follows
from (3.18) that

/BF(z,un)dx - /B.F(I,O)dx = 0.

Thus, I (uy,) = J(u,) — A/ F(-,un,)dx — 0, contradicting (4.44). Hence, (2.13) has a
B
solutionu # 0. ]

Remark 4.2 Note that for a given function F, inequality (4.37) always holds when
A is sufficiently small. That is, there exists A. > 0 such that (4.26) is true for all
A € (0, \). A« can be chosen as

q Chdagq
A = M .
d,Cq|BJa1 <d103|8|q1>
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On the other hand, if A is fixed, for example, A = 1 (the equation does not depend
on a parameter), then (4.37) holds if

1
g Cidyq (to) > ;dng|B|rI—1’

dicd|Bla—1t

for some to > 0 (with g¢ defined in (4.35)). In the case ty = 1, this inequality
becomes

dng\B\q’l 1 4
> ~d;Ca|BT Y,
(1 + \@)(Cldgq + dng|B|‘1*1) q
that is,
— q
Cidaq + d, O[B! < : 4.56
1029 1 q| | 1+\/§ ( )

This sufficient condition is satisfied if the coefficients d; and ds in (3.1) are small,
i.e., f is sufficiently small.

As a consequence of Theorem 4.3 and the above remark, one has the following exis-
tence t of eigenfunctions of (2.13) for small values\of

Corollary 4.2 Under assumptions (A1), (A2), and the growth condition (4.34), there
exists A > 0 such that for all A € (0,\.), (2.13) has at least one nontrivial solution
uy € X. Moreover, if f(x,u) salisfies:

(A3) For a.e. x € Q,

>0 ifu€l0,00)

fan{ 20 e,

then
/ |Vuy| — oo as A — 0. (4.57)
B

Proof. The existence ofiy follows directly from Theorem 4.3 and Remark 4.2. Let us
check the limit (4.57). It follows from (A3) that, for a.e.€ €,

F(x,&) >0 for £>0, F(x,£) =0 for £ <0. (4.58)

For A € (0,).), we denote byu, the nontrivial solution of (2.13) and byu,,} the
sequence that converges weaktp u) as mentioned in Theorem 4.3. We have, from
(4.58) and (4.43),

(A = N (D1pg + D2po) Jim Ty (uxn)

lim sup J(uxg)-

n—oo

<
- (4.59)

For simplicity of notation, we put,, = u,,. Sinceu,, satisfies (4.45), one can let= 0
in (4.45) to get

() + A /B F@un)un > —enlltnllzves).
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Since{u, } is boundedg, ||u,| v () — 0. (4.54) implies that

/\/Bf(x,u)\)u)\dx = nh_)rr;o B/\f(x7un)undm (4.60)

lim sup J(uy, ).

V

Hence, from (3.1), (4.59), (4.60), it follows that
(= NDeh+ Do) < A [ Flzusurds
A (dy|ux]? 4 deo|up|) dx
B

A {(d1 +d2)/3|u>\|q +d2|l3|} .

IN

IN

Consequently,

/ st > (A =N (D1pg + Dapo)  dao|B]
B )\(dl +d2> dy —l—dg'

This holds for every € (0, \.), implying that

lim /|u,\|q:oo.
A—=0% /B

Using Poincag’s inequality, we obtain

luxllBv By = / |Vuy| — oo as A — 0. (4.61)
B

a

Note that this last estimate dm, || gy () (cf. (4.61) and (3.21)) shows that for all> 0
sufficiently small, the solutiom, obtained by the min-max arguments in Theorem 4.3 is
different from the local minimizer solution in Corollary 3.1. We thus have the following
result.

Corollary 4.3 Assume conditions (A1), (A2), (A3), (3.2), and (4.34) are satisfied.
Then, there exists Ao > 0 such that for all X € (0, \g), the inequality (2.13) has at
least two nontrivial solutions.

Notes on nontrivial nonnegative solutions

In this last part, we study the existence of nonnegative solutions of the inequality (2.13).
Here, we also assume thasatisfies (A3). Suppose thatis a nontrivial solution of (2.13)
whose existence is shown in Theorem 4.3 or Corollary 3.1. We show that max{u, 0}

is also a nontrivial solution of (2.13). First, let us check thiate BV (B) and

J(ut) < J(u). (4.62)
In fact, from Theorem 3.3, [8], there exists a sequeece} in W1 (Q) such that
u, —u in L*(B) and J(uy,) — J(u). (4.63)
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Moreover, as noted in [3], by using an approximation result by Anzellotti and Giaquinta,
one can show that™ € BV (B) and

IV(@)|(E) < [Vu|(E),

for all Borel subsets of B. From (4.63) and Stampachia’s theorem (cf. e.g. [29]), one has
ut € Whi(B) and
u —ut in LY(B).

We have
J(u™) < liminf J(u}). (4.64)

Sinceu,; € WHH(B), Vu = (Vun)X {214, ()0}, and thus

Jwh) = / (\/1+|Vun\2—1) dx
iy () >0}
/ (\/1 + |Vu, |2 — 1) dr = J(uy,), Vn € N.
B

IN

Therefore, by (4.63),
liminf J(u)) < liminf J(u,) = J(u).

Combining this inequality with (4.64), one obtains (4.62).
Sinceu™ =0 a.e.inB\ Q, we haveu™ € X. Lettingv = w* in (2.13), one gets

Jut) = J(u) > )\/Bf(glmu)(u+ —u)dx > 0.

Together with (4.62), this implies that

J(ut) = J(u). (4.65)
Letv € X. Becausef(z,0) =0,
/ flz,u)(v—uh)de = / flz,ut) (v —uh)dz
B zeB:u(x)>0}
= / f(z,u)(v —u)dz (4.66)

zEBiu(z)>0}
/ f(z,u)(v — u)da.
B
It follows from (4.65) and (4.66) that™ also satisfies (2.13), whenevedoes. Moreover,
ut #£ 0. Infact, ifu™ = 0thenJ(u) = J(u™") = 0. Therefore,
/(\/1 +[(Vu)|? = 1)dz = / [(Vu)s| = 0.
B B

We thus havéVu)s = 0, i.e. Vu = (Vu), € [L*(B)]" and

/ (V1+ |Vul]2 — 1)dz = 0.
B
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This implies thatVu = 0 a.e. onB and therefore: = 0 (sinceu = 0 on B \ 2). Using the
arguments in the proof of Theorem 4.3, we obtain from this a contradiction. Hehds,
not identically zero. We have thus shown that i a nontrivial solution of (2.13) them™
is also a nhonnegative, nontrivial solution of (2.13).
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