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Abstract: In this article, we consider the initial-boundary value problem for a class of viscoelastic extensible
beam equations with logarithmic source term, strong damping term, and weak damping term. We establish
the local existence and uniqueness of weak solutions by applying the Faedo-Galerkin method and the con-
traction mapping principle. Under the framework of potential wells, for subcritical initial energy, we derive
the sharp condition for initial data classification, i.e., the global existence and decay estimates of weak
solutions in the stable set and the finite-time blow-up of weak solutions in the unstable set. Moreover, we
derive sufficient conditions for the finite-time blow-up of weak solutions with negative initial energy and null
initial energy. And we obtain an upper bound estimate for the blow-up time.
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1 Introduction

In this article, we investigate the following initial-boundary value problems governing the viscoelastic beam
equation, which incorporates both strong and weak damping mechanisms alongside logarithmic nonlinear
source terms

t
Uy + Au - Au — wAu, + uu, - Ig(t - $)Au(s)ds = [ufP2ulnjul, (x,t)€Qx(0,T),

0 1.1
u(x, t) = Au(x, t) = 0, (x,t) e 0 x (0, T),
u(x, 0) = up(x), ux, 0) = wy(x), XEQ,

whereuy € H = H&(Q) N HY(Q), u; € LX(Q). Q@ C RY(n = 1) denotes a smoothly bounded domain. The function
g(t) is a kernel function.

In the framework of continuous dynamics, the evolution of transverse deflections in extendable beam
structures can be characterized by their governing equations. The core characteristics of this equation are
reflected in the dynamic buckling behavior of articulated beams under axial forces, where the vibration
modes are significantly regulated by the beam length and boundary constraint conditions. Woinowsky-
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Krieger [27] first formulated the governing equations for extensible beams in their seminal work, presenting
the following mathematical model:

o%u
— 12
P 0, (1.2)

u  o'u r
o " g~ | Juidx

where 8 denotes the initial axial displacement relative to the unstressed configuration. The function u(x, t)
describes the transverse displacement dynamics of an elastic beam with natural length L, where both end-
points remain rigidly constrained. For higher high-dimensional cases, Berger [2] derived the following version
of the beam model:

Uy + Au - ‘Q + Iqulzdx Au = p(u, u, x), (1.3)

Q

where Q represents the contribution of in-plane forces to the system, and p(u, u;, x) denotes the transverse
load dependent on displacement, velocity, and spatial variables. The extensible beam model has been widely
applied in related fields such as micro-machined beams. Fang and Wicket [10] considered the following
governing equation:

Elwy + EA Wy = 0, (14)

L
1
£- i{wfdx

where EI and EA are the bending stiffness and axial stiffness, respectively. The system parameters include L,
denoting the beam’s characteristic length, and ¢, representing the imposed axial strain. In addition, Nayfeh
and Younis [23] also established the fundamental dynamical equation characterizing the out-of-plane displa-
cement mechanics in slender microbeam systems
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The system parameters are defined as follows. w(x, t) denotes the transverse displacement field, p the material
density, d the interelectrode gap spacing, N the applied tensile axial force, v(t) the AC component, V, as the
driving voltage comprising a DC component, &, the vacuum permittivity, and & the relative permittivity of the
dielectric medium normalized to air.

With a growing understanding of the physical features of extensible beam models, such as stress distribu-
tions and boundary constraint conditions, and the engineering application scenarios of these models, these
beam equations rooted in practical physics attract many mathematicians due to their rich mathematical
connotations and potential application values. Dickey [7] obtained the existence of solutions for standard
beam model (1.2) by Fourier sine series. Ma [21] further extended the study to the global existence of weak
solutions and decay estimates. Besides, Ma and Narciso [22] derived results on the global attractors and the
existence of bounded absorbing sets for standard beam model in high dimensions (1.3) when
P, U, x) = h = F() - g(u).

Patcheu [24] considered the Cauchy problem for beam equation

u” + Au + M(||AY2u|})Au + g(u) = 0. (1.6)

The equation addresses the physical origin of the problem by studying the dynamic buckling of a hinged, beam
under axial tensile or compressive forces. Using the Faedo-Galerkin method, the authors established the local
existence and uniqueness of weak solutions. Furthermore, they obtained exponential decay of energy through
a special integral inequality. For linear damping, where g(x) = 8x, Henriques de Brito [14] and Biler [3]
acquired exponential decay estimates of weak solutions for equation (1.6). Then, Yang et al. [25] researched
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the initial-boundary value problem (IBVP) for a nonlinear extensible heam model derived from connection
mechanics. The equation includes strong and weak damping terms and a power source term

Uy + 2%u — M(||VulP)Au — Aue + |ue]" u, = |ulP~tu. (W)

The authors considered the issue under three distinct initial energy scenarios, including subcritical critical and
arbitrarily high levels. Using the contraction mapping principle, they first proved the local existence of
solutions. Within the potential well framework, the global existence, non-existence, and decay estimate
were deduced for subcritical and critical initial energy levels. Additionally, the global non-existence of solu-
tions was analyzed in both weak and strong damping cases under arbitrarily high initial energy levels.

While researching the equations for extensible beams with damping terms, viscoelastic terms are also
taken into consideration. Viscoelastic materials exhibit characteristics that lie between those of elastic solids
and those of viscous fluids with differential properties, and their behaviors can be modeled through partial
differential equation models. Liu et al. [20] considered the IBVP for viscoelastic Kirchhoff-like beam equations
with weak and strong dampings, and power source terms

t
Uy — Auge + A%u - Ig(t - DA U(T)dT - Apu + ue — Aue = |ul?%u. (1.8
0

Through the utilization of linearization techniques and contraction mapping theorems, they first demon-
strated the local existence and uniqueness of solutions to the problem. Subsequently, by implementing the
potential well theory, the investigation of global solution existence was conducted under subcritical and
critical initial energy conditions. Additionally, the decay estimates of globally existing solutions were analyzed
for cases where positive initial energies lie strictly beneath the potential well depth. Finally, a thorough
examination of finite-time blow-up scenarios was carried out. This analysis systematically addressed solutions
with negative initial energy, zero initial energy, and positive initial energy values strictly below the potential
wells depth, alongside solutions characterized by arbitrary positive initial energies. Each case was treated
separately to ensure a comprehensive understanding of the dynamical behaviors under varying energy
configurations.

When we discuss beam equations with damping terms, power nonlinearity and logarithmic nonlinearity
are two important forms of nonlinear source terms. Fang and Li [8] considered the following plate equation:

Uy + Au + abu — whue + Buy = [ulP~2ulnul, 1.9

where a < A, w 2 0, 8 > —wA;. The authors derived finite-time blow-up results for solutions exhibiting both
low and high initial energy states by using the potential well method and enhanced differential inequality
techniques. In particular, for high-energy solutions, they considered cases where the initial displacement and
initial velocity either have the same or opposite signs in the sense of the I? inner product. Additionally, they
obtained lower bounds for the blow-up time in four initial energy levels, subcritical, critical, supercritical, and
ultra-supercritical.

By analyzing different beam models, readers can clearly identify the unsolved problems in each beam
equation. Nonetheless, we believe it remains essential to describe these issues in a clearer manner. To address
this, we provide Table 1. In this table, each black dot denotes a specific term within the model, and the
description on the far right indicates the conclusions already derived. From this table, we can identify an
overarching framework that aims to derive finite-time blow-up of weak solutions for each beam model under
different energy levels and asymptotic behavior for solutions. For the beam model considered in [1], which
includes viscoelastic, logarithmic source, and strong damping terms, Pereira et al. proved that the model
admits a unique weak solution. They also obtained decay estimates and finite-time blow-up results for solu-
tions under the energy condition 0 < E(0) < d. The cases of negative energy and critical energy were left open.
For the beam model considered in [11], which incorporates viscoelastic terms and nonlinear weak damping,
the authors proved that weak solutions to this model blow up in finite time for E(0) < E;. The problem of decay
estimates for global solutions to this beam equation was left open. Similar issues also arise in [6,9] and others.
Motivated by these authors, we should address these unsolved problems. If we tackle each individually, we
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believe there will be a great deal of repetitive work. To avoid this repetitive work, we combine the structural
terms in these equations and study the resulting equation, i.e., model (1.1). The simultaneous occurrence of
these terms in this model significantly increases the difficulty of solving the problem of the blow-up of weak
solutions. As a nonlinear term, the logarithmic nonlinear term is distinct from the power-type nonlinear term.
It has a much weaker effect on the blow-up of weak solutions. This characteristic poses one of the primary
challenges in analyzing the blow-up of solutions for this model. Moreover, the energy dissipation induced by
damping and viscoelastic terms further exacerbates the difficulties in proving finite-time blow-up of weak
solutions. Currently, research on the comprehensive effects of these terms is relatively limited, and classical
methods and inequalities cannot be directly applied; we must improve the previous techniques and establish
new prior estimations. This is the motivation and contribution of the article.

The following is the organizational framework of this article. In Section 2, we introduce fundamental
assumptions, lemmas, and key definitions necessary for the subsequent analysis. Section 3 demonstrates the
local existence of weak solutions through a combined application of the Galerkin method and the contraction
mapping principle. In Section 4, we established the global existence of solution and decay estimates with
subcritical energy condition. In Section 5, we proved the blow-up of solutions in finite time by using the convex
method and obtained an upper bound estimate for the blow-up time.

2 Preliminaries

In this article, we assume that w > 0, u > —~wA, where 4; > 0 is the first eigenvalue of -4 on Q under homo-
geneous Dirichlet boundary conditions. We denote

llully = llullzr@y, U, v) = Iuvdx,
2

and
(W, Vi = p(u, v) + 0V, W), flull = p lJulff + o [IVulf.
Through simple calculation, we can prove that there exist two positive numbers C, < C* such that
Co llully < Tlully + IVull; < C* llully, Yu € Hg(%).

We define ||u|%, = ||Aulj3 + ||Vul3. Besides, let the notation (-, -) represent the duality pairing between the
space H and its dual space H™'. The spaces involved in this article are all standard Sobolev Spaces.
Regarding Problem (1.1), the following assumptions are put forward for analysis:
(Hy) The exponent p satisfies

2<p<oo, n<4,
2n -6

2<p< s nz5.
P n-4

(H,) The function g(s) : R* = R* is non-increasing differentiable and satisfies
g0 >0, 1-[g)ds=1>0.
0

(Hs) The function ¢ : R* — R is non-increasing differentiable, which satisfies the following formula true:
g < -§(g), Vt>0,

and

TE(t)dt = 4o,
0
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To facilitate our discussion, we define the energy functional

1 1 1
E®O =7 lluell3 + 2 llAu(ollf + 2 [IVuli

1- jg(s)ds
0

21
1 1 1
+ o(g o dw)(t) — — J[ulP Infuldx + — [[ull,
2 p -S[ P’
where
t
(g * du)(®) = [g(t - 9)lIdutx, ) - Bux, Dlf3ds.
0
And the potential energy functional is defined as
1| 1
J@ =3[t~ [g(s)ds| 18uOI + 5 Ivul?
0 2.2)
1 1 1
+ (g o Aw)(t) — — [ulP Infuldx + — [lull}).
26 p!; pr
Besides, the Nehari functional is defined as
t
1) = [1 - [g(s)ds| 1au)IB + IVul} + g ° du)(t) - [u Injuldx. 23)
0 Q
According to the definitions of J(u) and I(u), we acquire
t
1 p-2 p-2 s P2 1
W = —I(u) + 1= Jg(s)ds| l1aullf + —— IVull; + ——(g = dw)(®) + — [lull}. 24
J » 2 {g 2 2 2 2 @& P2 p

We also define the Nehari manifold A, the unstable set V, and the stable set W as follows:
N = {u € H\{0}{I(u) = 0},
V={ue H\{0}J(w) <d,I(u) <0}
and
W={u€HJ@w) <d I > 0} U {0k

Additionally, we define the well depth d as follows:

0<d= inf jsupj(Au) : u € H\{0},
uEH\{0}| 350

which is alternatively written as

0<d= inf J(u).
ueEN

The proof of d > 0 is analogous to that in [13].
Subsequently, we present the definition of the weak solution of Problem (1.1).

Definition 2.1. For a given positive T > 0, a function u(x, t) is referred to as the weak solution of Problem (1.1),
if

u € C(0, T; H) n CY0, T; HX(Q)) N CX(0, T; HY),
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and for every test function ¢ € H(Q) satisfying

(s, @) + (Au, Ap) + (Vu, Vo) + w(Vuy, Vo)
t
+ u(ug, @) - Ig(t - $)(Au(s), Ap)ds
0
= I|ulp‘2u¢ In|uldx, 0 < t < T,
Q

u(x, 0) = up(x) in H,
u(x, 0) = wy(x) in I3(Q).

Definition 2.2. For a weak solution u(x, t) of Problem (1.1), we introduce the maximal existence time Ty, via
the following definition:

Thmax = Sup{T > 0; u(x, t) exists on the interval [0, T]}.

() If Tpax = +o, the solution u(x, t) is referred to as a global solution.
(i) If Thax < +oo, the solution u(x, t) is said to undergo finite-time blow-up, with T,,,x being designated as the
blow-up time.

Next, we will introduce several important lemmas used in subsequent proofs.

Lemma 2.1. Suppose that u € H\{0}. Then
@) limy-gJ(Au) = 0 and lim) - +of (AU) = —00,
(2) there exist a unique positive real number A, > 0 such that %] (AwW3=2, =0,

(3) the function J(Au) is a strictly increasing on (0, A,). It is a strictly decreasing function on (A4, +). Moreover,
it reaches its maximum value when A = A,
4) I(Au) > 0 for 0 < A < Ay, I(Au) < 0 for A > A, and I(A,u) = 0.

Proof. From (2.2), we have

t
22 2P
J@uy="{1- [stsas| naulg - 5l nA
0
AP AP 22
+ ?iupln|u|dx = lully + (g > o @.5)
AP 22
- w5 ol

then it is evident that the conclusion of (1) is valid. By differentiating J(Au), we derive

d
YU (Aw) =2

:

1Al - 207 [uflg InA - 2071 fup Injuldx + AGg o Au)(e) + A [[Vul}
Q

t
1- Ig(s)ds
’ 2.6)

Iaul - 272 ujf InA - 202 [uP Injuldx + (g ° Au)(e) + [[Vulf|
Q

t
1- Jg(s)ds
0
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Let K(Aw) = XS] (Aw), then

d _ - -
K == Sully = (p = 2427 lully InA = (p - 2)A7 3]”” In [uldx

Q
2.7

= _)lp_3

(p—zmmmmx+nmm+(p—mﬁwmmm4.
Q

As a result, through taking

(p = 2 Jul Infuldx + [|ull?
(0 - 2)ul}

A = exp|-

such that <-K(Au) > 0 on A € (0, ), 5K(Au) < 0 on A € (&, +), and =K (Aw) = 0. From KQw|;—o 2 0, and
limy_+K(Au) = -, we obtain that there exists a unique positive real number A, > 0 such that K(Au) =
and K(Au) >0 on A€ (0,A), K(Au) <0 on A € (A4, +»). Thus, 01)1]()tu) >0 on (0,A,) and dA]()lu) <0 on
(A, +0), = ] (Aw)|3=2, = 0. Therefore, the conclusions drawn from (2) and (3) are valid. Moreover, we obtain
from (2.3)

1Qw) = 22

llAull3 = 22 Jjulp InA - A _[up Inju|dx + A2(g o Au)(t) + A% ||Vul3
Q

t
1- Ig(s)ds
0

t
2.8
=kl—k$msMM?ﬂVWW$M—N*ﬁmeM+@%w®+HWM @9
0 Q
d
= A AW
then clearly, the conclusion of (4) holds. Lemma 2.1 demonstrates that the set AV is non-empty. O

Lemma 2.2. [16] Let G(t) be a positive C? function, which satisfies for t > 0, inequality
GG (1) - 1+ a)(G(1)* 2 0,

with a > 0. If G(0) > 0 and G’(0) > 0, then there exists a time T* <
lim G(t) = oo,
t->T*

( such that

Lemma 2.3. [12] If g(¢t) satisfies (H;), the following equation holds:

2

[|] gt - s)xauce) - sus)ds| dx < e(g - s,

QLo

wherec=1-1>0.

Lemma 2.4. [19] Let X be a Banach space, if f € LP(0, T; X), P /e LP(0, T; X), then f is a continuous injection
from [0, T] on to X when the value is transformed in the set of measure zero in [0, T].

Lemma 2.5. From the definition of E(t), we find that E'(t) < 0.

Proof. Combining (1.1) and (2.1), we arrive at
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1
E©) = fuatdx - ZgOIMu@IF + [Mudu@ax + [ugu@ax
Q Q Q

t
- Jg(t - s)IAutAu(s)dxds + %(g’o Au)(t) - I|u|p‘2utu(t) In |u|dx
0 Q o

1 1
=2(g"> (D) ~ gD - llucl
<0.

From (2.9), we receive

t
E@) + [lluRde < EO).
0

np
n-2p

Lemma 2.6. [15] Suppose that q <
u € W(Q), it holds that

0 1-6
llullg = C llAulfy l[ully™,

where 0 € (0, 1) is determined by

and the constant C > 0 depends onn. p, q, andr.

3 Local existence of weak solutions

-_ 9

(2.9)

(2.10)
O

yle,q<oforn<2pandr<q< %forn > 2p andr = 1. Then for any

Within this section, the local existence of weak solutions is established via the Faedo-Galerkin technique and the
contraction mapping principle. For a given positive number T, we examine the function space H = C(0, T; H)

N CY0, T; H}(Y)), which is endowed with a norm defined by |[v|%; = maXo<<r(||[VVi|; + 1 [|AV]13).

Theorem 3.1. Assume that (H,) and (H,) hold, let uy € H, u; € I*(Q), v € H, then there exists a function

u(x, t) € (0, T; H) N CX(0, T; Hy()) N CX(0, T; HY),
satisfying
t
Uy + Au - Au - wAu, + uu, - Ig(t - )Au(s)ds = vP2vInly|, (x,t) € Qx (0, T),
0
u(x,t) =0, Au(x,t) =0, (x,t) €0Q x (0, T),
u(x, 0) = uop(x), u(x, 0) = w(x), X E€Q.
Proof. Let {(pj}}fl C H be the set of all standard orthogonal eigenvectors of -4, namely,
—Ag; = 49,
and

0, k#1,
((Pk’ (01)=l9k1= 1, k=l,

for any k, I € N, where A; € R. Then, {goj}}i"l constitutes a set of standard orthogonal basis for H and

(3.1
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AZ(pj = /1]2(,0/

Next, we define the finite dimensional subspace V, = span{,, @,, ...,0,}, taking uom € Vi, tim € Vin. An
approximate solution to Problem (3.1) will be sought

Un(X, 1) = Y W (O@x),m =1,2,..., 3.2)
j=1

satisfying

(Umtes @) + (B, Bg;) + (Vitm, V9y) + W(Vitme, V)
t

+ i, 9)) = [t = $)Bun(s), Ap)ds
0

= J’|v|v-2ij In|v|dx,

Q (3.3)
m
Um(0) = ugm(x) = Z(MOa 90]-)(/)}-,
j=1
m
Umn(0) = Wym(x) = Z(ul; §0j)(Pj,
j=1
and when m — o, we have
m
Uom(X) = Y " (0)p;(x) ~ uo(x) stronglyin H,
j=1
m
Uum(x) = ) h(0)g;(x) — w(x) strongly in L*(Q).
j=1
Thus, we have
luomllzr < Go (3.4)
and
ltmllz < Co, (3.5

where C, represents a positive number whose value does not rely on m. In fact, let Pj"(t) = hj/(t), further
simplification of (3.3) allows us to obtain

dP;”(t) " "
PI(0) = h(0) = [,

Q

where
t
o(t, h'(t), PI'(t)) = Ilvlp‘2v1n|v|¢jdx - (Ajz + A,»)h}"(t) - (wA; + y)P}"(t) + )l]-zj—g(t - s)h}"(s)ds.
Q 0

By Peano’s existence theorem, for any j > 1 and some T > 0, we obtain a solution hj"(t) € C¥0, T] to (3.3).
Consequently, we derive an approximate solution un,(x, t) to Problem (1.1) on the interval [0, T].
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Taking the first equation (3.3), we multiply both sides by hjf(¢) and sum the resulting terms over all indices
j=1,2,..,m,leading to the following:

t
% llumelld + |1 - _[g(S)ds 18Ull3 + IVl + (g ° Bm)(O)| + 2 [umellz = (87 Bum)(®) + GO At
0 (3.6)
= ZI|v|p‘2vln|v|umtdx.
Q
By integrating (3.6) over the interval (0, t) and combining it with (H;), we obtain
t
llmelld + Ll AUl3 + IVUmllf + (g ° Dum)(t) + ZIllumtllidt
[ 0
< el + 18uonlB + [Vutomlly + 2 [ [1vP 20 In ylumdxde (37

0Q

t
< 3Co + 2 [ P2 Inviundxdt.
0Q

Our assessment focuses on the final term situated on the right-hand side of equation (3.7). By Holder’s
inequality, we obtain

IIVIP‘2v1HIVIumzdx < [IP=2v In v |lz [ wmell2- (3.8)
Q
Let
0< < 2 -p+2
W= n-4 p+as
we have
lvp2vinpiig= [ IvPvinpE e+ [ P2uingul dx
{x€Q:|v|<1} {X€Q:|v|>1}
_ _ 2(p-1
< (e(p — D)ZIQ + (o) VI (3.9)
_ _92(p-1 2(p-1
< (e(p - DYQ + (o) 2Byrieny llAv[P
<G,

where By(p-1+4,) denotes the optimal embedding constant for the embedding H = LAP~1*4)(Q) and C; is a fixed
constant. And we have used [y Iny| < (ea)™?, for 0 < y <1, while0 < y°Iny < (ea)™!, for y = 1. Substituting
(3.9) into (3.8), we can obtain

t t
2 [ vip-2v I vlumedxde < 2 [ |1Vl 20 vl L de
0Q 0

t

<20 [ ltnelldt (3.10)
0

t
<G + [llumlBat,
0

where C, = Gi2C* denotes a positive value that does not depend on m. We combine (3.7) and (3.10) to obtain

t
UmellF + LN AUl3 + VUmll3 + (g ° Dum)(t) + _[Ilumzllidt <3G+ GT = G, @11
0
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where C; represents a positive number whose value does not rely on m. Hence, within the sequence {up}n-1,
subsequence can be identified (denoted by the same notation {u,},-1) such that

U, = u weaklystarin L*(0, T; HX(Q)), (3.12)
Une = u, weakly star in L*(0, T; LX(Q)), (313)
Uy, — u weakly in I2(0, T; HA(Q)), (3.14)
U — u; weakly in L2(0, T; HY(Q)). (3.15)

From the definition of dual norm, we acquire

[{Umee, @)
[tmeell g = sup —
AP

[Jo- wp2vinpliax [ ag - auyjdx
<sup + sup
oo ol oot IIolln

_[Qlum - Apldx wfglumt - Agldx
+ sup sup————
ot I9llx pei 19l

t
el June - plax [ gt - 9 jaun(s) plaxds
+tsup————————— t su
oen lolls pen ol

(3.16)

In view of Holder’s inequality, hypothesis (H;), (3.9), and (3.11), we obtain

lmeellg < HVIP2vInvllly + [1Atmllz + [umll
t

+ (@ + DN tmellz + IIAumIIng(t - s)ds @317
0
<C,

where C represents a positive number whose value does not rely on m. So we arrive at
Uni = Uy, weakly starin L°(0, T; HY). (3.18)

Taking m — o in (3.3), and combining with (3.12), (3.13), and (3.18), we derive
t
(g, @) + (Bu, Ap) + (Vu, Vo) + w(Vu, Vo) + u(uy, @) = Ig(t = $)(Au(s), Ap)ds = IIvIP‘ZV¢ In [v|dx.
0 Q

Next, we prove the initial value condition. According to Aubin Lion’s lemma (see [26]) and (3.12), (3.15), we
have u,, » uinC(0, T; I3(Q)), then un(x, 0) - u(x, 0)inL*(Q). In addition, u,(0) = Uy, — U in H; thus, u(x, 0)
= uy(x) in H. From (3.18), we can obtain u,, € L2(0, T; H™), combining withu, € L*(0, T; L*(Q)) and Lemma 2.4,
we can know u; € C(0, T; H™), 50 upe(x, 0) = u,(x, 0)inH™. Besides, t,;:(x, 0) = uy, — uy; thus, u;(x, 0) = uy(x)
in L2(Q). The proof is complete. O

The uniqueness of solutions is established through a proof by contradiction. Assume that u and w

represent two distinct solutions to Problem (3.1) that possess identical initial data. By subtracting the equations
satisfied by u and w and defining the difference function as ¢ = u — w, we derive that

t
0 *+ &0 - Mg - who, + g, - [t - )Ag(s)ds = 0.
0

By multiplying the derived equation by ¢, and then integrating the product over the domain Q x (0, T), we
arrive at
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t t t
1 1 1
5 o + 21 - !g(s)ds 181 + wlumnédt + u{nwtn%dt + (8 * 89)(0)

t t
1, 1 e 1 B
- 5{@ - Ap)(O)dt + E!:”Af/)”zdt + 2 gl =

Combining this equation with the boundary conditions of (3.1), we can obtain u = w.

- 13

(3.19)

Theorem 3.2. Under the assumption that conditions (Hy) and (H,) are satisfied, then for the initial data

Up € H, wy € I*(Q), there exists a unique weak solution u(x, t) to Problem (1.1).

Proof. For sufficiently large positive constants M > 0 and T > 0, define the set My = {u € H : ||ullyy < M}.
Given any v € H, a solution u(x, t) to Problem (3.1) exists, allowing us to introduce a mapping S : My - H
such that S(v) = u. Our objective is to demonstrate that S acts as a contraction mapping on M. Through a
computation analogous to that in (3.7), combined with applications of Hélder’s inequality and Young’s

inequality, we deduce

t
el + llaulf + 1Vl + (g > dw)e) + 2 [l de
0

t
< Nl + Nlaul} + [Vugl + 2 [ [IvP-2v Injvjudxa
0Q

t
2 2 2 -
< llwllz + [1Auoll; + |IVuollz + ZJIIIVIP 2vIn ]l llucll,de
0

t
_ _on2(p-1 2(p-1 1
< Nl + Nauollf + 19uol} +2 [(e(p ~ 1)1 + (et)2Bip1on) IAVIE ™% fucllde
0

t
< Jlwlff + NAuoll3 + [IVuol; + Zjllutllidt + CuT(1 + MAPT1H),
0

where
o p2(p-1+p1y)
C* _ (eu) ZBZ(p—lﬂl)
Cy = —-max(e(p - D)?|€l, W

Then,

ey + LlAull + IVull; + (g = Aw)(®) < llwllf + 18uoll; + [IVuollf + CuT(1 + MEP1+),

We take M > 0 large enough so that
MZ
leallz + lAuolly + I1Vuolly < =~
we select T > 0 to be sufficiently small in such a way that

2
et + ey < 22

(3.20)

(3.21)

(3:22)

By (3.20)—(3.22), we deduce that ||u|ly < M,i.e., S(Mr) C Mr. The subsequent task is to prove that S functions as
a contraction mapping. Consider arbitrary elements v;, v, € My, denote u; = S(v1), Uz = S(v;), and define

Z = Uy — Uy, then z satisfies
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t
Zy + N2 - Az — WAZ + Uz, - Ig(t - $)A%z(s)ds
0

= [P~ 2vy In[vy| = [VofP~2v, In[vg, x, 1) €Q x (0, T), 3.23)
z(x,t) = 0,4z(x,t) = 0, (x,t) € 0Q = (0, T),
z(0) = 0, z,(0) = 0, X E Q.

Taking the first equation in (3.23), we multiply both sides by z; and then carry out an integration over the
domain Q x (0, T), resulting in
t
llzllF + LllAzIl; + V23 + (g ° Az)(t) + ZIIIZtIIidt

0
t

t t
2] [(QuilP-2vi il = w2, Infvazdxde + [(g7e az)ode - [ge)lazigat
0Q 0 0

IA

IN

t

2] [vip2vi Invi] = ap-2v, Infvalzdxde.
0Q

Furthermore, by the mean value theorem, we acquire

t
lizelg + 1 llAzIf + V2] + (g ° Az)(D) + ZIIIZzIIidt
0

IN

t
2] [ - DIgP2Inig] + 182w - vozdxdt
0Q

(3.24)
t t
< 2[[1gp2n - vpzdxde + 2(p - O 1672 g1 - vzdxde
0Q 0Q
= L +D
where
E=0vi+(1-0),0<0<1.
Through the application of Holder’s inequality and Young’s inequality, we can derive
t
5 <2 [ 815 vy = vall, 1zl dt
0
t
p-2 p-2
< ZIBn(p—Z) lA¢llz "Bz [1Avy = Avyllp||2¢ |l dt (3.25)
0
t 1 t
< Cae [10ZIEY ™ aws - avalpae + —c* [lzac,
0 0
where
Cs = BXVDBY, > 0,¢> 0.
n-2
Let € = C*, we obtain
t t
1< GiC* [ 1148157 14, - Avalide + [z de
0 0 (3.26)

t
< CMA0T [lvy = vally, + [llzdizde,
0
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where Gy = G;C*'™P > 0, the symbols By(,-z) and Bz denote the optimal embedding constants for HAQ) =
L'P=2(Q) and H(Q) = Lo 2(Q), respectively. We make the following estimate for L. We can derive from
Hoélder’s inequality that

L < 2(p = DJIIEP2 gl l1va = vall 2 l1zellodxde
0

(327
<2p- 1)_[||I€I”’2 In|&|ln B2 [|Avy = Avy|lz ||zl dxdt.
By similar argument to (3.9), we can obtain
I1EP~2In|E]|I7 < (e(p - 2)™Q + I 1€ In €)™ |§P-2+)dx
{x€Q:|&|21} (3 %)
< (e(p - 2)™19] + Bogy ey (e A" '

< G(1 + M2y,
where
n(p- 2 #1)

C = max[(e(p - 2719, By pepy (o)™

the notation Bpp-2+,,) denotes the optimal embedding constant corresponding to the embedding H(Q)
< [MP=2)(Q). Applying this to (3.27), we can derive

t

1
B<2p - DfCIA + MMO2m)Bu|Av; - v, jz]l dxde

0 (3.29)
<1p - i + v B, T€||V1—V2||71+_C*I||Zz||2dt

Let € = C*, we have

b < GT(L+ MYy, = vyl + [llzdi2dt, (330)
0

where
G=1"p- 1)2C7"B c* > 0.

Combining (3.24), (3.26), and (3.30), we have
llzelly + LllAzI; + IVzI3 + (g ° A2)(t) < T(Co(1L + MP2#1)2 + CMAP=2)||vy = vyfy. 33D
By selecting T > 0 to be sufficiently small such that the constant
Cr = T(Co(1 + MP21a)2 + CMAPD) < 1,
we conclude
lzllee = 1SV = Sl < Gr llvi = vallw -

Thus, the contraction mapping principe ensures the uniqueness and the existence of weak solution for
Problem (1.1). The proof is complete. O
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4 Global solution and decay estimation

Within this part, we analyze the global existence and decay estimations for the weak solutions of Problem (1.1).
Initially, we examine the invariance characteristic of the stable set W. In other words,

Lemma 4.1. Suppose uy € W, uy € L*(Q). When E(0) < d, for every t within the interval [0, T), the function
u(x, t) remains in the set W. Additionally, we also obtain ||u|l} < p2d.

Proof. Let u(x, t) denote the weak solution of Problem (1.1) with uyg € W. This implies that I(u,) > 0. Also, let T
represent the maximum time for which the weak solution u(x, t) exists. Based on Lemma 2.5 and given that the
E(0) < d, we obtain the following:

E(t) < E(0) < d,Vt € [0, T). 4.1)

Next, we assert if uyg € W, then u(t) € W. Alternatively, considering the continuity of I(u), there must exist a
time point ¢, within the interval [0, T), where I(u(t)) remains positive for all ¢ in [0, ¢;) and becomes zero
exactly at ty, u(ty) # 0. This situation implies that the function u(ty) € N. When taking the definition of d into
account, it follows that d < J(u(ty)). Based on how E(t) is defined, we can then derive that

Et) = 5 )l + J(u(t) > .

Then, we derive a result that contradicts equation (4.1). Consequently, u(t) € W for all t € [0, T). Now, we
prove that [[u]l} < p?d. From u(t) € W, we have I(u(t)) > 0, then

d>E(t)

1
=5 Il +J@

t
1 2, 1 p-2 2, D=2 o, Ly P72 (4.2)
=g Nl + 1+ == {g(s)ds Iull + == Va5 lully + == > 2uw(©
> 7 [lullf.
Therefore,
lu(l < pd. O

In this section, our focus is to demonstrate the global existence of weak solutions for Problem (1.1), under
the scenario where the initial energy condition E(0) < d holds in a subcritical regime.

Theorem 4.1. Assume (Hy) and (Hy) holds, uy € W, uy € IX(Q), if E(0) < d, then Problem (1.1) has a global weak
solution u(x, t) € C(0, ©; H) N CY(0, o; HY(Q)) N CX0, »; HY).

Proof. By integrating the results from (2.9) and (4.1), we derive

1 1
d>= llull + =
5 luellz + 5

t
1 1 1 1
1- {g(s)ds 8wl + 5 1Vl + (g = du)(e) - Eiwv’ Injudx + = flulf

t t t t “3)
1 1
+ o fIvwlBds - 2 Jge due)as + 7 [e)auls + u fludas.
0 0 0 0
Through a derivation analogous to that in (3.9), it can be deduced that
I|u|P In|u|dx = J' |ulP In [u]dx + J' (P In u|dx
e Q={x€Q:[u(x)|<1} Q={x€Q:|u(x)|1}
< I ™ |ufP*o In|ujdx 44

Qr={x€Q:|u(x)|21}

< (ea) lulp:e.
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By applying Lemma 2.6 together with Young’s inequality, for ¢ € (0, 1), we acquire

(p+a)0 -0
ulfpsg < € Aull”™ " [fuflf?

0« % - *
< e(|lAull )" + cle)((lulPrt-0)y

< e [|Aulff + C(@)llull,

where
po(to )z 1, 1]
p p+aln 2 p|°
We choose
2p
0<o<211+—|-p,
o ] .
then
p*=#>1q*=;>l
(p+o)o 2-(p+o)o
and

_2Ap+o)1-0)
2-(p+oa)d

We combine (4.3)-(4.5) to obtain

1 , 1
J— + J—
2 Il 2

t t
1 1 1
1- _[g(s)ds llauli3 + 2 [IVullz + 28 > ) + 7 llull; + wIIIVurII%dS
0 0

t t
1
+u [lulids + - Je(o)aulds
0 0

1
<d+ —J'|u|P In|u|dx
p Q

£ C(e)
< d+ — [lAulf + —= lullj.
pea pea

The aforementioned inequality becomes

1 1 1
5 el + 5 18wl + (g = Auw®)

t
€
1- _O[g(s)ds e

t t t
1
+ o [lIvuwlBds + u flluddas + 3 [gnaulgas
0 0 0
C(e
< a+ S g,
pea
From Lemma 4.1, we obtain
lulfy = (I)? < (P2,

Substituting (4.7) into (4.6), we have

17

4.5)

(4.6)

4.7
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t
1, 5.1 € , 1
5 Ml + 21 - {g(s)ds e | 18l + 58 <+ d)(O

t t t
1
+ o [Iulds + u ludas + 3 feaulbas
0 0 0
< Gy
where C; denotes a positive constant relying exclusively on the parameter d. We take € to be sufficiently small
so that [ - p%a > 0. This choice leads to the following bound:

t t
1
il + 18l + g 8w©) + [Iulids + - [g(o)loulds < Ca (48)
0 0

Using an estimation similar to (3.9), we can obtain
llu/P~?uIn]ulll; < Ca. 4.9)

By the definition of the dual norm and the first equation of Problem (1.1), we can derive

e, @)
el = sup %
R AT
[ o p2umpugiax | |ag - Auldx
< sup == +sup E—————
0EH ”q’”H 0EH ”gD”H
[u-soiax o ju- aglax
+ sup + sup
js A T PR A T
t
| Jue-glx [ gt - 9 au(s) sglaxds
+ sup ——————— + sup
oen lolls  pen ol

In view of Hoélder’s inequality, hypothesis (H), (4.8), and (4.9), we obtain

t
lltteellgr < lwlP~?ulnfulll + [|Aullz + llull + (@ + [uDllucll + ||Au||2_[g(t - s)ds
0
< Cy.

This completes the proof for u € C%(0, T; H™). The subsequent proof follows an approach entirely analogous
to the demonstration outlined in Theorem 3.1. By leveraging these estimations, we are justified in extending
the maximal existence time ¢ to +. Consequently, it can be concluded that Problem (1.1) possesses a global
weak solution u(t) € W. (I

In the subsequent discussion, we demonstrate the decay characteristics of the weak solution as outlined in
the following.
Define function

EW
H(O) = O + efuudx + = ully o,
Q

where ¢ stands for a positive number.

Lemma 4.2. Let uy € W, wy € LX(Q), then for a sufficiently small € > 0, there are two positive numbers a; and a,
such that

alE(t) < H(t) < (ZzE(t).
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Proof. According to Hélder’s, Young’s, and Poincaré’s inequality and (2.2), we obtain

|H(t) - E(D)| =

)
2
eju[udx+ 5 ||u||H&(Q,‘
Q

1
2 2
= 8[8 llullz + - Iz

EW
— + = ||Vul}
o S Ivulp

1 2 Ew

= — |l + €% llullf + — |IVull3
7 Nl + €l + == 19ulf
1 W

< SE() + £ [Vullf + = I1Vulp,

where Cp is Poincaré’s constant. We choose

€ < min

3

11
6G’ 3w

H(O) - E@) < 2E),

then

S0 we acquire
CllE(t) < H(t) < azf(t),

where qq = % and a; = %
Theorem 4.2. Assume (Hy)—(H,) is true, ug € W, u; € I*(Q), if E(0) satisfies
p+o-2
“(p-2l J
2p

(1-6)ea

+a
B

E(0) < min

bl

- 19

then there are two positive numbers K and K, in such a way that E(t) satisfies the following decay

property:

E(t) < Ky exp

3

t
—IKz)t(t)dt
0

where 0 < 6§ < I, A(t) will be given later.

Proof. Differentiating the function H(t) with respect to t yields

H(t)=E(t) + e‘[unudx + s_[|ut|2dx + £ J’VuVutdx
Q Q Q

=E(t) + £I|u|l’ Inju|dx + stAu,udx
Q Q

2 2 2
- eu_[utudx + & flucllz - € [lAullz - & ||Vull;
Q

t
+ £w IVuVutdx + SIAu(t)_[g(t - $)Au(s)dsdx.
Q Q 0

(4.10)

By making use of Young’s and Hélder’s inequality, and referring to Lemma 2.3, we are able to

infer that
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t
jAu(t)jg(t - $)Au(s)dsdx
Q 0

t
jAu(t)jg(t - $)(Au(s) - Au(t))dsdx
Q 0

t

+ jAu(t)jg(t — $)Au(t)dsdx
Q 0

2

+ (1 - Dllduli

§ llduliz + <

t
jg(t ~ §)(Au(s) - Au(t))ds
0

2

IA

(8 + 1= Dlldulfy +

and

1
Jud < 8 i + 5
Q

where 0 < § < [ is a fixed constant. Combining (2.9), (4.10), (4.11), and (4.12), we derive
H(t) < (&' Bu)(t) - ~g(Ollaul} - o [Vull} - & [7ul}
=5 g 2g 2 tllz 2

+

-1 el
e o a0 + [ e

+ & [lup Injuldx + £(5 - DIAuIB + s [lulf.

From (2.1), we can obtain

t
&m &m &m
emE(t) === Nl + ~-{1 = [g(s)as| autf + == 1vul
0
&m &m &m
* 5 o a0 = == flup npuax + 5 julf,
Q

where m denotes a positive constant. Hence, we derive that

H(O < -emB© + @'~ 00O + ¢l 3 - 1 7l

1 &u &m
- S8OlAulf - o [IVuf - [ 6 & 7] el

t

v e M1 - {g(s)ds # 8= 1 ol + <5l
¥ 8[1 - —]j|u|ﬂ In|uldx + ¢ 7 + ](g Au)(D).
By (2.9) and (4.2), we can obtain
Il < o P EO),

So we obtain

DE GRUYTER

4.1

(4.12)

(4.13)

4.14)

(4.15)

(4.16)
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llullp < B llAull;

< BY(||Aul2)’? || Aul
DNl Aul) 2 [|Aul; 417

p-2

2p 7
E(O)] llAulf3,

(p -2l

in which B, denotes the best embedding constant for HZ(Q) = LP(Q). By (4.4) and (4.16), we derive

< BP
< B;

[l 1 futdx < eoy T uip:
Q

— +
< (e0)'BYLS |lAull™

~ p+o-2 (4.18)
< (ea) BRIl Aulz) = (|Aulf

pto-2
2

2
< (ea)'Bfs [7175(0) l1Aull3,

(p - 21

in which By, represents the optimal embedding constant for HZ(Q) = LP*9(Q). From a combination of (4.15),
(4.17), and (4.18), we derive

HI(t) < —emE(t) + %(g’o Au(t) + e[% - 1] IVul

eu em

1
- 588l - v [Vuilf - [y 5 "€ | b
p+a-2
2 2
P L S N (ea)-lBg:g[ P E(O)]
2 (p -2 (4.19)
p+a-2
_ M oyippro| P ’
P (ea) Bpm[(p — 2)115(0)
p-2
m 2p 2 m 1-1
Z gy 2 — °
+ szp[(p i Z)ZE(O)] laulf + s[ T ](g au)(o).
Since
2 2
(1-68eas | (p-2I
E(0) < - )
N %
we have
p+o-2
2p z
- -1ppre E .
§-1+ (eo) p“[(p—Z)l (0)] <0
By choosing 0 < m < 2 small enough such that
p-2 p+o-2
m m 2p 2 2p z
— + —BP E(0 - “1BPro ————E(0 0,
2+p2p(p—2)l()] + 8 -1+ (eg) p"[(p—Z)l()] <
and ¢ small enough to satisfy
u- & £ - em > 0.

46 2
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Thus, we arrive
H'(t) < —ME(t) + Ay(g ° Au)(t), (4.20)

where

m 1-1
A1—8m>0,A2—8[7+ 15 ]>0.
By taking each side of (4.20) and multiplying by £(¢) > 0, then integrating condition (Hs) in conjunction with
(2.9), we obtain

H'(O(t) < ~ME(OE(L) + ML ()(g ° Au)(t)
< —ME(OE() + Ny(gE ° Au)(t)
~ME(OE() + Ny(=g" Au)(D)
—ME(OE(E) — 2ME(0).

AN

Define
Z(t) = §(OH(t) + CE(D).

Based on the definition of £(¢), it is straightforward to deduce the existence of positive constants a; and ay
satisfying

asE(t) < Z(t) < a4E(D),

then
Z'(t) = &(OH(t) + E(OH(t) + CE(t)
S E(OH(t) - ME(HE(t) — 2ME(t) + CE(t)
< -(Ag(t) — mE'(D)E(L) + (C = 2M)E"(D).
Let
At) = ME(E) — ai&(), C = 2A,,
S0

Z(t) < -A(DE(E) < —aiA(t)Z(t).
4

Through simple calculation, we obtain

t

Z(t) < Z(to) exp —_[ai4A(t)dt ,

to

which means

t
Et) < K exp —IKZA(t)dt ,
)

Z(IU)’KZ - i 0
as

ag

where K; =

5 Blow-up of weak solutions

In this section, we utilize the convexity method to establish the finite-time blow-up of weak solutions to Problem
(1.1) under varying energy-level conditions and derive an upper bound estimation for the blow-up time.

Theorem 5.1. Under the assumptions that conditions (Hy) and (H,) are satisfied, with uy € V and uy € L3(Q), if
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(1) the initial energy E(0) takes the form E(0) = ad, where the parameter a satisfies a < 1,
(2) the kernel function g(s) fulfills the integral inequality

t

-2
[g(s)as < R
0

p-2+ A-a)?p+2a(1-a)

-_ 23

where a- = max{0, a}, then the solution u(x, t) to Problem (1.1) exhibits finite-time blow-up behavior; this

phenomenon is characterized by

lim L(t) = oo,
t->T*"

with the function L(t) to be defined subsequently.

Proof. We define the function
t
L(t) = |Jull; + _[Ilullidt + (T = Olluglly + b(t + Ty)?,
0

where Ty > 0, b 2 0. Then, we have
L(t)>0,t€ [0, T].

Through straightforward computation, one can derive
t

() = Zqutdx + Zj(u, uO)dt + 2b(t + Ty)
Q 0

and

L7(t) = 2 fluglfy + 2 funoddx + 20, up), + 2
Q

=2 lucl; + ZIIMI” Infuldx - 2 f|Aullf - 2 [|Vul}
Q

t
+2 [g(t - s)(u(s), Au(t))ds + 2b
0

=2 fluelly + 2j|u|P Infuldx - 2 ||Vulf3
Q
t
- ZIg(t — $)(Aut), du(t) - Au(s))ds
0

-2 [|Aul3 + 2b.

1- jg(s)ds
0

We can derive the following result from the Cauchy-Schwarz inequality and (5.3)

2

t
Jux + fw upade + b + 1)

Q 0

O
4

<

t
Ml + [llulzde + be + T,y
0

t
2+ 2dt + b
lellz + | el
0

t
= (L) - (T~ t)IIuoIIi)[HutII% + Illuzllidt +b
0

< L(t)

t
2+ 2de+b
Il llz Il I
0

(5.1

(5.2)

(5.3

(5.4)

(5.5
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Through an analysis of (5.4) and (5.5), it can be deduced that

2
or© - E=wor

v

t
LOL"(®) = (p + DLO)|lluclly + Illuzllidt +b
0

. (5.6)
> 10| -p Nl + 2 [jul Injuldx - 21 - [g(s)ds | f1aufB
Q 0
t t
- 2 1Vulf - 2 [g(¢ - s)@u(e), Au(t) - du(s)ds—(p + 2)[ uclde - pb|.
0 0
Let
t
F()=-p lludf +2 [lup Injujx - 21 - [g(s)ds| f1aulf
Q 0
t
-2 |Vl - ZIg(t — $)Au(t), Au(t) - Au(s))ds G.7)
0

t
- (p + 2)f lluldt - pb,
0

then (5.6) can be rewritten as
p+2
L(OL"(t) - T(L’(t))2 2 L(OF ().

By combining (2.1), (2.9), and (5.7) and then applying Young’s inequality, given an arbitrary positive number
e > 0, we arrive at

t
2
F(O = 29E(D) + plg » 8u)O) = (p + D)l + - ulf
0
t
- 2 [g(c - s)(Bu(o), du(t) - Au(s))ds + (p - DI|Vulp
0

+(p-2) llAullz - pb

t
1- _[g(s)ds
0
t
> ~2pE(0) - 2 [g(t - s)(u(®), du(t) - Au(s))ds
. 0
+(p- Z)Illuzllidt +(p = DNIVull; + p(g * du)(®)
0

+(p-2)

t
2
1= [eas| autf + = i - pb.
0

After further simplification, we acquire
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F(t) 2 -2pE(0) + | Aulf3

t
@-2-[p-2+ %]!g(s)ds
+ % lully + (p - £)g * Au)t) 58)

t
+ (p = DIVulp + (p - 2)[ lluclde - pb.
0

Let us now examine the classification of the initial energy E(0) into two distinct scenarios. One case is that
E(0) < 0, and the other case is that 0 < E(0) < d.

For the first case, let a < 0, then E(0) < 0. We substitute € = p into inequality (5.8). Then, by selecting a
value of b such that 0 < b < -2E(0), we obtain the following result:

t
2
F(t)2 p(-2E(0) - b) + (p - Z)Illutllidt t llully + (p - 2IIVull;
0

(5.9

2
+ llAufz

t
v-2- [p -2+ l]Jg(s)ds
P 0
> 0.

For the second case, let0 < a < 1, then 0 < E(0) < d. When we substitute € = (1 - a)p + 2a into inequality
(5.8), we discover that

F(t) 2 -2pE(0) + % llull; + a(p = 2)(g © Au)

* 18wz (5.10)

t
(p-2)- [p -2+ [gs)as
0

1
A-ap +2a
t
+ (p = DIVulB + (p - 2)f lluclat - pb.
0

Alternatively, when I(uy) < 0, and E(0) < d, it can be shown that I(u(t)) < 0, E(t) < d for all t. To prove this,
suppose for contradiction that there exists some ¢, € (0, T), where I(u(t;)) = 0 or E(t;) = d. From equation
(2.9), we know E(ty) < E(0), and since E(0) < d by assumption, the equality E(t;) = d is immediately ruled out.
Now, consider the case where I(u(ty)) = 0. This implies u(ty) € N by the definition of the Nehari manifold N .
Recalling the definition of d as d = infy,cnJ(u), it follows that d < J(u(ty)) < E(ty) < E(0), which is also contra-
dictive with E(0) < d. Thus, we have I(u) < 0. By Lemma 2.1, there exists a parameter A, € (0, 1) such that
I(A4u) = 0, then we immediately obtain from (2.4) that

d< JW
_ (P B 2)/1*2
= —Zp

- 2
. (p - 2y
2p

(p-2)A
2

2
2 * 2
llAullz + [IVuullz

t
1- Ig(s)ds
0

AP
(g ° du)(t) + ra llullf (5.11)

t

i [e)as
0

2p

p

<

2
llAully +

-2 2
Vu

p

+

~2 g o A0 + — [l
zp(g u pz ull5.

Since u(x, t) is continuous, a positive number k > 0 must exist such that
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t
p-2 s D—2 s D2 1
d+k< 1 - |g(s)ds| ||Aulj; + [IVul5 + o Au)(t) + = |lull?, (5.12)
2 ‘([g 2 2 p 2 @& 2
then
p 2a
2pa(d + k) < a(p - 2)||1 - Ig(S)dS ll8ullF + 1Vull; + (g = Aw(®)| + ) llull}. (513)
0
By combining (5.10) and (5.13), we acquire
F(t) 2 -2pad + 2pa(d + k) - pb = 2pak - pb. (5.14)

By selecting a sufficiently small positive number b such that the inequality 2pak — pb > 0 holds, one is able to
derive

F(t) = 0. (5.15)

By integrating the information from (5.9) and (5.15), it can be deduced that
+2
LOL' (D) - pT(L’(t))Z > 0.

In both scenarios where E(0) < 0 and 0 < E(0) < d, we select Ty sufficiently large to ensure that

L(0) = 2(ug, wy) + 2bTy > 0. (5.16)
Thus, by choosing a = pT—Z > 0 in Lemma 2.2, we immediately deduce that
lim L(t) = oo,
t=T*
where
T+ < AL0) 2 |luolly + 2T |lug|* + 2bTp?
(P =DLO)  (p - 2bTy + (p - 2) | uowdx
So
- 2 ||uolf3 + 2bTy? |
(P = 2T, + (p = )] uouax - 2 lluolf
The proof is complete. O

Finally, we state the conclusion on the finite-time blow-up of weak solutions with null initial energy in the
form of a remark.

Remark 5.1. When a = 0, i.e., E(0) = 0, we supplement the condition (ug, 4;) > 0, then the weak solution u(x, t)
blows up in finite time.

Proof. Taking € = p and b = 0 in (5.8), we receive

F(t) 2 l|Aull;

t
(p-2)- [p -2+ %Mg(t - s)ds

) t (5.17)
+ » llullp + (p = 2)IVull; + (p - Z)Illuzllédt
0

= 0.
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The condition (ug, u;) > 0 gives
L'(0) = 2(ug, uy) > 0. (5.18)
Consequently, we arrive at a similar result that

lim L(t) = . B
t—-T*
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