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Abstract: In this article, we propose a model describing laminar shallow water flows with two velocities to
handle an uneven bottom. The model is established by taking the different velocities into account. The source
terms generated from the bottom topography prevent us from solving the Riemann problem directly. We first
derive the elementary waves including the stationary wave where the global entropy condition is used to
ensure uniqueness. Then, we analyze the resonance phenomenon and coalescence of waves by classifying the
initial data into different regions. Finally, the Riemann problem is resolved explicitly on a case-by-case basis.
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1 Introduction

Recently, the multilayer shallow water equations have been of great interest. On the one hand, it is very
efficient in describing flows with different densities and varying velocities both theoretically and numerically.
On the other hand, the multilayer models have wide applications in the two-phase and multiphase flows,
which play a key role in the research of modern industry. The two-layer shallow water system is one of the
representatives of the multilayer flows, it can be obtained by taking the vertical averaging of the layer depth
[1,2,4]. In this work, we consider the two-layer shallow water equations with non-flat bottom topography as
follows:

(h); + (huy)y = m,
hZ
(hquy); + [hlu12 tg 71 + ghlhz] = ghy(hy)y + unme — ghiB’(x),
* .
(hy)e + (hotp)x = —m,
2 h22 7
(houz); + |houy + 37 = —ghy(hy)x — uinme — ghyB'(x),

where h; and u; (i = 1, 2) represent the approximation of the layer thickness and the horizontal velocity of the
ith layer, m, denotes the mass exchange from the second layer to the first layer, uy, is the velocity of the
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interface between two layers, B(x) denotes the bottom elevation. The system contains the source terms
resulting from the bottom topography and mass exchange between the layers. For more details about the
derivation of the model, we refer to [2,6] and references therein.

The reasons we are interested in the two-layer shallow water equations (1.1) are twofold: (i) It is equivalent
to the bilayer version of the layerwise model introduced in [6], which was used to approximate the 3D
hydrostatic equations; (ii) System (1.1) also takes into consideration of the mass exchange between the layers,
which can be seen as an extension of the model proposed in [4]. There are a lot of research studies on the two-
layer flows in the literature [7,11,20,23-25]. Audusse et al. [6] introduced a multilayer model with mass
exchange between the neighboring layer from the Navier-Stokes system. The local well-posedness of the
two-layer shallow water equations was obtained in [22]. Abgrall and Karni [1] introduced a relaxation
approach where two artificial equations have been added so that the extended system is hyperbolic as the
original two-layer flow is conditionally hyperbolic (see also in [14]). Numerical simulations are also available.
A well-balanced scheme was introduced in [16] for both one-dimensional (1D) and two-dimensional (2D) two-
layer shallow water equations. A time-splitting approach proposed in [15] is implemented without having the
full eigenstructure of the system. Several upwind schemes were developed in the last decade, including the
finite-volume and finite-element types [1,14]. More related works can be found in [5,9,10, 12,13,26].

Recently, an interesting approach dealing with the two-layer model with flat bottom has been proposed in
[2]. For convenience, we post the 1D case here for later use,

he + (hiD)y = 0,

(i), + |+ @) + £1¢| <o, 12)

U + (W) = 0,
where h denotes the total height of the water flows, the notations & and @ represent the average of the vertical
velocity and the oriented standard deviation, respectively, which are given by
U — W

5 (1.3)

i=—r—, u=

In order to derive (1.2), the authors have made the assumption that all the layers have a homogeneous
thickness, i.e., iy = hy, and the interface velocity is defined by w, = i&t. The detailed derivations can be found in
[2]. One may note that system (1.2) is hyperbolic and can be used to describe laminar flows with two velocities.
The major advantage of investigating (1.2) is that the Riemann problem has been fully solved for both 1D and
2D cases, which provides direct Riemann solvers for numerical simulations of the two-layer flows. Another
reason we are focusing on (1.2) is that the wave interaction and numerical investigation on (1.2) are still
lacking, which have already been studied in [8,17,19,30] for the single-layer shallow water equations. The
comparison of system (1.2) with other two-layer models are also given in [2].

In this work, we are interested in extending the results obtained in [2] to the non-flat bottom case (1.1),
which has a more practical application when considering the multilayer flows. Besides, it is also interesting to
investigate the Riemann structures with the existence of the bottom function B(x). We should emphasize here
that although the extension is quite natural, the bottom topography introduces a non-conservative term in
system (1.2) as we will see below, which is the major difficulty in solving the Riemann problem due to the non-
strictly eigenstructure of the system. As indicated in [21], the weak solution can be obtained by defining a path
connecting the left-hand and the right-hand states W, and Wk, respectively. For the two-layer shallow water
equations, it does not offer a clear definition of such a path. A different approach is proposed in [18] for duct
flows by adding a trivial equation where a linear degenerate characteristic field was introduced. This
approach is efficient and shows its robustness in the two-phase flows [3], the blood flows in arteries [27,28],
traffic flow models [29] and so on. In this article, we take this approach and introduce a linear degenerate
characteristics for the bottom function B(x). We then analyze the characteristics of the system before solving
the Riemann problem. The elementary waves include rarefaction wave, shock wave, and particularly, sta-
tionary wave. After we present the main property of the stationary wave, the Riemann problem is solved
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explicitly on a case-by-case basis. The resonance phenomenon and coalescence of waves are also considered.
The solution may be useful for the design of numerical schemes in future study.

This article is organized as follows. Section 2 includes some preliminaries and notations for (1.1). Parti-
cularly, we give the detailed derivation of the two-layer shallow water equations with bottom topography. In
Section 3, the elementary waves for the presented system are concerned, which includes the rarefaction wave,
the shock wave, and the stationary wave. In particular, the global entropy condition is proposed to ensure the
uniqueness of the stationary solution. Section 4 deals with the Riemann problem explicitly. The initial datum is
classified in the phase plane and the Riemann solution is constructed case by case where the resonance
phenomenon and coalescence of waves are concerned.

2 Preliminaries

2.1 Model derivation and characteristics analysis
In this section, we begin to derive the two-layer shallow water equations with bottom topography. Basically,
we follow the assumption made in [2] that the two layers share the same thickness h; = h, = h/2. By adding the

two mass equations of (1.1), it yields

he +

g(ul + UZ)] = 0. (21)

X
Similarly, the summation of the momentum equations in (1.1) leads to

+
t

h
E(ul + Up)

h 2 2 hz /
S+ ) + g | = ~ghB 00, @2

Besides, in order to make the system completed, we subtract the two momentum equations, which yields

U — U

=0, (2.3)

X

(U + up)

(U — w)e + [

where we have used that

.= _(h(uz - ul))x’ (2.4)
2
which is obtained by just subtracting the mass equations.
By using the notations i, i defined in (1.3), and combine (2.1), (2.2), and (2.3), we arrive at

h; + (hit), = 0,
(hT), + |n(@? + 02) + §h2 = —ghB'(), 2.5)
X

i, + (a), = 0.
We note that system (2.5) has a time-independent function B(x). In order to investigate the Riemann
problem of (2.5), it is convenient to introduce a trivial equation associated with B(x), namely
B =0. (2.6)
This equation will be our starting point to define the weak solution of the Riemann problem, which is also used
in the duct flows and traffic flows [18,29].

Before we make characteristic analysis of system (2.5), we can compare (1.2) with the Euler equations.
Recall in [2], the authors have made the analogous with (1.2) and the Euler equations by setting
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p= %hz +hi?, S =afh, @.7)

where p and S are the pressure and the entropy in the gas dynamics, respectively. However, the main
difference between system (2.5) and the Euler system is h cannot be expressed explicitly as a function of p,
which brings difficulties in the theoretical and numerical analysis. For notation convenience, here we use the
variables (h, i1, S) instead of the original variables (h, i, &) to express the system. Of course, here p and S do
not have the meanings of pressure and entropy as in gas dynamics. As is pointed out in [2], system (2.5) is
analogous to the full Euler equations at least for smooth solutions under the transformation (2.7). With the help
of (2.7), one can rewrite (2.5) and (2.6) as follows:

U+ AU, = 0, (2.8)
with
h 7] h 0 0
T 2 i 2
U= u’ A(U) = g +3Sh u 2Sh g. 2.9)
S 0 @ 0
B 0 0 0 0
The matrix A(U) has four eigenvalues, namely
)ll =U-c, /12 =1, )(3 =u+c, /14 =0, (2.10)

where c is the celerity given by

c=/gh+ 38", (2.11)

We can further compute the corresponding eigenvectors as follows:

-

n=(1,0,0,07
a2 - c2 ]T (212)

1 =(-c,Sh, h,0);

B=(c,ShhOW; 7= [-a, Sh, h,

One can see that A4, A;, and A3 may coincide with A4, which means that the system is not strictly hyperbolic.
More precisely, if we set

L:il=%c, T:ut=0, (2.13)

then
Al = /14 on I, /\3 = /14 on I. (2.14)

In the (@, p) phase plane, the three curves I and I separate the whole plane by four parts such that in
each part, system (2.5) is strictly hyperbolic. We should point out here that the construction of the Riemann
problem is also based on the separation. For convenience, we will view these regions as supercritical regions
(D1, Dy), and subcritical regions (D3, D3), namely,

Di={@@, p)lu>c}, D={@pIl0<u<c}

2.15
Dy={(@,p)l-c <u<0}, Dy={@plu<-ch -

3 Elementary waves

In this section, we present the elementary waves of systems (2.5) and (2.6). Generally, the elementary waves
include the rarefaction waves, the shock waves, the contact discontinuity, and the stationary wave. We will
discuss them in the following section.
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3.1 Rarefaction wave

The rarefaction solution is a continuous solution that depends on the self-similar variable ¢ = x/t. The solu-
tions are associated with the two nonlinear characteristic fields 4 and A;. We compute the Riemann invariants
w; corresponding to A; (i = 1, 3) from

Vw;*F =0, i=13. (3.0)

Consequently, the Riemann invariants w; and ws are given by [2]

_ g 3 3
w1 =10 + Jgh + 3822 + —=—1log| |1+ =S*h + |=S%n|, B, Si,
! & J3s g‘\/ g \/g
(3.2)
_ g 3 3
w3 =11 — Jgh + 38%h* - ——1log| |1+ —=S*h + |—S%h|, B, S}
: & J3s g‘\/ g \/g

From (3.2), we see that for the rarefaction wave, the bottom function B(x) remains constant; thus, the system
degenerates to the flat case in [2]. For a given left-hand state (hy, iy, Sp), the 1-rarefaction wave curve that can
be connected on the right is given by

o g 38%h 38%h g 3S2h, 382h,

— |@=0y-c+cg-—log|, |1+ + + log|, |1 + + ,

R AN g‘\/ g g | s, % g g (33)
§$=S8,, h<h,.

Similarly, for a given left-hand state (hy, iy, Sp), the 3-rarefaction wave curve that can be connected on the
right is given by

o g 35%h 35%h g 3S2h, 382hy

— | =10g+c-cy+ —log|,/1+ + - log|,/1+ + ,

R : 0 NED g‘\/ g g N 8 8 (34)

§$=S8y,, h>h,

3.2 Shock wave

For the discontinuous solution with the propagating speed o, we start with the Rankine-Hugoniot condition
associated with (2.6), which is given by

o[B] =0, (3.5

where [B] = B, — B- is the jump of the bottom function B(x). From (3.5), we have that either the shock speed
vanishes (g = 0) or the bottom remains constant ([B] = 0) across the non-zero shock.

We first look at the shock wave with non-zero speed, the bottom function keeps constant in this case. Thus,
system (2.5) degenerates to

h; + (hiD), = 0,

Epe| = o, 3.6)

(R + |R(@ + @) +

ﬂt + (ﬁﬁ)x =0.

The Rankine-Hugoniot condition associated with the above system reads
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o[h] = [hu],
ofhi] = |h@@? + 02) + %hz, 37)
old] = [ad].

In order to ensure uniqueness solution, we assume that the shock wave satisfies the Lax entropy condition
A) < 0T, o) < A(lp), =13, (3.8)

where Uy and U represent the left- and right-hand states of the shock wave, respectively. By using the Lax
entropy condition, we determine the 1-shock wave curve as follows:

£+E+1 +§l+l,
ho h 2lhg h

= H=ﬁ0—(h—ho)\/sz

St (3.9

§$=S8,, h>h,.

Similarly, for a given left-hand state (hy, iy, Sp), the 3-shock wave curve that can be connected on the right
is given by

_ h ho gl 1 1

— = - o — 4 2 ol — 4+ =

5 (Tt (R h")\/s [ho " h +1]+ z[h0 ' h]’ (3.10)
S$=38, h<h,.

In order to solve the Riemann problem of (2.1), it is necessary to know when the shock speeds in the
nonlinear characteristic fields equal to zero. From (3.7), for the shock speed g, we have that

G_hzi—hoao

h - hg
_ h(@ - p) + dg(h - hy)

h - hy
(3.11)
_ h hy gl 1 1
_ o o =2 P i}
ity h\/s[ho + N +1]+ Z[ho + h] for 1-shock wave,

_ h h 1 1
iy + h\/sz[h_o + 70 + 1] + %[h—o e for 3-shock wave.

We take the 1-shock wave as an example. For a given left-hand state (hy, &y, Sp), when the 1-shock speed
vanishes, it requires that i, > 0 and

_ h h g |1 1
2 _p2c2l 2, O opl - L =
iy hs[h0+h+1]+2h[ho+h]

8 (3.12)

2

g

h
" [Szh2 + SEhi + S?hhy + Sh3 + 2

0
> gho + 3S5hg = cj,

hzho]

where h > hy is used here. We thus conclude that the left-hand state (hg, @y, Sp) belongs to D;. Similarly, for a
3-shock wave from a given right-hand state to a left-hand state, the shock speed vanishes if the given state
belongs to D,. Consequently, we have the following proposition.

Proposition 3.1.

(@) For the 1-shock wave connecting the left-hand state U, = (hy, Uy, So, By) and the right-hand state
U= (h,u,sS, B), the shock speed may change its sign along the 1-shock curve. To be precise,
() IfUy € D, U D3 U Dy, then the shock speed o(Uy, U) remains negative.
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(i)) IfUy € Dy, then the shock speed a(Uy, U) vanishes at some point denoted by U, € D, on the 1-shock curve
such that

a(Uy, Up) = 0,
a(Up, U)>0, hE€E (hyh), (3.13)
o(Uy, Tp) <0, h>h.

(b) For the 3-shock wave connecting the left-hand state U = (hy, iy, So, By) and the right-hand state
U= (h,@,S, B), the shock speed may change its sign along the 3-shock curve. To be precise,
(1) IfUy € D1 U D, U D3, then the shock speed a(Uy, U) remains positive.
(i) IfUy € Dy, then the shock speed a(Uy, U) vanishes at some point denoted by U, € Ds on the 3-shock curve
such that

o(Up, Up) = 0,
O-(UO’ U) < Oa he (hO) fl): (314)
o(Uy, Tp) >0, h>h.

3.3 Stationary wave

We first look at the stationary contact discontinuity with zero speed. In other words, we look for the time

independent solution of (2.5), which is equivalent to
(hi) =0,
h(@? + 02) + %hz ' = —ghB'(x), (3.15)
() = 0,

where ()’ means %. The solution of the ordinary differential equation is given in the following lemma.

Lemma 3.2. For smooth solutions, system (3.15) is equivalent to

hit = hoﬂo,

a3 a; 3

”7 + %+ g(h+ B) = = + = Sihi + g(ho + Bo), (3.16)
S= SO,

where (ho, Uy, So, By) and (h, @, S, B) represent the left- and right-hand state of the stationary wave, respectively.

Proof. For a given left-hand state (hy, @y, Sy, By), the first equation of (3.15) is equivalent to
hit = hyly, (317
and the third equations is equivalent to
S =35, (3.18)
For the second equation, one can substitute Zi = Sh into it and rewrite as

g

R + S + S| = ~ghB'(x), (3.19)

which is equivalent to

hai’ + 3S2R2h’ + ghi' = -ghB'(x), (3.20)
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where (3.17) and (3.18) are used. After eliminating h in (3.20), we finally obtain

a3
5+ 5SM+ g(h+ B)[ = 0. (.21

Thus, we have proved the lemma. O

We are now ready to solve system (3.16) for a given left-hand state (hy, iy, So, By). To achieve this goal, we
holty

substitute & = =~ and S = S into the second equation of (3.16), which yields the following function:

3
®(h,B) = Esozh4 + gh® +

1 3
g(B - By) - an - ESghg - gho

1
I+ < (hotly ), (322)

where ®(h, B) depends on h and the parameter B.
In order to find the roots of (3.22), we have

d®(h, B 1 3
% = 6Soh® + 3gh? + 2h|g(B - By) - Ea& - ESOZhOZ - ghol. (3.23)
So that
dq)g;l’ B) <0, h < hmin:
do(h, B) (3.24)
Th’ >0, h> hyp,
where

-3g + \/9g2 - 48302[g(B - By) - %L‘toz - %Sozho2 - gho

hon = 2 ’ (3.25)
128¢
provided that
g(B - By) - %a& - %s&h& - ghp<0. (3.26)
As a result, from (3.22), we know that ®(h = 0, B) > 0, thus (3.22) has a root if and only if

®(Mynin, B) < 0. (3.27)

Besides, if ®(hpin, B) < 0, then there are exactly two roots denoted by h, < hpin < h* such that
@(h,, B) = ®(h*, B) = 0. (3.28)

Moreover, we have the following lemma.

Lemma 3.3. There exists a stationary contact discontinuity from a given state Uy = (hy, iy, So, By) connecting the
state U = (h, U, S, B) if and only if ®(hyn, B) < 0. More precisely,
() If ®(hyin, B) > 0, there are no stationary contacts.
(i)) If ®(hyin, B) < 0, there are exactly two points U, = (hy, Uy, S = So, B) and U* = (h*, i*, S = Sp, B) that
satisfying
®(h,, B) = ®(h*, B) = 0, (3.29)

with U, belonging to the supercritical regions and U* belonging to the subcritical regions.

Proof. From the above discussion, here we only prove that u, > ¢, and u* < c* with ¢ defined in (2.11). From
(3.23), one has
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1 3
6Soh2in + 3ghmin + 2|g(B — By) - 20 - Esozhg - gho| = 0. (3.30)

By using (3.16), we obtain that
6Soh2in + 3ghmin = W2 + 3822 + 2gh,. (3.31)
Thus, it holds
2 = 6Soh iy + 3ghmin — 3S2h2 — 2gh, > 3S¢h2 + ghy = ¢2, (3.32)

where hp, > h, is used. Similarly, we can prove that (i*)? < (c*)%. Consequently, we have proved the
lemma. O

As we have seen in Lemma 3.3 that for a given state U on one side of the stationary contact, there may
admit up to a one-parameter family of solutions. In order to ensure the uniqueness of the solutions, we follow
[18,30] and impose the global entropy condition on the stationary contact discontinuity.

Global entropy condition. Along the stationary contact curve Sy(Up, U) in the (&, h) plane, the bottom
function B obtained from (3.16) is a monotone function of h.

Under the global entropy condition, the stationary contact discontinuity can be called as the stationary
wave. Moreover, we have the following lemma.

Lemma 3.4. The global entropy condition is equivalent to the statement that any stationary wave has to remain
in the closure of the same domain D;, 1 =1,2,3,4. Moreover, the stationary wave can be viewed as a para-
meterized curve denoted by Sy(Uy, U(a)), which is strictly increasing (decreasing) in it if i < 0 (@ > 0).

Proof. To prove this lemma, for a given state Uy = (hy, ity, So, Bg), we differentiate (3.16) on both sides and have
that

hdaz + adh = 0, (3.33)
udit + 3S*hdh + gdh + ghdB = 0. '
We insert the first equation into the second one and have that
da ___gn dh_ gh = di_ & (3.34)

B  @-c¢¥ dB a’-c¢* dh R’
As we assume that the bottom B is a monotonic decreasing function, thus dB < 0. From (3.34), if 1702 > COZ, then it

is increasing and h is decreasing, i.e., il > ilp and h < hy. Thus, it has @12 > ¢2. Similarly, if 1Z < ¢Z, we derive that
ii> < ¢ We thus complete the proof. O

4 Riemann problem for (2.5)

In this section, we establish the existence of the Riemann solution. Some notations are used and given below

for convenience.

(1) We use Wi(Uj, Uj) to denote the kth wave (namely, the kth shock wave or the kth rarefaction wave) that
connecting the left-hand state Uj to the right-hand state Uj.

(2) We use Wy (U;, Uy) ® Wy(Uj, Us) to denote the solution including an mth wave from U; to Uj, then followed by
an nth wave from U; to U.

(3) The notation U is used to denote the state obtained by a contact discontinuity from a given state U, which is
associated with the second characteristic field A, = 1.
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4.1 Construction of the Riemann solutions

In order to construct the Riemann solutions, we first classify the initial data by the following cases and then
discuss the Riemann solutions case by case.

Case 1 U; € Dy, Up € D, U I and some part of D,. Denote Uy, € D; as the state obtained from Uy by a
stationary jump from By, to Bg. Then, if Wi(Uy.) N W5(Uy) # O, then there exists a solution. Denote

{1} = Wi(Ups) N Ws(Up). @1
Thus, the solution is given by
Wi (U, Ups) ® Wi(Ups, Ur) @ J(Uh, Th) ® Wa(Th, Up). (4.2)
See Figure 1. In particular, if Wi(U.) N Ws(Ug) = &, then there is a vacuum in this case,
Wi(Uz, Upy) ® Wi(Ups, N) ® Vacuum & Wa(N, Up). 4.3)

Case 2 U, € Dy, Ug € D, U D3 U I, and some part of D;. First, denote U, € D, as the state that the 1-shock
speed vanishes, i.e., a(Up, U) = 0. U, is the solution of the following equation:

%h“ N [sL2 N %hL 1S + SZh2R + S2hZh - @ihy = 0. 44)

From each point U on the backward shock curve $1(Uz, U) with p > p,, U will jump to a state U* € D, by a
stationary wave from By, to Bg. Such state U* can be formed to a curve which we denote as WlB(UL),

WE(Up) = {U*U* € Wy(U, U*) from B, to By with U € Wi(Up), p = p;}- (4.5)
See Figure 2. If W(Uz) N WE(U,) # @, denote as U = Wa(Ug) N WE(U,), where U;* is jumped from U, by a
stationary wave, then there exists a Riemann solution. Furthermore, if u; > 0, the solution is
$i(U, Up) & Wi(Up, U5) @ J(US, U3) & W(Ty, Up). (4.6)
If u; < 0, then the solution is
S1(Us, U) @ J(Us, U) @ WDy, Uy) @ Wa(Ty', Up). @7

Case 3 We analyze the coalescence of waves in this case. Namely, there are three waves with the same zero
speeds coincide with each other in the Riemann solution. To be precise, we construct the Riemann solution as
follows. Uy, first jumps to the state U with the bottom function B(x) shifting from B, to an intermediate state
B € [By, B]. Then, U" jumps to Us € D, by a standing shock wave with a(U[", U3) = 0. Finally, the solution
follows by another stationary wave jumping from U; to U, with the bottom function shifting from B to Bg
(Figure 3). In fact, the three waves have the same zero speeds and thus the waves coincide in the physical

p
r_ r,
~ Ur
UL * 3
Ul UL
U
WiInN3UL,
0 N U X

Figure 1: Case 1. U, € Dy, Ug € D1 U I, and some part of D,.
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t
p
S
] 0
I_ _ I
_ U, i Sy W3
U (W) W],3
Pe = _
W3 \ ~ U UZ U;
U 2
Ur UL W, U, U Ug
(6] u X
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Figure 3: Case 3. The coalescence of waves.

plane. Now, we are left to determine the middle bottom function B, which varies from By, to B. It is natural to
denote the following curve:

L (UL, By, Bg) = {U(B)|B € By, Bgl}. (4.8
Thus, if
W3(Up) N L # @, (4.9)
. t
r_ r,
Ug,
Ur Us
Ws S
Up« U ~
0 b X

Figure 4: Case 4. Up € D;.
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we can construct the solution as follows. The solution begins from a stationary from U, to U, follows by a
standing shock wave from UJ" to Us, then follows by another stationary wave to reach Uy, U, jumps to U by a
contact discontinuity, and finally the solution gets to Uz by a forward wave W5. Precisely,

So(Up, U @ Si(UT', Us) & So(Us, Uy) @ J(Uy, Uy) & Wa(Uy, Up). (4.10)

Case 4 This case holds when U, belongs to the whole plane and Uz € D,. We may construct the solution
from the right-hand side to the left-hand side. Up jumps to a state Uz, € D, by a stationary wave with the
bottom function shifting from By to By, then if

Wa(Ups) N WA(UL) # O, @1
we construct the Riemann solution as follows, Figure 4:
S1(Ut, Us) @ J(Us, Us) @ So(Us, Ug) & Ws(Ug, Ug). (4.12)

Case 5 This case holds when Ug belongs to some part of D,, and there also admits the coalescence of waves
(Figure 5). Precisely, the solution begins from U to a state Uy by a backward shock wave Sy, then followed by a
contact discontinuity from Us to Ug, followed by a stationary wave from Ug to U; € D3 with the bottom function
shift from By, to an intermediate state B € [By, Bg], then followed by a standing forward shock wave S; from Uy
to Ug' € Dy. Finally, Ug* jumps to Uy by a stationary wave with B(x) shifting from By, to Bg, i.e.,

S1(Ur, Us) ® J(Us, Us) ® So(Us, Up) & S1(U7, UR") & So(Ug', Up). (4.13)

Case 6 U, € D, U D3 U D, U I, and Uy € D; and some part of D,. In this case, the solution begins with a
backward rarefaction wave R; from U; to a sonic state Uz € L., then Uy jumps to Ug. € Dy, as far as
Wi(Uzs) N W5(Ug) # D, we have a Riemann solution here (Figure 6). Denote {Ug} = Wi(Ucs) N Wa(Ug). If
Ps < P, with 0(Ucs, Uc+) = 0, such that the backward wave W;(Ue, Ug) has a positive speed, then the Riemann
solution is

R(Uy, Ue) ® So(Uc, Ucx) ® Wi(Ucs, Us) @ J(Us, U) & Wa(Us, Up). (4.14)

Case 7U € D; U D3 U I, and some part of D;. In this case, when Uy, touches Uy € I. through a rarefaction
wave, we use the subcritical point UF € D, instead of the Ug, in case 6. Similarly, to construct the Riemann
solution, it is convenient to define a stationary curve Sy(U, U*) with U belonging to Wi(U;), p = p,. More
precisely,

WE(U,) = {U*|U* € Wy(U, U*) from By to By with U € Wy(U,), p = p.}. (4.15)

As far as Wy(UF) N Wa(Up) # @, we have a Riemann solution (Figure 7). Denote {Us} = Wi(UZ) N Wa(Uy),
where Us is jumped by the Uy € Wi(Uy) by a stationary wave. Then, the Riemann solution is

Wi(Uy, Uy) ® J(Us, To) @ So(To, Us) & Wa(Ts', Up). (4.16)
t Sy
J So So
p
w3 S
I_ ﬁR* l"+ 1
UR U6(G6)
S _
Ur A Ug \76 | Uy Ur
S é L@ S -
Um UR* U R
R S3 T
U X
R+ m N |/
0 x=0

Figure 5: Case 5. Uz belongs to some part of Dj.
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Figure 6: Case 6. U, € D, U D3 U D, U T}, and Ug € D; and some part of D,.
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Figure 7: Case 7. Uz € D, U D3 U I, and some part of D;.

Case 8 This construction is similar to case 3. We also consider the coalescence of waves, and three waves
coincide with the same zero speeds (Figure 8). We can compare it with case 6, when U, gets to Uz on I, instead
of jumping to Ug, € D; with the bottom function shifting from By, to B, the solution jumps to U € D, with
B(x) shifting from B, to an intermediate state B € [B, Bg], then Uf* € D; jumps to Uy by a standing shock
wave, followed by another stationary wave from Uy, to Usj with the bottom function shifting from B to Bg. In
order to determine the middle bottom function B, it is similar to denote the curve

L (UL, By, Bp) = {U(B)IB € [By, Brl}. (4.17)
Thus, if
Wi(Uxp) NIL = O, (4.18)
p t R So Si s, I
I_ wzli r, W
U Ue
I.J* U ‘ m
108 Yc U e Uyl Uiy 5+
W3 U,
Upe—" C UIC][1 Uy
UC* — X
u N1/
o x=0

Figure 8: Case 8. U, € D, U D3, Uy € D1 U D, U D3 and some part of Dy.
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Figure 9: Case 9. U, belongs to D, and some part of D3, Uy € Dy U Ds.

we have a Riemann solution here. The solution begins from a rarefaction wave from Uj, to U, followed by a
stationary from Uy to U[, followed by a standing shock wave from U™ to Uy, then followed by another
stationary wave to arrive at Uz, Uy jumps to Uy by a contact discontinuity, and finally the solution gets to
Ur by a forward wave Wj, precisely,

R(U, Ue) & So(Uc, UM) @ S1(UL, Urg) & So(Uso, Uss) @ J(Uno, Uyg) @ Wa(Tg, Ug). (4.19)

Case 9 U, belongs to D, and some part of D3, Uz € D, U Dj3. In this case, we construct the Riemann solution
as follows. Define a curve So(U,U*) formed by a stationary jump from UE€TIL to U*€ D; If
So(U, U*) N Wi(Ug) # D, then denote {Uf} = So(U, U*) N W3(Ug), which is jumped from Uy, € I_ by a sta-
tionary wave. Whenever Wy(Up) N Ws(Up,) # O, there is a Riemann solution (Figure 9),

Wi(Uy, Uss) @ J(Uns, Uss) @ Ri(Uss, Urp) @ So(Usz, Uss) @ Wa(Ush, Up). (4.20)

In summary, we have established the model describing the two-layer shallow water equations with the
bottom topography. We further consider the elementary waves of the model under some proper assumptions.
The Riemann solution is then solved explicitly by classifying the initial data case by case. The resonance
phenomenon and coalescence of waves are also dealt with by using the phase plane method. The Riemann
solution in the 1D case is appealing at least for the following two reasons. On the one hand, it can be used to
design the Riemann solver for numerical scheme. On the other hand, in many practical applications, we need
to extend the model to the 2D or 3D case. When we consider the Riemann problem for 2D case with initial data
being constant in each quadrant [31], the elementary waves are quite similar to that in 1D case, and our results
can also be applied there, this will be left for future consideration.
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