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Abstract: In this article, we are concerned with the existence of nontrivial solutions to the Choquard equation

—Au+ a()u = (X[™ * [uDuf?u in RYN (N2 2),

. . N - 2N - . .
with recurrent potential a, where 0 <y < N and —; E<q< N_Z“ . Our results include some classical cases

where a is constant and a is periodic, as well as some new cases, such as a being almost periodic and a being
only bounded and uniformly continuous.
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1 Introduction

We consider the problem

—Au+ aQOu = (Ix[™ * [uDujf%u in RN (N=2), (11
where 0 < u < N and ZNN_ E<qg< 2:,[__5 . Equation (1.1) is usually called the nonlinear Choquard (or Choquard-

Pekar) equation, and it has a strong physical background. Equation (1.1) originates from the model of Fréhlich
and Pekar for polaron (cf. [7,21]). In the approximation developed by the Hartree-Fock theory of one compo-
nent plasma, Choquard also used equation (1.1) to describe an electron trapped in its own hole (cf. [13]). In
addition, the Choquard equation is also known as the Schrodinger-Newton equation in models coupling the
Schrodinger equation of quantum physics with nonrelativistic Newtonian gravity (cf. [11,22]). Moreover, the
equation can be derived from the Einstein-Klein-Gordon and Einstein-Dirac system (cf. [9]). Such a model was
also proposed for boson stars and for the collapse of galaxy fluctuations of scalar field dark matter (cf. [10,26]).
When the potential a = 1, problem (1.1) becomes

“Au+u= (X[« u®uj?u inRY (N =2), 1.2)

and it is called the autonomous homogeneous Choquard equation. Some classical results about existence,
symmetry and decay of ground state solutions for equation (1.2) have been established (cf. [13,15,16,18,19,28]
and the references therein). For some recent relevant contributions to some variants of equation (1.2), we refer
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the reader to [3,17]. When the potential a is nonconstant, problem (1.1) becomes more tricky, and most known
results focus on the cases of a being a perturbation of a constant or periodic. For example, Lions [15] studied
the existence of solutions to problem (1.1) with p = 2 when «a is a perturbation of a constant potential, and
recently in [2,4], minimizers for the energy function have been constructed when a is a positive periodic
function. Moreover, Ackermann and Qin et al. [1,24] considered the existence of solutions for problem (1.1)
with a sign changing periodic potential.

In this article, we are interested in problem (1.1) with a more general positive potential a. As one will see,
our recurrent assumptions on a include many special cases such as a being constant, a being periodic, a being
almost periodic, and even a being only bounded and uniformly continuous. More specifically, we assume that
the potential function a satisfies the following conditions:

* () a is bounded and continuous on R¥.
o (@) inf cgva(x) > 0.
* (a3) for any sequence {y,} C RY, there exist a subsequence {y, } and a function a"(x) : R¥ = R such that

ll{im a(x +y, ) = a'(x), forall x € RV
Hereafter, we denote Hull(a) as the set of all these a’*(x).

¢ (@) a(x) = a(x!, ...,xN) is T-periodic in x* for i = 2, ...,N and almost periodic in x* uniformly with respect to
x4 x3, ..., x¥) € [0, B] x [0, 3]x---x[0, Ty] (c.f. Definition A.1 in Appendix).

Remark 1.1. We note that (a3) is a pretty weak assumption, which includes many special cases. In fact, (as)
automatically holds if a is constant, continuous and periodic, almost periodic, or even bounded and uniformly
continuous. Moreover, if a = B + y, where B satisfies (a3) and y is continuous on R¥ with

limy(x) =0
X—00

then a still satisfies (as). Moreover, (as) is weaker than the recurrent assumptions in [20], where Pankov
considered a semilinear uniformly elliptic partial differential equation with nonstabilizing coefficients.

Since the function a” in (a3) is not necessarily a translation of a, which is the biggest difference of (a3) from
the corresponding assumptions in earlier results, we need consider the following shell equation of (1.1)
—Au + a(Ou = (X = u)uff%u  in RY, (1.3)
where a”(x) € Hull(a). Denote

=iB € C(RY, [R)| mf a(x) < B(x) < sup a(x) forall x € RM}.

X€ERN

It is easy to see that Hull(a) C A,. For every B € A, and u € H(RY), let

q q
6.0 = 3 [ Qo+ pootupyax - 5 | [ ey,
RY RVRY

and

[uCO 1" *u()e(y)
x =yl

JBw,0) = [@uvp + poouprax - | | dxdy, € H'RY).
RY RVRY

Hereafter, for simplicity, we denote J(a, u) = J(w), J(a, u) = J'(w), J(a", u) = J"(u), and J'(a", u) = J"(w) if
there is no confusion.

The Hardy-Littlewood-Sobolev inequality (cf. [14]) implies that I _[[RNl M(Tllquul(f) X dxdy is well defined for
u € H(RY) i 2 ” <qs Usually, £ is called the lower critical exponent and =" is the upper critical

exponent of the Choquard equatlon. The upper critical exponent plays a similar role as the Sobolev critical
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exponent in local semilinear equations, while the lower critical exponent is related to the bubbling at infinity
phenomenon. Several existence and nonexistence results of solutions have been established for various of q.
For instance, in view of the Pohozaev identity, the autonomous Choquard equation (1.1) (if a = 1) does not have

ZNA; Eorgz 211\\,/_—: . We refer to Li and Ma [12] for details.

We know that solutions of problems (1.1) and (1.3) are critical points of the energy functionals J(a, u) and
J(a", u), respectively. By a classical argument, the energy functional J(B, u) is of class C! on HY(RN) for all
B € A,. Moreover, J(B, u) is a C>-functional on HY(RY) for all B € A, if q = 2.

Consider the following constrained minimization problems:

I = inf{J(w)|u € HY(RY), (J'(w), u) = 0, u # 0}

nontrivial solutions if either g <

and

I = inf{J"(w)|u € HYRN), (J""(w), u) = 0, u # 0}.

Theorem 1.2. Assume that (ay)~(a3) hold and Si q< ZJIVV__ZH . Then, problem (1.3) has a nontrivial solution for

some a(x) € Hull(a). Moreover, if I < I" for every a"(x) € Hull(a), then there exists a nontrivial solution
of (L1).

Remark 1.3. The assumptions (a;)—(a3) include several classical cases such as a being constant and a being
periodic. If & is constant then a = a”, and if a is periodic, then a” is a translation of a. So in both these two cases,
the original equation (1.1) admits a nontrivial solution. This means that Theorem 1.2 recover some classical
results in [2] and [16].

Corollary 1.4. Let q be as in Theorem 1.2 and a(x) = a(x) + d(x) with
() a satisfying (a)—(a3);
(i) @ € C(RN,R), d(x) < 0 for every x € RY with d(x) # 0, and lim,_.@(x) = 0.

If
—Au+ aQ)u = (™ * [uDlulf%u, xe€RY (1.4)

has a ground state solution, then I < I" for every a(x) € Hull(a). Moreover, equation (1.1) has a nontrivial solution.

Remark 1.5. Corollary 1.4 means that any result for the ground state solution to equation (1.4) would lead to a
corresponding result for equation (1.1). Moreover, by Corollary 1.4, we know that the condition of I < I" for
every a"(x) € Hull(a) does occur in many cases. In particular, for the case of @ being a constant, then by
Corollary 1.4, problem (1.1) has a nontrivial solution, which recovers a classical result in Part III of [15].

Although Theorem 1.2 establishes the existence of nontrivial solutions to equation (1.1) in many cases
(Remarks 1.3 and 1.5), one cannot use Theorem 1.2 to obtain directly the existence of nontrivial solution to
equation (1.1) for some cases. In fact, from the proof of Theorem 1.2 and Lemma 2.4, we will know that I = I hif
a is an almost periodic function, that is,

lim sup|a(x +y, ) - a"(x)] =0 in (as).

k—oyeRrN
Moreover, in this case, one cannot expect that ah is always a translation of a. Thus, for a general almost
periodic potential, Theorem 1.2 can only show that some shell equation (1.3) (not necessarily the original
equation) has a nontrivial solution. In fact, the problem on nontrivial solution to equation (1.1) with almost
periodic potentials appears to be difficult to answer completely. Fortunately, by utilizing an idea in [27], we can
solve partially this problem.

2N-p
N-27

Theorem 1.6. If a satisfies (a), (@), (a3), and 2 < q < then problem (1.1) has a nontrivial solution.
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This article is organized as follows. In Section 2, we present some estimates for the constrained minimizers
and the proof of Theorem 1.2. The proof of Theorem 1.6 is given in Section 3. In the final part of this article, we
state some auxiliary results in the Appendix.

2 Constrained minimizers and proof of Theorem 1.2

In this section, we give some basic estimates of energy functionals, which are used in the sequel.
Denote

1 q q
W= Jw - 5@, u)= [E _ Z] ,[ ,[ Iu(TX)I I?}Tyy)l dxdy,
I = inf{l(w)|u € H(RN), J"(u), u) = a}, Va €R.

Let N = {u € HYRM)|(J'(w), u) = 0, u # 0} and I = inf,epJ(w).
Lemma 2.1. We have I > 0 and I, > 0. Moreover, I, > I ifa < 0.

Proof. We know
I = inf J(u) = inf I(u).
UEN UEN

For everyu € N, we have

1 1 1 q q
RRY
1 1
|5 E]JN('V’“'Z * aeoluf)dxdy
[% - 5 |mintt, au

where a = inficgva(x). There exists r>0 such that |u|>r for every ue N. It follows

that I 2 |,

L) e 2
2 min{l, a}r* > 0.

Moreover, for every u € {u € H(RY)|(J'(w), u) = a}, we obtain I(u) = 0. So
I,20.

We will prove that I, > I if a < 0, and this will be done in four steps.
Step 1: We claim that

I, = infl)u € H'RY), (W), u) = a,](u) < co},

whereco=Ia—%a+1>0.
Denote

Iy, = inf{l(wlu € My}, My = {u € H'R)|(J"(w), u) = a}
and
w, = Inf{lW)|u € M}, M = {u € H'RV)|(J'(w), u) = a, Ju) < co}.

Since M C M;, we obtain Iy, < Ij,. On the other hand, for 0 < € < 1, there exists v € M; such that
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1 1
Iy + &> J(v) = S('0), v) = J) - a,
which yields
1 1
](v)<IM1+£+EaSIMl—Ea+1=c0.

Thus,v € M and I, + € > J(v) - %(] ‘(v), v) 2 Ij,. According to the arbitrariness of &, we have Iy, = I;. So
IM1 = IMZ'

Step 2: For u € M, there exists a0 < ¢t = t(u) < 1 such that t(w)u € N.

We define
G(t) = (J'(tw), tu)
q q
=2 I(|Vu 2+ a()|uf?)dx - % I wdxdy, t>0, ueM.
RY RVRY |X - )’|“
By
q q

.[ [uQO|u(y)I OO 3 4y < efpulps,

v oyl
we have

G(t) = min{1, a}t?||u|f - ct™||u|/X = ||tu||2(min{1, a} - cl|tu]|@a2).

We can choose r > 0 such that G(t) = (J'(tu), tu) > 0 when 0 < ¢ < +— ” T In addition, G(1) = (J' (W), u) =a<0
and G(t) € C(R). Therefore, there exists t = t(u) € (0,1) such that G(t(u)) = {J'(t(w)u), t(w)u) = 0, that
is, t(Wu € N.

Step 3: We claim that t(u) < s <1, where s € (0,1) andu € M.

We prove this by contradiction. Suppose that there are s, = 1 - % <1,{v,} C M and t, = t(v,) > s,. Since
Sp < tp <1 and lim,,- S, = 1, we obtain lim,_t, = 1.

According to t,v, € N, we obtain

Va QO v (V)|
J (tavn), tavn) = t,f_[(Ianl2 + a(Olva)dx - t;?"f I PO G l_l f,y | dxdy = 0,
RrRY NRN |X )’|

that is,

[V OO [va(W)I? _ 422 2 2
oy = 6 AT+ acomidx

RYR RY
By v, € M, one obtains

(@ - 6720 [ (Vul? + av)dx = a.

2.1
|RN

On the one hand, according to v, € M and choosing y = fl% + 1q L <y< f, we have

I - %a +1-yaz J(vy) — y{J'(v), )

B S 24|y 1| [l O
—[2 Y| min{l, a{|va| +IV 2 RINRN oy OV
>[1_

=13 y

mingl, a}fjvall* > 0.

Thus, {v,} is bounded. Taking the limit on both sides of form (2.1), then a = 0, which contradicts with a < 0.



6 —— Hui-Sheng Ding et al. DE GRUYTER

Step4: I, >Iifa<0.

Let
_ _|1_1 [uCOuy)|?
g = Il(tu) = [2 zq]thu;[Nu;[N T dxdy.
Thus,
N [uCO luy)l
81 = g(tw) = |3 = 5|11 - (et ))Zq]j rET
=% - |- cay| [ qvu P + acolupiax - a
2 2 N
> % - % 1 - s%)(-a).
Moreover,
I(u) 2 [% - %](1 - s20)(-q) + I(t(wu) = [% - %](1 - s¥)(-a) + I.
So
I, = [% - é](l - sM)(-a) +I>1,
which completes the proof. O

Lemma 2.2. {u,} € HY(RY) is bounded. There exists a constant k such that

J’ |un OO un (V)|

= e dxdy > k > 0.

RVRY
Then there is a subsequence {t,} C (ay, az)(ay, a; > 0), such that (J'(t,un), taily) = 0

| un0O) |7 un(y) 19
[x-y¥

Tttt tat) = 8 [ (Va2 + @GOltn)elx - qu
W{A

Proof. By -IRN RV dxdy > k > 0, we know for every fixed n,

|un O lun(Y)I?
—dxd =0
I S
has a solution
1

2q-2

Jer(Vun? + a()lun?)dx

| un00) |7] un(y) 14
IRNIRN [ x-y K dXdy

n =

Ift, = 0 asn — o, we obtain
lltattnl? = t3][un]* — 0.

Moreover, t,u, > 0 and tu, € N, which is a contradiction. Thus, t,#0. On the other hand, by
I[RN(Wun I + a(x)|u,*)dx < ¢, we have

0 = (J'(taUn), taltn) < th -tk > —oo,

This is a contradiction. Thus, the result follows. O
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Remark 2.3. As the aforementioned discussion, we have the following results:

(1) By the similar way with N, I(w), J(u), I and I,, we define N, I"(w), J"(u), I", and I?, respectively. Thus, we
also have I" > 0,I" > 0 and I > I" when a < 0.

(2) Similar to Lemma 2.2, if {u,} € HY(R"M) is bounded, there exists a constant k such that

J’ |Un QO [un()I?

X =y dxdy > k> 0.

RMRY

Then there is a subsequence {t,} C (aj, ay)(a;, az > 0) and {J""(tylty), tyltn) = 0
Lemma 2.4. For every a"(x) € Hull(a), we have I < I,

Proof. By the definition of Hull(a), for every a”(x) € Hull(a), there exists ic RY such that

limla(x +y,) - a*(x)| =0, for x € RV. 2.2)
n—o

By the definition of I*, for all¢ > 0, there existsw € A" such that I" + & > J*(w). Letwy(x) = w(x - y,), then we have

J' (WO W (Y)I

RVRY |x - )’|“

.[ [w(x = y )l w(y = y)I dxdy

|x =y
_ .[ (WO lw(y)|t
|x =y

dxdy -j

dxdy > 0.
RVRY

According to Lemma 2.2, going if necessary to a subsequence, there exists t, — t; as n — o such that

0 = (J'(tawn), taWn)

q q
=t [ (Vw2 + aColwnPdx - 2 | ORI gy
RY RVRY |X —YI“
q q
=t? J’(|Vw|2 +a(x + y)lwPdx - t2 I wdxdy.
Ry vy Xl
We obtain
(ﬂ—%ﬂwmmx |ﬂ—mIWMMx~O 2.3)
IW(X)I"IW | IW(X)IqIW |
€21 - q)j j RO gy < 63 - ‘M I RO L avay - o 0
and

ﬁIa@+%MMMx—ﬁJM@NMM4

RY RY

2.5

+

t¢ _[a(x + y)Iwfdx - ¢ Iah [w]zdx

RY RY

2 [ aGe+ ywpdx - 6 [ aGx +y,)lwitdx

RrRY RY

<162 - 1@ [ wPax + 6§ [ limlaGx +,) - atjwidr.
N [RN

By combining with (2.2)-(2.5), we have

tqﬂwﬁ+ﬂwmﬁmxt IIM@WMUWM®=Q

N[RN yll[
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That is, (J"'(tew), tow) = 0. Since (J"’(w), w) = 0, we obtain ¢, = 1. By the direct computations, we obtain

q q
lim J () = lim |2 I(|an 2 + aGo)wal?)dx - J’ dedy
n—oo n—oo q [RN[RN |X ylll
1 1 ¢ weolew)
=3 vt + @oomprax- 5 [ [P  avay
RN q RVRN y
= Jh(w).
Thus,
" + > Jh(w) = lim J (tywy),
n—oo
that is,

"+ g = J(tywy).
Since tw, € N, J(t;wy) 2 I. Thus,
I">1.

The proof is now complete. O

2.1 Proof of Theorem 1.2

Proof. We choose a minimizing sequence {u,} € H{(RY) of I. Then, going if necessary to a subsequence, {u,} is
bounded in H}(RY). We can assume that there exists A > 0 such that

lim Ilun|2dx A

nﬁoo
ff4=0, that s hm"“-[ wltp*dx = 0, setting y = ZN > 0, there exists 0 < 6 < 1 such that 2 < gy < 2* and
qy =0-2+(1-0) 2 satisfying
lim J|un|qux_ hm I|u [-2+01-0)-2' g

n—o
= lim J|un|9'2|un|<1-9>'2 dx
n=e Sy (2.6)
R
1-6

0
JwaPax| | [ ax| - =o.
=N RN RY

< lim

By Hardy-Littlewood-Sobolev inequality, we obtain

J’ [un O [un ()|

Ix =yl dxdy < el = 0

RVRY
Since {u,} C N, we have

lim J'(|Vun 2 + a(O)|unl2)dx = 0.
n—e <y
R

Thus,

[ GO [un ()|

TS T

. 1
limJ (u;) = lim ERIN<|Vun|2+a(x)|un|2)dx 2 ”
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that is, I = 0. This contradicts I > 0, so limnmIRN|un|2dx = A > 0. The vanishing Lemma [29] implies that

lim lim sup _[ luy2dx = 7 € (0, Al

R—»oon—woye[RN Ba(y)
If r € (0, A), we have

=limlimsup | fu,fdx,
R_'°°”_'°°y€[RN

Br(¥)
then for all 0 < € < min 3(’18_ T), %], there exists Ry > 0, ng > 0 and {y,}. When n > n,, we have
I lupffdx € (t - €, 7 + &€). @7
BRO(yn)

Setting &,(x) = up(x +y,), we know i@,(x) # 0 is bounded in H'(R"). We may assume, going if necessary to a
subsequence

i, —~ o in HY(RY),
i, > @ in L3 (RM).

On the one hand, if lim,.|y,| = ®, we can rewrite constraint condition

, [Uun OO (M|
0= Eun) = /), ) = [ (Wit P + @GOy - [ [ RO g g
b vy Xyl 08
_ _ [T, [T (D] '
= [ava P + ac+ yprapax - [ [IRCEON g 4
et aovan Xl
By (a3), there exists a’»® € Hull(a) such that
lim ja(x +y)lapdx = Ia"l(x)llilzdx.
""°°[RN RN
Then
lim [ VG + aGx + y,)|mdx
n—o
R 2.9)
= lim [V~ y,) = B0y )P + @00l 0x - ) = B - y,)Pdx + [ 7P + abgolaax.
RY RY
On the other hand,
o KGR A AR
n—o
R" (2.10)
= lim [ (10 - 3,) = B0 )T - 3,) = B0 yltde + [ (i« o).
RrRY RY
Combining to (2.8)-(2.10), we have
0 = lim §(up) = lim E(@(x - ) = T = 3)) + (). 211)

Similar to (2.11), we have
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. . 1 .
I= ,lllf?o] (up) = '{gg] (up) - 5(/ (Up), Un) = }gg I(uy)
1 1
== - —15 U % q q
[2 Zq]r}grg J e« iouiax
R
1 1], o _ _ - (2.12)
127 r}gg I(IXI W |iy(x = y,) = 0(x = y)ID|n(x = y,) = @(x = y,)ldx :
[RN

1 1
+ T —
[2 2q

= lim (T, (x - y,) = T(x = y,)) + (@).

[t « @ ojarax
[RN

Set 1imy -y = Myl (T(x = ¥,) = A(x = y,)) = & &4(@) = @ and lim,ol(@(x - y,) = G0 = y,)) = 1.
We obtain

0=¢+arl=1+1n@).
L.Ifa<o0,foralln €N, I(f(x -y, - ax-y,) 20, then[ > 0. By definition Ié‘l, we have
I=1+ M@ = M@@) = I > 1M,

But by Lemma 2.4, we have I < I's. This is a contradiction.
20.1f @ > 0, then £ < 0. Hence, when n enough large, we have &(i@i,(x - y,) - @(x - y,)) < 0. By definition
Ir, and Lemma 2.1,

(T (x-y)-u(x-y,)=Ig > 1

So,

~—~
v
~

But & # 0, we have I"(i7) > 0, and thus
I=T+Mm@>1=>1I

This is a contradiction.
30.1f @ = 0, then £ = 0 and

0=¢= %{IE}OE(Hn(X = V) —Ux - y,))

=lim [ 190 - 3,) = B0 3P + @00l - 3,) = TGx = y,)Pdx
IRN
= lim [l = 10 = 3p) = B0 3N ) = T0x -yl
[RN

Moreover,

[ = lim [(@,(x - y,) - T(x - y,))

1 1].. _ _ _ _
=1 = —lim [ x# x 0x- y,) - 580 3Ol - ) - G- y,)ldx
2 Zq n-o et
1 1].. _
2z g tm [t - afax
1 1
>\~ - —|aflim [ |z,dx - [ |apdx|
2 2qf |nw o, 2
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3A-1) 7
8 4

By limp_.o [ |@[2dx = I[RN|L_1 |*dx, we obtain that for any 0 < & < min{ }, there exists R, > Ry > 0 such that

By

IRNlﬁlzdx < IBRlalzdx +ewhenR 2= R;. So

[1mpax < [1apdx + e = lim [|a,pdx+ e
RY Bp, " By
= lim J |un?dx + & < lim sup I | Pdx + €
BrOn) Br,(¥)
A-T
o

4¢e
ST+?ST+

Since limnmj'[RNlﬁnlzdx = limnmj'[RNlunlzdx = ), we have

- {1 1
[2|--—
[2 2q

a

1 1 A-7T
] 7|12 - 712 -
lim _[N|u,,| dx J;|u| dx’ > [2 zq]g[ 2 ] > 0.
R R
Moreover,
I=1+ @) > M@@) = I

This is a contradiction with I < I'™,
On the other hand, if |y,| is bounded, then going if necessary to a subsequence {y,}, we have
lim, -y, | =y, that is, it follows from (2.7), and there exists R, > 0, and we have Bg,(y,) C Bg,

0<t-e< [ fufdx< [fupdx.
BroO) Bg,

Similar to[y,| — o, by the definition of I, one can obtain a contradiction. Thus, the dichotomy cannot happen.
Thereby, we have

limlim sup [ Jundx = 4.
R

2 . . .
Forany 0 < e < Z’ there existsr > 0,n >0, {y,} C R, we obtain

0< [ luldxe@-ear+e) @13)
B:(Jj,)
when n > ny. If limy.o|y, | = , set @i,(x) = up(x + ¥, ). It is verified through the compactness that
d,—» @ in I2RM), (2.14)

where @i # 0. Hence, by (2.14) and (a3), there exists a™ € Hull(a) such that

lim [V + aGe+ )R > [ (VaP + aeolapdx. 2.15)
n—teo RY RN
Moreover,
0 = lim &(uy) 2 &),
n—oo
and

I'=1imJ(up) = lim J(up) - %{/ ‘(Wn), tp) = lim (uy) = U(@D).

If £(ii) < 0, by definition of I " and Remark 2.3, we have

2
)

~ h,
I=1"(i1) 2 Ly > I,
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This is a contradiction to Lemma 2.4. If £2(i1) = 0, by definition of I,
I=1%(@1) 2 I'.

By I < I"2, we obtain I = I"= = I™(i7), £(ii) = 0, that is, i is @ minimax function of I"=. Thus, @ is a nontrivial
solution of

—Au + a(Xu = (X[ * [u)|uff?u in RY,
If |y, | is bounded, by (2.13), there exists {y, }, lim,-«[y,| = ¥, for enough large r, > 0 such that
0<a-e< [ jwPax< flupax,
B.(,) B,
when B(J,) C By, By {u,} is bounded in HY(RY), there exists & € H'(R") such that
u, ~ 1 in HY(RM).

Analogous to |y, | = o, @ is a nontrivial solution of (1.1).
Particularly, if I < I" for every a"® € Hull(a), then lim,«[y, | =  never happens. Hence, lim, .|y, | # ®
is necessary, which means that equation (1.1) has a nontrivial solution. O

2.2 Proof of Corollary 1.4

Proof. Set

[uCOlu(y)

oy W

Jiw = %JV(WuF racolupydx - 5 [ [FEEEEE

R™R
and
L = inf{J, (W)|u € HY(RY), (J,'(w), u) =0, u#* 0}
We have I < I,. Suppose I is attained by ug, then there holds
|uo(OI |uo()I

a= ('), w) = [ (Wuo P + acoluoyx - [ [ ZHIE T axay
[RN [RN[RN y
< [avuo P + acopugPyax - [ [ LA 4, q,
RY RRY b=yl
and
] _ _1., _ |uoCO oI
L = J,(uo) = J; (uo) 2(]1 (uo), up) = [ 2q] _[ J, T dxdy ©.16)

=1(up) = inf{l(w)|ju € H'RY), (J'(w), u) = a} = I,.

By Lemma 2.1, we obtain I, > I. So I < L.
On the other hand, for all a"(x) € Hull(a), by definition of Hull(a), we know there exists [V, | = o such that

lima(x +y,) = a*(x), forany x € RV.

n—co
Since a(x) satisfies (as), there is @* € C(RV) such that

lima(x +y,) = @a"(x), forany x € RY.
n—oo

By lim,..|@(x + y,)| = 0, we have a"(x) = a"(x), that is, I" = I Thus, I, < I" by Lemma 2.4. Hence,
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I<Ih

By Theorem 1.2, Equation (1.1) has a nontrivial solution. O

3 Proof of Theorem 1.6

Set
Ko ={v € H'RM)|v # 0,38 € A, J (B, v) = 0}.

For every given [ € N,, define

1
® € H(RM)|® = D v(x + ), € Kz ERY, i =1, .., 1, 1=1, ..,11
i=1

Qm =

By Lemma A.1 in [5], we have

Theorem 3.1. If v € K., then v € CX(RY) and v is a solution of the following equation:

—Av + B = (Ix [* = [v [D]v [172,
lim v(x) = 0.

| x| 00

Hence, we can assume that v(x) > 0 and v € CXRY) for all v € K. So if ® € Q,, we have

() ® € C¥RYN);
(i) limyy-e®(X) = 0;
(ii)) ®(x) > 0.

The next result contains an uniform qualitative property of the elements in Q,.
Lemma 3.2. There exists § > 0 such that A®(x) > %CD(X) when ®(x) < 6.

Proof. For v € K., we have

q q q
||v<_y>||” . ||v(_y)||y we | ||v<_y>||” 4
[RNX Y BR(X)X Y [RN\BR(X)X Y
1

N-u

(o
< max [v(y)l7c(N) RVt + — ||,
YEBR(X) RH

thatis, J[R Vo) dy is bounded. Set hi(x) = j v 1 dy,i=1,..,1,ho = max{hi(x + z;),i =1, ...,1}. Byq > 2, for

Nix-y RV x-y [
ho- | v(x) 1972 v(x)
v(x)

v,i=1,..,1, we have vi(x + z;)) < § and

every € > 0,36 > 0, we have < & when v(x) < 6. Choosing ¢ = % when &(x) < &, for every

! : z
i;hi(x + Z)vilx + z)|T%vi(x + z;) < i;zl%vi(x +z)= %i;zlvi(x + 7).
For v; € K, it follows from Theorem 3.1 that v; satisfy
—Av; + B0V = (™ * (D" v = RGO w;.
Thus,

—Avi(Xx + z;) + Bi(X + Zvi(x + zi) = hi(x + Z)Vi(x + Z)172v(x + 2y).
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Moreover,

1
AD = ZAV,'(X + Z;)
i=1
1 1
= Zﬁi(x + Z)Vi(X + 27) = ) hi(x + z)|vi(x + Z)|T2vi(x + z))
i i=1
1
Z (X + 2))

1 1
Z vi(x + z;) Z(X+Z,)_

.

N||Q
[\J||Q

The proof is now complete.

DE GRUYTER

O

Similar to regularity arguments ([8] or [25]), using a;, we obtain that for all v € K., and for every open ball

B C RY, there results

[IVllc2rsy < ClIVII,

where C > 0 depends on N, @, y € (0,1) and diam(B). Then it follows that for all ¢ € Q,, we have

1Pllc2rs) < Cillvll,

where C; > 0 depends on N, @, y € (0, 1) and diam(B). Consider a bounded subset Q in Q,. It follows from the

aforementioned estimates that

Vol =gy < C

for every ¢ € Q, where C > 0 does not depend on ¢ € Q. Therefore, we have the following:

Theorem 3.3. If Q is a bounded set in Q,,. Then for every ® € Q,, there exists k(Q) > 0, such that

() |@(x) - ()| < k|x - y|, for all x,y € RY;

(i) for every € > 0, there existsr = r(g, Q) > 0 such that |®(x) - ®(y)| < € when|x - y| <r.

By using the properties, we can give an estimate of the L* distance between elements in Q,.

Lemma 3.4. For every bounded subset Q in Q,, there exists a constant ¢ = ¢(Q, N) > 0 such that

@ = W|jpowy < cf|® - W2,  for all @, W € Q.

Proof. For every x; € RV, by Theorem 3.3, there exists k = k(Q) > 0, for all x € RY, such that
[P(x) = @(xo)| < KIx = Xol; [F(X) = POxo)| < KIx = X, VO, ¥ € Q.

W(xp) - P(xo)

Without loss of generality, we suppose P(xg) > ®(xp) and setr = s

|P(x) — D(xp)| < k|x — xo| < kr; [P(x) — P(xp)| < k|x — Xo| < kr,

when |[x - Xxo| < r, that is,
D(x) < D(xg) + kr; P(xg) — kr < P(x).

It follows that
W(x) - @(x) = W(xo) = kr — @(xo) — kr = %(‘P(Xo) - ®(xo)).

Moreover, we have

. Then, for every x € R¥, we have
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-0l > [ W - odx > 00) - @0V = e NE0) - B0
By(xo)

Hence, ¥(x) — ®(xp) < ¢||¥ - <I>||ﬁ. By arbitrariness of xo, we obtain
2
[P = Pllp=g) < c[|® = PJve2,

which completes the proof. O

Define a mapping X! : Q, € H'(RY) = R by
X1(®) = max{x! e R|®(x,x) =8 forsome x'€RNY, &eQ,

where § > 0 is the real number given in Lemma 3.2.
Lemma 3.5. The function X' : Q, C H'(RY) — R is uniformly continuous on bounded subsets of Q..

Proof. Set Q = {x € RV|x! > X!(®)}. We will prove ®(x) < &, x € Q. In fact, suppose x, € Q such that ®(x,) < 6.
If ®(xo) = &, then x{ < X'(®). This contradicts xo € Q(x{ > X1 (®)). If ®(xp) > §. By limy-®(x) = 0, there
exists y, € Q and yo1 > xg such that ®(y,) < 8. By ® € C¥RY), there exists y; in line xq, such that
®(y,) = 8. Then y, < X(®). By y, in line xqy,, then y' > xg > XX(®). This is a contradiction. Similarly, we
can prove ®(x) < §, x € 9Q.

Let v(x) = Sev0"-X'@) where w € (0, (3)?) and

Lv(x) = @(x)) = ~AW(x) = ®(x)) + %(V(X) - o(x), x€LQ.

By Lemma 3.2, we know L(v(x) - ®(x)) =2 0, x € Q and v(x) - ®(x) 2 0, x € 9Q. By liminfj.(v(x) — ®(x)) =
liminfj1-ov(x) 2 0 and maximum principle applied to the unbounded domain (see [23]), we know
v(x) - ®(x) = 0,x € Q. So, V(x}, x) € RV, x1 > X!(®), we have

DXL, X)) < v(xL, x7) = e~ -X'(@), 3.1

We prove the continuity of X! by the aforementioned estimate. Taking ®, ¥ € Q, there exists x(®) =
XY (@), x(®)), x(¥) = (XY(P), x(¥)) € RY such that X' (®), x'(?)) = § and P(X(¥), x'(¥)) = §. Without
losing of generality, we assume X'(¥) > X(®). By (3.1),

DX (W), X' (V) < Se oX (W)-X(@),
that is,
~D(X(P), X'(¥)) > ~5e X (H)-X'(@),
By P(x(¥)) = 6, we have
@ = P||pemyy 2 PO(P)) - O(x(P)) 2 § - Se X (®)-X'(@),
By Lemma 3.4, we obtain
ol|@ - |z 2 (| = B[y, = S - SemoXW-X'@),

Thus,

Iné - In(§ - ¢||® - ¥||¥+=2)
0 < XX(¥) - X¥(®) < " — 0 (||®-¥]~0).

This completes the proof. O
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Theorem 3.6. Set {u,} C H'(RY) be a (PS) sequence for J at level ¢, u,, = 0 in H(RY) and limy,_«||un -
Um-1|| = 0. Then there exists {x,,} C R" such that

(1% limp-wlxh = x4 = 0, where Xy, = (X%, ..., xN);

(2% there exists R > 0 such that limmquBR(Xm)lumlzdx > 0;

(3% LMy eolXim| = .

Proof. By Theorem A9, going if necessary to a subsequence {up}, there exists f,(x) € A, and
vi(#0) € HY(RY), i=1, ..,1such that
@ Un - Tigux +yP) > 0 in HI(RY);
@ J’Bpv)=0,i=1,..,[
(iiD) € = TiaJ (B v;
@) YO - w,i=1,..,L

Set @p(X) = Ti_vi(x +yW), then {@,(x)} C Q,, and LiMy—.«|[Um = Dp| = 0. Moreover, Limy—.co||Pp ~ Pp-1]| = 0.
There exists x(®,,) = (XY(®@,), X (@,,)) € RY such that @,,(XY(®y), x(Pp)) = 8. Let xp = x(@y). By {uy} is
bounded in HY(RY), {®,,} is bounded in Q.. By Lemma 3.5, we have lim_.|x, - x5_;| = 0. (1°) is proved.

By Theorem 3.3 (i) and ®,(x,) = &, choosing ¢ = g, there exists R > 0 such that ®,(x) = % for all
X € Bp(Xp)- By limysoo||Um = ®Pp|| = 0, we know

6 2
lim J' |t Pdx = lim J' | 2dx > [—] |Ba()| > 0.
m-o m-e 2

Br(Xm) Br(xm)
Thus, (2°) is proved.

Next, we will use the contradiction method to prove (3%). Going if necessary to a subsequence, suppose that
{Xn} and |x,| < R. Then
lim [ fupfdx > lim [ junfdx > 0.

m—o

m-oo
Bp.j Bgr(Xm)

This contradicts with u,, - 0inL2 (RY). Thus, (3°) is proved. O

Proof of Theorem 1.6. Since ] satisfies the geometric assumption of the mountain pass theorem, using
Theorem 1.2 in [27], we can find a Palais-Smale sequence {u,,} for J at some level ¢ > 0 such that

r}liir; |tm — Um-1]| = 0. (3.2)

We have {u,,} admits a subsequence converging weakly to a critical point u. Ifu # 0, one find a solution of (1.1).
Next, if u = 0, we will find a nontrivial solution of (1.1). By (3.2) and Theorem 3.6, there exists {x,} C RY

satisfying

(1% limpoelxh - xh_4| = 0, where X, = (X, ...,xY),

(2% there exists R > 0 such that limmeIBR(Xm)lumlzdx >0,

(3% limpew|Xp| = .

Take Ty = (X%, k2T, ...,kNTy), where ki, = min{k € N,||kT; - X} |<T3}, i = 2, ...,N. So

1 1
2 2

|Tm = Xm| = < =T < +oo,

N
> T?
i=2

N . .
Y kLT - X
i=2

Denote v, (x) = Up(Xx + 7). We know there exists vy € HY(RY) such that v,, = vy in HY(RY) and v, = v in
LE.(RM). Moreover,
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[ waPax= [ junCe+ m)Pdx = [ junCoPdx> | junOoPdx.

Br+1(0) Br+1(0) Bre1(Tm) Br(Xm)
By (2°), we have limmquBR x> 0. Hence, vy # 0.
Case I: limy,—«|x}| # © where x}, is the first component of ,, There exists a subsequence {x%} such that
lim,—. X = x3. By (a5), we have
la(x + ) = @ + xg, X)) = a0 + X, X2+ kT, XN + kgl Ty) = a(x! + xg, x)|
=la(t + xL, x) = a(x* + xg, x)),
where x” = (X2, ..., x¥) C U = [0, T;]x---x[0, Ty]. By Theorem A.2, we have

sup [a(x + T) — a(x + X}, x| = sup Ja(x! + x, X)) - @t + g, x)
XERN XERN

= sup |a(x! + x5, x) - a(x* + x{, x| = 0.
XERXU

By Lemma A.5,

I (@(X + Tn), Vi) = J(@(x* + Xg, X, V)l g1y < cllax + ) = a(xt + xg, X)||=w™)

<c supla(x + 5,) - a(x + x3, x| - 0.
XERN

So for all ¢ € H'(RY), denoting (x) = p(x! + x{, x’) € HY(RY), we have
lim (J(a(x* + xg, X"), V), @) = lim (J(a(x + Tp), Vm), @)
m—o m—o
= Iim (@00, (X = ), §X = Tw)

= r}llir; J Un(x)), (x = 7)) = 0.

BY Vi — Vg, we have (J(a(x! + x¢, X*), V), @) = limp-{J(@(x* + X, X*), V), @) = 0, we obtain

II [VoCOI oW1 2ve(W)P(Y) dxdy = 0

J:vv\zo(x)v(ﬁ(x) + a(d + xg, X)) — X -

R R¥RY
Moreover,

.[ We(x! = Xg, XIV(x) + a(x)vo(x! = xg, X)(x)dx
[RN

j j Vo = x&, X ve(y! = x&, YT 2ve(yt = x&, y)O(y) dxdy = 0

RVRY |X - )’I“
Letting 7y = vo(x! - X&, x’), we have 1 is a nontrivial solution of (1.1).
Case II: limy,—«|x}| = . Because a(x) satisfies (a3), there exists {0;,} C R and limy;«|0y,| = , such that

lim sup|a(x* + gy, x7) - a(x, x)| = lim sup |a(x! + o, X)) - a(x}, x)| = 0.
m=-oyeRrN Mm=>%yeRxU

BY 1My ol Xpp| = 0, iMool Xy, = Xgyoq| = 0, W can choose {Xp, } C {Xy} such that

lim|x} - g = 0.
k_'ml mg il

Moreover,
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sup |a(x + Tp,) — a(x)|

XERN

= sup [t + Xy, X2+ ki Ty oo XV + Kl Ty) = ()
XERN

= sup |a(x! + X, X2, . XN) = a(x)]
XERN

< sup |a(x! + X, X) = a(X! + gy, x)| + sup la(xt + gy, X)) = a(x))
x€RY XERN

= sup |aOd + Xp, X)) = a(et + g, X))+ sup |aGe + g, X)) — a(x)| ~ 0.
XERXU XERxU

By Lemma A.5, we know

' (alx + Tmy), V) = J(@Q0), Vm)llg1w™y < cllalx + Tm) = aQO)||=w™
<csuplalx + 7y) — a(x)| — 0.
XERN
BY Vm, — Vo, for all ¢ € HY(RY), we have
gl(a(X)s VO)) (p> = 11{152 (],(a(x)s mG): (P>
= ;132 J'(a(x + Ty, Vi), @)
= I{}_’IE\O {J(ax), mG(x—‘rmk)); ox - ka»

= ,1(152 J(a(x), Umy), OX = Tmy)) = 0,

that is, J’(vp) = 0. So vy is a nontrivial solution of (1.1).
By Theorem 3.1, the nontrivial weak solution of (1.1) is a classical solution. Thus, we end the proof. O
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Appendix

In this section, we give some preliminaries. First, we recall some definitions and properties concerning almost
periodic functions depending on a parameter (cf. [6,30]).

Definition A.1. Let @ C RY" be a compact subset. A continuous function a(x', x") is called almost periodic in
x! € R, uniformly with respect to x” € Q, if for any £ > 0, there corresponds a number I(¢) > 0 such that any
interval of the real line of length I(¢) contains at least a real o for which
sup  Ja(x! + g,x) - a(x}, x)| < e
(XLx)ERXQ

The number o is called an &-period for a. The uniform dependence on parameters follows from the fact
that [(¢) and ¢ are independent of x’.

The following two theorems contain classical results on almost periodic functions depending on
parameters.

Theorem A.2. Let Q@ C RY"1 be a compact subset. Then an almost periodic function a(x, x’) in x* uniformly with
respect to x’ € Q is uniformly continuous and bounded on R x Q.

Theorem A.3. Let Q C RV be a compact subset. A necessary and sufficient condition for a function a(x!, x’) to
be almost periodic in x* uniformly with respect to x’ € Q, is that the family of its translates {a(x' + 7, x"), T € R}
is (uniformly) pre-compact in C(R x Q,R).

Next, we will give the property of the Choquard terms. Since the proof is simple or can be found directly,
we omit the proof.

Lemma A.4. For B € A, let Kg = {u € H'R)|J’(B, u) = 0, u # 0}. Then we have
() infpen, infyer,/lull > 0;

(i) infpeqs, infyexJ(B, u) > 0.

Lemma A.5. Assume that A is a bounded subset of H\(RY). Then, for B,, B, € L”(R") and allu € A, there exists a
constant c(A) > 0 such that

@ (B, w) = J(By, W = clIBy = Blli=w™ys
@) |J'(By, w) = J'(By, Wllgw™y < CllBy = Bollrew?)-

Proposition A.6. If u, — u in HY(RY), then for every ¢ € H'(RY), we have

tim [ (i + fun = WDl = uft(wn = wodx = 0; (A1)
[RN
tim [ [ [l = (i + ) lult-?uplax = 0. A2)
IRN

Moreover, we have

Lemma A.7. (Brezis-Lieb lemma) [18, Lemma 2.4] Let N = 3, p € [1, mﬂ_u] and 0 < u < N. If{u,} is a bounded

. 2Np .
sequence in Lv-«(RY) such that u, - u a.e. in RY, then

tim| [ (# o fu?lunx = [ (X« fun = uPln - uPdx| =[x « up)upds,
RN RY RY

asn — «,
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By the Brezis-Lieb lemma of the Choquard terms, we obtain

Lemma A.8. If uy — ug in HY(RY), then
@) supgey /B, Um = o) = J(B, um) + J(B, Uo)l — 0;
@) supge, I'(B, Um = o) = J'(B, um) + J'(B, o)l — 0.

Through Lemma A.8, we can prove the following representation theorem. Although the proof is standard
[15], there exist some differences, which result from the almost periodic potential. To ensure the integrity of
the article, we give the proof here.

Theorem A.9. (Representation theorem) Suppose that a satisfies (ay)~(a3). Let {un} be Palais-Smale sequence
with the level ¢. Then there exist uo € H'(RY), 1= I(¢) €N, B, € Hull(a), v; € HI(RY), v; # 0, {yV} CRY,
i=1,2,..,1 such that

(@) Un — o — Tigui(x + yP) > 0 in HYRY);

(i) J'(up) =0and J'B,vi) =0, i=1,..,1
(i) &= J(uo) + i (B, w3
@) YO >, i=1,..,L

Proof. By the boundedness of {u,}, there exists uy € H'(R"), such that w,, = u,, - up = 0 in HY(RY). By

Lemma A.8, we have

J'(uo) =0, r}qif;] ‘W) =0 and JWn) = J(Um) = J(uo) + om(D).

By vanishing theorem [29], we know limmqu[RN|wm|2dx = A > 0. Hence, we obtain dichotomy or compact-

ness can occur, and hence, there exists R > 0 such that limp_ SUPyeR |[Wip[2dx > 0. Thus, for every

NJBR(Y)
m € N,, there exists y¥ € R such that

1
sup [ wax - — < jwaP,
YERY Bay) BR0)

that is,

lim I [Wi?dx = lim sup I [Wpl*dx > 0.

m-—o m-—o N
B0 YR B
Hence, when m is enough large,

1
WmPdx 2 - lim | 1wnpax.

m—o
B0 B0

Moreover, we know limmm[yrf}ﬁ = o, In fact, going if necessary to subsequence, we assume [yrf})l < @. Then
2 2 1. 2
[ wnpax> [ jwadez Slim o [ x> 0,
1 2m-oo 1
Beyek Bz() Bz

This contradicts with wy, — 0.
So, we have limmwlyrff)l = oo and limmqu'BE(y(l,)Iwmlzdx > 0. We may assume that there exists v; € H'(RV),
such that

Wn(x +y®) = v in H(RY),

wn(x +y) > vy in LE(RY).
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By
hm Ile(X +yM)Pdx = lim I [Win[2dx > 0,

m-o

BiO4)

we have v; # 0.
For each m € N and a(x + y®), we choose ki € N, i = 2, ., N, (zP% D3, ..., z{0N) C [0, T]x [0, Ty]
such that

a(X +yr$11)) = a(Xl +yr511),1’ Zr(nl),z + kr(nl))sz, JZY(nl)’N + kr(nl),NTN) = a(xl +yr$11)’1’ Zr(rll)’zl ’Zr(nl)’N)

since the aforementioned equality is from (a;). By Theorem A.3, we know there exists p;, € A, =
{B € C(RY,R)|a < B(x) < @, Vx € R} such that Limy,—.. sup,epvlalx + yP) - B(x)| =
since {Wm(x + y®)} is bounded in H'(RY) and Lemma A.5, we have
T (aCx + yP), wn(x + y0)) = J(By, wm(x + YOI < cllalx + yP) = B0Olr=wm)
< ¢ supa(x + y) = 00

XERN
and
7 @Cx + YD), wn(x + yD)) = JByy WX + YWl
< cllatx +yP) = BOOl=wy < csup|a(x+y<1>> B0
So
lim J(By, win(x + y,) = lim J(a(x + y), wCx + y0)) = lim J(wp) = &> 0
and

rlniffl B WX + YOD g1y = hm ' (@(x + yO), wn(x + Y| lg-1gy, = r}g‘l”]/(wm)“H'l(RN) = 0.
By Wn(x + y®) = vy, we know
J'(By,v1) = 0. (A3)
By Lemmas A.4-A.8, the energy function

Wi = vix = YD) = J(w) + (B, v0)|
= [J(@0x + YO, wnlx + yP) = vp) = J(@(x + Y, wm(x + y ) + J(B,, v

< [Flatx + yP), wmx + yP) = vy) = Jalx + Y0, wmx + yP)) + Jlalx + y), vl + [[(alx + yP), vr)
= J(By, vl

< suplJ(B, wm(x + yP) = v1) = J(B, wm(x + y)) + J(B, v)| + ¢ supla(x + yP) - Byl.
BEA, XERN

So
lim J(wp = valx = p,7) = € = J(By, vo). (Ad)

By Lemma A.4, we know ¢ - J(B;, v1) = 0.
For every ¢ € H'(RY), we have
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KT (Wm = vi(x = y0)), 9)

< Wi = vilx = YO, 0) = W), @) + J'Wix = YD), o) + [T’ W), @) = J'(ni(x = yD)), 9)]

(A5)
< 7@ + Y&, winlx + ) = v1) = J@Cx + Y00, winx + Y00 + J(@Cx + Y00, vl i@l
1T W), @) = W10 = Y00, ).

On the other hand, we know
[ W), @) = J'(ni(x = y)), @)
< W)l ol + 17 (ax + Y2, v)llg-1g Il

(A6)
< W wnllgmllell + 1@+ 38, v0) = TGy vl 9l + 7By vollwy 1ol
By Lemmas A.5 and A.8, combining (A3) and (A5), with (A6), we have
r}lig}c Wi = vix = YPDlg1w) = 0. (A7)

Combining to (A3), (A4) and (A7), as m — «, we have

J B v) =0 in H'RY),

JWn = vi(x = y)) = & = J(B, v1) 2 0,
J Wi = vi(x = y®)) - 0.

(1% If & - J(B,, vy) = 0, that s,

Jwn = vi(x =y = 0,

J W = vi(x = y)) = 0,
then

Yim O = w10 = 7)) = %U’(wm = V10 ), = vix - Y3

= lim [5——]I(W(wm—vl(x I NE + a0Olwm = vilx = y)P)dx = 0.

So, iMoo |[Wi — vi(X = (1))|| =0 and ¢ = J(B,, v1). Thus, the theorem is proved with [ = 1.
(2 If &€ = J(B,, v1) > O, that is, J(B;, 1) = & < &, setting wi(x) = wu(x) = vi(x = yP), then
JwP)) - € -6 >0,
J' () = 0.
We iterate as in the aforementioned steps.

To prove that this procedure ends, it is enough to show that for some [ €N, we obtain
JB,v)=ca=c-a¢-¢-..- ¢1. By Lemma A4, we obtainc - ¢ - ¢

-...— ¢ = 0 after most for somel. [
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