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Abstract: In this article, we investigate the general qusi-one-dimensional nozzle flows governed by non-
isentropic compressible Euler system. First, the steady states of the subsonic and supersonic flows are ana-
lyzed. Then, the existence, stability, and uniqueness of the subsonic temporal periodic solutions around the
steady states are proved by constructing a new iterative format technically. Besides, further regularity and
stability of the obtained temporal periodic solutions are obtained, too. The main difficulty in the proof is
coming from derivative loss, which is caused by the diagonalization. Observing that the entropy is conserved
along the second characteristic curve, we overcome this difficulty by transforming the derivative of entropy
with respect to x into a derivative along the direction of first or third characteristic. The results demonstrate
that dissipative boundary feedback control can stabilize the non-isentropic compressible Euler equations in
qusi-one-dimensional nozzles.
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1 Introduction

This article investigates the qusi-one-dimensional non-isentropic compressible Euler equations:

ne + (nu)y = —a(x)nu,
(nu); + (nu? + p(n, 8))y = —a(x)nu?, .1
S;+ uS, =0,

for (t, x) € R. x [0, L]. (1.1) can describe the motion of flows in a nozzle with generally varied cross-sectional
area, where L > 0 is a constant denoting the considered nozzle length.
The unknown functions u(t, x), n(t, x), and S(t, x) denote velocity, density, and entropy of the considered

fluids, respectively. The pressure function is p(n, S) = en?, with the adiabatic gas index y € (1, 3). And the
A (x)
AC)?
system (1.1) denotes the classical 1D, 2D rotationally, and 3D spherically symmetric Euler equations, respec-

tively. We further assume there exist positive constants Dy, D;, and D, such that

function a(x) = where A(x) € C%([0, L]) represents the cross-section of the duct. When A(x) are 1, x, x?,
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laC)|lct < Do 1.2)
and
D1 < A(X) < Dz, (13)

for any x € [0, L].

There are many literature about the compressible Euler flows moving through nozzles. For example, by a
numerical scheme, Liu [14] constructed the global solutions for general quasilinear hyperbolic systems, which
include the model of flows in variable area pipelines. The stability and instability of transonic flows through a
nozzle were discussed in [15]. Later on, an efficient shock-capturing scheme for solving the Euler equations
with geometric structure was proposed in [4,5]. We can refer to [2,6,7,11,12,16,17,24,27,28] for some other
existing results of global solutions. Meanwhile, many works have been done on the multidimensional non-
isentropic steady Euler flows. In [3], Chen considered the non-isentropic inviscid subsonic steady flows with
large vorticity in a two-dimensional infinitely long nozzle and built the existence and uniqueness of the
subsonic problem. Duan and Luo[9] investigated the problem in three-dimensional axisymmetric nozzles
and removed the constraint on the smallness of the vorticity in [8]. Then [20] gained the optimal convergence
rates of the subsonic non-isentropic steady Euler equations through a three-dimensional axisymmetric infi-
nitely long nozzle.

At the same time, time-periodic problems have attracted much attention for its applicability in industry.
For the temporal periodic solutions excited by the time-periodic external force, we can see [1,18,19,23]. How-
ever, the time-periodic solutions motivated by boundary conditions are significant in the feedback boundary
control. In [32], Yuan first gained the existence and stability of isentropic supersonic time-periodic Euler flows
which are motivated by periodic boundary conditions. Inspired by this result, [31] and [21] further studied the
time-periodic supersonic solutions with the source term Bp |u|*u for isentropic and non-isentropic cases. It is
worth noting that the supersonic assumption, which means all characteristics propagate forward in both space
and time, plays an important role in [21,31,32]. Therefore, after a specific start-up time 7* > 0, the boundary
condition can control the entire region completely, thus we gain the existence of time-periodic solutions.
However, it becomes more complicated for subsonic case since the characteristics propagate both forward
and backward, which leads to wave interactions between different families. For one-dimensional subsonic
isentropic compressible Euler system, [26,33] investigated the time-periodic solutions for linear and nonlinear
damping, respectively. There are also some important researches on the existence of space and time periodic
problem for non-isentropic compressible Euler systems, see [29,30]. As for more general quasi-linear hyper-
bolic systems, we can refer to [10,25] for details.

To our knowledge, in general ducts, few studies have been made on the subsonic temporal periodic flows
driven by periodic boundary conditions so far. However, considering this problem is one of the basic steps in
studying time-periodic transonic shock solutions. In this article, motivated by [10,25,26,33], we study the non-
isentropic subsonic temporal periodic solutions to compressible Euler system with geometric effects. By using
an iterative method, we prove that there exists an initial data such that the periodic perturbation on the
dissipative boundaries can trigger a time-periodic subsonic solution. Owing to the appearance of the geometric
source term, it is important to make full use of the dissipative effects brought by boundaries and construct
appropriate iterative formats. Unfortunately, a new challenge, derivative loss, emerges from the iterative
format after diagonalization. We overcome this difficulty by noticing a significant property of entropy, which
enables us to switch the derivative of entropy with respect to x into a derivative along the direction of the first
or third characteristic.

The remaining parts of this article are organized as follows. In Section 2, we presented some elementary
properties of the C! subsonic and supersonic steady solutions. Section 3 was devoted to reformulate (1.1) and
the steady states system by Riemann invariants and present main results. Then in Section 4-7, we gave proofs
of Theorems 3.1-3.4, respectively.
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2 Steady solutions

In this section, we study the solution Q(x) = (fi(x), @i(x), S(x))" of the time-independent system
(Mi)y = —a()nd,
(A + p(iL, )y = ~aQ)fi?, @1
as, =0,

or equivalently

Al + fifl, = ~aCORT,

ity + yeSAy2, + eSr15, = 0, 2.2)
Sy = 0.
We give the inflow data at x = 0:
(), @(x), SO k=0 = (n-, u-, S-)' 2.3)

with u- > 0 and n- > 0. By (2.2),, (2.2)3, and (2.3), we know that the cross-sectional flux and entropy are two
constants, i.e.,

ACORCOEX) = A(O)nu-, S(x) = S.. 2.4)

One critical parameter in fluid dynamics is the Mach number, which can be defined as follows:

M:

3

o =

where the sound speed &(A, ) = % =Y e3> . The fluid is supersonic for M > 1 and subsonic while M < 1.

From (2.2), we could solve the continuous flows with Mach number M # 1, i.e.,

di_ a(oi
dx 1_ﬁ’

. 1

da_ a0t 25)
dx 1- 5

L =0

Then by the definition of M, it can be deduced that

1 y-1
axX)M|— + ——
M _ COM| 37 2] (2.6)
1
dx 1- 30

Therefore, if we assume the fluid velocity is supersonic (i.e., c- < u-) or subsonic (i.e., c- > u-) at the entrance
x = 0, then problem (2.2) admits a C* supersonic or subsonic solution on [0, L,), where L, is the life span of the
corresponding supersonic or subsonic smooth solution. In this article, we expect the steady flow to keep its
entrance supersonic or subsonic situation in the whole duct. Therefore, the length of the duct L should be
smaller than L,. While the maximum duct length L, can be determined by (2.6), which denotes L, only
depends on y, the initial data (n-, u-, S-) and the given function a(x). We will consider some other cases,
such as the transonic smooth solutions and transonic shocks in the following article.
From (2.5); and (2.5),, we directly derive

X

_[F aom*o) a(¢)
Ai(x) = n_e [; o, Qi(X) = u_ejo o1 %, @7

Then, when the incoming flow is subsonic, namely, c- > u_ > 0, it follows from (2.5);, (2.5);, and (2.6) that
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% >0, % <0, % <0, for a(x)>0; (2.8)
% <0, % >0, % >0, for a(x) <0. 2.9)
Similarly, when the incoming flow is supersonic, i.e., u- > ¢ > 0, one has
% <0, % >0, % >0, for ax)>0; (2.10)
% >0, % <0, % <0, for a(x)<0. (211

Formulas (2.8)—(2.11) imply that if the duct is divergent, the flow always keeps its state of entrance for any duct
length L > 0, regardless subsonic or supersonic. While, if the duct is convergent, to keep the upstream subsonic
or supersonic state, there must exist a unique positive constant L, < +, such that the flow is subsonic or
supersonic for x € [0, L,). In addition, after some straightforward computations, we obtain that:

(@) If a(x) > 0, according to (1.3) and (2.4), for x € [0, +), we have

uz c<
c2-u? c2-u?

- AX) A(0) - (2.12)
_< <n|———- | < < Uu- _ > U > .
n-<fx)<n A0) , A0 fi(x) <u-, for c.>u->0,
and
(A ) A |- 213)
< <n _< <u f ->c.>0. :
A( ) Ax)<n., u-<itax)<u A(0) , foru->c >0
(b) Ifa(x) <0, for x € [0,L] and L < L, we have
J‘L R 0) o . -
n-eh -'o " <A(X) <n.,  u-<d(x) < ——5— = for c.>u->0, 2.14)
JO 1- Mzm
and
L @
n- < fi(x) < W u_ejo w1 ™ < G(x) <u., for u>c.> 0. (2.15)

0 Mg)-1

To sum up, we conclude the properties of the steady states by the following theorem.

Theorem 2.1. For any subsonic/supersonic smooth incoming flow (n-, u-,S-), there exists a critical duct
length Ly = Ly(y, a(x), Q(0)), if L < Ly, system (2.2)-(2.3) admits a unique C! subsonic/supersonic solution
O) = (AX), ii(x), $(x))" on [0, L]. Furthermore, it holds:

(i) The moving trends of the velocity u, density n and Mach number M can be judged by the relative slope a(x) of
the nozzle and the upstream states. See Table 1.
fi(x) and @i(x) are bounded, to be specific, there exist positive smooth functions Ki(x) (i =

(i) 1,2), such that

KQon- < i(x) < KOon-,  Ku- < i(x) < KOu-,

here, Ki(x), (i =1,2) can be deduced from (2.12)-(2.15).

(iif) When a(x) > 0, L, is infinite, while when a(x) < 0, L, is finite.

Table 1: Moving trend of flow

a(x)>0 a(x) <0
Subsonic incoming flow At al, Ml Al i, M*
Supersonic incoming flow alLiat,M? anial, ML
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3 Reformulation and main results

In this section, we rewrite systems (1.1) by Riemann invariants. Besides, we state our main results of this
article. First, by simple calculations, the Riemann invariants of system (1.1) are as follows:

2 - 2 -
c=u—f1 yegnyTl, v=S, n=u+ _1\/7e%ny71. (3.1)
Then system (1.1) changes into
-1 -1
G + Mg, Mgy = 4 3 aC)(n? - ¢*) + y16y M - )y,
U + A(¢, Muy = 0, (3.2)
y-1 y-1
N+ A(6 M = ¢ aC)(n? - ¢%) + 16y (- ©)*y,
where
y+1 3-y 1 3-y y+1
- 7 == == 7 3.3
M 4C+ 4’7, A 2(C+’l), A3 4C+ 4’7- 33)
Similarly, the steady system (2.2) can be rewritten as follows:
ra oY1 2 _ ey, Yoo s
A1y 3 a(x)(i* - ¢ + 16y (17 = 60y,
)Tzﬁx = 0, (34)
Joi, = L= Laoo - @ + LG - oo
X 8 16y ’
where
mi-—2 T, 0=8 fi=i+—— el
¢ - 1J7 ) .0 - 1J7 ,
and
Syl 83—y o 1. 1. . 3-p. p+l.
M 4€+ 2'7, /12—2(;'"2/7, A = 4(;'" 4'7-

As noted in Section 1, the supersonic case is much elementary as it can be directly solved by wave
decomposition method. More details can be seen in [21,22], here we omit the supersonic case.

To formulate the subsonic problem, we now specify the initial data and boundary conditions. Assuming
that at ¢ = 0:

6(0,x) = 60, v(0,X) = wo(x),  1(0,X) = 1y(x), (35)
and at x = L:
¢(t, L) = ¢p(0) + s1(u(t, L) = O(L)) + s7"(n(t, L) = (L)), (3.6)
while at x = 0:
u(t, 0) = vp(t) + s2(¢(t, 0) = ¢(0)), G.7
n(t, 0) = n,(t) + s3(¢(t, 0) - ¢(0)), 3.8)

where the boundary conditions (3.6)—(3.8) are dissipative and time-periodic. That is, max{|s;| + |s{], |Sal, |s3]} =
s <1, and g,(t), np(t), Up(t) are temporal periodic functions with a constant time period T. The solid boundaries
(3.6)—(3.8) possess the dissipative structure in the sense of Li [13], who pointed out that without this boundary
dissipation, the initial-boundary value problem of hyperbolic equations may blow up in finite time, even when
the initial data is small.
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Taking the steady solution Q(x) = (fi(x), fi(x), S(x))" as a background solution, now we define the pertur-
bation variables

F(t, X) = (Fl(t: X)r rZ(ts X)r r3(tr X))T dgf‘ (C(tx X) - C(X)r U(t, X) - ﬁ(X), ’](tx X) - ,’]‘(X))T’ (39)
and rename the steady solution as follows:
T(0) = ([0, B, OO = (§(x), 500, FOO). (310)

Then combining (3.2) and (3.4) yields

y-1 @+ DE+F)+23- iy -1

T _ £ aeg
e + AT + Dy 3 a(x) 0+ Dh+ G- b LT (I3 - I + I3 - I)%0,In 1)
y-1  G-p@+i+2p+ 8L y-1 '
e v T B R U R )
Ly + AT + DIy = 0, (3.12)
Lyl D@+ r23-phil y-1 L
oo+ AT+ Dl = = a0 D T 1gy (o it DO .
y-1  @-pE i+ +DiE . y-1 o, ‘
+ 8 a(X) (3 _ y)lz.l + (V + 1)1:3 1 8 a(x)(FS rl)
Correspondingly, the initial boundary conditions are as follows:
t=0:T(0,x) = To(x) = (Ti(x), Tao(x), T3(x))" (3.14)
= (6o(x) = €00, vo(x) = D(x), Ny(x) = A,
x=L:T(t, L) = Flp(t) + s1Iy(t, L) + S{krj,)(t, L), (3.15)
X =0 :Tyt, 0) = Ty(t) + sIt, 0), (3.16)
I3(¢, 0) = I3y(t) + s30a(t, 0), (3.17)
where Tip(t) = 6,(6) = §(L), Ty(t) = vp(t) = 6(0), Ty(8) = n,(t) - 7(0), and Ti(t), (i = 1, 2, 3) satisfy
Lp(t + T) = (D). (3.18)

To gain the global existence of time-periodic solutions, we require that the incoming sound speed is a
small quantity, namely, there is a small positive constant &, such that

c. < & (3.19)

In fact, we can acquire the upper bound for the small constant &, which depends on the relative slope a(x), the duct

length L, the dissipation coefficient s, and the inflow data (2.3). However, to specify this upper bound would cause a

tedious primary calculation which deviates from our main purpose in this article. Concerning the slope of nozzles, it is

worth pointing out that we only require the cross-section A(x) be C? continuous, without any other restrictions.
Now we are ready to state our main results in this article.

Theorem 3.1. (Existence of the temporal periodic solution) There exists a constant J, > 0 and a small constant
& > 0, such that for any given € € (0, &), any given T € R, and any given functions Li,(t) (i = 1, 2, 3) satisfying
(3.18) and

IGp(Ollc < &, (3.20)
there exists a C* smooth function Ty(x) with

IGCONlcx o,y < JeEs (3.21)
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such that the disturbance systems (3.11)—(3.17) admits a C! temporal periodic classical solution T = TTX(t, x) in
the region {(t, x) € R, x [0, L]}, satisfying
M+ T,x) =TA(t,x), V(t,x)€{t,x) € R, x[0,L]} (3.22)
and
ITD]lcvr (o) < Je€- (3.23)

Theorem 3.2. (Stability of the temporal periodic solution) There exists a constant J; > 0 and a small constant
& € (0, &), such that for any given € € (0, &), any given Iy(x) satisfying (3.21), and any given T(t), (i = 1,2, 3)
satisfying (3.18) and (3.20), the disturbance systems (3.11)—(3.17) admits a unique C* classical solution T = I(t, x)
in the region {(t, x) € R, x [0, L1}, satisfying

IT(t, ) = TOE, o < JeefD], Vi € R, (3.24)

with the temporal periodic solution TT) obtained in Theorem 3.1. Here, B € (0,1) and [t/Ty] denotes the largest
integer smaller than t/Ty, with

L
Tp = max sup

. 2
=123 ¢ |A(w)] (325)

Take t — +o in (3.24), so we obtain the uniqueness result.

Corollary 3.1. (Uniqueness of the temporal periodic solution) There exists a small constant & € (0, &), such
that for any given € € (0, &) and any given Ly(t) (i = 1, 2, 3) satisfying (3.18) and (3.20), the temporal periodic

solution T = TT)(t, x) given in Theorem 3.1 is unique.

Theorem 3.3. (Regularity of the temporal periodic solution) Under the same assumptions in Theorem 3.1, for all
functions Ty(t), (i = 1,2, 3) satisfying (3.18) and (3.20) with further W> regularity as follows:

max IT3(Olle= < Ho < +e, (3.26)
there exist a constant Hg > 0 and a small constant &, € (0, &), such that for any given € € (0, &), the temporal

periodic solution T = TT)(t, x) given in Theorem 3.1 in the region {(t, x) € R, x [0, L]}, also complies with the
W2* regularity

max{]|o7T =, [18:0,T DIz, [|95TD||p=} < (1 + B)Hg < +oo, (3.27)
i=1,2,3
where By is a constant defined in (4.3).

Theorem 3.4. (Stabilization around the regular temporal periodic solution) Under the same assumptions in
Theorem 3.3, there exist a constant J§ > 0 and a small constant & € (0, min{ey, £4}), such that for any given

€ € (0, &), it holds the C' exponential stability as follows:

max{[|0:L(t, -) = oLDAE, o, 10, (L, -) = ALTXE, o} < (1 + Bo)JFefl/Pl, Wt € R... (3.28)

4 Existence of the temporal periodic solution

In this section, we will prove the existence of subsonic time-periodic solutions to the non-isentropic compres-
sible Euler equations by constructing iterative formats in details. Now we focus on the time-dependent system
(3.11)—(3.17) and consider its periodic solutions driven by boundary conditions.
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In this process, we will encounter a difficulty, which raises from the appearance of 9, in (3.11) and (3.13).
This term can lead to the derivative loss in C* prior estimates. Fortunately, we notice I is conserved along the
second characteristic curve and overcome this difficulty by transforming 9,I> into the first and third char-
acteristic directions. That is, by using (3.12), we can transform (3.11) and (3.13) into

y-1  (y+ D7 +19+23 - pify
5 T D+ G- b

1 o - o
- 4—V(F3 -0+ - )OI + AT + Do) 41

T + AT + DIy = - 1

y-1 @-pdi+f+2p+dify  y-1
* g 00T e S T s Sal0r - T,

y-1  (y+ I+ T3 +23 - il
a(x) = =
8 B-phi+ @+

1 ~ - -
+ 4_V(r3 -0+ I3 - [DOI + T + Do) 4.2)

Ly + AT + Dy = -

~2 ~2 ~ o~
y-1 B - p)T7 + Iy) + 2(y + DI y-1 2 2
+ = = I - a(x)(T5 - T9).
3 a(x) G-ph+ (¢ + D 1 3 ()(T3 - TY)
Then, by integrating (4.1) and (4.2) along the first and third characteristic lines, respectively, the difficulty
coming from derivative loss can be overcome.

Now, define u,(T + ) = A.(rlJ, )

(i=1,2,3), there exists a positive constant By such that

max sup{l (T + D, |4 (DI} < Bo @3)
Multiplying both sides of (4.1), (3.12), and (4.2) by (T + I), (T + T') and p,(T + T), respectively, we obtain

SNV (] + T3 + 23 - p)iifs
8 y+Dh+ @B -ph

1 - ~ -
- 4—V(F3 -0+ I - [OI + uy(T + Do)

Ly + uy(T + D) = - (T + DLy

4.4)
y-1 @3-y +TD+2y+ DIk )
— = T+ D0
T T e heeopn OB
-1 -
+ Latou@ + s - 1),
Ly + (T + DIy = 0, (4.5)
. y-1 (y + 1)(1~“i + f§) +2(3 - piily .
I3y T+ D5 =- — ~ T+ D
b+ 4+ Dy = = a0 == m S i+ D
1 - - -
+ 4—(F3 -0+ I3 - [0 + uy(T + Io)
4 (4.6)

y-1  (3-y)F;+T+2y+ Dk
F R TG R o+ D

8
-1 ~
F e abouy(r + D)(r3 - 1.

(T + DI

For the convenience of handwriting, in the following, we denote
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=2 = L. o2+ L@
w0 = LF DA+ 15 +26- pif _ " T
! (+ D+ G- i i-a
2 x_ m
Wy(x) = G- V)(f‘i + f‘g) + 2y + DI _ 2 y-1¢ T U
’ (+ D+ G- P c-a
72,7 R D,
lp (X) - (V + 1)(1-‘% + rg) + 2(3 - V)Fll‘g _ y-1
’ @-ph+@y+h E+id
2 -
RN ) R R, )
W(x) = (3 - p)(EL+ 5 + 2y + DET _ Ut u
! G- P+ (v + Dy P
Ws(x) = I:3 - Tl = C.

Since the duct length L < L,, from Section 2 and (3.19), there exists positive constant Cy, depending on L, such that
iitllax5|1P,»(x)| < Coép. %)

Noticing the form of 1, (T') and u,(T"), we recursively construct the iterative format of system (4.4)-(4.6) as follows:

)+ 00+ O = = Lo aowo0m @ + By + L Zagow00u@on + Hri?
- T8 T w0)@IE ¢ D + Dok ) @8)
- : Q0O TED + TYAF DR - @),
T + u,(T®D + Pr = o, (4.9)
o+ (00 + Y = = 2000w 004 + B + LS a00wm00urtd + i
+ %( § -V + w0 @Y T + pyT*D + Tary ™) (4.10)
y-1

5 a0 + DAY - @),

with the iterative boundary conditions as

X =L:T{t L) = Tip(t) + siTY (¢, L) + sfTE (¢, L), a.11)
X =0 : Tt 0) = Ty(t) + TS (e, 0), 4.12)
r59(t, 0) = Typu(t) + 85T (2, 0), (413)

where I3,(t), Ipi(t), I3p(t) are temporal periodic extensions int € R of Li(t), (i = 1, 2, 3). For system (4.8)-(4.13),
assume that

T, x) = (T$200), T00), TPCO) = 0. (4.19)
Then, we define
I, x)(i=1,23 ke zZ,)

to be the sequence of C* solution of the linearized iteration system (4.8)—(4.13), it holds:
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Proposition 4.1. There exist two constants J;,J, > 0 and a small constant & > 0, such that for any given
£ € (0, &), the sequence of C! solutions Fl(k)(t, x) (=123 k € Z,) starting from (4.14) satisfying

r® + P, x) =T®(t,x), VY, x)ERx[0,L],kE Z,, (4.15)
It < (J, + e, VkEZ,, (4.16)
IT® - T¢*D)0 < J Ok, Vk € Z., (4.17)

1 1
max{w (8|0 + w(88,L¥)} < [5 +-ByQ6), Vkez, (4.18)
i=1,2,3

where 0 € (0, 1), @ (8|f) represents modulus of continuity in some senses, which is defined by

w(8lf) = sup |f(t, %) - f& %),
|ti-tp|<8 (4.19)

X-x|<8
and Q(6), independent of k, is a continuous function of § € (0, 1) with
lim Q(6) = 0. (4.20)
5-0*
Proof. We will use an inductive method to prove priori estimates (4.15)—(4.18). When k = 0, from (4.14),

I, (i = 1, 2, 3) satisfy (4.15)-(4.16) and (4.18) obviously. Then, for each k € Z., Vi = 1, 2,3, and ¥(t, x) € R x [0, L],
we demonstrate

T + P, x) = I®(¢, ), 4.21)
IT®lo < e, 1100 < e, (4.22)
0T < Jye, 4.23)
T - T V)jeo < Jye0%, “24)
@80T8, x)) < #9(6) (4.25)
l ) S[BO + 1] y
and
) ) 1.1
L
under the following assumptions
T Dt + P, x) = TR Ve, x), 4.27)
T lles < Jie, (100 o < Jie, (4.28)
0T o < e, (4.29)
D — 120 < 6K, VK 22, (4.30)
%V, x) s ————0 431
w(S|o.L; “(, x)) 8[By + 1] (6), (4.31)
and
(k1) (k-1) 1.1
1

Here, [B; + 1] is the maximum integral no more than B, + 1, and
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@(SIfC,x)) = sup |f(t,x) - f(&, X)I.

|ti-t|<8

First, the time-periodic property (4.21) can be seen directly. By changing the roles of ¢t and x, system
(4.8)—(4.13) can be treated as decoupled nonhomogeneous linear transport equations of ng). From (4.27), we

know, once Fl(k)(t, x), (i = 1, 2, 3) solves problem (4.8)-(4.13), so does ng)(t + P, x), (i =1,2,3). By the unique-
ness of the solution, (4.21) is proved. O

Then, we show the C° estimates in (4.22). On the boundary x = L, from (3.20), (4.11), and (4.28), we can
easily obtain

ITOC, Do = [Tipr() + s1T5 0, L) + sFTETVC, Lllo < € + she = Jie - 9%, 433

here we have used the fact s = max{|s;| + [s{|, |s2|, |s3]} < 1and take J;, = % Similarly, on the boundary x = 0,
we have

IT57C, 0)llco < Jy& = 9%, (4.34)

IS, 0o < e = 99e. (4.35)

In the interior of the region, i.e., (¢, x) € R x (0, L), we define t = t,-(k)(x; to, Xo) to be the i-characteristic
curve passing through the point (t,, xo), namely,

d -
(G - (k-1) .
t:(x; to, Xo) = u(T + D)(t;(x; to, X0), X),
Ll 06 to, Xo) = 1 )t (X; to, Xo), X) (4.36)
93 to, Xo) = to.
Integrating (4.8) from L to x along the first characteristic curve ¢t = tl(k)(x; to, Xo) to show

¢, x) - TR W; ¢, %), L)
L

g

1 _ _ _ ~ _
- 4—V<r§" V- 1Y+ wy(2))(0, I8V + (MY + D)o rf ™)

y-1
8

-1 (k=
L@@ + Y ¢

a(2)Py2)p, (T + THr{?

-1
8

+

a@)p, (T + T ()2 - (rﬁ"‘”ﬁ)]dz,

then combining (1.2), (4.3), (4.7), (4.28), and (4.33), it holds

1 1
ITE, )lles < Jye =~ 99 + [V DoCoBoL. + ECOL]/@oe +Ce? < Jie, (437)

where we have used the fact y € (1, 3) and the smallness of &,. Similarly, we obtain
TS, X)lleo < . 4.38)

For ng)(t, X), since (4.9), l"gk)(t, x) is conserved along the second characteristic curve t = tz(k)(x; to, Xo), then
with the aid of (4.34), we have

Tt )]0 = ITSOC, 0)[|eo < Jye. (4.39)
Next, we will show the proof of C! estimates in (4.22) and (4.23). Denote
h = or®, g0 =91 =123 vkez.

From boundary conditions (4.11)—(4.13), we have
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x =L Ot L) = Ty,(0) + sihy* (¢, L) + sfhs (¢, L),

x=0: hO(t, 0) = Tp(0) + sph{ (¢, 0),
h{(t, 0) = T3,(0) + ssh* (¢, 0).
Then by the aids of (3.20) and (4.28), we obtain

IO, L||eo = T3, (6) + s1h" V¢, L) + sihd (., L)||eo

se+ (Isi| + IsfDe < Ji& - 9%.
Similarly calculations yield
Ih0C, 0)llco < & + Isale < Jye — 99%,
IhOC, O)leo < & + Isslf;e < Jye - 99%.
According to (4.8)-(4.9), hi(k), (i =1, 2) satisfy the following form:

axhl(k) + Hl(r(k—l) + f‘)athl(k)

3 k-1) 4
B Z Auy(T*D + T h](k-l)hl(k) _

j=1 oT;

ou,(T* D + )
Lagowor y 2 FTom A S
j=1 )

1 -
) 4_y<h§" V= hGIETY + uy (@D + Do i)

S ou(T* D + 1) (k DpgeD

o4 e pen
@ I w0y 3

j=1

4
1
4y
V

ITHONC RS ) B
La0owyx )271 o h{kDpgd
j=1 ]

y-

la(x)wz(xwl(r“-n + PRED

- ) r<k +T

+ y - ( )Z i ( )
]

P L aop, 6D + DTSR ~ TR

@ - @

3 k-1 T
. ou,T*V+1)
Oy + 0D + Doy = = § —=———h* Vn".

J

Jj=1

-1 - _
Y a0y (TED + By D

@ = T+ WOO)@ T + iy @D + Do)

DE GRUYTER

(4.40)
(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

It can be seen that the first item on the right-hand side of (4.46) is relevant to hl(k), the estimate of which has not
be gained. To overcome this, we introduce a method of twice integral estimation. First, we need a rough

estimate of h(k).

Multiply both sides of (4.46) by sgn(hl(k)) simultaneously to obtain
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oy h| + p,(@®D + )3, |h)|

S ou(r*k v+ T N

— _ Z uul( - )h(k 1)|h(k)| Sgn(h k))a(X)qu(X)[.ll(F(k_l) + 1—~) hl(k_l)
j=1 j
Y ;11(1"(" v+ D) pOrgeed

-1
- g sen(h)at)w () >

=t or;

1 _ _ _ ~ _
- Iysgn<hf">)(h§" V- @,V + py(TED + Do rd )

1 _ Au,(r*v + 1
_ 4—5gn(h1(k))(r(3k 1 _ (k 1) + lp( )) Z 1 o (k 1)h(k 1)
j=1 ]
(4.48)

- ngn(h(k))(l“(k D r(k Dy Wy(x))(8y h(k D, 1, (TED + f)a[hz("‘h)

#1(r(k D+ 1) (k 1)r(k 1)

-1
+ g sgn(hy O3 o

j=1

+ sgn(m“)a(x)%(x)ul(r(k D+ g

o, (T® + T)
ar;

sgn(h{a(x )Z

j=1

! g By - @y

+ sgn(m“)a(x)ul(r(k D+ DR - PR,

By (4.3) and (4.28), there exists a constant K; > 0, such that

3 ou (T +

au, (0D + T
-y %h]@—n > K.
=1 j

Thus, integrating (4.48) from L to x along the first characteristic curve t = tfk)(x; to, Xo), and using (1.2), (4.3),
(4.7), (4.28), (4.43), and the Gronwall’s inequality, it follows:

-KoeL

1 1
ByD, + E]COLLEOE + Cele

I IE []18 - 99¢ + [y _

< Jyee Kl < Ce.

(4.49)

Integrating (4.46) from L to x along the second characteristic curve t = tl(k)(x; to, Xo), using (1.2), (4.3), (4.7),
(4.28), (4.43), the smallness of g, and the rough estimate (4.49), we have

- 1
1ROt X)|eo < J& — 99e + [V 7 BoDo + V]CoLflgog + Ce? < hyf,e (4.50)

with a constant iy € (0, 1). Repeating similar procedures on (4.10), one obtains
IR, X)lles < Jye. (451
For h{®, we integrate (4.47) along the second characteristic curve t = tz )(x to, Xo) from 0 to x and obtain

Op,(T*D + T)

h(k Dh(k)d
al“,

1P, x) = KOP0; t,x0),0) - IZ
0 J=1

By (4.44) and the Gronwall’s inequality, one obtains
Ih5°Ct, 0lleo < 11hC, 0)llcoe™CEE < (e + |slfy £)e™CE < Jpe. (4.52)

For the spatial derivatives, it follows from (4.8) that



14 — Xixi Fang et al. DE GRUYTER

= y-1 I
g =~ ®D + P - a() P00, (T + Hri?

-1 - _
Y (w0 (T + P

1 _ _ _ - _
- @aé" V- 1 0@, 0 + @D + o rd )

+ YL 00u@oen + By - @k,

Thus, together with (1.2), (4.3), (4.7), (4.22), (4.50), and taking J, large enough, one obtains

llgllco < Bojye + VT_lDoBocogoLfl + ziyco;soBQ[1 e+ Ce? < e, (4.53)

Then from (4.9) and (4.10), by similar arguments, we have
llgsllco < Boe < Jye, (4.54)
lig¥lleo < Jre. (4.55)

Hence, we finish the proof of (4.22) and (4.23).

Now we begin to show the proof of the C° Cauchy sequence property, i.e., (4.24). First, for k = 1, from the
initial iteration (4.14) and the C° estimates (4.22), (4.24) holds naturally. Then for k = 2, on the boundaries, since
(4.11)-(4.13), we have

x=L: T, L) - ¥, L) = i@ ¢, L) - T2t L)) + sp@8 0@, L) - T8, 1),  (456)

x = 0:T59(t, 0) - TY (¢, 0) = syT Ve, 0) - T$72(¢, 0), (4.57)
r$¢, 0) - T§7t, 0) = s3(T¥(t, 0) - TE (¢, 0)). (4.58)
Thus,
T, L) = TV, Llleo < (il + [s), 057 < s], 0% e, (4.59)
IT$9(t, 0) - TS V(¢ 0)leo < sJ, 6%, (4.60)
IT§9(t, 0) - Tt )]0 < s 05 e (4.61)

Within the region {(t, x) € R x (0, L)}, from (4.8) and (4.9), we have

O = T{™) + gy &Y + P, - 1)

- ~ - -1 - - -
= - @D+ ) - @2+ IR - maeowom e + HIE - 1¢2)

V‘

aQ)PO)(y (T D + Ty =y, (0*-D + f)rf?
- —(rék‘” T+ w00)(e Y - gD+ @D+ B - h)

_ (r(k 1) r(k D, qys(x))(yl(r(k 1) 4+ I*) _ 1(r(k 2) 4+ r)) h(k 2)

(4.62)

4y
1
4 (r(k 1) r(k 1) r(k 2) + r(k 2))(g(k 2 4 ty (F(k 2) + F)h(k 2))
Yy~

a(x)%(x)ulm" D+ B - 1§
V

a(x)%(x)(ul(r“-ﬂ + ) = u,@*2 + Frf?

a0 D + BEER - @F - aF D2 + @l

P a0 + 1) - D+ D - ),
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and

0,5 = TV + (@D + Doy - YY) = ~(up(*D + T) - p,0*k2 + PRSP, (4.63)
Integrating (4.62) along the first characteristic curve t = tl(k)(x; to, Xo) from L to x, and combining (1.2), (4.3),
(4.7), (4.30), and (4.59), we obtain

(1§t x) = TED(E, X)|leo < sJ,0571e + Ce + gg)], 057 e < ], Ok, (4.64)

where we take the constant 6 € (s, 1).
Then, integrating (4.63) from 0 to x along the second characteristic curve t = tz(k)(x; to, Xo), We have

IS, x) = TS V(e x)||o < sJ,05 e + CeJ 05 e < ], Oke. (4.65)

Similarly to (4.64), one obtains

IT§9(E, %) - T2, X)lleo < J, OFe. (4.66)
Thus, the C° Cauchy sequence property (4.24) is completed.
Now we give the proof of the modulus of continuity estimates for ng) on the temporal directions, i.e., (4.25),

which is significant to prove (4.26). On the boundaries, for any fixed 4, € R with | - | < §, from
(4.40)-(4.42), we obtain
x=L: [, L) - K, L)
, , (k-1) (k-1)
< |Dipi(t) = T ()] + [sallhy™ ~ (6, L) = hy™ (&, L) (4.67)
+ st b, L) - ke, L)),

x=0: [P, 0) - P, 0)]

_ B (4.68)
< Do) — T + Isal I, 0) = RV, 0)),
{8, 0) - h{(4, 0)]
’ ’ (k-1) (k-1) (4'69)
< [Tt = Top(@)] + Issllhe™ (8, 0) = hy™ (&, 0)].
Then we have
@(IhOC, L)) < @(8IT3,) + Isil@(SIhs V¢, L)) + Isiw(81hs (., L))
and
@(SIh ¢, 0) <@ (S| + IS (SIh V¢, 0),
@ (SIhSOC, 0) <@ (SITy) + Issla (SIh ¢, 0)).
Taking
24
Q(8) = T [Bo + U@ (@ITYy) + @8I0 + TS5, + £6), (4.70)
we obtain
1-s S 1+ 2s 1
SR, L) €« ————Q(§ Q(6) = Qs QS 4.71
@I, L) < e 6) + grp g (O) = g Q(8) < g 6), 4.71)
and similarly to obtain
1
(k). _
@w(Slhy (, 0)) < 80 + 1] Q(6), 4.72)
1
k). _
w(Slh3™’(, 0)) < 8B, + 1]9(6). 4.73)
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To obtain the modulus of continuity for l"l(k) on the temporal directions within the region {(t, x) € R x (0, L)},
we will make some preparations at first. Since (4.36), we have

k k
|ti( )(Y; t, X) - ti( )()’; t, X))

¥y
<1t - ol + [l @ 6,0),9) + T - g @EEOGs; 6,x),y) + Dids
X

Y3
ou.
5|t2—t1|+IZ o
x J=

oo |1 Pl 66 6,0 - 69s; 6, 01ds, 121,23,
1 j

then by the Gronwall’s inequality, it follows:
16005 .0 = 907 601 < (A + Colty - 6] < (1+ Ce)8. “.74)
According to (4.70), Q(8) is a continuous, bounded and concave function of §, with

lim Q(8) = 0.
§—-0*

Due to the concavity, it follows:

Ce
Q1 + Ce)s) + e Q(0) < Q(6),

1+ Ce 1+

ie.,
Q(( + Ce)8) < (1 + Ce)QS). (4.75)

Then, from (4.31), we have

- - 1
06 6 x0) = REVGO0G 6 xS grpr e + Cod)
1 (4.76)
S——1+ i,j= .
H%+”ﬂ Ce)Q(8), 1,j=1,2,3
Integrating (4.46) along the first characteristic curve t = tl(k)(y; b,x)and t = tl(k)(y; t, X), respectively, and
using (1.2), (4.3), (4.7), (4.28)-(4.29), (4.71), (4.74)-(4.76), and the Gronwall’s inequality to obtain

C
*) _p®
[hi™(t, x) = by (, x)| < 818, + 1] Q(6). 4.77)
Then reusing the integral expression of (4.46) and with the aids of (1.2), (4.3), (4.7), (4.28)-(4.29), (4.71),
(4.74)—(4.76), we obtain

1+2s

(k). i
TR0 < 3

(1 + Ce)Q(S) + C(e + €)QS) + Ce?Q(S) < 3

1
WQ((S) (4.78)

Similarly, it holds

@ (ShOC, X)) < 5

1
33 2 (4.79)

Now we integrate (4.47) along the second characteristic curve ¢t = tz(k)(y; t,x)and t = tz(k)(y; t, X), respec-
tively, and have

k k k k k k
hs(ty, x) = ROt %) = h§O(t$900; &, x), 0) - h{O(E(0; 8, x), 0)
tPw; t,x),y)

X[ 3 k-1) 4 T
oI+ 1) ey, i
- @,
0=t J )y,
(™ (y; t,X).y)
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thus using the Gronwall’s inequality and combining (4.3), (4.22), (4.72), it shows

®). _1+32s Lo 1 480
O, 0) = | i1+ COIAS) + CeQS)|e" < Trmm0(6), (4.80)

Based on (4.25), we could prove (4.26) finally. First, we look to a simple case for two given points (¢, x;) and
(t,, ;) lie on one characteristic curve, i.e., t; = tl(k)(xz; t, 1) with

|t -t < § and - x| < 6.
By the same method of (4.50), we can obtain the modulus of continuity estimation
1
IO (4, x) = ROt %)| < Ce25 + CeQ(S) < 52, (4.81)
Then, for general case, i.e., the two given points (&, x;) and (&, X,) satisfying |t - | < § and |x — x| < §, we can
take another point (., X) lying on the first characteristic curve passing through (4, x,), i.e.,
te = 9003 6, X).
According to (4.3) and (4.36),
[ty = &l < |yl — Xo| < Bob,
thus we have
[t = ti] < [te = & + |6 = 8] < (By + 1)S.
Reusing formulas (4.78) and (4.81), we obtain
I8, %) = i (6, )|

[BO + 1]t1 + t*
— . x|t
By + 1

h (b, %) - hf’“[

[BO + 1]t1 + 1
h(k) ,
1 Bo+1 X

_ hl(k)[([BO + 1;0—+lit1 * 2 Xl] . ‘ hf")[%, Xl] - n®t,, x) .
+ 1t ) = h{ (6, )|
< %9(5) + %9(6)
< %9(5).
Similarly argument to have
16, %) - 10, )] < 30), @83
1906, %) - 190, )] < 3009) (@84)
Combining (1.2), (4.3), (4.7)—(4.10), (4.16), and (4.82)-(4.84), we finally obtain
@ (8lg®) < %309(6) + Ce26 + Ce < %BOQ(S), i=1,23. (4.85)

With the help of (4.82)-(4.85), (4.26) has been proved. Therefore, we complete the proof of Proposition 4.1.
Resemble [25], once we finish the proof of Proposition 4.1,Theorem 3.1 can be derived directly. Utilizing the

Arzela-Ascoli theorem and Cauchy convergence criterion, {F,(k)}, (i=1,2,3) converges to I'™ in C' norm.
Taking r{P(x) = TTX(0, x), then from (4.16), we can obtain (3.21).
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5 Stability of the temporal periodic solution

In this section, we consider the stability of the temporal periodic solution captured in Theorem 3.1. To begin
with, we need to give the following Lemma 5.1, which presents the global existence and uniqueness of C’
solution for the initial-boundary value problem (4.1)-(3.17). By using the same way in [13], we can complete a
proof of the following Lemma 5.1. Here, we omit the details.

Lemma 5.1. There exists a small constant & > 0, such that for any € € (0, & > 0), there exists o > 0, if
||E‘0||C1[0,L] + ||Bp(t)||cl(0,+m) <o, 1=123, 5.1
then the initial-boundary problems (3.11)—(3.17) admits a unique C" solution satisfying

IG(E, 2Ot o,L1x (0, +e0y) < JEE- (5:2)

Now we will prove Theorem 3.2 by an induction. Assume that for certain ¢, > 0 and N € N, it holds

max [|T(t, -) - T, o < JeeBY, Yt € [to, to + Tol, G.3)
1=1,2,

where N = [t/Ty], J; = 2], B € (0,1) is a constant to be determined later. Then we will show that

1=mlaz):(a IGCe, ) = FI(T)(t’ Mo < JoeBN*L, YVt € [ty + T, to + 2Tp]. (5.4)

For simplicity, we denote the continuous function

A(t) = max sup |G(t, x) - Tt ).

=1,2,3ve0,L]
Obviously,
Aty + Ty) < J;eBN. (5.5)
To show (3.24), we just need to prove
A(t) < JoefN*Y, VYt E [ty + T, 7] (5.6)
under the hypothesis
A(t) < JoeBN, VYt E [ty T], TE [ty + T, to + 2Tp). (5.7

For this purpose, we need to specify the formula of I'TX(t, x). On the boundaries, similarly to (3.15)-(3.17), we
have

x=L:T{(t, L) = T(t) + siT(t, L) + s¥TS(t, L), (5.8)
x = 0:T§t, 0) = Ty(t) + s,I5 Xt, 0), 5.9)
T§7(t, 0) = Tay(t) + ssT{ (¢, 0). (5.10)

Therefore, on x = L, it is easy to see
ITu(t, L) = T, Dlleo < IsillIT(t, L) = T50(, Do + [sFITCe, L) = T57(8, Do < sfseBY. (6:11)
Similarly, on x = 0, we have
IL(t, 0) = TSt 0)leo < sJep™, (5.12)
ILs(t, 0) - T§(t, 0)[|o < s, €BY. (5.13)

Within the region {(t, x) € R, x (0, L)}, similarly to (4.4), we have
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I3 + (@@ + Dy’
-1 -
-1 5 ACOPEOuE® + DI +

1 -
- 4—y(r§” =T + B00)@, IS + (@@ + Do)

y-1
8

a()P,00u, T + Hrs"
(5.14)

y-1
8

a(Ou, @ + P2 - @)

Combine (4.4) and (5.14) to obtain

oyl - T + (T + Doy - T{P)

-1 -
Y 40w 0T + (T - 1)

== (@ + ) - @@ + ary” - —

y-1
8

- %y(rg ST+ W00)(g, - &™) + (T + By - B

a() P00y (T + ) - (0@ + PHri"

- %y(rg L+ B0+ ) - @ + B BD

1 (1), (T, (T) @ 4 D (5.15)
- 4—V(F3 -hL T3  + T8 + wy (T + Dhy™)

y-1
8
y-1
8
y-1
8
y-1
8

a() 00U + )T - TS

a() P00y (T + ) - p, (@™ + PHry"

a()u, (T + D(T)? - ()? - T2 + (T)?)

a()(y (T + ) = g, @@ + HE)?2 - @),

Now we denote the ith, (i = 1, 2, 3) characteristic curve t = t;(x; t, x) as follows:

0 10 = @ + D06 10,
t(xX; t,%) = i,

(5.16)

and integrate (5.15) along the first characteristic curve t = t(x; £, %). In view of the definition (3.25), then for
any point (£,%) € [ty + Ty, 7] x [0, L], the backward characteristic curve t = t,(x; {, X) must intersect the
boundary x = 0 or x = L in a finite time ¢ < Ty. Thus, we obtain

IG(E, %) - T, D)lleo < sJgBVe + C(e + o) BNe < s BV, (5.17)

where we take the constant § € (s, 1). By using similarly method, one has

IL(E, %) = TS(E, X)||o < 8], BNe + Cef Ve < [ BN, (5.18)
ITs(E, %) - TSP(E Dlleo < JsBN e (519)

From (5.17)-(5.19), it holds
A(E) < JoefN*Y, Vi€ [ty + T, 1. (5.20)

Since 7 is arbitrary, we complete the proof of Theorem 3.2.
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6 Regularity of the temporal periodic solution

This section aims to prove the regularity of the temporal periodic solution I'™). When the boundary functions
Ly(t), (i = 1,2, 3) are W>* regular, we will show the corresponding temporal periodic solution has the same
W?2* regularity. First, we give the following estimates.

Proposition 6.1. For the iteration systems (4.8)—(4.14), if the boundary conditions meet the W* regularity (3.26),
then there exists a large enough constant Hg > 0, such that for each k € N*, the solutions of the iteration system
(4.8)-(4.14) satisfy

10T ®||= < Hg, (6.1)
1160:0,T®|| ;= < BoHg, (6.2)
103T®|= < BiHg, (6.3)
under the hypotheses
10;T* D] |~ < Hg, (6.4)
||8:0,T* || = < BoHg, (6.5)
|05T* V)|~ < BiHp. (6.6)

As long as Proposition 6.1 is proved, we can obtain the uniform W?* boundedness of {T®)};_,. Conse-
quently, the weak * convergence emerges.

Proof. According to Theorem 3.1, {T®}7_; has strong convergence. On the basis of that, we will show the W2*
regularity of I, In fact, from Proposition 4.1, we already have (4.15)—(4.18), and especially

IT®Ye <, + e, ITE Dl < () + J)e, (6.7)
for each k € Z.. Denote
K=o = o, 1=1,2,3, (6.8)

then from the boundary conditions (4.40)-(4.42), we have

x=L: Ot L) = T, () + sy (¢, L) + sixD(t, L) (6.9)
x =0 x0(t, 0) = Ty (6) + sy (e, 0), (6.10)
10, 0) = T(0) + sy * (e, 0). (6.11)

Thus, we obtain
$(t, L)| < Hy + sHy. (6.12)

Similarly,

(t, 0)| < Hy + sHy, (6.13)
(t, 0)] < Hy + sHp. (6.14)

Within the region {(¢, x) € R x (0, L)}, we take 8; on (4.46). Then by using a similar way to (4.50) to have
D6l < hoHg (6.15)

for a constant #, € (0, 1) and lager enough constant Hg. Similarly, we obtain
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I ll= < hoHg,
05l < ToH.
Then utilizing (4.46), combining (4.50)—(4.52) and (6.15)-(6.17), we acquire
180:0xT (||~ < BohoHg + C(e + &) + Ce® < BohsHy, i1=1,2,3,

where h3 € (1, 1) is a constant and independent of k.
Furthermore, taking the spatial derivative on (4.8), we have

32r{o + y T*D + 1)9,8,T

3| op,T*D + F) (k y, o, (T*D + F)

(k)
flor
ar; of;

-1 - _
aCOW (O, [T*D + 1), 1

(@ 0OW00 + a0 D + P

Au, (T, + T F(k_l) A (T*D + F) (e
or; of; )

a(X)‘Pl(X) Z

j=1

1 - ~ _
i Ty(axré" D= 0T + w00 IE Y + (0D + Tars )

1 N -
"y @ T WO0)ETET + wy @D + Doors )

1 ou, TV + T
- r w3 2D
] 1 ]

ouy(T* D + 1)

— (I‘(k 1) r(k 1) + lpS( ))ZT By atr(k 1)
j=1 J

I -y

y—1

aCOP(),(TED + )9, 1§

y B 1 7 72 - ™ -
5 (@COW0) + aCOW0)) T + Hry?
o, (T*Y +_F) D Oy (T*D + F) £y T
or; of;

a(X)‘Pz(X) Z

j=1

-1 - _ _ _ _
Y a00u, @& + FTF 9, I - Do,y

y -

1a’(X)y1(r(k—1) + f‘)((rgk—l))z _ (rgk—l))z)

_ 3 k=1 4
+ )4 . la(x)zw r(k 1)((r(k 1))2 (ng_l))z)
/'=1 J
(k=1 4
L 2 Ma T - @),

Y
From (1.2), (4.3), (4.7), (4.16), (6.6), and (6.19), we finally obtain

02T~ < BésHy + C(e + £0)BEhsHy + Ce + Ce? < BEHp.
Similarly,

102057 1= < BHg,
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(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)



22 — Xixi Fang et al. DE GRUYTER

103771~ < B¢Hp. (6.22)

Hence, we complete the proof of Proposition 6.1, and thus Theorem 3.3. O

7 Stabilization around the regular temporal periodic solution

In this section, we will give the stabilization result for the system around the corresponding temporal periodic
solution I'D. Actually, from Section 5, we have the C° convergence results:

max |56, -) = T{(E Dl < JyeB”, V€ [NTy, (N + DTy), (71)
=12

and further, we have
max [[5(t, -) = {7, lleo < Jsep™™!, Yt € [N+ DTy, (N + 2)Ty) (72)
=12,
for each N € Z.. Moreover, since Theorem 3.1,Lemma 5.1, and Theorem 3.3, we obtain
ICller < Jpe,  ITPller < Jpe,  ITDlyze= < (1 + Bo)*Hg. (7.3)

Due to the continuity, we will prove the C° estimates of the first derivatives iteratively, namely, for each
N€Z,andt € [(N + DT, (N + 2)Tp), suppose that

I8, ) = AT (t, o < J3BYe, Vi € [NT;, 7], (7.4)
0532, -) = &Lt o < BJE Ve, Yt € [Ny, 7], (75)
then we will show
0Lt ) = BTt o < JEBN*e, Vit € [(N + DTy, 7, (7.6)
0L, ) = 0T, o < B BNe, Vit € [(N + DTy, 7). (7.7)
Denote
hi=olL, g=0L i=123
and

h"=o1™, g™ =oI", i=123.

Similarly to other sections, we focus on boundary estimates at first. Taking the temporal derivative on
(3.15)-(3.17), we have

X =L hy(t, L) = Ti(0) + sihy(t, L) + siha(t, L), (7.8)
x =0 hy(t, 0) = T5(t) + sahy(t, 0), (7.9)
hs(¢, 0) = I'g,(0) + sshu(t, 0), (7.10)
and
x =L KO, L) = Ti(0) + sihs"(t, L) + s¥hs™(t, L), (7.12)
X =0:h"(t,0) = T5,(0) + s:h (2, 0), (7.12)

h"(t, 0) = T5,(0) + sshi”(t, 0). (7.13)
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Subtracting (7.11) from (7.8), and noticing (7.4), it shows

sup |hy(t, L) - K{"(t, L)|

tE[NTy,7]
< Isillha(t, L) - REO(E, | + Istllhs(t, L) - Pt L)
< sJspNe.
Similarly,
sup |hy(t, 0) - hi"(t, 0)] < 5] Ve,
tE[NTy, 7]
sup |hy(t, 0) - (¢, 0)] < 5] BNe,
t€[NTy,7]

For (t,x) € R, x (0, L), we take the temporal derivative on (4.4) and (5.14) to have

axhl + .u1(r + 1~-‘)athl

3 ou T +T -1 "
-y & 1(6; )h,-hl -y g 00T (T + Ty Iy
j=1 j
ouy(T + I) y-1 N
-2 Loy Z Sr W T aCO®tou (T + Dhy
] =1 )
ou,(r' +T N
+ a(X)‘Pz( )Y % I3 - _(hs h)(0xT; + (T + 1o,Iy)
j=1 ]
- L wey y 20D )hjhz (05 = T+ BO0)A + (T + D)
4y = Ol 4y
0 -1 -
+ 8 ( )Y %)h ()2 = () + a(x)ul(l“ + I)(Izhs - Tihy),
j=1 ]

and

axh(T) + y (F(T) + f*)at (T)

3 ayl(r(T + r) (T)h(T)

—_ 1 5
i) ()W), D + T)- b

ou,(I™ + ) -1 .
Laowo ZlaTh}T’r(Tu 3 T ——a() (), (1D + D"

ou, (T + T) 1 .
LaGowix )Z 1Wh}”rén - 4—V<h§“ = hi)@,I” + (@™ + DA TE")

o, (I + Y] HORD
Q) J 2
J

(F(T) (T) + Wy(x))- Z

1
4y
1 -
@ =T+ W00)@uls” + @ + Dorky™)
Y-

S o™ + T
My (TN _ (T
* 3 a(X)]Z=1 ar§“ hi (T3 7)* = (I °)%)
y-1
4

a0 @D + DX " - 1PR(T).

Subtracting (7.18) from (7.17) and using similar method in the proof of (5.17), we have
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(7.14)

(7.15)

(7.16)

(7.17)

(7.18)
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It %) = WD (E llo
< sJEBY & sup|Vi, |(1 + B HgJ; B~ & CeJsBNe + CeJ i BNe + Cegf ¥ Bhe
T

IA

hyfg BN le,  V(E, %) € [N + DT, 7] % [0, L]
where we assume the constant i4 € (0,1) and take

J& > 100 max sup|Vu|(1 + BOHgfs + Js.
=123

By similar method, it follows:
IhaE, %) = hV(E, Do < hyf¥ BV e, V(E, %) € [N + DT, 7] x [0, L],
lIhs(E, %) = WP (E Dlleo < M3 BVle,  V(E, %) € [(N + DTy, 7] x [0, L].
According to (5.15),

g - 8" = =py(@ + Dt = h) = (@ + T) = 0D + "
y-1
8
y-1
8
y-1
8
y-1
8

- %y(rg T+ W00)(g, - &™) + (T + By - B

a() B0, (T + T)(T - T)

a()B)(y (T + T) -, (TD + P)r{"

a(),00u, (T + )T - )

a()B00( (T + ) - g, (T® + PHr"

- %y(rg I+ W00 + ) - @D + DD

1 ~
- @ - T TG @+ D)

y-1
8
y-1
8

With the help of (1.2), (4.3), (4.7), (4.16), (7.1)-(7.3), (7.5), and (7.19)-(7.20), it yields

lgi(t, ) = g(t, )lico < BohaJ BV*1e + C(e + £o)J i BVe + C(e + &) fN* e + Ce?
<ByipVle, Vi€ [N+ DT, ],

aCOu (T + D)3 - D) - (@) - @)

+

aCO( (T + T) - @@ + DHHTTH? - @2

Similarly to have
llg(t, ) = &P, o < By BN*le, Vit € [(N + DT, 7],
llgs(t, ) = &(t, o < ByJi BV*e, Vit € [V + DT, 7).

Hence, we prove Theorem 3.4 completely.
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