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Abstract: In this study, we establish the existence and nonexistence of smooth and peaked solitary wave
solutions (or periodic) to the Degasperis-Procesi-Kadomtsev-Petviashvili (DP-KP) equation with a weak trans-
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1 Introduction

In this work, we show the existence of peaked solitary waves and shock waves of the Degasperis-Procesi-
Kadomtsev-Petviashvili (DP-KP) equation

(Ur = U + Ky + AUty = Gyl + Ullyy))x + Uyy = 0, 1D

where k is a real parameter and the real function u(t, x, y) depends on the spatial variables x, y € R and the
temporal variable ¢ > 0. Equation (1.1) may be viewed as the Degasperis-Procesi (DP) counterpart of the two-
dimensional generalization of the Korteweg-de Vries (KdV) equation [19] in much the same way as Camassa-
Holm-Kadomtsev-Petviashvili (CH-KP) equation [15], which was formally derived from the incompressible and
irrotational three-dimensional shallow water under the CH regime. Local well-posedness, formation of singu-
larities, existence of traveling wave solutions, and the Liouville-type property for CH-KP equation were
presented in [15]. The recent related results for other models with respect to transverse effects can be found
in [3,13,16].

In the case of no y-dependence, equations (1.1) and CH-KP equation take the form of the integrable DP
equation [9]

Us = Uy + KUy + AUty — (Blylly + Ullyyy) = 0 1.2)
and the Camassa-Holm (CH) shallow-water equation [2,12]
Ur = Uy + Kl + ULy — (zuxuxx + uuxxx) =0, 1.3)

respectively.

* Corresponding author: Byungsoo Moon, Department of Mathematics, Incheon National University, Incheon 22012,
Republic of Korea, e-mail: bsmoon@inu.ac.kr

Chao Yang: College of Mathematical Sciences, Harbin Engineering University, 150001 Harbin, People’s Republic of China,
e-mail: yangchao_@hrbeu.edu.cn

8 Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.


https://doi.org/10.1515/anona-2024-0040
mailto:bsmoon@inu.ac.kr
mailto:yangchao_@hrbeu.edu.cn

2 = Byungsoo Moon and Chao Yang DE GRUYTER

During the last decade, the DP and CH equations have attracted much attention due to their integrable
structure. Both equations arise in the modeling of the propagation of shallow water waves over a flat bed. The
DP and CH equations capture stronger nonlinear effects than the classical nonlinear dispersive Benjamin-
Bona-Mahony (BBM) [1] and KdV equations [19]. They accommodate wave breaking phenomena (i.e., wave
profile remains bounded while its slope becomes unbounded in finite time [30]). From a mathematical physics
viewpoint, it is interesting to study these equations sharing the peaked solitary wave solution on the line and
circle in the limiting case of vanishing linear dispersion (x = 0)

u(t, x) = ce?xcl ¢>0, (1.4)

1
u(t,x) = cosh(x—ct)—[x—ct]—z, XER, t=20, c>0.

cosh[%] a9
Here the notation [x] denotes the greatest integer part of the real number x € R. The orbital stability of peaked
solitary wave solutions (1.4) and (1.5) of the CH and DP equations has been established [7,21,23]. It was
shown [27] that peakons and a train of peakons for CH equation are asymptotically stable (see also [18]
for DP equation). Note that the peaked solitary wave solutions (1.4) and (1.5) are not classical solutions due
to the fact that they have a peak at their crest (a feature that explains why they are called “peakons”). It is also
worth pointing out that one of the most relevant motivations to look for peaked solitary waves (or periodic) is
the fact that the governing equations for irrotational water waves do admit peaked solitary waves (or
periodic), namely, the celebrated Stokes waves of greatest height [5,6,29]. There has recently been a growing
interest in finding various CH-type equations with higher-order nonlinearity admitting peaked solitary wave
solutions (e.g. [4,17,25,28,31,32] and references therein). It is worth mentioning that the recent research works
[14,25,28] where peaked waves were shown to be unstable in the dynamical evolution of the CH-related
equations are important for the complete picture about (in)stability of peaked waves in the CH-related
equations.

Although the DP equation has a similarity to the CH equation, these two equations have truly different
features. An important difference between the DP and the CH equation for k = 0 is that the DP equation also
enjoys shock peaked waves [24]

1
£x) = - Il >0 1.6
u(t, x) - ngn(x)e c
and periodic shock waves [11]
-1
1 . 1
cosh[;] sinhfx = [x] = 3
ut, 0= ()" "€ ) XERZ >0 iK)
sinh|; sinh|;
0, XEZ.

It is unsure that whether such a shock waves (or periodic) (1.6) and (1.7) is stable or not in proper setting. On
the other hand, DP equation has the third-order equation in the Lax pair for the isospectral problem [8]

lpx_l/)xxx_)lmwzoJ m = U = Uy,

while CH equation has the second-order equation for the isospectral problem [2]
1
wxx—Zw—Am¢=0, m=u - Uy.

Moreover, the DP and CH equations have entirely different forms of conservation laws due to the fact that
there is no simple transformation of the DP equation into the CH equation [2,8]. Furthermore, the CH equation
has several nice geometric formulations [26], while only a non-metric geometric derivation of the DP equation
is available [10]. Their similarities and differences can be found in related recent results [22].
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In the case of non-vanishing linear dispersion (x # 0), the DP and CH equations have localized smooth
solitary waves [20,22]. Existence and stability result of smooth solitary waves for the DP and CH equations are
established in [7,22].

The aim of this work is to prove whether the DP-KP equation (1.1) has properties for existence of solitary
waves and existence of shock waves similar to that of the CH-KP equation and DP equation (1.2), respectively.
Recently, it is known from [15] that the CH-KP equation admit peaked solitary wave solution of the form

u(t,x,y) = ce’**®-clifand onlyif x + g% = 0.

Since the CH-KP equation and DP equation (1.2) have peaked solitary waves (or periodic) and shock waves,
respectively, one can expect that equation (1.1) possesses peaked solitary waves (or periodic) and shock waves.
It is a reasonable expectation due to the fact that DP-KP equation (1.1) was able to transform to DP equation
(1.2) (Remark 2.1). Until now, it is unclear whether the DP-KP equation (1.1) is integrable and an inverse
scattering method is available for it or not. This will be the objective for future work.

Our work is motivated by the works of Gui et al. [15] and Escher et al. [11]. In [15], the existence of peaked
solitary wave solutions for the CH-KP equation has been proven for the first time. On the other hand, in [11],
the authors present a periodic shock waves of the DP equation (1.2) with k = 0. Combining the ideas from both
papers we show existence of periodic shock waves of the DP-KP (1.1).

This work is organized as follows. Section 2 is devoted to the existence and non-existence of peaked
solitary wave solutions for the DP-KP equation (1.1) for certain cases. Existence of periodic shock waves are
presented in Section 3.

2 Peaked solitary waves

In this section, we prove the existence of peaked solitary waves of the DP-KP equation (1.1) in the fol-
lowing form:

u(t, x,y) = qe*Fy=ctl ¢ eR @D
and

u(t, x,y) = a; cosh % —(x+By-ct)+[x+pBy-ct], c€ER, 2.2)

where [x] stands for the greatest integer of x € R. Note that the inverse operator (1 — 8%)™ can be obtained by
convolution with the corresponding Green’s function, so that

(1-0%)7f =G forall feI*X), (2.3)
where
1
G(x) = Ee"x' for the non-periodic case X = R, (2.4)
while
cosh % - x + [x]
G(x) = for the periodic case X = S, (2.5)
2sinh %

and the convolution product is defined by

frg00 = [fogex - y)ay.
X
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We can rewrite (1.1) with the initial data u, as the following weak form:

U + uuy + (1 - 8219,

3
Eu2+1<u +(1-09)My=0, t>0, (x,y)€X=R? or §?

Uy = V. (2.6)
Ul=o = up(x,y), (x,y) €EX=R* or S

The formulation (2.6) allows us to define the notion of a weak solution as follows.

Definition 2.1. Given initial data u, € H'(X), a function u € C([0, T); Hi.(X)) is said to be a weak solution of
the initial value problem (2.6) if it satisfies the following identity:

I

for any smooth test function ¢(¢, x, y) € CZ([0, T) x X). If u is a weak solution on [0, T) for every T > 0, then it
is called a global weak solution.

—0:0xPU + Oy P|udyu + 3,G* - a§,¢G*u dxdydt + Iuo(x,y)6x¢(0, x,y)dxdy =0, 2.7)

X

3
—u + Ku
2

The following theorem deals with the existence of peaked solitary waves for the DP-KP equation (1.1).

Theorem 2.1. The DP-KP equation (1.1) possesses the peaked solitary wave solutions of the form u(t, x,y) =
ce™*By=cl for constant B, € R if and only if it satisfies k + ﬁf = 0. These peakons are global weak solution to
(2.6) in the sense of Definition 2.1.
Proof. Suppose that
uc(t, x,y) = cex+by=ct|, (2.8)
Then, we have
Oulic(t, x,y) = ¢ - sign(x + By — ct)uc(t, x,y), OxlUc(t, x,y) = —sign(x + By — ctuc(t, x,y). 2.9

Combining (2.9) with the fact aXG(x)=—%sign(x)e""' for x €R, for any test function ¢(t,x,y) €
C2([0, T) x R?), we have

T 3
II -0,0cQu, + ax¢[ucaxuc + 6,(G*[Euc2 + K || - 859G*uc|dxdydt + J'uc,o(x,y)ax¢)(0, x, y)dxdy
0R? R?
T 3
= II&,@ Bl + UByUe + axG"‘[Euc2 - (K + ﬁf)uc] dxdydt
OR? 2.10)
= II@,AP[CZ -sign(x + By — ct)e hPy=cll — ¢2 - sign(x + By — ct)e 2 Py-ctdxdydt
0R?
f * 3 20=21x+By-ct| 2)co—Ix+Byy—ctl
+ _|'_|'ax¢ 0,G EC e - (k + B)ce dxdydt,
0R?
where we use the fact G*o,u. = B,0,G*uc.
Using the explicit form (2.4) and the convolution product, we deduce
3. . 17 e (3
9,G* Zc2e2Mx+By-ctl — (k + ﬁZ)Ce Ix+By-ctl| = ——J31gn(x + B]y - 2)e Ix+py-zl| = ~2p-2lz~ct|
2 1 Z,w 2 @10)

-(k+ [ilz)ce"z‘“']dz.

For x + By > ct, we can split the right-hand side of (2.11) into the following three parts:
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3
aXG*[Ecze_m“Bly—ctl - (k+ Blz)ce—lx+ﬁ]y—ctl

ct X+By 0
1 3
= -3 I + I + I sign(x + By - z)e"X’“ﬁly‘zl[gcze‘z'z‘c" - (k+ ﬁf)ce"z‘“']dz.

— ct x+By

=h+h+)-

A direct calculation yields

ct

I = Ie—(x+ﬁ1y—2)

—00

3, 01 el 1,1 N .
_Zczez(z ct) 4 E(K + ﬁl )Ce(z ct)]dz = ‘_Zcz + Z(K + ﬁl )Cle (x+By ct),

x+By
J,= J' o~ (HBy-2)

ct

3 1
__Cze—z(z—ct) + =(k + 2 Ce—(z—ct)]dz
; S0k + BY)

3 3 1
= e+ ‘_ZCZ G BHc(x + By - ct)]e‘(’”ﬁly'“),

and

T (3, 1 o
]3 - I e(x+ﬁly z)| ZCze 2(z-ct) _ E(K + ﬁl )ce (z ct)]dz

x+By

1 1
- _Cze—z(x+ﬁly—ct) - Z(k + 2 Ce—(x+ﬁ1y—ct)_
i LK+ BD)
Plugging the above equalities J; - J; into (2.12), we find that for x + By > ct,

3
6XG*[EC2€_2|X+B1Y_C” - (k+ ’312)Ce—|x+ﬁ1y—ct|

1
= (e 2By 4 ‘—cz tolk+ BHc(x + By - ct)]e‘o‘*ﬁly‘“).
While for x + B, < ct, we can also split the right-hand side of (2.11) into three parts:

3
axG*[Ecze‘Z"”ﬁly‘“' -(k+ Blz)Ce‘l)‘*ﬁW‘“']

X+Byy ct L
1 3
- _ = i _ =|x+By-zl| = r2p-2|z-ct| _ 2 —lz—ct|
5 _[ + I +I51gn(x+ﬁ1y z)e X*hy [Zce (k + B])ce dz.
—o0 x+By ct
=J+h+h
Applying a similar computation as J;, J,, J;, we find that
x+By
T = ~(x+By-2)| - 3 2p2(z-ct) 1 2\p~p(z-ct) dz
5= J e Zce +E(K+[31)ce

—00

= _16232(x+/31y—ct) + l(K + ﬁlz)ce(x+ﬂ1y—ct)
4 4 ’

ct
72 - I e(x+ﬁ1y—z)[%czez(z—ct) - %(K + Blz)ce(z—ct)]dz
x+By

3 3 1
= ==+ By=c) + 1=c2 + —(k + BHc(x + By — ct)je+hy-ct)
2 1 2( Belx + By - ct)

-_— 5

(212)

(2.13)

(214)

(2.15)

(2.16)

217

(2.18)

(2.19)
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and

o 3 1
]3 - Ie(x+ﬁ1y—z)[zcze—2(z—ct) _ E(K + Blz)ce—(z—ct)]dz
ct (2.20)

1 _ 1 2 -
- ZCze(x+ﬁ'1y ct) _ Z(K + ﬁl )Ce(X+ﬁ1Y ct)_
Substituting (2.18)—(2.20) in (2.12) yields for x + B,y < ct,

3,G* %Cze—zwy—crl - (k + p)ce el eUtBy-c) (2.21)

= —¢2eXx*hy=ct) 4 ‘cz + %(K + BHe(x + By - ct)

which together with (2.16) leads to

3
0,G* Eucz -(k+ Blz)uc

(t, x,y)
1
c2e 2By =ct) 4 [—cz ol BHc(x + By - ct)]e‘(x*f”ly‘“% X+ By > ct, (2.22)

eX*By=e  x + By < ct.

1
—c2ex*By=ct) 4 [cz + E(K + BHe(x + By - ct)

On the other hand, one can deduce
Belle + Uyl = €% - sign(x + By — ct)e¥hAy=cl — c2. sign(x + By — ct)e 2x+Pw-cil
‘—cze‘z(’”ﬁﬂ"“) + 2”0ty x + By > ct, (2.23)

c2e2x*By=ct) — (2o~(x*Py-ct) x4 By < ct.

Thanks to (2.22), (2.23), and (2.10), we conclude that for any ¢(t, x, y) € C([0, ©) x R?),

T 3
[]{-o0puc + ax¢[ucaxuc +0,G*| Jul + Kuc|| - 3G ucdxdydt + [ucolx, 1)3(0, x, y)dxdy
0R? R*
w© 3 (2.24)
= II&X¢ Bplle + Uedyll, + axG*[EuCZ —(k+ ﬁf)uc] dxdydt
0R?
=0
if and only if ¥ + ;" = 0. This completes the proof of Theorem 2.1. ]

Next we give a concrete example of weak solutions of the DP-KP equation (1.1), which may be considered
as periodic peaked solitary waves.

Theorem 2.2. Let

u(t,x,y) = —
cosh[%]

The DP-KP equation (1.1) possesses the periodic peaked solitary waves of the form u(t, x,y) if and only if it
satisfies K + ﬁzz = 0. These peakons are global weak solution to (2.6) in the sense of Definition 2.1.

1
cosh[E—(X+ﬁy—6t)+[X+ﬁ»"Ct]’ XER, BER, 120 4o

Proof. Assume that

uc(t, x,y) = cosh[% - (x+ By —ct) + [x+ By - ct]f

cosh[%] (2.28)
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Then, we have

c sinhy c?sinhy
Ol (t, X, y) = - , Ot x,y) = , ©.27)
1 1 .
cosh[z] cosh 5]
sinh % -x+[x]

where y = % - (x+ By - ct) + [x + By — ct]. Using the fact 9xG(x) = - N> XES, for any test
2sinh 2

function ¢(t, x, y) € C2([0, T) x $?), we have

dxdydt + _[uc,o(x,y)ax¢(0, x,y)dxdy

F 3
J'J"—ataxzpuc + 6X¢[ucaxuc + OXG*[EuCZ + KuC]] - ¢GHu,
2

[RZ
T 3
= Hax¢ Bute + Ucdylc + 0,G*| Jul = (k + ﬁf)ucl dxdydt
0s?
* 2 2 2.28
= [[aup|—— sinhy - ——— coshy sinhy dxdydc (2.28)
0s? cosh[% cosh? [%]
F 3¢2 @k + BP)c
+ _[jax¢ 0,G* < cosh?y - K+ By)e coshy ||dxdydt.
0s? 2 cosh? [%J cosh[%

Here we use the relation G*dyu. = 8,0,G*u.. We compute

2 K+ BAc
0,G(x)* % cosh?y - ﬂ coshy |(t, x,y)
2 cosh? [%] cosh[%]
1 . 1 2 1
= - Ismh 2 X+By-q) +[x+By-ql cosh? 3 -(q-ct)+[q - ct] (2.29)

Zsinh% s 2 cosh? [%]

K + e

- Qcosh[é -(q-ct)-[q+ ct]] dq.
cosh %]

For x + B,y > ct, we divide (2.29) as follows:

2
9,G(x)* _ % cosh?y - m coshy |(t, x, y)
2 cosh? %] cosh[%]
1 . x+By 1 1
= ([ [+ [ |sin)g e By -+ x By - al
2sinh % 0 ct x+Byy
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2 1 (x+ B 1
x 4cosh2 [E -(q-ct)+][q- ct]] - 2 cosh[z -(q-ct) - [q + ct]||dg
2 cosh? [%] cosh[%]
=K+ K+ K.

Using the identities cosh?X = %coshZX + % and sinhX coshY = %sinh(X +Y)+ %sinh(X - Y), a direct calcula-
tion yields

ct 2
K=- ! Jsinh % -(x+ By - q)] 3 coshzlé +(q - ct)]
Zsinh% 0 2cosh2[%]
+ B2
_ kB cosh[1 +(q- Ct)] dq
1 2
cosh[g]
3¢? . (3
= Zsmh 2 —(x+ﬁ2y+20t)+3q]
4sinh % cosh? % 0
1 . 1 1 . 1
+ g sinh =2 = O+ By - 2ct) - q| + sinh| o = O+ By) + q]]dq
: . (2.30)
+
L L. 2SR - (x+ By + )+ 20) + 5 sinh(~(x + By - ct))]dq
2sinh % cosh[%] 0
2
_ 3¢ {% cosh[% -(x+ By - ct)] - %cosh[g - (x+ By + th)]
4sinh % cosh? %
1 1 1 1 1 1
1 cosh[—E -(x+ By - ct)] + 1 cosh[—E -(x+ By - th)] + Ecosh[; - (x+By- ct)]
+ 2
- %cosh[% - (x+ Bzy)] + %Bcosh(l - (x - ct+ BYy))
2cosh % sinh %
1 ct .
"2 cosh(1 - (x + ct + By)) + > sinh(-(x - ct + ﬁz)’))],
x+Boy
1 .1
K=-—— _[ smhz—(X*Lﬁzy—Q)]
. 1
2sinh 2l
2 + B2
3¢ coshZ[% -(q- ct)] - w cosh[% -(q- ct)] dg
2 cosh? [%] cosh[%] 2.3
) X+
=_3; J Zsinh E—(x+ﬁ’2y—2ct)—q]
. 1 1 4 2
4sinh|;|cosh? E] ct
1 . 1 1. 1
+ o Sinhl=o = O+ By + 2c0) + 3q] * o sinh| o = (x+ Byy) + q]]dq
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+pde P
—_— 2 sinh(1 - (x - ct + By)) + = smh( (x+ct+pBy)+ 2q)]
2cosh % sinh % ct
2
=- 3 [—% cosh[% - 2x+ By - ct)] + %cosh[% - (x+By- ct)]
4sinh 1 cosh? [l

+ %cosh[—1 +2x+ By - ct)] - — cosh[—1 -(x-ct+ B»))] + %cosh[%

K + B¢
- 1cosh[— -(x-ct+ [32)’)] + _ et B)e l(X + By —ct)sinh(1 - (x —ct + ﬁz)’))l
2 2 . 1 1
2sinh 2 cosh[g
and
1 1
K3=- I sinh |- -(X+/5'»’-q)]
2sinh % x+Byy
2
x 3;cosh [ -(q- t)] i )C [1 (q- ct)] dq
2 cosh? 2] cosh[ ]
3c? 1. (1
= Zsmhz—(x+ﬁ?y—2d)‘q
4sinh % cosh? (5 | x+fy
1. 3 1 . 1
+ Zsmh =5 (X + By + 2ct) + 3Z] + Esmh =5 " (x+ By) + q]]dq

1 (2.32)

2
+ M %sinh(—(x —ct+ By)) + %sinh(—l - (x+ct+ By)+ 2q)]dq

. 1 1
2sinh 2 cosh[; x+By
3c? 1
- —cosh{-— - (x + By — 2ct)| + cosh - 2x - ct+ By)
. 1 4
4sinh|; | cosh?” ]

+ 1 cosh[— - (x + 2ct + B»})] - — cosh[—E +2x + By - ct)] + = cosh[— -(x+ B»))]

e

5 5 cosh(l - (x + ct + By)) - cosh((x ct+ By -1
+ %(1 = (x + By))sinh(-(x — ct + BQy))l.

2sinh

Plugging the above equalities K; — K; into (2.29) gives us for x + B,y > ct,

K+ B2)c
0,G(x)* cosh?y - ﬂ coshy [(t, x,y)
1 1
2 cosh? [5] cosh[g] 233
3c? 2 1 2 1
S Ch— 3 sinh(1) sinh 2 x+pBy- ct)] -3 sinh 2 sinh(1 - 2(x + By - ct))
4sinh % cosh? [%]
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(k + B

+ e —
% cosh[ ]

2sinh
<3 - s By - o)

1
1nh

1
inhl =
2 sinh| >

- (x+ By - ct)]cosh[%] - cosh[% - (x+ By —ct)

.1 ] c? (1 ] [1 ]
= - ———sinh|- - (x + By - ¢ct)| + ——sinh|- - (x + By - ct)|cosh|- - (x + By - ct)
1 2 1 2 2
cosh[g cosh? [E
2
(K ’ Bz X mh - (x+ By -ct)|- &+ B a:osh[1 (x+ By - ct)][ - (x+ By - Ct)]
4sinh 5 Zcosh[g

While for x + B,y < ct, we also divide (2.29) into three parts,

2 K+ BHe
0,G(x)* _ e cosh?y - ﬂ coshy [(t, x, y)
2 cosh? [%] cosh[%]
X+Boy ct
- [+] j smh[— — (X By - @)+ X+ By - q]]
2 smh 0 x+By  ct (2.34)
2 2 C
x 3;cosh [ -(q-ct)+[q- ct]] BZ) cosh[1 -ct)-[q+ ct]] dq
2
2 cosh? 5] cosh[ ]
K+ R+ R

Applying a similar computation as K; — K; to the terms K; — K3 on the right-hand side of (2.34), we find that for
X+ B, < ct,

2

0,G(x)* _ % cosh?y - cosh)( (t, x,y)
2 cosh? %] cosh[ ]
c? (1 1
= smh +(x+ By - ct)] sinh 2 +(x+ By - ct)]cosh[z +(x+ By - ct)] (2.35)
cosh[ coshz[
2 + 2
wmh +(x+[3»1—ct)]+( Bz)ccosh(x+ﬁ»1—ct)+%(x+ﬁg—ct)+%].
4 smh 2 cosh[%]

For the terms o:u. + u.0xuU.;, we have

O¢llc + UOxUc
2 2
= ——~sinhy - ——— coshy sinhy (2.36)
cosh[% cosh? [%]
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2
sinh % - (x+ By - ct)]
cosh[%
c? 1 (1
-——cosh E—(x+ﬁ?y—ct)smh E—(x+ﬁ?y—ct), X+ By > ct,
cosh? [%
) ¢ .1
—-————sinh 2 +(x+ By -ct)
cosh[%
2 1 (1
+ cosh|- + (x + By —ct)|sinh[- + (x + By — ct)[, x+ By <ct.
L 2 2
cosh [5]

Using the property of linear independence of functions coshy and sinhy and (2.33), (2.35), (2.36), it follows from
(2.27) that for every test function ¢(t, x, y) € C2([0, T) x $2),

UOy U, + 0,G™

T 3
U‘—azaxqbuc + 00 Jud+ Kuc]] - 3G ucfdxdyde + [1eo(x, ¥),9(0, x, y)dxdy
0s?

[RZ
°° 2.37)
(k + BHe (k + BHe (
= IIan) isinh)( - i}( coshy ||dxdydt
0s’ 4sinh % 2 cosh[%]
=0
if and only if k + BZZ = 0. This completes the proof of Theorem 2.2. O

Remark 2.1. For the initial value problem equation (1.1) with the initial data u(x, y) = Fo(x + yy), function
u(x,y, t) = F(x + yy, t) is a solution to equation (1.1) by the uniqueness. Here the function F(t, n) is a solution
of the following initial value problem for the DP equation

F - Eyy + (k + Y2F, + AFF, - 3EE,, + FEy,) = 0 (2.38)

with initial data F(0, n) = Fy(n).

In view of the proof of existence result of smooth solitons of the DP equation in [22], we may also have the
following result and detailed proof is omitted.

Theorem 2.3. Ifk + y? > 0, then equation (2.38) possesses a localized smooth solitary wave solution.

3 Periodic shock waves

It is our purpose in this section to show that the DP-KP equation (1.1) admits the periodic shock waves of
the form

-1
cosh[l] sinh

1
X+V)"[X+V)’]‘§]

) ’ € RZ ZZ) > 07
e (6y) ERAZ, ¢ 3.1)
= sinh 2

0, (x,y) € 72.
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Such a type of solution is a weak solution in the sense of Definition 2.1. The following result on the existence of
the periodic shock waves can be obtained by verifying the definition of weak solution.

Theorem 3.1. The DP-KP equation (1.1) admits a global weak solution in the periodic shock wave form of (3.1) for
some constant f; € R if and only if it satisfies that k + ﬁ32 =0.

Proof. Assume that

-1

cosh[%] sinh|x + By — [x + Byy] - %]
t+c . (x,y) ERAZZ, ¢>0,
ut,x,y) =14 . (1 |1 (3.2)
¢ sinh| sinh|3
0, (x,y) € 72
Then, we have
1 -1
cosh[g]
h
Oxlic(t, X:y) = t+c cosh¢ 3.3)
o1 .1
sinh 2 sinh 3
and
-2
cosh[%] cosh % sinh{
Oruc(t, x,y) = - t+c , (3.4
sinh sinh? %

where (= (x + Byy) — [x + By] - % Using (3.2), (3.3), (3.4), and integration by parts, we deduce from the
Definition 2.1 that for every test function ¢(t, x, y) € C([0, T) x $2),

K 3
H[—ataxsbuc + ax¢[ucaxuc + 0,67 Jul + it || = 339G ucldxdyde + [ ueolx, 1)2,9(0, x, y)dxdy
0s? R?
K 3
= ”ax¢ Oile + U By Ue + 6,(G*[Euc2 - (k+ Bgz)ucl dxdydt
0s?
1 B 1 1 E
® cosh f] cosh|>|sinh( cosh[f] .
2 2 2 h h
= J—J-ax¢ - t+c + t+c M dxdydt (3-5)
082 sinh %l sinh? % sinh % sinh? %]

-1

-2
r C"Sh[%] 3sinh? ¢ C°Sh[%] (k + B7)sinhg
~JJos o

0,G* t+c - t+c dxdydt,
. 1 . 1 . 1 . 1
0s? sinh 2 2sinh? E] sinh 2 sinh 2
where we use the relation G*0yu. = B;0xG*u.. Note that
sinh % - x + [x]
0,G(x) = - , X€R\Z.
2sinh %
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It then follows that

-2 -1

cosh[%] . cosh[l] 2y o
3sinh? 2 (x + BHsinh{
0,G* 1t+c ! C;— 1t+c ﬁsi(t,x,y)
sinh | 2sinh?|; sinh sinh
= - 1‘[3111h——(x+[33y—z)+[)(+[?3y—z]
2sinh|~ 5| S
-2 -1
cosh[%] 3sinh?|z - [z] - %] cosh[%] (k + BPsinh|z - [z] - l]
x t+c - t+c dz
.o |1 . 1 .1 .1
sinh| 2 sinh? E] sinh| sinh|;
x+Bay 1
- J' sinh|; = (x+ By - z)] (3.6)
0
-1
1 . 1 1
cosh[E] 3s1nh2 zZ- E] COSh[E] (k + B2)sinh|z - —]
+ t+c dz
smh[l 4sinh® l] sinh|2 2sinh? 1]
2 2 2 2
- 1
+ J sinh —E—(X+ﬁ3y—z)]
x+Bay
-2 -1
cosh[%] 3sinh?|z - %] cosh[%] (k + B2)sinh|z - %]
X 1= t+c + t+c dz.
sinh|* 4sinh3 1] sinh| 2 2sinh? 1]
2 2 2 2
A simple computation shows that
L -2
cosh|= x+Bgy
3 2] 1 1
- t+c I sinhE—(x+/33y—z)sinh2 —E]dz
4sinh? % sinh % 0
1 -1
K+ B2 cosh 2 X+Byy
Py t+c Jsinhl—(x+ﬁ3y—z)sinhz—1dz
. 1 . [ 2 2
2sinh?|7 || sinh|;
2
3 cosh 1
= -— | [cosh sinh?|x + By - —] @7
4 sinh3 ; smh
1 (1)1 .
- cosh 2 (x + Byy)[sinh =3 + 3 sinh E sinh(2(x + Bgy) - 1)
1 1 2 1 2 1
- gsinh 2 (X + Bgy)[sinh(-1) - ECOSh[E] cosh(x + By) - 1D + §C°Sh[§ -(x+ Bzy)]cosh(—l)]
1 -1
K+ ﬁ3z cosh|3 1 1
: ) t+c 2 sinh(x + Bgy) - 2 cosh(1 - (x + By)(x + Bay)
2sinh?|7 || sinh|;
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and
. -2
cosh[i] 1
1 1
- 3 t+c I sinh——(x+B3y—z)sinhzz——]dz
. i .1 2 2
4sinh3|; || sinh|; X+By
1 -1
K + B2 cosh[i] 1 1 1
s t+c I sinh——(x+ﬁ3y—z)sinhz——]dz
Y | N F 2 2
2sinh?| S [ sinh|5 X+ By
1 -2
3 cosh[g 1 - 1
= - t+c coshz—(x+/5'3y)smh25
4sinh3 % sinh % (3.8)
1) . 1 1. 1 .
- cosh ~3 sinh{(x + Byy) - E] + 3 sinh 2 (x + Byy)[sinh(1)
1 . 1) . 2 1
-3 sinh| ~3 sinh(2(x + By) - 1) - 3 cosh 2 (x + Byy)|cosh(1)
2 1
+ 3 cosh[—z]cosh(Z(x + Byy) - l)l
-1
cosh|+
K + ﬁ?)z 2 1 . 1
t+c Esmh(l - (x+ By)) + 2 cosh(—(x + Byy))(x + By — D).
2sinh?|; | sinh %
By (3.6) and (3.7), we have
1 E 1 R
cosh —] . cosh[—] 2y o
2 3sinh? 2 (k + BY)sinh(
0G(x)* t+c sinh” ¢ - t+c '837 (t,x,y)
sinh % 2sinh? %] sinh % sinh|
-2
cosh[%] sinh|x + By - %] cosh(x + Byy - %] cosh % sinh|x + By - %]
t+c - +
sinh|; sinh? %] sinh? %]
a1 (3.9
cosh[%] (k + BH)|2sinh % - cosh[%]] cosh|x + By - %]
—t+cC
.o |1 .ol
sinh|; 4sinh 5]
(k + B} x+,83y—% sinhx+/33y—%
+
. 1
2sinh(

It is found from (3.4), (3.5), and (3.8) that for every test function ¢(t, x, y) € ([0, T) x $2),
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dxdydt + _[uc,o(x,y)ax¢(0, x,y)dxdy

F 3
J'J"—ataxzpuc + 6X¢[ucaxuc + BXG*[EuCZ + KuC]] - ¢GHu,
0s?

[RZ
1 h 1 1
2|9 cinh || - 1
w cosh E] (k + B3)|2sinh |7 cosh[z]]cosh( (k + 532)( sinh?
= [fou t+c + dxdydt
0s? sinh % 4sinh? %] 2sinh %
=0
if and only if x + B32 = 0. This completes the proof of Theorem 3.1. O
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