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Abstract: In this article, we aim to establish the optimal time decay rates of strong solutions to a two-phase
flow model derived from a type of coupled fluid-kinetic equation. It is proved that the strong solutions
converge to the given constant states with algebraic time decay rates under some additional assumptions
on the initial data.
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1 Introduction

The two-phase flow model [2,24,40] has been drawing more attention due to their wide applications in the
study of rain formation, chemical engineering, diesel engines, waste water treatment, etc. A type of coupled
fluid-kinetic equation to the two-phase flow model, the so-called Navier-Stokes-Vlasov-Fokker-Planck (NS-VEP)
system, is given as

ap + div(pu) = 0,

9(pu) + div(pu ® u) + V,P(p) = div, (24D (u) + vdivuls) + I(v - wfdv, 1.1
[RB

0cf + v -V f = div((v - w)f + W f),

where p = p(x, t) and u = u(x, t) denote the density and velocity of the fluid, respectively; f = f(x, v, t) represents
the distribution function of the particles for (x, v, t) € R3 x R3 x R.. The pressure P(p) is taken the form

P(p) = p¥, with y>1, 1.2)

and the stress tensor D (u) is defined by
D) = %(Vu + (Vuw)"). (1.3)
The constant viscosity coefficients fi and V satisfy
g>0 and %ﬂﬂ?zo. 1.4

I3 is the 3 x 3 identity matrix.
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In this article, we consider the viscous two-phase flow model, which can be formally derived from system
(1.1) by applying the Chapman-Enskog expansion near the local Maxwellian [26] and ignoring the microscopic
effect. The model can be written as

Op + div(pu) = 0,

9(pu) + div(pu ® u) + VP(p) = div(2iD (u) + vdivuls) — n(u - w),
on + div(nw) = 0,

O(nw) + div(nw @ w) + Vn = div(nD (w)) + n(u - w),

(1.5)

where n = n(x, t) and w = w(x, t) denote the density and velocity for (x, t) € R® x R., respectively. The
pressure P(p) and the stress tensor D (u) are given in (1.2) and (1.3), respectively.
We impose (1.5) with the following initial data:

(p u, m, W)X, 0) = (pg, Uo, o, Wo)(x),  Inf py >0, and  inf no >0, (1.6)

and the far field state

|xl|if?m(p°’ U, No, Wo)(X) = (py, 0, Ny, 0), .7)
where p, > 0 and n, > 0 are the positive constants.

There is much important progress made recently on the global existence and large time behavior of
solutions to the compressible flows (see [1,3-10,12-23,25,27-34,36,38,39,41,43,44] and references therein). For
the one-phase flow, Matsumura and Nishida [33,34] considered the Cauchy problem for the non-isentropic
compressible Navier-Stokes equations with small initial perturbations and obtained the global existence and
I? time decay rates of classical solutions. Ponce [36] extended Matsumura-Nishida’s results to L? (p 2 2) time
decay rates. Recently, Chen et al. [4] established the energy balance criterion of weak solutions to the isen-
tropic compressible Navier-Stokes equations in a bounded domain without any additional regularity assump-
tion of the velocity near the boundary. Ma et al. [31] established the global existence and stability of the smooth
solution near the steady supersonic flow to the compressible non-isentropic Euler system with a source term in
a bounded domain. It is also important to study the pointwise behavior of the solution so as to understand the
spread of diffusion waves for the compressible fluid. Considering the one-dimensional case, Zeng [43] inves-
tigated Green’s function of the isentropic compressible Navier-Stokes equations and has shown that the
solutions are approximated by diffusion waves in L! space. Moreover, Liu and Zeng [30] obtained the pointwise
space-time behavior for the Cauchy problem of general hyperbolic systems. In the case of three-dimensions,
Hoff and Zumbrun [12,13] studied Green’s function of the isentropic compressible Navier-Stokes equations
with artificial viscosities and gained the pointwise estimates of solutions to the Cauchy problem. Furthermore,
Liu and Wang [29] investigated Green’s function of the isentropic compressible Navier-Stokes equations and
made use of complex analysis to derive the pointwise behavior of solutions to the Cauchy problem. They
observed the weaker Huygens’ principle in odd dimensional space, due to the stronger dispersion effects.

For the two-phase flow, Li and Zhao [27] investigated the existence and nonlinear stability of steady states
to the inflow problem of the viscous two-phase flow for supersonic, sonic, and subsonic cases. Later, they
continued previous work on the outflow problem of the viscous two-phase flow and established exponential
time decay rates to the supersonic case and algebraic time decay rates to both the supersonic and sonic cases
in [28]. Choi [5] proved the global existence and uniqueness for the strong solution to Cauchy problem in R3
and gained the exponential decay rates of the solution converging to the constant state in T3 for the compres-
sible Euler-Navier-Stokes (E-NS) system. Then, Tang and Zhang [38] and Wu et al. [41] derived the optimal
algebraic convergence rates of the solution to Cauchy problem for E-NS in R3. Jung [14] established the global
existence, uniqueness, and large time behavior of strong solutions to the initial boundary value problem for
the E-NS system in a bounded domain. In addition, Bresch et al. [3] obtained the global existence of weak
solutions to the initial value problem of a generic two-phase flow model in T3,
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We define a new unknown function m = logn, and then, problems (1.5)-(1.7) can be rewritten as

atp + le(pU) = 01
d:(pu) + div(pu ® u) + VP(p) = Lu - e™(u - w),

. (1.8)
om + divw + w -Vm = 0,
ow+w-Vw+Vm=VYm-D(w) + Lyw + (u - w),
with the initial data
(p, u, m, w)(x, 0) = (py, Uo, Mo, Wo)(X), 19
and the far field state
llm (p()) uO: mO) WO)(X) = (p*! 0) m*: 0)’ (110)

|X|~>+oo

where my = logn, and m, = logn,. The operators I, and L, are given by
- 1 1
Ly =fiA+ (fi+7V)Vdiv and L;= EA + EVdiv.

With the help of clear spectrum analysis to the linear operator and energy estimate to the nonlinear
system, we obtained that if (p, - p,, Uo, Mo = My, Wp) is sufficiently small in H3(R®) N LY(R3), then for k < 3,
the strong solution (p, u, m, w) satisfies

9 (p = pyo tt,m = My w2 < C(A+ 074, (L1

where C > 0 is a positive constant independent of time, cf. [42]. It should be mentioned that all the results cited
earlier need the smallness of L' norm for the initial data and complicated spectrum analysis for linear
operator.

Motivated by Guo and Wang’s work [11], when the initial data are a small perturbation around the
equilibrium state in H3(R%), we make use of energy method to establish the global existence and uniqueness
of the strong solution, instead of using the spectrum analysis method. As the initial data further belong to

H°(R®) with s € [0, %), by pure energy method without any linear time decay analysis, we show the optimal

decay rate of solutions, which is consistent with the results obtained in [42].

This article is organized as follows. Some notations and significant lemmas are given in Section 2. The
main result is presented in Section 3. The local existence and uniqueness of the strong solution to system
(1.8)—(1.10) are established in Section 4. Finally, in Section 5, we prove the global existence and obtain the
nonlinear decay estimates of the solution.

2 Preliminaries

Throughout this article, we denote by C a generic positive constant, which may vary in different estimates. We

employ A < B to mean that A < CB for a universal constant C > 0. With an integer k = 0, VX represents the

usual spatial derivatives of order k and H* denotes the k-th order L? Sobolev space on R3. Particularly, H? = I2.
The pseudodifferential operator 3° with s € R is defined by

PFCx) = [ 181 @i ide, @1
[R3

where f represents the Fourier transform of f, ie., f ©) = IRge‘iX‘ff (x)dx, for ¢ € R3 Meanwhile, we define
the homogenous Sobolev space H® of f such that

IFllge 2 1985112 = NIEFF |2 < oo 2.2)

We introduce some inequalities as follows.
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Lemma 2.1. Let 0 < a, 8 <y, and it holds

IV¥fllze = I9°F 10 19715 2.3)
where 0 < 0 <1 and 0 satisfies
B 1 [a 1 [y 1]
E_Z=|=-Za-0)+ |- =l 2.4
3 p 3 q ( 2 3 r 0 @4
Here, if p = ®, we require that 0 < 6 < 1.
Proof. The proof can be found in [35]. O
. . 1
Lemma 2.2. For s 2 0 and integer k 2 0, it holds for 6 = ;- that
IV¥fllzz = IV 1520 IR 15 2.5)

Proof. According to Parseval’s theorem, the definition of ||J37%f||;2, and Hélder’s inequality, we obtain

A 2176 oo 0 118 | 1evam
IV¥fllz = IEEF 12 = MERF I METSF Il 2 = VKA1 B 5F 1 2.6)

Thus, we complete the proof of this lemma. O
It should be pointed out that if s € (0, 3), P~°f defined by (2.1) is the Riesz potential. According to the

Hardy-Littlewood-Sobolev theorem of fractional integration, we obtain the following LP-type inequality for the
Riesz potential.

Lemma2.3.Let0<s<3,1<p<q<°°,and%+§=

1B llze = IIfllee- @7

1
> then

Proof. We refer to [37] for details. O

3 Main results
Theorem 3.1. Assume the initial data (p,, uo, Mo, Wo) Satisfy (py = P, Uo, Mo — My, W) € H3(R3), and there
exists a small positive constant §, > 0 such that

1Py = Py Uo, Mo = My, Wo)ll3w? < So- @1
Then, the Cauchy problem (1.8)-(1.10) has a unique global strong solution (p, u, m, w) satisfying

p - p, € CR4, H3(R3) N CY(R+, HA(RY)),
u € CR.+, H3(R?) N CY(R., HY(R?)),

m - m* € C(R+, H3(R?) N C'(R+, HA(RY), 3.2)
w € CR., H¥R) N C'R., H'RY),
and for any t = 0 that
t
(P = Pu , M = M WO + J IV, m)(D)|R> + [|V(u, w)(D)|Es)dT < 63 (33)
0

Moreover, if (p, = p,, Uo, Mg = My, Wo) € H® for some s € [0, ;), then for all t > 0,

(o = Py tty M = My, WYB)|5s < C. (3.4)
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Furthermore, for k = 0,1, 2, it holds
V(0 = p,. 1ty m = My, WY(O)|[sx < C(L+ £)°2, (3.5)

with C > 0 a positive constant independent of time.

We note that the Hardy-Littlewood-Sobolev theorem implies that for p € (1, 2], LP is a subset of H™® with
1 1

14 2
decay estimates of the strong solution to a given constant state.

s=3 S

3 . . . .
0, 5]. Then applying Theorem 3.1 yields the following result of the usual LP—I?-type optimal

Remark 3.2. If we replace the H° assumption on the initial data by L? for some p € (1, 2] in Theorem 3.1, then
for k = 0,1, 2, the following time decay estimates hold:

195 = py ty T = Mgy WYt < CCL+ )79, (36)

h =311,
where 0y = 3, = 5

4 Local existence
To obtain the global existence, we first state the local existence of system (1.8)-(1.10) as follows.

Theorem 4.1. If (p, - p,., Uo, Mo — My, Wy) € H3(R3), then the Cauchy problem (1.8)-(1.10) has a unique strong
solution (p, u, m, w) satisfying
p - ps € C(I0, L], H¥(R?) N CY([0, L], HAR?),
u € C([0, ], H*(R?) n CY([0, T,], H'(R?),
m - my € C([0, L], H3(R®) N CY([0, L], HAR?)),
w € C([0, T, H*R?) N CY([0, T], H'(R?),

4.1

where T, > 0 is a short time.

Proof. The construction of the local-in-time solution is based on an iteration scheme. The details can be found
in [33]. O

5 Global existence and nonlinear decay estimates

In this article, we study the small perturbations of solution (p, u, m, w) to the Cauchy problem (1.8)-(1.10) near
the constant state (p,, 0, m,, 0). Denote

q=P P U kKo m) o= 5.1)
P c c c

with
k= /% and c= [P(p).
*

Then, the system (1.8)—(1.10) is reformulated as

o:a + cdivq = f,

8:q + cVa - ko + k2q = Lq + f,,
ob + dive = f;,

0,0+ Vb +0-kq=1Lo+f,

(5.2)
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with the following initial data:

(a) q, b! 0)(X1 0) = (aO’ q()’ bO’ 00)(X) - (O) 0: Oa 0): as |X| - to, (53)
The operators L, and L, are defined as

1 1
Li=uA + u+v)Vdiv and L; = EA + EVdiv, 5.4

with y = pﬂ andv = pi. The nonlinear term f; (i = 1,2, 3, 4) is denoted by
fi = —cdiv(ag),
P+ @p,) | al,g (€ -1-0)

- — 12
cp, (1 + a) cva 1+a+ 1+a (ko = ko),

f,=-cq-Vq
c (5.5)
]g = —%O' 'Vb,

c c
fi= —%a Vo + EVb -D (o).

5.1 A priori estimates

In order to extend the local solution to be global, we shall establish the uniform estimates. Therefore, it is
natural to provide the a priori assumption, namely, there exists a suitable small constant § > 0 such that

(@, q, b, o)l < 6. (5.6)

We first derive the following estimates for system (5.2) under the a priori assumption.

Lemma 5.1. Suppose that (a, q, b, o) is the smooth solution of system (5.2) with the initial data (5.3), then for
k=0,1,2, we have

d N
EIIV"(a, @, b, )| + CUIVa, D)|fer + [V(q, 0)f}54) <0, 6.7
where C > 0 is a positive constant independent of time.

Proof. For simplicity, we denote the following symbols for k = 0, 1, 2:
Ex(t) = |V¥(a, g, b, )|« and  Di(t) = ||V (@, b)||gz-x + ||VE* (g, 0|+ (5.8)
The case of k = 0 is taken into consideration at first, which means we need to prove that

d N
1@ ¢ b, Ol + CUIV(@ D)l + 1V(q, D) < 0. .9

Let integer a satisfy 0 < a < 3. Applying V¢ to (5.2) and multiplying by V%, V%q, Vb, and V%0, respectively, and
then integrating the resulting equation with respect to x over R3 yield
1d

1
2217 4. b, @I + %0 - k)l + GIV=Igif + V"ol

Ivaa V9, dx + Ivaq -Vaf, dx + Ivab -Vaf,dx + Ivao -4, dx (5.10)
R® R® R® R®

A+ I+ I+ I
where we used a simple fact that by constraints (5.4), there exists C; > 0 a positive constant such that

u [ 19veqRdx + G + v) [ 1diveegP dx > G[v*igR,. (5.11)
R® R®
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If a = 0, with the help of (5.5) and Lemma 2.1, the nonhomogeneous term 110 is estimated as follows:

I < Cllalls(llall#Vall2 + llalls|1Vallz2)

1 1 1 1
< C|\Valz(||all%Val|% IVqll2 + llql|%)IVq]%||Val|z2) (5.12)
< Cgo(t)Do(t)z.

The definitions of Ey(t) and D(t) are given by (5.8). According to Hélder’s and Young’s inequalities, the second
term is estimated as follows:

I < Cligllsllalls1IVallzz + [IVallzllalls + llalls19%ql2 + (lalls + 1Bll2)llo - kqll2)
103 103 11
< ClIVallz{llqliZ=1VallZ: + lallZ1VallZ + llallZ:[IVal|Z(19%qll:

1 1 1 1 (5.13)
+ (lalfZ11Valis + [DIEIVBIElo - kqllz
2 1 2
< CE(DDUL + 5 llo - k.

For the third term, we also have

11
15| < Clibllzsllollz 19D 1l2 < CIIVD|z2 |0l |Vl VBll2 < CE(D(E)*. (514)

Then, we consider the last term as

\9) < Cllalls(lloll; Vol + [1Vail;]|Vb]l;2)
1 3
< C||Va]| 2 (lo]| %I Vol | + ||[9%0]|,2]|VB]|;2) (5.15)

< C80(t)2)0(t)2.

Combining these estimates of I'-I{ together, we conclude
d
—ll(@ q,b, o)}z + llo - kqlff. + Gil|V(q, O)Iff2 < CELDDo(D)*. (5.16)
dt

Then, we follow a similar argument for the case a = 1. After a direct calculation, we obtain

|1} < C||Val|2(||V(adivq)||;2 + [|V(q -Va)l|;2)
< C||Vall2(IVqll2lValle + llall=lIV?qll2 + [IVall2]|Vqlles + [1qllz=IV?all2)
< C||Vall2(|IVqll2lIV2allgr + [[Vallg[[V3qllyz + [[Vall2[[V2qll + (V]I [IV?all2) (6.17)
< (Va2 (|IVallz2]|Vqlle + [IVqllz2|Vallz)
< CEY)D(1)2.

The estimate of the second term is given by
L1 = ClIVqll 219G - @llp2 + [IV(Va - @)l|y2 + [[9(aV?)ll2 + [IV((a@ = b)(o = kq))l|z2)
< CIIVallz(l1Vqlle Vgl + 1IVallg|[Valle + [1Vallg2[[V%qlle + 11V(a = D)lll[V(o = k@)llg)  (518)
< CSo(t)Do(t)z.
For the third term, we obtain
|51 = C||9D||2|[V(a -VD)|2

< CIIVDI2(lIV?0 111 1VD|z2 + Vo]l ][V?Dllz2) (5.19)
< C(go(t)ﬂo(t)z.
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The last term is bounded by
|41 = CIIVal|2(||V(o -VO)||y2 + ||[V(VD - D (0))]|;2)
< C||Vall2(IIVal| 2|Vl + [lollz=[IV?all2 + [IV?bl|2[|Valle= + [IVbl|=[IV?0]l2)
< C|IVall2(IVall2[|V2allg + [IVollg|IV2allz + [IV?bll2 (V0] + (92Dl [V0llz2)
< C80(t)Do(t)2.

Thus, we combine the aforementioned estimates together to show that
d
V(@ a.b, I} + V(0 = k2 + ClIVA(G, 0|}z < CE(ODo(1)-

Similarly, for the case a = 2, we also obtain
IIF| < Cl|V2al|2(|IV¥(adivg)|| 2 + |[VXq -Va)||;2)
< C||Val|2(||V2al|z||div || + [|Val|c=||Vdivgl|;2 + [[VAdivgllzllalle + [Iqll-]IV3all2
+ [|V2al|2||Vqlle= + [|V2q]|=([Vall2)
< C||V2al|2(|[V2al| 2 (|V2qllg + [V%allg [V2qll2 + (V3qll2(IVallg + (IVqllg|IV3allz2 + [IV2all2][ Vgl
+ [|V3q||p2[Vall;2)
< Cs()(t)Do(t)z.
The estimate of the second term is given by
151 < ClIV%q||2(IV2(Vq - @Iz + [IV¥(Va - @)z + [[VX(aV2q)||2 + [[V*((a = b)(a - kq))||;2)
< CIV%qll2(IVqll2 V%qll + [1Vallg2]IV2all + IVallg2[V3qll + [1V(a = b)l|g2]|IV(o — kq)llm)
< ng(t)Do(t)z.
For the third term, we have
|51 < C||V2D||2|[V*(a VD)2
< C||V2D||2(|IV?0] |52 ||Vbl|= + [IVal|c=]|V2D]|;z + |ollc=]|V3D]|;2)
< C||V?b||2(|IV?0]|2]| VDl + [[V20] [ [|VD]|y2 + [|VO|g [[V3D]l2)
< C(So(t)Do(t)z.
The last term is estimated as
|I}| < C||V2a]|;2||VX(0 Vo + Vb - D (0))|);2
< C||V?al|;2(||V20]|2|Valle= + llolle=[[V3al|2 + |IV3al|;2||VDI|= + [|V20]|z=|[V?D]|2 + |IV3D]|;2||Val|=)
< C||V?al|2(|[Vol|g [IV?0llr + [[V20]|2][V2D||g)
< C(So(t)Do(t)z.

Collecting the estimates of I>-I? together, we deduce

d
V@ a.b, Oz + V(0 = k2 + GIIV3(G, DI}z < CE(DD(0)-

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)
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Then, the case a = 3 is taken into account as follows:

3| =
I =
R

_[vBa V¥(=cdiv(aq))dx ‘

<C Iv3a -V¥(adivg + q -Va)dx

|R3

< (IVall2(IViall 2] 1Vqll= + (19%qll=[IV%allz2 + 19°qllz2 Vall= + llall=[I9*qllz2 + [1Vq]l;2 ]| Vall=

(5.27)
+ [IV%qllz=IV2all> + [IVqllc=][V3all2) + € JV3a (q 'V“a)dX‘
[R3
< ClViall2(1Vall2(9%qll2 + ClIVall2[1V%q||2 V2l + C IV3a (q 'V‘*a)dX‘
[R3
< ClIV3al|2|Vallg2 1Vqlle + ClIVall2(IV%q]|g2 IV2all + Clidivallz=[|V3alf.
S CEWDD(t)?,
where we make use of the following inequality:
IV3a (q V*a)dx | < C||divq||Lw||V3a||iz < C||V2q||H1||V3a||iz < CEW)D(t)2. (5.28)
IRS

The estimate of the second term is given by

| < ClIV4qll2([[V%(Vq - @l + [IV3(Va - @)l + [IV3(aV2Q)|l2 + [IVA(a - b)(o = kq))||;2)
< CIV*qll2(1Vglle2 9%qll + (1Vall2 IV2alls + [1Vallg2 V3l + 1IV(a = D)l ]IV(0 = kllg)  (5.29)
< C80(t)2)o(t)2

For the third term, we have
)= | v®b -v3
]
< CIV3b (V30 -Vb + V2 -V2b + Vo -V3b + ¢ -V4h)dx
R (5.30)
< C||V3b||2(||V3al| 2 |VD||z= + [V20]|3]|V?Dlls + [IVallz=[|V3Dl|;2) + CE(ODo(t)*

—%o-Vb

dX ‘

1 1
< C||V3D|| (|| V%0V | + ||V20]|%|IV3a]|%]|V3D]|2) + CE()Do(t)?
< CE(D(t)?,

where we have used the fact that

_[v3b (o -V4b)dx | < Cl|divolly=[|V3b|%: < C|[V%0]|||[V3b|: < CE(OD() (5.31)
|R3
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The last term is bounded by

3| = J’V3O"V3[—£G'VO' + S - D (0)]dx
[R3

k

< ClIVall2(|[V2allg2 [ V2ally2 + 1Vl (IVDll2 + (V2D [V3allze + [1VDIl=][V4al|z2)

P (532)

jv% (V4D -Vo)dx
RS

< Q%] 2(IV0ll2 (V%02 + [I9%bllg: (V0] |g) + C
R

J’v% (V4D -Vo)dx ‘
3

< CEW(D(1)?,

where we make use of the following estimate:

J’v% (V4D -Va)dx
[R3

J’v% (V(V3b -Va) - V3b -V2a)dx
[R3

(5.33)
< C(IV*all2 V%D |2 V20l + [1V30]lz2 (|90 ]l [[9°D]z2)
< Cgo(t)Do(t)z.

Thus, we collect the aforementioned estimates together to show that
d
EHVS(a, q,b, 0|2 + |IV¥(0 - k|22 + CilIV4(q, 0)|[22 < CE()Do(t)™. (5.34)
Moreover, summing a from 0 to 3, we conclude
d
Ell(a, q,b,0)|ls + |lo - kqlfs + GIIV(q, 0)|[2s < CE(DD(t). (5.35)

Let s be an integer satisfying 0 < s < 2. Applying V* to (5.2), and (5.2), and multiplying by V**1a and V$*1b, then
integrating the resulting equations by parts in R3,

d
o J;(Vsq vs*lg + Vg Vs h)dx + ¢|[vslalfl, + (|75 b .
R

< CUIVsallf. + IV gl + Vgl IV Nl + 19 ol IV 122 (5.36)
+ C(IV gl IV ally2 + (19 %0]|2 (9 D]l 2 + [IV*"al|2][Vf Iz
+ VBNV 12) + CAIbllz + KV all2)] V(0 = kq)l|z2-
By the Cauchy-Swarchtz inequality, we find that

d 1
— [(@q v1a + o v b)dx + S, + 2|V
dt 2 ) g

2 (537)

< CD(6)* + CE(DDo(t)* + C|V(a - k)72

Summing all the derivatives together, we have

d|e ¢ 1
— Vsq -V¥*la + Vsg -V ib)dx | + —||Valf3. + —||Vb|}
= ZO[J( qVa + Vo Vi) + - |Valfh + S |VD 539)

< CO(1)? + CE(DD(1)? + Clla ~ kqlf2e.
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Taking the summation (5.35) + 6 x (5.38) with 6 > 0, it holds

d 2
E(H(a, q,b, 0| + 6 > I(Vsq -V$*lg + Vg -Vs*1b)dx)
s=0[R3
1 c
+ o~ k)l + GlIV(G, Ol + 0G5 I1Valfz + VD)
< COD(()? + COEW)D(t)* + CE()Do(t)* + CO|o ~ kq|f%;2.
Choosing 6 suitably small satisfying 0 < 6 < 1, we obtain

2
(@ q.b, o)+ 63 J(Vsq -Vs*lq + Vg -Us*1b)dx

s=0[R3
1@, q, b, ®Is + 6lqllzzlIVallz2 + llo152 1Vl

IA

IA

3
Ell(a, q,b, o)l
and

2
@, q. b, O)|5s + 0 Y [ (v -v*a + Vo -v++h)dx

s=0R3
1@, q, b, ®)Is - 6llqllz=lIVallz + llol2 1Vl

v

v

1
2 l(@ 4. b, s,

which implies that there exists a positive constant C, > 0 such that

2
(@ q.b, o)+ 0 j(wq Vs*lg + V5o Vs h)dx = C)(a, ¢, b, ).

s=0R3
By choosing €0 < % on the basis of (5.42), it gives rise to
d 2, 1 2 2 1 2 ., C 2
Cog; €@, . b, )l + S llo = kqllys + GV, Dltys + 6|5 1IVallye + 5 1IVDIfy
< CGZ)O(t)2 + CGS()(t)D()(t)Z + Cgo(t)Do(t)z.
After a direct calculation, it is easy to verify that there exists a positive constant C; > 0 such that
1 1
2l = ki + Sl s = GV, o),
which, together with (5.43), also leads to
iII(a b, @)l + Cu(llo - kqlfis + [IV(a, D)IG + [19(q, 0)I2)
dt »q, D, H3 4 q Jisd ) )24 q, I
< COD(t) + COEY()D(t)* + CE()Do(t)?,

where
4G, 2G)° 26, 26 G
By the definition of E(t), D(t), and the a priori assumption (5.6), we find that
d
EGO(t)Z + CuDo(t)? < COD((1)? + COSD((t)> + CED(t)>%.
Due to the smallness assumptions on § and 6, we immediately obtain

d o
aao(t)2 + CD(t)* < 0,

-_ 1"

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(547
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. ~ C. e
with C = 74 a positive constant. Hence, we have

d
1@ q b, )| + C(IV(a, b)IA. + |IV(q, 0)|F5) < 0, (5.48)

and we complete the proof of (5.9). It should be mentioned that for k = 1,2, we deal them in a similar
argument. This completes the proof of Lemma 5.1. O

5.2 Nonlinear decay rates

Lemma 5.2. Let (a, q, b, a) be the smooth solution to system (5.2)—(5.3), and then, for s € (0, %], it holds

d 1
*F7@ab, Dl + I1B7(0 = k)lif + CIIVP~qllf + EIIV‘B’SGIIiz

(5.49)
< (% (a, q, b, )||2(|V(a, q, b, )| % + || = kq22).
And for s € %, g] it holds
iII‘B'S(a b, @)|% + [|B5(0 - k)| + Ci||VB5q|> + EIIV “Salf?
dt » 4, D, 12 q 2 1 q 2 2 ;’p 2
(5.50)

1 _1 3_ 3_
< CIB(a, ¢, b, O)l|(l@ g, D22 + ol a2V g, D) + [IVal 2 )
x (|[V(a, g, b, )|z + [[Vqll2 + |l = kqll2).

Proof. Applying B~ to (5.2), and multiplying the resulting by ‘B~5a, B~5q, L°b, and P50, respectively,
summing up, and then integrating by parts over R3, we obtain

1
@ a bl + I8 - kI + CIVE Sl + 31l
= [pa s [ Popaes [0 Pohaxs [po g 551
R® R® R® R®

cth+h*h*]
Next we will estlmate the terms on the right-hand side of (5.51). It is easy to check that if s € (0, ] then

% +5<1 and = 2 6. Applying Lemmas 2.1 and 2.3 together with Young’s and Hélder’s inequalities, we have

Vil = ClIB~*(adivg + q -Va)||p2||B~*al|
< Clladivq + q -Val| s || B al|2

L3+2s

< C(||all z[1divql|yz + [[Vall2llqll 2B all2

1, 1_ 1, 1_ (5.52)
25 22, 275 1924012, S-S

< C(Ivallz [[V=allzz Vgl + [[Vall2IVall:  [IVoqllz: DB ally

< C(IValffz + IV%alfz2 + [IVqllfz + [IV%q7)|1% a2

< C(Ivalffs + IValiDIIBallz-

We also have the following estimate of J:
1< ClIB~(qVq + aVa + aV*q + (a = b)(a ~ kq))ll2[1B*qll.2
< Cllq¥q + ava + av’q + (@ - b)(o - k)| ¢, [IB°qll,2
(5.53)

< Clliqll 2IVgllzz + IVallzllall 2 + llall 2 11Vqll;2 + Clall 2 + 1Bl 2)llo = kqllz2 [19~qll;2

< C(IIValfz + |IVDIE: + 119qIs + llo = kqlz)IB*qll;2-
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The estimate of J; holds

V51 < ClIB~5(0 -Vb)|| 2| B~D|| 2
<Cllo-Vbl| s IF*DI|

< Clla]] 1VD]|z2[|B*D| 2

1o 1 (5.54)
< ClIVall "IVl [IVbl2 |19 ~*Dll,2

< C(IValfz + V2]t + [IVBIE)IIB DIl
< C(IValifs + IIVBIEE)IIB D],z

The last term can be estimated as

V| < ClIB~5(o -Va + Vb - D (0)||2|IB 0l
< C(|lo-Val| 5. + [[VD Vo] s P ol

L3+2s L3+2s

< C(lloll [IVallz2 + [Vl 2 |IVD]|)] B~ 0l| 2

PACTRSI oL P ATV - (5.35)
< C(lIVollz [IV*allzz |IVallyz + [IV*allz IV allz [IVDl)IB ol

< C(IValif> + [IV2allfz + [[V3alff + [IVDIE)IIB 0|2
< C(IIValfz + [IVDIE)IIPB 0|2

Fors € [0, %l combining all the aforementioned estimates yields that

d 1
F@ab, Oz + B0 - kIlf. + GIVE~qlf. + EIIV‘ﬁ‘SGIIiz
< C(IValfza + [IVqlfz + IVDIE: + (1Yol + llo = kqlz)IB(a, q, b, o)z

(5.56)

Therefore, we complete the proof of (5.49).
Asfors € l%, g], we obtain that% + % <land2 < % < 6. Applying the Sobolev interpolation inequality, we

obtain

V1] < Cl|B~5(adivq + q -Va)||2||B5a||>
< Clladivq + q -Val| s [P *al|>

L3+2s

< C(llall z[1divqll2 + llqll 2 [[Vall2)|| B *all> (5.57)
< C(llallz*IVallz2 IVl + llqll2 “1IVqlly [IVall2)IIFB5allz.
In a similar fashion, we have the following estimate for J,:
I, = ClIB~5(qVq + aVa + aV*q + (a - b)(0 - kq))||2||B*ql|,>
<(||qVq + aVa + aV?q + (a - b)(a - kq)|| & _||B~ql|2

L3+2s

lall,3 + 11bll 2

< C[IICIIIL§IIV£ZIILz + [IVallzzllall 2 + llall 2IV*qll2 + llo - ’“ZIILZ]II‘B‘SCIIILZ

1 5 1 5 1 (558)

3
S—5 58S S—5 58S S—5 58
< C|llqll2 2 Vqll7~ + llall2 2 1Vallf~ + llall2* IVallZ: - [IV3qll;2

1 3 1 3
S=y 5= S=y 58
* [IlalleZIIVallfz + |Ibll2* [IVDI[Z2

llo - kQIILZ]II‘B’SQIILZ-
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As for [, it is written as

V51 < ClIB~(a -VD)|| 2B ~*D|l;
< Cllo-Vb|| s ||B5b||2

L3+2s

< Clloll 2 11Vbl|2]|B~°Dl|>
s-1 3_s
< Clloll22|IVal|Z " [IVb]|p2(|B*D| 2.
The last term can be estimated as
i1 < ClIB™(g -Va + Vb - D(0)||2I%B 0|2

llo-Vol| s, + IIVD ‘VUIIL%]H%'SGIIL2

L3+2s

<

)

IA
@)

llall NIVl + ||VG||L§||Vb||L2]||q3_sG”LZ

A
)

1 5 1 3
S=y 58 S=y o8 _
llall2[IVallzz - + [1Val| 2 * V%]l 2 IIVbIILZ]II‘J3 *0]z2.

Combining J,—J, together, it gives rise to

d 1
P @a.b, O} + 1B75(0 - kIlf. + GIIVE~qllf. + EIIV‘B’SGIIEz

-1
1 -1

1
o
< QB q. b, 9)llz|lla g, b2 + lloll,p

x (IIV(a, g, b, )llzz + [IV%qllz2 + llo = Kqllz2).

This completes the proof of (5.50), and hence, we finish the proof.

3 3,
IV(a, ¢, D)IIf~ + [IVol s

DE GRUYTER

(5.59)

(5.60)

(5.61)

Then, we are able to provide the decay estimates of strong solution for the nonlinear system (5.2)-(5.3).

Proposition 5.3. Let s €
satisfies

IV¥(a, q, b, &)(O)l|-+ < C(A+ )75,

Proof. We first consider the case s € [0, %] For simplicity, we define
M) = |B(a, ¢ b, YO
When s = 0,
M(®) = ||(a, g, b, O)|[7 < CSF.

When s € [O, % , according to Lemma 5.2, we obtain

d 1
MO + 1975 = kIR + CIITEqlE: + - [Vl
< C(IV(a, 4, b, )| + |0 = kql)y M)

Integrating (5.47) with respect to time from 0 to ¢, it yields

t
Eo(t)? + C‘IDO(T)ZdT < C82.
0

0, 2] If the initial data (ay, 4y, bo, 60) € H*, then for k = 0,1, 2, the solution (a, q, b, 0)

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)
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Then, by the a priori assumption (5.6) and (5.45), it holds
t
ll(a, q, b, 0|} + C4I(||0 - ks + IV, DI + [I9(q, 0)If3p)dT < CSG.
0
Making use of (5.67) and Lemma 5.2, we easily obtain that

t
M(6)< M(0) + C [(IV(a, 4, b, o) + lo = kqlE)yM (@) de
0

< M(0) + C5¢ sup M(T).

0<7<t

- 15

(5.67)

(5.68)

As a result of the Cauchy-Schwarz inequality, we directly obtain M(t) < C, which implies for s € [0, %] that

M(t) = [[B(a, q, b, )OI < C.

If k = 0,1, 2, we may apply Lemma 2.2 to have

1 1

- 14—
- k k
IVl 2 CIBS11 2 NIVEAIL 2 5

According to this fact, we obtain
IV1alf, + [9<'qlE, + Vb + [9olf > C(IValfy + I9*ql + (VDI + [[V¥aiff) o'
and
IVl + Vg1 + VDI + 17Tl

2 COIValpr + IVIEas + VBl + V5055,
With the help of Lemma 5.1, we can verify that
SEu(07 + COP <0, DO > CEPR
Furthermore, for k = 0, 1, 2, it is derived from (5.73) that
Seu(0r + CEOII <0

By solving this inequality directly, we finally obtain
Et) s CA+ty'?.
As a result, we find that for s € [0, %] and k=0,1,2,

IV¥(a, q, b, O)(O)|gpx < CL+ )%,

For the case s €

s’ € [0, s], from what we have proved for (3.4)-(3.5) with s = % Then, we deduce that

”vk(a: q, b, O‘)(t)”Hka < C(l + t)—%_%

(5.69)

(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

(5.75)

(5.76)

s .- _ . —c’
%, %] observing that (ay, q,, bo, 6p) € H ? since H SN I2is a subset of H ° for any

(5.77)
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Applying (5.67), (5.77), and Lemma 5.2, it holds

p o1 ! 3, 3
M(t) < M(0) + C_[(Il(a, q,D)l[2% + llall,:*)IV(a, g, D)2~ + [IValZ: )IIV(a, g, b, 0)||;2y/M(7)dT
0

t

+cf

0

3_ 3_
IV(a, g, D)% + Vol (1%l + llo - kqll;2)yM(T) de

1 1
s=5 §=%
(@, ¢, D)2 * + llo]l,*

t t % t %
< M) + ¢ sup M@ |6 [+ o (Eac+ & [ + e | [(vqle + 1o - kalde
0<7<t 0 0 0
< M(0) + C8¢ sup /M(7).
0s7s<t

By the Cauchy-Schwarz inequality, we directly obtain M(t) < C, which implies that
1B~%(a, q, b, O)D|[2 < C. (5.78)
Then, we repeat the same process as (5.70)-(5.75). As a result, we have

IV¥(a, q, b, 6)(O)||gp+ < CA + )7 (5.79)

.3 .- . —g’
, observing that (ao, ¢y, by, 0p) € H * since H SN I?is a subset of H ° for any

As for the case s € l% 1
s’ € [0, s], from what we have proved for (3.4)-(3.5) with s = %, we then deduce that
IV5(a, @, b, 0)(O)||yp-x < C(L + £)575. (5.80)

It follows from Lemma 5.2, (5.67), and (5.80) that

p 1 3_ 3_
M(6) < M©) + ¢ |l q. B> + llolh? [19Ga, g DI + Vol I9Ga, g, b, o)z M () de
0

t

+cf

0

3_ 3_
IV(a, g D)% + Vol |(IV%qll;2 + [lo - kqll;2)yM (D) de

o1 o1
@ q D)% + o]l

< M(0) + C sup M(7)

0<7<t

< M(0) + C8¢ sup M(7).

0<t<t

t t t
83 fa+ oy dar+ sy + oy Godn (vl + o - kqldo:
0 0 0

By the Cauchy-Schwarz inequality, we directly obtain M(t) < C, which implies
”(’B_S(a) q; b7 G)(I)H%Z <C. (581)
Then, we repeat the same process as (5.70)—(5.75). As a result, we have

IVk(a, 4, b, 0)(®)|gpx < C(L+ 6)77". (5.82)

For the case s € [1, %], observing that (ao, wo, by, q,) € H ' since H* N L2 is a subset of H “fors’ € [0, 5],

we then deduce from what we have proved for (3.4)—(3.5) with s = 1 that

IV¥(a, q, b, )(O)||p-+ < C(L + t) 272 (5.83)
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Applying Lemma 5.2, (5.67), and (5.83), we obtain

1

' - -1 3, 3
M(t) < M(0) + CJ(II(a, q,D)ll2% + llall,x:®)IV(a, g, D)%~ + |IVallZ: )IIV(a, g, b, 0)||;2y/M(T)dT
0

1

p _ 1 3_ 3_
+ [ @ @ bI:? + ol )IV@ @ DI + Vol )Pl + llo - kallz) M@ dr
0

1
2t 2

[aval + 1o - kqlzac

¢ t
S M(0) + € sup yM(D) 602.[(1 v oyt + 6 _[(1 + T)_(%‘s)dr
0 0

0<7s<t 0
< M(0) + C8¢ sup /M(7).
0<7<t

Again, by M(t) < C, it yields
IB~5(a, g, b, O)DO|22 < C. (5.84)
Then, we repeat the same process as (5.70)-(5.75), which gives rise to
I%(a, @, b, 0)()[ly < CA+ )%, (5.85)

Combining (5.76), (5.79), (5.82), and (5.85) together, we conclude (5.62) and the proof is complete. O

5.3 Proof of Theorem 3.1

Proof. Integrating (5.7) with respect to time leads to

t
i@, q, b, )OIl + CI(II(VG, Vb))l + 11(Vq, Vo)(0)|[3)dT < C6F. (5.86)
0

By choosing C§¢ < %62, we enclose the a priori assumption (5.6), and hence, we obtain the uniform bound of

energy. Applying the standard continuation argument, we obtain the global existence of the strong solution

(see [33] for details). Combining Proposition 5.3 and (5.1) together, we have for s € |0, g]
(o = Py t, m = My, W)B)|5 < C. (5.87)
Meanwhile, for k = 0, 1, 2, the time decay estimates (3.5) hold. Hence, we complete the proof. O

Acknowledgements: The authors are deeply grateful to the anonymous referees for their valuable comments
on the manuscript. The authors would like to thank Prof. Hai-Liang Li for his fruitful discussions and helpful
suggestions.

Funding information: The research of this article was supported by the National Natural Science Foundation
of China (Nos 11931010, 12226326, 12226327), by the key research project of Academy for Multidisciplinary
Studies, Capital Normal University, by the Capacity Building for Sci-Tech Innovation-Fundamental Scientific
Research Funds (No. 007/20530290068), and by the Science and Technology Project of Education Department of
Jiangxi Province, China (No. GJJ2201918).

Author contributions: Yakui Wu performed the conceptualization and formal analysis, Qiong Wu and Yue
Zhang performed the validation and wrote the manuscript.

Conflict of interest: The authors state no conflict of interest.



18 = Yakui Wu et al. DE GRUYTER

References

[11 S. Berres, R. Biirger, K. H. Karlsen, and E. M. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedi-
mentation with compression, SIAM J. Appl. Math. 64 (2003), no. 1, 41-80.

[2] C.E. Brennen, Fundamentals of Multiphase Flow, Cambridge University Press, New York, 2005.

[31 D.Bresch, B. Desjardins, J.-M. Ghidaglia and E. Grenier, Global weak solutions to a generic two-fluid model, Arch. Ration. Mech. Anal.
196 (2010), no. 2, 599-629.

[4] M. Chen, Z. Liang, D. Wang and R. Xu, Energy equality in compressible fluids with physical boundaries, SIAM ]. Math. Anal. 52 (2020),
no. 2, 1363-1385.

[5] Y.-P. Choi, Global classical solutions and large-time behavior of the two-phase fluid model, SIAM J. Math. Anal. 48 (2016), no. 5,
3090-3122.

[6] S. Deng, Initial-boundary value problem for p-system with damping in half space, Nonlinear Anal. 143 (2016), 193-210.

[71 S. Deng and W. Wang, Half space problem for Euler equations with damping in 3-D, ). Differential Equations 263 (2017), no. 11,
7372-7411.

[8] W. Dong and Z. Guo, Stability of combination of rarefaction waves with viscous contact wave for compressible Navier-Stokes equations
with temperature-dependent transport coefficients and large data, Adv. Nonlinear Anal. 12 (2023), no. 1, 132-168.

[91 L. Du, Initial-boundary value problem of Euler equations with damping in RY, Nonlinear Anal. 176 (2018), 157-177.

[10] L. Du and H. Wang, Pointwise wave behavior of the Navier-Stokes equations in half space, Discrete Contin. Dyn. Syst. 38 (2018), no. 3,
1349-1363.

[111 Y. Guo andY. Wang, Decay of dissipative equations and negative Sobolev spaces, Comm. Partial Differential Equations 37 (2012), no. 12,
2165-2208.

[12] D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J.
44 (1995), no. 2, 603-676.

[13] D. Hoff and K. Zumbrun, Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. Angew. Math. Phys. 48 (1997),
no. 4, 597-614.

[14] . )ung, Global-in-time dynamics of the two-phase fluid model in a bounded domain, Nonlinear Anal. 223 (2022), Paper No. 113044,
27 pp.

[15] Y. Kagei and T. Kobayashi, Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space, Arch. Ration.
Mech. Anal. 177 (2005), no. 2, 231-330.

[16] Y. Kagei and T. Kobayashi, On large-time behavior of solutions to the compressible Navier-Stokes equations in the half space in R3, Arch.
Ration. Mech. Anal. 165 (2002), no. 2, 89-159.

[17] Y. 1. Kanel, A model system of equations for the one-dimensional motion of a gas (Russian), Differencialanye Uravnenija 4 (1968),
721-734.

[18] S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. Soc.
Edinburgh Sect. A 106 (1987), no. 1-2, 169-194.

[19] S. Kawashima and T. Nishida, Global solutions to the initial value problem for the equations of one-dimensional motion of viscous
polytropic gases, J. Math. Kyoto Univ. 21 (1981), no. 4, 825-837.

[20] S. Kawashima and P. Zhu, Asymptotic stability of nonlinear wave for the compressible Navier-Stokes equations in the half space,
). Differential Equations 244 (2008), no. 12, 3151-3179.

[21] A. V. Kazhikhov, On the Cauchy problem for the equations of a viscous gas (Russian), Sibirsk. Mat. Zh. 23 (1982), no. 1, 60-64, 220.

[22] A.V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional
equations of a viscous gas, J. Appl. Math. Mech. 41 (1977), no. 2, 273-282.

[23] K. Koike, Long-time behavior of a point mass in a one-dimensional viscous compressible fluid and pointwise estimates of solutions,
). Differential Equations 271 (2021), 356-413.

[24] N. 1. Kolev, Multiphase flow dynamics, Vol.1, Fundamentals, Springer-Verlag, Berlin, 2005.

[25] D. L. Li, The Greenas function of the Navier-Stokes equations for gas dynamics in R3, Comm. Math. Phys. 257 (2005), no. 3, 579-619.

[26] H.-L.Li, T.Wang and Y. Wang, Wave phenomena to the three-dimensional fluid-particle model, Arch. Ration. Mech. Anal. 243 (2022), no.
2, 1019-1089.

[27] H.-L. Li and S. Zhao, Existence and nonlinear stability of stationary solutions to the full two-phase flow model in a half line, Appl. Math.
Lett. 116 (2021), Paper No. 107039, 6 pp.

[28] H.-L. Li, S. Zhao, and H.-W. Zuo, Existence and nonlinear stability of steady-states to outflow problem for the full two-phase flow,
J. Differential Equations 309 (2022), 350-385.

[29] T.-P. Liu and W. Wang, The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimensions, Comm. Math.
Phys. 196 (1998), no. 1, 145-173.

[30] T.-P. Liu and Y. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Mem.
Amer. Math. Soc. 125 (1997), no. 599, 120.

[31] S.Ma, ). Sun, and H. Yu, Global existence and stability of temporal periodic solution to non-isentropic compressible Euler equations with a

source term, Commun. Anal. Mech. 15 (2023), no. 2, 245-266.



DE GRUYTER Time decay estimates of solutions to a two-phase flow model =— 19

32]
[33]
[34]
[35]
[36]
[37]
[38]

[39]

[40]
[41]

[42]

[43]
[44]

A. Matsumura and T. Nishida, Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive
fluids, Comm. Math. Phys. 89 (1983), no. 4, 445-464.

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids,
Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 9, 337-342.

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, ). Math. Kyoto
Univ. 20 (1980), no. 1, 67-104.

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. three 13 (1959), 115-162.

G. Ponce, Global existence of small solutions to a class of nonlinear evolution equations, Nonlinear Anal. 9 (1985), no. 5, 399-418.

E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, NJ, 1970.

H. Tang and Y. Zhang, Large time behavior of solutions to a two phase fluid model in R3, J. Math. Anal. Appl. 503 (2021), no. 2, Paper
No. 125296, 23 pp.

Y. Wang and W. Wu, Initial boundary value problems for the three-dimensional compressible elastic Navier-Stokes-Poisson equations,

Adv. Nonlinear Anal. 10 (2021), no. 1, 1356-1383.

F. A. Williams, Spray combustion and atomization, Phys. Fluids. 1 (1958), 541-555.

G. Wu, Y. Zhang, and L. Zhou, Optimal large-time behavior of the two-phase fluid model in the whole space, SIAM ]. Math. Anal. 52

(2020), no. 6, 5748-5774.

Y. Wu, Y. Zhang, and H. Tang, Optimal decay rate of solutions to the two-phase flow model, Math. Methods Appl. Sci. 46 (2023), no. 2,
2538-2568.

Y. Zeng, L asymptotic behavior of compressible, isentropic, viscous 1-D flow, Comm. Pure Appl. Math. 47 (1994), no. 8, 1053-1082.

Y. Zou, Global regularity of solutions to the 2D steady compressible Prandt! equations, Commun. Anal. Mech. 15 (2023), no. 4, 695-715.



	1 Introduction
	2 Preliminaries
	3 Main results
	4 Local existence
	5 Global existence and nonlinear decay estimates
	5.1 A priori estimates
	5.2 Nonlinear decay rates
	5.3 Proof of Theorem 3.1

	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


