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Abstract: This article is concerned with the qualitative properties for the Cauchy problem of a non-Newtonian
filtration equation with a reaction source term and volumetric moisture content. On the basis of the slowly
decaying behavior of volumetric moisture content, we establish new critical exponents that depend on the
ratio of coefficients and exponent of volumetric moisture content. Meantime, under appropriate conditions,
we show that the solution globally exists for small enough initial data and blows up in finite time for large
enough or any nontrivial initial datum.
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1 Introduction

We consider an inhomogeneous quasilinear parabolic equation in the whole dimensional space
pOOU = Apu + pOOUd,  (x,t) €RY x (0, T), (40
subject to the initial condition
u(x, 0) = up(x), x €RN, 1.2)

where Ayu = div(|VuP2vu), N>3,2<p<N,q>1, T > 0. The coefficient p(x) and initial data uy(x) satisfy,
respectively,

(H) p(x) € CRY), p(x) > 0, Vx €RNY;

(H,) there exist k;, k, € (0, +) with k; < k; and 0 < s < p such that

ki |x]® <

<k x5, ¥x € RM\By(0),
o) 3 |x] 1(0)

where By(0) is the unit ball in RY;
(H) ug(x) € L*(RM), ug(x) =2 0, ¥x € RV,
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The quasilinear parabolic equation considered in problems (1.1) and (1.2) is of the p-Laplacian type with
the special volumetric moisture content p(x) and a reaction term p(x)u?. Obviously, such parabolic equation is
degenerate (also called slow diffusion) due to p > 2. Furthermore, equation (1.1) can be written in the form

U = ox )A pu+ul,  (x,t) €RN x (0, 1),
and thus, the corresponding nonlinear diffusion operator is o Ap, and according to (H;)—(Hy), the coefficient
P( 5 can positively diverge at infinity. Model (1.1) describes the ﬂow of the compressible non-Newtonian fluids
in a homogeneous isotropic rigid porous medium, where u(x, t) is the density of fluid, p(x) is the volumetric
moisture content, p(x)u? represents a special reaction source term (see [37, Chapter 2]). Clearly, there exists the
more general source term A(x)u?, where A(x) is not necessarily equal to p(x).
We refer to p(x) as a slowly decaying volumetric moisture content at infinity, since (H;) implies that

1
ky |xf?

<px) < Vx| > 1,

1
ke |x)*”
with 0 < s < p. Indeed, it is known from [19] that the behavior of solutions varies according to the different
decaying rate of the volumetric moisture content, namely, s < p and s = p. Consequently, we regard the value
s = p as the threshold one and focus on the case of slowly decaying.

In the past decades, many authors have been devoted to investigating the local well-posedness and
qualitative properties of the solutions to p-Laplacian parabolic equations, and one can refer to monographs
[7,29,37] as well as survey papers [8,12, 13,19,40] and the references therein. Among them, the global existence
and blow-up phenomenon of solutions to Cauchy problem are particularly important issues. Fujita [11] first
studied these issues in 1966. For example, for problems (1.1) and (1.2) with p =1, ie,,

ue = Apu+ul,  (x,t) €ERN x (0, 1),
u(x, 0) = up(x), x €RV,

and he studied the Cauchy problem for the classical semilinear parabolic equation (p = 2) and showed that
there exists a critical Fujita exponent q, =1 + % such that the positive solution blows up in finite time for
any nontrivial initial data, whenever 1 < g < q,; while there are global solutions for small initial data and
non-global solution for large initial data, if ¢ > q,. After that, there have been many kinds of extensions of
Fujita’s result. It is noted that the critical case q = ¢, also belongs to blow-up case (cf. [14,36]). In addition, with
regard to the latest advances on the Cauchy problem of semilinear parabolic equations with sufficiently small
initial value, one can see [30,31]. Meanwhile, for the extension of studying the influence of the size of initial
energy on the qualitative properties and global dynamical behavior of solutions to the initial boundary value
problems for semilinear pseudo-parabolic equations and finitely degenerate parabolic equations, we refer to
[4,18,38,39]. From then on, the Cauchy problem to quasilinear degenerate parabolic equation (p > 2) is con-
sidered in literature [12,13,32,33] and monograph [29], in which they obtained the critical Fujita exponent
g.=p-1+ %. We remark that monographs [29,37] have mentioned Barenblatt-type super- and sub-solution
in such a form that

p-1

p-2

n(t)l , Y, t) ERY x [0, T),

+

wx, t) = CE@O|1 - %

where ¢ = &(t), n = n(t) are appropriate auxiliary functions and constants C > 0, a > 0.
Concerning problems (1.1) and (1.2) with volumetric moisture content, without reaction source term, i.e.,

pOOU = Apu,  (x,t) ERN x (0, 1),
u(x, 0) = up(x), x €RY,

it has been investigated in detail. In particular, depending on the behavior of p(x) at infinity, local and global
solvability, the interface blow-up phenomenon and large time behavior of the solutions have been studied
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(including more general doubly degenerate operators and the case of Riemannnian manifold), see [15,16]
(p = 2) and [5,6,9,34,35] (quasilinear operator).
For problems (1.1) and (1.2) with volumetric moisture content and a general reaction term, i.e.,

pOOU, = Apu + ACOUd, (x,t) € RN x (0, 1),

u(x, 0) = up(x), X €RVY,
when the behavior of p(x) at infinity is given, there have been some advances on the well-posedness, blow-up,
and large time behavior of the solutions for p = 2 (cf. [2,10,17, 26,27]), p > 2 (cf. [40]), and doubly degenerate

operators (cf. [1,3,19-25]), which involved the case of p > 2. Especially, Li and Xiang [17] have recently con-
sidered the case of p = 2 (also refer to [26,27]), and p(x) and A(x) satisfy the following decay rates, respectively

k(1 + XY 2 < p() < k(L + XY 2, 0<s81<2, 0<k <k

KL+ xR 7 S AX) S KL+ [XPY 7, 0<s,<2, 0<K s K,

2-
N-

where s, < s;. They obtained the critical Fujita exponentq, = 1 +
p = 2 and p(x) = A(x), the corresponding critical exponent is

_ b
N-2+Db’

sslz In fact, for problems (1.1) and (1.2) with

q =1+

where b =2 - 5,0 < s < 2. Zhao [40] investigated the case of p > 2, p =1 and A(x) = (1 + |x])5, s € R. On the
basis of the energy method, he obtained the existence and uniqueness of solution and large time behavior of
solutions. It was also shown thatifs<pandp-1<q<p-1+ %with b = p - s, then the solution blows up
in finite time. The doubly degenerate problem with p(x) = A(x) have been considered in [19,22], whose special
cases included problems (1.1) and (1.2). It was shown that (see [19, Theorems 1 and 3]) when p(x) = |x|5,
0 < s <p, Vx € RMN{0}, if

PN

initial value ug =2 0 and

[ g + ugax < s,
RN

where § > %b(q-pﬂ) and § > 0 small enough, then there exists a global solution of problems (1.1) and (1.2)

and the long-time asymptotic behavior is derived. On the other hand, when p(x) = |x|™ or p(x) = (1 + |x|)75,
0<s<p,ifuyx) %0 and

AL e

then the solution blows up in finite time, in the sense that 30 < § < 1,0 < R < oo, T > 0 such that

jmxm%ntmx»w, t— T <o

Bp

Such results have also been generalized to more general initial data, decaying at infinity with a certain rate
(cf. [22]).

In this article, continuing with the model considered in the literature [19,40], we consider the Cauchy
problems (1.1) and (1.2). However, the key ingredient of the technique in proof is the method of directly
constructing the Barenblatt-type super- and sub-solutions, and this article is a first attempt to research the
asymptotic behavior of (1.1) and (1.2) involving degenerate p-Laplacian operator and slowly decaying volu-
metric moisture content. We mention that the methods and results used in this article are completely different
from [19], see Remarks 3.2, 4.1, and 5.1. The main difficulties can be listed as follows. First, the methods used in
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[11,14,17,36] cannot work in the degenerate situation (p > 2) as they strongly require p = 2. Second, since
equation (1.1) has not scaling invariant structure, we cannot apply the method of analyzing self-similar
solutions. To overcome these difficulties, we modify the method of Barenblatt-type super- and sub-solutions
(cf. [29,37]) and establish the new asymptotic behaviors of solution. Indeed, we construct suitable super- and
sub-solutions, which crucially rely on the slowly decaying behavior of volumetric moisture content p(x) at
infinity. More accurately, whenever |x| > 1, they are of the following form:

Pl

p-2

1- lxl—ﬁq(t) , (60 € [RMBy(0)] x [0, T),

w(x, t) = C§(t) a

+

where ¢ = £(t), n = n(t) are appropriate auxiliary functions and constants C > 0, a > 0. In view of the term
|x|% withb = p - s € (0, p], we cannot show that such functions are super- and sub-solutions in B;(0) x [0, T).
Hence, it is essential to extend them in a suitable way in B;(0) x [0, T') and attach some additional conditions
on ¢ = &(t), n = n(t), C and a. This is a technical aspect. In addition, it reflects the interaction between the
behavior of the volumetric moisture content p(x) in compact sets, say B;(0), and its behavior for large value of
[x|. A rough sketch of our main results is as follows (the more detailed statement see Sections 3-5):

Letbh =p - s, since 0 < s < p, we have

0<b<p.
At the same time, assume
ky WN-pp-2)
&2 - R Y 1.3
A <p-1+ b (13
and define
b ks
(N+b‘P)(P‘1)+mP‘1‘71]
q = (14)

b ks
N—p'f'm[p—l_?l]
It is easy to check that  is monotonically increasing with respect to the ratio % and
1

g>p-1

* (See Theorem 3.1) If
q>q,

initial data uy has compact support and is small enough, then problems (1.1) and (1.2) admit a global solution.

Note that for k; = k,

F=p-1+—0
q=p N+b-p
this is consistent with [19, Theorem 1] (see Remark 3.1 for more details). Furthermore, if p = 1, and so b = p, we
have
_ p
=p-1+—.
q=p N
Thus, our results are in accordance with those in [12,13,29,32,33]. In addition, for p = 2, they are in agreement
with the results established in [17], and in [11,14,36] when p = 1.
* (See Theorem 4.1.) For any q > 1, if u, is sufficiently large, then the solutions of problems (1.1) and (1.2) blow
up in finite time.
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* (See Theorem 5.1) If 1 < g < p — 1, then the solutions of problems (1.1) and (1.2) blows up in finite time for
any up # 0.
* (See Theorem 5.2.) If

where

(N+b-p>(p—1)+ﬁ[p—1—%]
1.5)

q::

b K ’
N—p+ﬁ[p—1—k—z]

then the solution blows up for any nontrivial initial data under the additional hypothesis that s € [0, €) for
€ > 0 small enough.

In view of (1.3), it can be easily checked that
q=q.

In particular, q = q, whenever k = k,. We mention that it remains to be considered without restriction
s € [0, ). In addition, when hypothesis (Hy) is satisfied for general 0 < k < k;, the blow-up results for suffi-
ciently large initial data and any nontrivial initial data with 1 < g < p -1 can be stated exactly as in the
previous case k = k; (cf. [17,19]). However, from Theorems 3.1 and 5.2, we see that the critical exponents of
problems (1.1) and (1.2) depend on the ratio of coefficients k and k;, which is a new and interesting phenom-
enon compared with the case of k; = k;.

The rest of our article is organized as follows. In Section 2, we introduce some preliminaries related to
problems (1.1) and (1.2). In Section 3, we construct suitable super-solution to obtain the existence of global
solution. The blow-up results for sufficiently large initial data are proved in Section 4. Finally, for any initial
datum, the blow-up of solutions are proved in Section 5.

2 Preliminaries

In this section, we present the definitions of weak solution, weak super- and sub-solutions, comparison of
principle and some propositions, which are required in the proof of the main results to problems (1.1) and (1.2).
We first give the definition of the weak solutions of problems (1.1) and (1.2) in different domains.

Definition 2.1. Letp > 2,q > 1,T > 0,10 2 0, and ug(x) € L*(RY). A nonnegative function @ € L*(RY x (0, S)),
|viZlP € LY(RY x (0,S)) for any S < T is a weak super-solution of problems (1.1) and (1.2) if the following
integral inequality holds

T

[ [ peomg, + wap-2va -vg - poompydxde > [ pOougGCx, 0)dx 1)

ORY RrRY

for any nonnegative test function ¢ € Cg°(RY x [0, T)).

Similarly, a nonnegative function u € L>(RY x (0, §)) is a weak sub-solution of problems (1.1) and (1.2) if it
satisfies (2.1) in the reverse order. We say u(x, t) is a weak solution of problems (1.1) and (1.2) if it is both a weak
super-solution and a weak sub-solution of problems (1.1) and (1.2).

For any xo € RY and R > 0, we set

Br(xg) = {x €RY : |x - x¢| < R}.

When xj = 0, we briefly write By = Bg(0). For every R > 0, we consider the following Dirichlet initial boundary
value problem:
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1 .
ur = mApu + uqa (X) t) € BR x (0: TR); (22)
u(x,t) =0, (x,t) € 8Bg x (0, Tp), (2.3)
u(x, 0) = UO(X), X € Bg. (2.4)

Definition 2.2. Let p > 2,q > 1, T > 0, uy > 0, and ug(x) € L(Bg). A nonnegative function itz € L*(B x (0, S)),
|Vitz|P € LY(Bg x (0, S)) for any S < Ty is a weak super-solution of problems (2.2)-(2.4) if the following integral
inequality holds

Ix
[[ptias, + vaap2vae 99 - pugyaxde > [ pueGopcx, 0)dx 25)

0B By

for any nonnegative test function ¢ € C5'(Bg * [0, Tz)).

Meanwhile, a nonnegative function uy € L*(Bg % (0, S)) is a weak sub-solution of problems (2.2)-(2.4) if it
satisfies (2.5) in the reverse order. We say ug(x, t) is a weak solution of problems (2.2)-(2.4) if it is both a weak
super-solution and a weak sub-solution of problems (2.2)-(2.4).

Proposition 2.1. Assume (Hy)—(Hsz) hold. Then problems (2.2)—(2.4) has a solution ug, and the maximal time of
existence Ty satisfies

. 1
rh2lys —————5—.
(q = DlluollFg,
Proof. Obviously, uy = 0 is a sub-solution of problems (2.2)-(2.4). Furthermore, let itz(t) be the solution for the
following initial value problem of ordinary differential equation:
u(t) = al(t), t>0,
u(0) = [|uollLBp-
Standard calculations show that

u o
() = Wolveo —— te o,z

-1 1
[1 - (q = Dtlluollf=(gy It

It can be easily verified that ity is a super-solution of problems (2.2)—(2.4) for every R > 0. In view of (H;)—(H,),
we obtain

1 1 —
0 <min— < <max—, VX E Bg.
B p pKx) B P

As a result, by applying the standard results (see [7]), problems (2.2)—-(2.4) have a nonnegative solution
ug € L*(Bg % (0, S)) for any S < Tr, where T > T, is the maximal time of existence, namely,

U@l = ®, t— Tp.

The proof is completed. O
In addition, the following comparison principle for problems (2.2)-(2.4) holds (cf. [37]).

Proposition 2.2. Assume (H;)—(H;) hold. If iy and uyp are a super-solution and a sub-solution of problems
(2.2)—(2.4), respectively, then we have

ug < g, ae. (X: t) € BR x (0: TR)
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Proposition 2.3. Assume (H;)—(Hs) hold. Then problems (1.1) and (1.2) have a solution u, and the maximal time of
existence T satisfies

-
(@ = Dlfuoll™”

Moreover, u is the minimal solution, that is, the following inequality holds

>

TZ 0=

us<v, (x,t) €RN x (0, 1),
for any solution v of problems (1.1) and (1.2).
Proof. Let up be the unique solution of problems (2.2)-(2.4) for every R > 0. It is not difficult to see that when
0 < R, < R, we have the following inequality:
Up < Ugs, (X, 1) € Bg x (0, T). (2.6)

Indeed, ug, is a super-solution, whereas ug, is a solution of problems (2.2)-(2.4) with R = Ry. Consequently, we
obtain the inequality (2.6) by virtue of Proposition 2.2. We proceed to consider the following initial value
problem of ordinary differential equation:

a(t) = ait), t>0,
@(0) = [[uolle-

Standard calculations show that

ol
[1 - (q - Dt|[uoll et

It can be easily verified that &I(t) is a super-solution of problems (2.2)-(2.4) for every R > 0. Thus, we obtain

act) = , tefo, .

0 < ug(x, t) < U(t), (x,t) € Bg x (0, Tp). @7

It follows from (2.6) and (2.7) that the family {ug}z-o is monotone increasing with respect to R and uniformly
bounded. Therefore, we derive the family {ug}z-o converges point-wise to a function u(x, t), as R — +o, namely,

lim up(x, t) = u(x, t).
R—+00

Furthermore, according to the monotone convergence theorem, taking an equal sign in (2.4) and letting
R — +o0, we arrive at

1
J ] peoug, + 1wupvu w6 - poousg)axde = [ peouatogix, 0)dx
[RN

oRY

for any nonnegative test function ¢ € C;°(RY x [0, Ty)). Consequently, u(x, t) is a solution of problems (1.1) and
(1.2) and u € L*(RY x (0, S)) for any S < T, where T > T is the maximal time of existence, that is,

[[U(®)]]o = 0, t— T

Next, we aim to prove that u is the minimal nonnegative solution of problems (1.1) and (1.2). Suppose v be
any other solution of problems (1.1) and (1.2). It is clear that v is a super-solution of problems (2.2)-(2.4) for
every R > 0. Therefore, in view of Proposition 2.2, one can obtain

Ug <v, (X7 t) € BR X (07 T)
Then letting R — o, we derive
usv, (x,t) €RY¥ x (0, 7).

As a result, u is the minimal nonnegative solution. The proof is completed. 0
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In a word, the following comparison principles of problems (1.1) and (1.2) can be presented.
Proposition 2.4. Assume (H;)—(Hs) hold and u be a super-solution of problems (1.1) and (1.2). If u is the minimal
solution to problems (1.1) and (1.2) given in Proposition 2.3, then we have

usi, ae (x,t)€RYx(0,7T).
In particular, if @ exists up to time T, then also u exists at least up to time T
Proof. It is clear that & is a super-solution of problems (2.2)—(2.4) for any R > 0. Thus, making use of Proposition
2.2, we arrive at
Ug <, (x,t) € Bgx (0,1). (2.8)
Letting R — o« in the aforementioned inequality, from the definition of maximal existence time, it is easy to see

that (2.8) holds, which trivially guarantees that u does exist at least until 7. The proof is completed. (I

Proposition 2.5. Assume (Hy)—(Hs) hold. Ifu(x, t) is a solution to problems (1.1) and (1.2) for some time T=t>0,
u is a sub-solution to problems (1.1) and (1.2) for some time T = t, > 0 and satisfies

SUpP Ulr¥x(o,s) IS compact for every S € (0, &),
then

uzu, (x,t)€RN x (0, min{t, t}). 2.9

Proof. Fix any S < min{t, ;}. If R > 0 is large enough so that

Supp Ulg¥xjo,s) < Br % [0, S1,

then it is easy to know that u and u are a super-solution and a sub-solution to (2.2)—(2.4), respectively.
Consequently, we obtain
uzu, (x,t)€Brx(0,S).

Then letting R — + in the aforementioned inequality and utilizing the arbitrariness of S, we obtain the
inequality (2.9). The proof is completed. O

Remark 2.1. By the similar arguments in [28], one could show that problems (1.1) and (1.2) admits at most one
bounded solution, not satisfying any additional condition at infinity, when p(x) — 0 slowly, as r = |x| — .

In the following, we consider the solution of the following equation:

1 .
u=—-—=Mu+ul, xt)eQx(0,T), (2.10)
= S () €Qx (0,1

where Q € RY. Meantime, the definition of weak solution is given in the following sense.

Definition 2.3. Let p > 2,q > 1,T > 0. A nonnegative function it € L*(Q x (0, S)),|Val? € LY x (0, S)) for any
S < T is a weak super-solution of (2.10) if the following integral inequality holds

T
[[-pug, + wap-2va -vg - pasgdxde > [puopix, 0)dx 211)
0Q Q

for any nonnegative test function ¢ € C;°(Q x [0, T)).
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Meanwhile, a nonnegative function u € L*(Q x (0, S)) is a weak sub-solution of (2.10) if it satisfies (2.11) in
the reverse order. We say u(x, t) is a weak solution of (2.10) if it is both a weak super-solution and a weak sub-
solution of (2.10).

To prove the main results and reader’s convenience, we review the following well-known criterion.
Assume Q C RY be an open set, @ = Q; U Q, with Q; N Q; = &, and £ = dQ; N 3Q; is of class C', and v be
the unit outward normal to 02 at £ (v be the unit inward normal to 9Q, at £). Let

u=u, (tHEQx[0,T), (i=12), (2.12)
where (W), € C(Q; x (0, 7)), u; € CX(Q; x (0, T)) N CYQ; x (0, T)),i=1,2.

Lemma 2.1. Assume (H;)—(Hs) hold.
W If

(W) = ﬁapui ful, e x(0,1), (i=12), 213

6u1 auz ~
W=, [VylP?2—2 |Vl ?—, ,t)€Lx(0,T), (2.14)
1= W,  |Vul oy V| EY (x, ) 0, 7)

then u(x, t) defined in (2.12) is a super-solution of equation (2.10) in the sense of Definition 2.3.
@ If

(W) < +uf, (x,)eQx(071), (i=12),

1
pOO) "

oy ou, N
W=1u, [VyP?i—<|VipP2— (,t)€Lx(0,T),
1= Uy, Vil . Vit Y (x, t) 0,7)

then u(x, t) defined in (2.12) is a sub-solution of equation (2.10) in the sense of Definition 2.3.

Proof. Taking any nonnegative test function ¢ € C(Q x [0, T)) with @lag = 0 for Vt € [0, T).
(i) Multiplying (2.13) by ¢ and utilizing integrating by parts, one can see that
T T T ou
- IIp(uld)t + wlp)dxde > —IIqullp‘ZVul Vodxdt + J' P |Vu1|P‘26—V1det,
Z

09, 09, 0

- 0 P, + uip)dxdt = —T |Vuy|P~2Vu, -Vdxdt - ( ) |Vu2|l"2%d8dt
. ov

09, 09, 0

By summing up the previous two inequalities and employing (2.14), we can derive the inequality
T T
~[ [ ptug, + uig)axde > - [ [ |vur-2vu -vpdxa.
0Q 0Q

Thus, the conclusion holds. The result of (ii) can be obtained by using the same approach. This completes the
proof. O

3 Global existence for small initial data
In view of (Hy), there exist p,, p, € (0, ©) with p, < p, such that

1 —
pl < m < pZ’ X € Bl- (31)
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According to assumptions (H;)—(H;) and (3.1), we may assume that

pl > kl: pZ < kz. (32)

Theorem 3.1. Suppose (Hy)—(Hz), (1.3), (3.1), and (3.2) hold. If2 < p < N and
q9>4
where q is given in (1.4), initial data u, are small enough and has compact support, then problems (1.1)-(1.2)

exists a global solution u € L*(RN x (0, «)).

More precisely, if C > 0 is small enough, T > 0 is big enough, a > 0 and for suitable 0 < Ay < 4; such that

cp?
AO S F S Al)
1 1 1-a(p-2
a € DY £ 6 = LJ (3~3)
q-1p-2 q-1
p-1
-2
o) < CT‘“[l - %T-él” . VXERY, (3.4)
where
IxX[p1, if x| 2 1,
700 = {plxloi +p - b
DX *P=b iy <1,
then problems (1.1) and (1.2) admit a global solution u € L*(R" x (0, «)). Furthermore,
p-1
-2
u(x, t) < C(T + £)9|1 - ?(T + 078", Y(x, £) € RN x [0, +w), 35

4+

The accurate selection of the parameters C > 0, T > 0, and a > 0 in Theorem 3.1 is discussed in Remark 3.2
below. Note that if u, satisfies (3.4), then

[|[Uolle < CT7Y,
supp Up € {x € R¥ : 7(x) < aT*%}.

In view of the selection of C, T, a (see also Remark 3.2), ||uo||» is sufficiently small, but supp uy can be large,
since we can choose aT? > r, for any fixed rp > 0.
Furthermore, from (3.5), we deduce that

supp u(x,t) C{x € RN : t(x) < a(T + )}, Vt>0. (3.6)

Remark 3.1. In [19, Theorem 1], when p(x) = |x|™ for any x € RM\{0} with s € [0, p), and for appropriate initial
data uy, which is not necessary to have compact support, a similar result of global existence is proved.
Obviously, such p(x) does not fulfill our hypotheses (H;)—(Hy). In addition, we can consider a more general
behavior of p(x) for |x|large, which influences the definition of critical exponent g, as well as the selection of q.
The detailed conditions in Theorem 3.1 are distinct from that in [19], and it is hard to say which is stronger.
Furthermore, we can derive the estimates (3.5) and (3.6), which do not have a counterpart in [19], due to u, with
compact support. Observe that our proofs and results are totally different with [19], since they are based on the
energy method and a smoothing estimate is derived.



DE GRUYTER An inhomogeneous non-Newtonian filtration equation == 11

For the remainder of this article, we set r = |x|. In order to show the global existence of solution, we will
construct a suitable super-solution of equation

U = o )Apu +ul, (x,t) € RN x (0, +). (3.7

To this end, we define the function w(x, t) as follows:

_ — l_l(X’ t)r in (X’ t) € [[RN\Bl] X [0) +°°))
- 3.8
W0 =WEOO.0 =100 in (6 € By x [0, +0), 58
where
Bb -2
a(x, t) = a(r(o, t) = csa)[l - %n(t)]p , (39)
p-1 1
6 2
v(x, ) = V(r(x), 1) = 65(0{ Mns) i (310)
with &, € CY([0, +);[0, +®)),C > 0,a > 0, B = ﬁ, 6 = ﬁ
In addition, we denote

- '7_ C e " - b 311
a(t) = E+E TRLrEi [p_z] N+b-proZ) (3.11)
op-1lp et b [ bp |7 210
e A | PR G
y(t) = crigy, (3.13)
(t)=¢& + E 1'7/ s S| 21 a (314)

GO ’] - ap 1 p 2 3 :
Sty = g2 e 00 Y 315

M -2zn T (p-2) '

Next, we establish the proposition that plays a crucial role in the proof of Theorem 3.1.

Proposition 3.1. Let &= &(t), n = n(t) € CY([0, +»);[0, +)) and T (t), §(t), y(t), Go(t), So(t) be defined in
(3.11)—(3.15). Assume (H;)—(Hy), (1.3), and (3.1) hold, and for ¥t € (0, +),

ne < a, (3.16)
7 P‘l
'7” aP 151’ I 2] kBb, (317
ez by P )
&+ ap_lgp [p—Z] k1N+b—p+p_2] p- zkz > CTg, (3.18)
-1
L 319
r)p+1 = ap E _ 1 p _ 2 kZ; ( . )
ez (b Y7 bk o
, p-1 _ > Ca-15q (3.20
E + ab- 15 [p _ 2] kl p- 24 C E )

Then w(x, t) defined in (3.8) is a super-solution of equation (3.7).
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Proof. Let

rkb
F(r,t)=1- 7'7(0,

and define
Dy = {(x, t) € [RM\By] x (0, +)[0 < F(r, t) < 1.

For V(x, t) € Dy, by a straightforward calculation, one can see that

= CEFr + csz ;Fp : —%ﬁb 0
= CE'Fra + cgg - ;prz[1 - %ﬁbq]% - ¢ Z - ;Fﬁ% (321)
= CEFra + CEI; ;Fﬁ i% - CEZ ; %2%';
CEZ ;Fp 2[—%0]1"5” 1 (3.22)
= Z ; 12[ lizb”](ﬁb - D=2 - C‘f( 2)2 2l rj” ](Bb)zﬂ'”ﬁ” 2
= CEZ—:;F#z[—%n](Bb — -2 - gL 0 2)2 8 2) rb- (323)

By virtue of (3.22), (3.23) and the fact (p - 1)(fb - 1) = b - p + 1, we obtain

Apa = (lﬁrlp_zﬂr)r + |Hr|p_217r

= (p-1£p-1
el

p-1
] Fr2 [@”I] BbrEb-D(p-1-1

b

- cpigpl ﬁ_n] _ BbrBo-D(p-1-1
a

]
|
_
=
-
S
M
sl

e~ T~
|
=N

— Cp—lfp—l

o~ |
|
- N

(3.24)

1
~
&
—_—— /l—
=
—_—
=
&N
~
=
| |
—_
—
Py
=
S
|
(S
~
3
=
=
S
-
=
=
(=N
[
—

- crlgrll I — Fp:; '[ib

Then it follows from (3.21) and (3.24) that
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1
- — Ay -t

pOO)~"*
g = e S it ot L M A oI
p-2 p- 2
3.25)
L p-11" (pp P b (
Cl’lg‘l’l[ ] Fi2 [ N+b-p+
p- P2
_ p-1
cr-igp- 1[5 2] Jars z[ﬁ ] ’ cagir
By hypothesis (H;), we have
rb-p rb-p
—_— 2 kl: -—— 2 _kz, Vx € [RN\Bl. (3.26)
p p
From (3.25) and (3.26), we obtain
1
- ——A,u - ul
Copo"
> CFﬁFfwf”—"— + kiCP” Zf“p_lp_llﬁn] Neb-p+—2 (3.27)
p-21n -2 a p-2 )
_gp p2p1 'Bb a-1gap "
Ep—Zq kopbCP~2¢ a - CTIF 2 L.

Therefore, taking advantage of (3.27) and the definitions of G (t), §(t), y(t), one can see

— (p-Dg-1
- )A o - 42 CFy z[o(t)F 5(0) - FOF" ]

For each t > 0, set

o(F) = G(OF - 8(t) - (OF 54, F€(0,1).
We aim to find suitable C, a, &,  such that, for each t > 0,
o(F) 20, VF€E(0,1).
Indeed, computing the second derivative of ¢ with regard to F, one can see that

(p-Dg-1(p-D(q- 1)F(p-;>fg—1>_1
p-2 p-2

9o"(F) = - <.

As a result, (F) is concave with respect to the variable F, and so it suffices to verify that
@(0)20, o) 20, (3.28)
which ensures ¢(F) = 0, VF € (0, 1). Evidently, (3.28) is equivalent to
-5 =20, o®)-8@)-y@) =0,

namely,
-1
’1/ Cp—z i b p
_E > ng =2 k8D, (3.29)
cr2 by P!
’ p-1 — - > CI-1¢4 3.30
f”ap_lf [p—Z] k|N +b P+p_2 p—ZkZ cTige, (3.30)
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which is guaranteed by (1.3), (3.17), and (3.18). Hence, we have proved that

1
71 Ayt — @20, ,t) €Dy
ur - p(x)pu u (x,t) € Dy

Set Q; = Dy, Qy = RM\[B; U Dy}, gy = @I, up = 0, u = @, by virtue of Lemma 2.1-(i), we obtain that & is a super-

solution of equation (3.7) in [RM\By] x (0, +=), i.e.,

i - p(l )Apu 1120, (x,t)€[RMB] x (0, +o). (3.31)

On the other hand, set
brf+p - b n(t
Gty =1- 2L b00
p a
In view of n(t) < a, it can be easily seen that
0<G(rt)<1, V(x,t)€ By x (0, +w).

For any (x, t) € By x (0, +»), a straightforward calculation yields

-1 p—1 il p-1 .1
= CE'Gr2 + CE loml _ CEE——Groa; (3.32)
p- p-2 n
-1 6b
7, = Cfp—(;pfz[——ﬂ]re-l; (333)
p-2 pa
2
1 6b -1 6b
Vpr = CEZ sz 2[__’7](9 Dro-2 + CE( Y Gl‘l[ > Z] rae-n, (3.34)
By virtue of (3.33), (3.34), and the fact (p - 1)(6 - 1) = 1, we obtain
o -1
A,V = (|vfP 20 + |V[P~20,
= cp-1gp-1 p_—l 9b h rp(@ 1
p-2 pa
p-1)" af6p )"
_ cp-lEp| P 2 L= el _ _ 1)r0-D(p-1)-
cp-igp-l p- 2] G2 D a (p - DO - DHre-Hep-1-1 (3.35)

_ -l p-1
_ Cp—lfp—l[p—;] ng[@ﬂ] (N - Dr@-ne-n-1
p-

pa
-1V . p _1p-1 . p-1
- crgr [P ] G %ﬂ] o P_] s L )
p-2 pa p-2 pa
From (3.32) and (3.35), we deduce
_ p-1 ’7 p-1_.n
V -v1=C¢G 2+C—G -C Grz—
‘p() £6r A
1 1% 1 ” p—l
N co1gp- 1[p ] Gi—z[@Q] (336)
T p-2 pa
ro p-1) _.(ebnY =V
— —(p-lgp-1 ol —1 - CIFIG
PC & [p—Z sz[pa CIEIG v .

By applying (3.1), (3.36), and the fact that r € (0, 1), we obtain
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1
V= —<AV -V

pO)~"
’ 1 p-1
. p-1n p-1)""(6bn
2 CGr2G|E" + E—— —+kNCp25p1[ ] =1
' p-2n p-2) |pa
p-1n’ ebr) (=gt
g__ kyCP~2EP~ 1[ ] - CUIEIG 2
p-21n p- bpa

Therefore, taking advantage of (3.37) and the definitions of Gy(t), 8o(t), y(t), one can see

V; A Vv - V4= CGr? Z[O' (t)G 6 (t) V( )G( Pl)z 1]
t .
e p(X) 0 0

For each t > 0, set

(p-1g-1

Y(G) = GG - &) - (G »2, G E€(0,1).
We aim to find suitable C, a, ¢,  such that, for each ¢t > 0,
¥(G) =20, VGE(0,1).
Indeed, computing the second derivative of ¢ with regard to G, one can see that

(p-Dg-1(p- 1)(61—1) @Dy
p-2 p-2

Y (G) = <0.

As a result, Y(G) is concave with respect to the variable G, and so it suffices to verify that
¥(0) 20, ¥@) =20,
which ensures ¥(G) = 0, VG € (0, 1). Evidently, (3.38) is equivalent to
=80() 20, Go(t) — o(t) ~ P() 2 0,

that is,

np*l apP -1lp-2

p-1
) -

’ -2 p-1
e g [ : ] k
p

CcP-
ar1

f' Ep 1 bk22 n > Cl 15‘1

1:

which is guaranteed by (3.19) and (3.20). Hence, we have proved that

1
U- —A v -7120, V(x,t)€E B x (0, +c).
Copo"
As a consequence, V(x, t) is a super-solution of equation (3.7) in By x (0, +).
Now, observe that w € C(RY x [0, +=)). Indeed,

l](t)lp‘ R X,t) € 0By x (0, +),

B=v-= Cf(t)ll

Furthermore, for V(x, t) € dB; x (0, +),

-1
p2

-2 a a

T P~2 1, = |V, P20, = —CP~IEP™ 1(0[

b n(t)] Il n)

+

- 15

(337

(3.38)

(3.39)

(3.40)

(3.41)

(342)

(3.43)

In conclusion, set Q; = RM\By, Q, = By, wy = @T,u; = V,u = w, by virtue of (3.31), (3.41)~(3.43) and Lemma 2.1-(i),

we obtain that w(Xx, t) is a super-solution of equation (3.7). The proof is completed.

O
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Remark 3.2. Let
q>4q;
and (1.3) and (3.1) hold. Meanwhile, denote A = %f In Theorem 3.1, the accurate assumptions on parameters
a,8,C>0,A>0,T> 0 are the following:
a, § satisfy the condition (3.3),

p-1
PR L ] D, (3.44)
p-2) p-1
b
—a+Aﬁ] [kl[N"'b—p"' p—Z]_ p_zkz ZCq_l, (3.45)
p-1
8TS > Al b b k, (3.46)
alp-2 p-1
o
TS > el > 1, (3.47)
b 1 b
_ Al—— N- ———kT | > ci1, (3.48)
a+ p_z] [kl p_zakz ’ C
Lemma 3.1. All the conditions in Remark 3.2 can be fulfilled concurrently.
Proof. We take a satisfying (3.3) and
b
k(N+b-p)+-—(ai-k) (p-2DkN - bk
a < min P (b - Dk 2 1 (3.49)

(N+b-p)p-2)+kb ' (p-2%kN ' p-2|

In view of

>q> —1+&> -1
q>q>p-1+->p-l

1-a(p-2)

,-1 - Wecan choose A > 0 such

then (3.49) holds. Moreover, making use of (1.3), (3.49), and the fact that § =
that (3.44) holds, the left side of (3.45) is positive, and

b P
—a+Aﬁ] (kN - €) > 0,

for some & > 0. Then, we select C > 0 so small that (3.45) holds and

b V!
-a+A m] (laN - ¢) > cat, (3.50)

Select T > 0 large enough so that (3.46) and (3.47) are valid and

1 b
kN - —_sz—S 2 E. (3.51)
p-2a

Therefore, from (3.50) and (3.51), inequality (3.48) follows. The proof is completed. O

We are ready to give the proof of the main Theorem 3.1.
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Proof of Theorem 3.1. According to Lemma 3.1, we can assume that all the conditions of Remark 3.2 are
satisfied. Set

EO)=(T+t)y% nt)=(T+t)% Vt>0.

Observe that condition (3.47) implies n(t) < a. In addition, combining conditions (3.17), (3.18) of Proposition 3.1
with the selection of £(t) and n(t), direct calculations show that
2 b 7
S - [ Bbky(T + t)-2(P-2-8(p-D+1 > (3.52)

p-2 -1
—a(T + 6y = CIN(T + ) + C_[L] lkl[N h-pr— ] e D R G UML)
a(p - p-2) p-

In view of § = %, (3.52) and (3.53) become
p-2 p-1 _ _
C b < 1-alp 2)’ (354)
a’l\p-2 bk,
o2 b P e
— - |- — - —a— - —
aip-2 k|N+b p+p_2 p_zkz (T+ty«l> Cci YT + t)«, (3.55)
By the assumption a € ﬁ, ﬁ] we obtain
§>0, —a-1>-qa. (3.56)

Then (3.54) and (3.55) are direct consequence of (3.44), (3.45), and (3.56).
We now consider conditions (3.19) and (3.20) of Proposition 3.1. Substituting &(t), n(t), a and § previously
chosen, we obtain (3.46) and the following inequality:

2 p 7
-a + F ﬁ klN -

(T + t) @1 > CTYT + £) . 3.57)

bk, 1 s
2a(T+ t) ]

Obviously, condition (3.57) follows from (3.48) and (3.56). Hence, we can choose suitablea, §,C > 0,a > 0,and T
so that (3.46), (3.54), (3.55), and (3.57) hold. By means of Propositions 2.4 and 3.1, the conclusion of Theorem 3.1
holds. The proof is completed. O

4 Blow-up for large initial data

In this section, we present the blow-up phenomena of the solution to problems (1.1) and (1.2) with sufficiently
large initial data.

Theorem 4.1. Suppose (H;)—(Hs), (3.1) and (3.2) hold. If2<p < N and q > 1, T > 0, and initial data uy is large
enough, then the solution u of problems (1.1) and (1.2) blows up in a finite time S € (0, T}, in the sense that

[[u(®)|le = o, t—> S~

More precisely, we have the following two cases:

(i) Letq > p - 1. If C > 0 is large enough,a > 0, T > 0,

p-1
s -o-1 [p-2
Uo(x) 2 CT-q31I1 - %T&-fiqﬂ)] ., VXERV, @1
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where
[|x|p”1, if x| > 1,

r .
xfet, if |x| <1,

then the solutions of problems (1.1) and (1.2) blow up and satisfy the bound from below
p-1

s(x)

u(x, t) = C(T - ¢y i1 - —(T - Do 1)]p WD) ERY X [0, 5), 42)

(i) Letg<p-1. If > 0, a is large enough, T > 0, and (4.1) holds, then the solutions of problems (1.1) and
(1.2) blows up and satlsﬁes the bound from below (4.2).
Observe that if u, satisfies (4.1), then

supp up 2

x € RV : s(x) < aT<;€1>l()q_—q1>].
Furthermore, in the cases (i) and (ii), from (4.2), we infer that

supp u(-,t) 2

(-D-q
X €RN :s(x) < a(T - t)(p—lxq—n’, vt € [0,S). (4.3)
The accurate selection of the parameters C > 0, T > 0 and a > 0 in Theorem 4.1 is discussed in Remark 4.1.

Remark 4.1. Due to our results concerning any ¢ > 1 and sufficiently large initial data, there is no counterpart
of Theorem 3 in [19], where some blow-up results are shown for problems (1.1) and (1.2).

To show the result of blow-up, we define

_ o E(X’ t)) in (X: t) € [IRN\Bl] X [Oy T);
wx, 0 = wreo, o = [y(x, £), in (x,¢) € By x [0, T), @44
where
Bb -2
u(x, ) = u(r(x), t) = cem[l - %n(t)]p : (45)
0 -2
VX, ) = V), t) = cg‘(r)[l - %n(t)}p , (4.6)
with &, n € C'([0, T);[0, +»)),C>0,a >0, B = ﬁ, 0= #.
In addition, we define
(p-1)q
[ }(p 1)<q 1 l l(pl)(ql) “o, @
(p-l)q-l (p-l)q-l
C,o.p-1y et by P b
alt)=¢& +fﬁﬁ+kzﬁf” 1[ﬁ] N+b—P+p_2, 4.8)
_ _1'7_, cr2 -1 b [ bn - 4.9
O e WL Pl i’ ] B 4.9)
p(t) = €, (4.10)

— 1 7 Cp_z p—l
ao(t) =&+ E%"— + kz—_lfp-l[ﬂz] [N ¥ ﬁ], (410)



DE GRUYTER An inhomogeneous non-Newtonian filtration equation == 19

7

8oy = 05T ks

p-1
" e il ] : 4.12)

pZ[pZ

Next, we establish the proposition that plays a key role in the proof of Theorem 4.1.

Proposition 4.1. Let T € (0, »), & = &(t), n = n(t) € CY([0, T);[0, +)), K and a(t), §(t), y(t), go(t), 8o(t) be
defined in (4.7)-(4.12). Assume (Hy)—(Hy), (3.1) and (3.2) hold, and ¥t € (0, T),

K[a(@®)]en < 8@Oy®]oe, 413
(p - 2)a(®) < [(p - Dgq - 1]y(@®), (4.14)
Klao(O)]ien < SO y()]a-ban, 4.15)
(p = 2)go(t) < [(p - Dgq - 1y(0O. (4.16)

Then w(x, t) defined in (4.4) is a sub-solution of equation (3.7).
Proof. For any (x, t) € Dy, from (3.21) and (3.24), one can see that

1
Uy — ——Mpyu - ul

pe)""
- p-1 _p,mn’ p-1_.1n
= CE’FP-Z + C¢ Fr2— — CE——Fpr2—
-2 n p-2 n
- 4.17)
T‘b p_lpll’llﬁb ]pl (
p-1ep-1 ] (L -
—CPE [p 2] szaq N+b p+p_2
Bb ]p ! (-1g
p-1gp-1 2 AEAF p=2
Cf[p ZIFP[ — CIEF »2 .
According to hypothesis (H;), we have
rb-p rb-p
-—— < —kl, — < kz, Vx € [RN\Bl. (418)
P p
Combining (4.17) and (4.18), we obtain
1
u - ——A,u — ut
= opeo™T T
1 1
: p-1n’ "By )" b
< CFr2fF|E" + & —+kCPZEP1[ ] [ N+b-p+ :
p-21 p p-2 4.19
_gpo1n prl ﬁb a-1gqp
Ep—Zr] kapbCP~%¢ - a - CIEIF p2 .

Therefore, taking advantage of (4.19) and the definitions of a(t), §(¢), l’(t)’ we obtain

! (p-Dg-1
U= Doyl - ul = CEr Z[GmP 8(t) - yOF "+ ]

For each t € (0, T), set

9(F) = a(OF - 8(t) - y(OF ", F € (0,1).
We aim to find suitable C, a, &,  such that, for each t € (0, T),
@y(F) <0, VFeE(0,1).
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To this end, we impose that

sup (/’o(F) = maX (Po(F) = (Po(FO) <0,
Fe(0,1)

with Fy € (0,1). Then we have

do (p-Dg-1 (@-Dg-D)
EO =0 got) - %Z(OF =0
p-2
p- 2 G(t) (P-1(@-D

o F=FK-=

bl

(p-Dg-1y@®
from which, we obtain

(p-1gq-1
ou(Fy) = KLZOID 5y
[y(O)]e-v6-n

where the coefficient K depending on p and q has been defined in (4.7). By hypotheses (4.13) and (4.14), for each
te(0,7),

¢0(F0) s 0: FO s 1:

which implies ¢,(F) < 0, VF € (0, 1). So far, we have proved that

1
U - ——<MHu-ul<0, (x,t) €D (4.20)
CT om0l (x,t) € Dy.

Set Q1 = Dy, Q; = RM\[B; U Dy], 4y = U, u = 0, u = u, by virtue of Lemma 2.1-(ii), we obtain that u is a sub-
solution of equation (3.7) in [RMBy] x (0, T).
On the other hand, set

- ro
G(r’ t) =1- zrl(t);

and define
Dy ={(x,t) €B; x (0, T)|0 < G(r,t) <1}

For any (x, t) € Dy, by a straightforward calculation, one can see that

" p- LI] p-1 ~¢q’
v, = CEGr? + CE—— Laial _ CEE——Grit; @.21)

‘ p-2" 0 p-2

p-1_1(61,,

_ Lo . 4.22
Yy CEp O ] (4.22)
N Rl e R Rk S RSP e B L P
Vyr CEp 2G [ ](6 Dr CE( 2)2 P p nro-2 + Cf(p — 2)ZG!’ p nro-2, 4.23)

By virtue of (4.22), (4.23) and the fact (p — 1)(6 — 1) = 1, we obtain

N-1
Apy = (lvlP2vp)r + - [V P2y,

116 P -1 (g P
e el oo e =
-1 1
p-1)" _r(o |
— (Dp-1gp-1 -2 —
crig [p 2] G? an N.

In view of (4.21) and (4.24), we deduce
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Ve ﬁz\py -
= g+ CEZ - ;55%1% - sz . ;(‘;‘plﬁ%
+ —Cp—lfp—l[g . ;]p_léil 2,1 p_l[N > P 2] (4.25)
) _Cp_lfp_l[g - ;]pg‘iz[gn]p_le _ oG v
By (3.1) and (4.25), we have
Vi = mz\p\_z - vl

’

p-1n ogpal P 1 ”[9 ]P‘1 VR
- E——— - koY ——| [— - CT G 2 L
Ep—Zn 10CP™¢ [p—Z] P ¢
Then, according to (4.26) and the definitions of gy(t), §q(t), y(t), we obtain

L b vi<cge

= _(p-Dg-1
Ve ooy Y ao(t)G - So(t) - YOG P ]

For each t € (0, T), set
~ _~ (p-1gq-1 —
Po(G) = go()G - So(t) - y(OG »* , G €(0,1).
We aim to find suitable C, a, &, np such that, for each t € (0, T),
Y(G) <0, VG € (0,1).

To this end, we impose that

sup §,(G) = grggﬁ) Uo(G) = 1hy(Gop) £ 0,

Ge(0,1)
with Gy € (0, 1). Then we have
di, (p-Dg-1 (D@D
— =0 g)(t) - —————yp(t)G »?* =0
oA Oy e (0
p-2
_ _ -2 t (p-1(g-1)
©G=G=|—L go(t) ’
(p-Dg-1 y@®
from which, we obtain
(p-Dg-1
~ [go(t)]e-DaD
Yy(Go) = K=" = 8o(0),

[y

where the coefficient K depending on p and q has been defined in (4.7). By hypotheses (4.13) and (4.14), for each
t € (0) T)y

l)bo(éo) < 0’ 50 < 15

which implies %(5 )<0, VG € (0,1). Hence, we have proved that
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1
Ve- ——<4v-vi<0, V(x,t) €D,
Cop)"
Set Qy = Dy, Qy = B\Dy, g = v, up = 0, u = v, by virtue of Lemma 2.1-(ii), we obtain that v is a sub-solution of
equation (3.7) in By x (0, T).
Now, observe that w € C(RN x [0, T)). Indeed,

p-1
t -2
u=y- Cf(t)[ ”fl)]” | V(x,0) € 0B, x (0, T).
Moreover, in view of b € (0, p], for V(x, t) € 8By x (0, T),
p-1
t t)|p-2
|urP~2uy 2 v, P2y, = -CP71EP" 1(t)[ P rli) - %)

In conclusion, set Q; = By, @, = RM\By, uy = v, u, = u, u = w, by virtue of Lemma 2.1-(ii), we obtain that
w(x, t) is a sub-solution of equation (3.7). The proof is completed. O

-2
Remark 4.2. Denote A = % In Theorem 4.1, the accurate assumptions on parameters C > 0, A > 0,T > 0 are
the following:
(1) Let g > p — 1. We require that

(p-1)g-1

1 b Vl[ b]@W“ - (-1 [ b]p 2
Kl —— +Al——| kN+b-p+ < +A ki |Cr1, (@.27)
p-2 [p—ZI ; Y @-2@-1 “p-2) "
b | b
1+ A[m] kz[N +b- p+ p- 2]([) - 2) < [(p - 1)q - 1]Cq_1, (4.28)
p-1 % p
1 p | 2 | q-(p-1 [ p ] b2 (4.29)
K|l—— +Al——=| Kk|N + < + A k|Cr1, .
p-2 b—z] 4 P-Zﬂ -24-1 “lp-2) 7"
p |
1+ A[m’ kz[N + 2](p -2)<[(p - g - 1]ca L, (4.30)
(ii) Let g < p - 1. We require that

-1 - — 9y

-1 q[p ﬂ’ @31)
k(p-2)(g-DU b
(p-1g-1
1 b p-1 p )|V
Kﬁ"‘Aﬁ] kzN"'b‘[)"’ﬁ]
a = max ’ ,
1 b _ (-D-q
A"'l[A[p—Z] a (p-D(q-D}

(4.32)

(p-1g-1

1 » p-1 p (»=D@-D

K= A[ﬁ] "Z[N * ﬁ]

p )
e _ _-D-q
Ar llA[p—Z] ka (p—2><q—1>]
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[(p - 1q - 1](@ Ay

2 max

b P
1+A[—] kZ[N+b—p+

p P p (4.33)
](p -2),1+ A[p—] kZ[N + ](p - 2.

p-2 -2 p-2

Lemma 4.1. All the conditions in Remark 4.2 can be fulfilled concurrently.

Proof.

(i) For any A > 0, we select C > 0 large enough (therefore, a > 0 is also fixed, owing to the definition of A) so
that (4.27)-(4.30) hold.

(ii) We select A > 0 so that (4.31) holds and a > 0 sufficiently large to guarantee (4.32) and (4.33) (hence, C > 0 is
also fixed).

The proof is completed. O
We are ready to give a proof of the main Theorem 4.1.

Proof of Theorem 4.1. According to Lemma 4.1, we can assume that all the conditions of Remark 4.2 are
satisfied. Set

O =(T-0%, nt)=(T- 0%,

where
1 (r-D-¢q
ay = ——, 8= ——m8M8M——,
*Tg-1 7 (p-DE@-D
Then
1 ez p P b Y
mo=p_2+a¢4p_J bhwb—p+p_zkr—m«

(T - t)a1,

_ _ - 14
S0 <|-= @D Lo b yh

(P-2@q-1) atlp-2
Y(©) = CTT - ),

_| 1 e p | p =1
ao(t) = P2 + al"l[p—zl kz[N+ p-2 (T - t)et,
la-@-v 2 p Pl

So(t) = P -2@-1 + i |p- 2] k|(T - t)e1.

Case 1: Let g > p - 1. Conditions (4.27) and (4.28) imply (4.13) and (4.14), whereas (4.29) and (4.30) imply (4.15)
and (4.16). Hence, by Propositions 3.1 and 4.1, the conclusion follows in this case.
Case 2: Letq < p - 1. Conditions (4.32) and (4.33) imply (4.13)—(4.16). Therefore, the conclusion holds in this case
by means of Propositions 3.1 and 4.1.

The proof is completed. O

5 Blow-up for any nontrivial initial data

In this section, we deal with a further result with regard to the blow-up of solution to problems (1.1) and (1.2)
for any nonnegative and nontrivial initial data u,. We distinguish between two cases:
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(@ 1<qg<p-1,
(i) p-1=q<g.
In case (ii), we need an additional assumption. In fact, we suppose that (H;)—(H;) hold with
s €(0,¢), (5.1
for some ¢ > 0 to be fixed small enough later. Then, by the definition of b, we obtain

p-e<b<p. (5.2)

Theorem 5.1. Suppose (Hy)—(Hy) hold. If2 < p < N,1 < q < p - 1, the nonnegative initial data uy € C(R") and
uo(x) # 0, then for any sufficiently large T > 0, the solution u of problems (1.1) and (1.2) blows up in a finite time
S € (0, T}, in the sense that

[|u(O)lo = o, t =S~

More precisely, the bound from (4.2) holds, with C, a, &, n as in Theorem 4.1-(ii).

Proof. Since uy(x) # 0 and uy € C(RY), there exist ¢ > 0, r; > 0 and xo € R such that
ug(x) 2 g, VYx € B, (xo).

Without loss of generality, we can suppose that x; = 0. Let w be the sub-solution of problems (1.1) and (1.2)
considered in Theorem 4.1. We can choose T > 0 sufficiently large in the way that

b P
1 _(D-q ==
CT +1<a, al oved <minfrf , rf ’ (5.3)

From inequalities in (5.3), we deduce that
w(x, 0) < up(x), Vx €RV.

Hence, by Theorem 4.1 and the comparison principle, the result follows. The proof is completed. O

Theorem 5.2. Let assumptions (H;)—(H,) and (5.1) be satisfied for € > 0 small enough. For any 2 < p < N, the
nonnegative initial data uy € C(RY) and uy(x) # 0. If

p-1<q<gq, (.4)
where q is defined in (1.5), then there exist t; > 0 and sufficiently large T > 0, the solution u of problems (1.1) and
(1.2) blows up in a finite time S € (0, T + t;], in the sense that
[u(®llo = o, t S
More precisely, when S > t;, we have the bound from below
p-1
—(p— p—z
(T+t - Oovan| , Vx,t) RN x(4,S),

+

s(x)

u(x, t) = C(T + t - t) @[l - =

with C, a and s(x) as in Theorem 4.1-(i).

Remark 5.1. Observe that an integral blow-up result of problems (1.1) and (1.2) is shown when p(x) = |x|™ or
p(x) =1+ |x|)* with s € [0, p) in [19, Theorem 3], namely, for some R > 0,6 € (0, 1), T>0, IBRp(x)ue(x, t)dx

- +w ast — T". Indeed, under the assumption p(x) integrable in By this implies L* blow-up. Therefore, our
Theorem 5.2 is similar to that under the extra assumption (5.1). Nevertheless, our approach is completely
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different with the methods of proofs in [19] as they are mainly based on the selection of a special test function
and integration by parts.

In what follows, let us explain the strategy of the proof of Theorem 5.2. Let u(x, t) be a solution of problems
(1.1) and (1.2) and w(x, t) be given in Theorem 4.1. However, as Theorem 5.2 considers the arbitrary initial data
and g = p - 1, it cannot be determined that w(x, t) is the blow-up sub-solution of problems (1.1) and (1.2). The
main reason is that the size relation between the initial value uy(x) and w(x, 0) is unknown. Consequently, our
goal is find some time t; > 0 such that u(x, ) = w(x, 0), so that we can directly obtain that the solution blows
up in a finite time by virtue of Theorem 4.1. To this end, we find a sub-solution z(x, t) of the equation

Y = o )Apy, (x,t) € RN x (0, «), (5.5)
such that
z(x,0) < up(x), ¥x €RVN (5.6)
and
z(x, &) = w(x,0), Vx€RY, (5.7

for t;, > 0 and sufficiently large T > 0. Let T be the maximal existence time of u(x, t). If T < ¢ < o, then nothing
has to be proved, and u(x, t) blows up in a finite time. If T > &, since z(x, t) is also a sub-solution to (1.1), by (5.6)
and the comparison principle, we deduce

z(0x, t) S u(x, t), VY(x,t) €RN x (0, ). (5.8)
Combining (5.7) and (5.8), one can see that
u(x, t) 2 z(x, t)) 2 w(x,0), Vx €RV,

Hence, u(x, t + ) and w(x, t) are the super-solution and sub-solution of the following problem, respectively,

1
h: = ox )A ph+ i, (x,t) €RN x (0, +0),

h(x,0) = w(x,0), x€RN.

As a result, it follows from the finite time blow-up property of w(x, t) that u(x, t) also blows up in a finite
time S € (¢, T + tl].
Next, we construct a sub-solution of equation (5.5). We define

_ — [I(X, t)) in (X’ t) € [IRN\Bl] x [O’ +°°):
z(x, t) = z(r(x), t) = b D), in (k.0 € By % [0, +0), (5.9)
where
pb p-2
u(x, t) = u(r(x), t) = le(t)[l - ra—l”l(t)]p 2, (5.10)
1 +
-1
0
v(x, t) = v(r(x),t) = le(t)ll - Mflst) p 2’ (5.11)
1 +
with & 7 € CY([0, +o0);[0, +)), G > 0, @1 > 0, B = 7, 0= 7.
Let

brf + p - b n(t)

F, 1 e G 1
) t) = - —n(t ’ ’ t) = - 3
1(r, t) a ne) 1(r, t) a

and we define
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Dy = {(x, t) € [RMBy] x (0, +0)[0 < Fy(r, ) < 1},
D4 = {(X, t) e B1 X (0, +°0)|0 < Gl(r, t) < 1}

In addition, for & > 0 small enough, let

Kb
8o = ke , (5.12)
(p-Dl(p-2WN-p)+(p-Db]
b k
1D N-p+ p—Z[p 1 kz] (5.13)
’ p-2 (p-2(N-p)+(p-Db’
bp - e
AR L N (514)
(p - DI(p - 2)N + p]
ki
o 1-&p-n NPTYT p[1 kz] * & (515)
° p-2 (p - DI(p - 2N +p]
Observe that
1 _
0<6 71 0<6< - (5.16)
and if gy is small enough, then
0 < 8 < &, (5.17)

We establish the proposition that plays a crucial role in the proof of Theorem 5.2.

Proposition 5.1. Assume (H;)-(Hy), (5.1) holds for € > 0 small enough and

8 € (0, &), (5.18)
g= 1701 (5.19)
p-2
Suppose that
1<q<p—1+(p—1)%, (5.20)

Let T, € (0, +), we choose
E) = (G+ 0% )= (T + )7
p-2

Then there exist A = < > 0,t, > 0 and T > 0 such that z defined in (5.9) is a sub-solution of equation (5.5) and
satisfies (5.6) and (5. 7)

Proof. For any (x, t) € Ds, by the similar calculations to (4.17), we deduce

SO
1 pl
1/ b
< GFF” F1€+f % szPZEpllp > i—ln [N+b-p+p_2]] (5.21)
_poin pzp1 (b 1
fp—Zr) kBbCi ¢ - a1'7 .
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Now, we define

a(t) =&+ 55—:;7], fp 1[ bnz]p 1[N+ b-p+ ; lj 2], (5.22)
8(t) = E;’:;% K e 16” b leb_”z]p 1. .23)
Hence, (5.21) becomes
1
e oot Aol < CFY o, (F),
where
¢,(F) = o(OF - 8(t), F € (0,1).
Now we aim to seek suitable C;, a; such that, for each t > 0,
@(F1) £0, VF €(0,1).
We observe that it is sufficient that for each ¢ > 0, satisfies
o(t) >0, (5.24)
() >0, (5.25)
a(t) - a(t) £0, (5.26)

which guarantees ¢,(F;) 2 0, VF; € (0, 1).
By virtue of the definitions of £(t) and n(t), we obtain

1
p b ) b e
](T1+t)“1+ Pl[p 5 kzN+b—p+p_z(T1+t)(a5><Pl),
p_ < —a-1 Cl b Pt klb 5 1
8(0) == =BT+ 0T+ Sl (T B,
_ af _
By (5.16), (5.18), and (5.19), we have
0<68< , a>0o.
p-1

By applying (5.19), (5.24)—(5.26) can be rewritten as follows:

cf” b
-1+ pl[p 2] (p- Z)kz[N+b p+p_2]>0,

B Clp—Z b p-1

<

= U

b | kb
p-2) p-2

3(p—1)-1+ l ] (p- Z)lkz[N+b p+

which reduces to

S(p-2)

5.27
b]’ kpb | 62D

b 1
1—_1le (p - 2) > max

kzN+b—p+ﬁ
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e (5.28)
p-2

e b P! 1-8(p-1)
%[fz] (p-2= : .
p % :

N+Db- |

If (5.27) and (5.28) are veriﬁed then u(x, t) is a sub-solution to equation (5.5) in D;. Thus, we show that it is

possible to find A4 = —+ such that (5.27) and (5.28) hold. If

1 . 1-8(p-1
5.29
k2N+b—p+$] k[N+b p+pb2]_% (5.29)
and
S(p-2) 1-8(p-1)
b bk (5.30)

kapb
i kZ[N+b—p+ﬁ—p_2

then A can be selected to hold up for (5.27) and (5.28). If
8 < &,

then conditions (5.29) and (5.30) are satisfied. As a consequence, by virtue of Lemma 2.1-(ii), we obtain that
u(x, t) is a sub-solution of equation (5.5) in [RM\B;] x (0, +).
On the other hand, for any (x, t) € Dy, by the similar arguments to (3.35), we deduce

1
U 000 Y
1
p-1n" o 1[ ] obn) [ p ]
< GG HG|E + 55— + cF%r- N+ ——
1 [ ey g D a p-2 (5.31)
- - ¢ %p 1 —k
Ep 2n R p Pa S ap-2
Now, we define
=g+l 1 el 2 (532)
oo(t) =& E 2,1 o f p—z’ -
p-1yp ¢ [ l lpk1 np-b l
So(t) = . p-1 k (5.33)
Oy @ p-2

Hence, (5.33) becomes

1
1
U — —A U< C1G1 lpl(Gl)

p(x)""
where
P,(Gy) = 0p(t)G1 — Sp(t), G1 € (0,1).
Now we aim to seek suitable Cj, a; such that, for each t > 0,
Y,(G)) £0, VG, €(0,1)

we observe that it is sufficient that for each t > 0, satisfies

ao(t) > 0, (5.34)

8o(t) > 0, (5.35)
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ao(t) — gp(t) <0, (5.36)

which guarantees 1,(G1) < 0, VG € (0, 1).
By virtue of the definitions of £(t) and n(t), we obtain

a0)=|-a- 215 2] CEAE o —b e 2 (f + £y @D
0 p- b 1 2 p-2 | )
-1z g kp  kp-
= a-1 = (@+8)(p-1)
()=~ BT O+ [p 2] [ alp—Z(T+t) 513 + £ .

Hence, (5.34)—(5.36) become

l ] (p - 2)k2[N+pp2]>0,

_+C{’ [ b] [pk1 _kp-b

p-2) |p-1 alp—l(ﬂ+t)_6]>0’

- c{"z[ b ]” ' p [ k1] (- b)(T+1)F
Sp-1-1+——+|— - lo|N + 1- 2|+ ————|=0,
(r-D W ip-2 (p - Dk, ) b (-2
which reduces to
b P 1 S(p-1
F[m] > max ; s I - = (5.37)
ky(p - 2)[N + m] kz[Pk_Z - +1) ]
a? v V7. 1-5(1)-1)
T .
p-2 b P (5.38)
p2ll ™ _2 *ag-pGtY
—
If (5.37) and (5.38) are verified, then v(x, t) is a sub-solution to equation (5.5) in D,. To find A = == such that
(5.37) and (5.38) hold, we require
1 . 1-8(p-1
-p 2l (5.39)
ko - 2>[N+ ﬁ] ko(p = D[N + ﬁ[l - ,’%] ot (G0 5}
and
6(p-1) 1-8(p-1
ko _p-b (5.40)
lpi - £ o ] e(p ~ 2)|N + —[1 - k—] atr B+ O ]
Now we select in (5.1) € = €(ay, T;) > 0 so that
L1 <g, (5.41)

a

with & used in (5.14) and (5.15) to be appropriately fixed. By (5.1), (5.2), and (5.41), we obtain

-b N
(T, +t)% < —T7% < &
1 (51

Hence, if
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1 . 1- S(p -1
(5.42)
ka(p - 2)[ + ﬁ k(p - 2)|N + - 5|1 - k—z] + pg_oz]
and
S(p-1) 1-8(p-1
ko _ ) el (5.43)
kz[pkZ 80] k(p - 2)|N + ﬁ[l - Il:_Z pE—Z]

then conditions (5.37) and (5.38) are satisfied. Finally, for &; is small enough, if
§ <&, (5.44)

then conditions (5.42) and (5.43) are satisfied. Observe that (5.44) is ensured owing to assumptions (5.17) and
(5.18). As a consequence, by virtue of Lemma 2.1(ii), we obtain that v(x, t) is a sub-solution of equation (5.5)
in B; x (0, +0),

Now, observe that z € C(RY x [0, «)). Indeed,

p-1
D=2
p=v= clf(t)ll - ?]p . V(X 1) € 3By X (0, ). (5.45)
11,
Moreover, for V(x, t) € By x (0, +©),
p-1
P72, = o2, = P ler 1@)[ b ”“) [ - @]"‘2. (546)

In conclusion, set Q; = By, Q; = RMBy, uy = y, uy = v, u = z, by virtue of (5.45), (5.46) and Lemma 2.1-(ii), we
obtain that z(x, t) is a sub-solution of equation (5.5).
As before, since uy(x) 2 0 and uy € C(RY), there exist 0 > 0 and r; > 0 such that

up(x) 2 g, VxE€EB,.

Thus, if
supp z(-,0) C By, (5.47)
and
z(-,0) <0, Vx€EB,, (5.48)
then (5.6) holds. Furthermore, if
supp w(:,0) C supp z(-,t) (5.49)
and
w(-,0) < z(x, ), Vx €RV, (5.50)

then (5.7) follows.
We first show that z(x, t) satisfies condition (5.47) and (5.48). If

st
aTf < - (5.51)

then
supp z(-,0) N B; C B,

and
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supp z(-,0) N [RM\By] C By,
hence (5.47) follows. Furthermore, if
(af Ay < oTf, (5.52)

then (5.48) holds. Clearly, for any T; > 0, we can select a; = a;(T;) such that (5.51) and (5.52) are valid. On the
other hand, if

a(T, + )5 > aT~ o'y, (5.53)
then
supp w(-,0) N By C supp z(-,t5) N By
and
supp w(-,0) N [RMB;] C supp z(,4) N [RM\By],
thus (5.48) holds. If
C(T + )@ > CT 44, (5.54)

then (5.49) holds. If we select

[
h+4= a T@1a,

then (5.53) becomes

S

a1[£] T(qi)& > aT<ﬂﬂ;)1>. (555
G
Therefore, if
) -8
qufl(q_ﬁil)-%)g C ﬂ’ (5.56)
Cl a

then (5.55) holds. Condition (5.56) is satisfied according to (5.4), for T > 0 sufficiently large. The proof is
completed. ]

We are in a position to give a proof of the main Theorem 5.2.

Proof of Theorem 5.2. Let T be the maximal existence time of u(x, t). Based on the aforementioned explana-
tion of the strategy of the proof of Theorem 5.2, we can divide it into the following two cases.

IfT < t; < o, then nothing has to be proved, and u(x, t) blows up in a finite time.

If T > t;, we consider the sub-solution z(x, t) of equation (5.5) as defined in (5.9). In view of q < q, we can
find § and @ such that (5.18), (5.19), and (5.20) hold. z(x, t) satisfies (5.6) and (5.7) by virtue of Proposition 5.1.
According to condition (5.6) and the comparison principle, we obtain (5.8). It follows from (5.7) and (5.8) that

ulx, t) = z(x, ) = w(x,0), ¥Yx €RV.

Hence, u(x, t + t;) and w(x, t) are the super-solution and sub-solution of the following problem, respectively,

h[ Aph + hq: (X, t) € [RN X (01 +°°):

-1
px)
h(x,0) = w(x,0), x€RN.
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As a result, it follows from the finite time blow-up property of w(x, t) that u(x, t) also blows up in a finite time
S € (t;, T + ;). The proof is completed. O

Acknowledgments: The authors would like to deeply thank all the reviewers for their insightful and con-
structive comments.

Funding information: This work was supported by the Natural Science Foundation of Shandong Province of
China (No. ZR2019MA072).

Author contributions: All authors contributed equally to the manuscript and read and approved the final
manuscript.

Conflict of interest: The authors declare that they have no competing interests.
Ethical approval: Not applicable.

Data availability statement: Data sharing is not applicable to this article as no data sets were generated or
analyzed during the current study.

References

[11  D.Andreucci and A. F. Tedeev, Universal bounds at the blow-up time for nonlinear parabolic equations, Adv. Differential Equ. 10 (2005),
no. 1, 89-120.

[2] P.BarasandR. Kersner, Local and global solvability of a class of semilinear parabolic equations, ). Differ. Equations 68 (1987), 238-252.

[31 P.Cianci, A. V. Martynenko, and A. F. Tedeev, The blow-up phenomenon for degenerate parabolic equations with variable coefficients
and nonlinear source, Nonlinear Anal. 73 (2010), no. 7, 2310-2323.

[4] Y. X. Chen, Global dynamical behavior of solutions for finite degenerate fourth-order parabolic equations with mean curvature non-
linearity, Commun. Anal. Mech. 15 (2023), no. 4, 658-694.

[51 D. Andreucci and A. F. Tedeev, Asymptotic properties of solutions to the Cauchy problem for degenerate parabolic equations with
inhomogeneous density on manifolds, Milan J. Math. 89 (2021), 295-327.

[6] D.Andreucci and A. F. Tedeev, Existence of solutions of degenerate parabolic equations with inhomogeneous density and growing data
on manifolds, Nonlinear Anal. 219 (2022), 112818, DOI: https://doi.org/10.1016/).NA.2022.112818.

[71 E. DiBenedetto, Degenerate Parabolic Equations, Springer, New York, 1993.

[8] E. DiBenedetto and M. A. Herrero, On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math.
Soc. 314 (1989), 187-224.

[9] L.F. Dzagoeva and A. F. Tedeev, Asymptotic behavior of the solution of doubly degenerate parabolic equations with inhomogeneous
density, Vladikavkaz. Mat. Zh. 24 (2022), no. 3, 78-86.

[10] S. Eidelman, S. Kamin, and F. Porper, Uniqueness of solutions of the Cauchy problem for parabolic equations degenerating at infinity,
Asymptotic Anal. 22 (2000), 349-358.

[111 H. Fujita, On the blowing up of solutions to the Cauchy problem for u, = Au + u'*¢, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), no. 2,
109-124.

[12] V.A. Galaktionov, Blow-up for quasilinear heat equations with critical Fujita’s exponents, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994),
517-525.

[13] V.A. Galaktionov, Conditions for nonexistence as a whole and localization of the solutions of Cauchyas problem for a class of nonlinear
parabolic equations, Zh. Vychisl. Mat. Mat. Fiz. 23 (1985), 1341-1354.

[14] K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Jpn. Acad. 49 (1973), no. 7,
503-505.

[15] S. Kamin and R. Kersner, Disappearance of interfaces in finite time, Meccanica 28 (1993), 117-120.

[16] S.Kamin, A. Pozio, and A. Tessi, Admissible conditions for parabolic equations degenerating at infinity, St. Petersburg Math. J. 19 (2008),
239-251.

[171 X. Liand Z.Y. Xiang, Existence and nonexistence of local/global solutions for a nonhomogeneous heat equation, Commun. Pur. Appl.
Anal. 13 (2014), 1465-1480.

[18] W. Lian, ). Wang, and R. Z. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, . Differ.
Equations 269 (2020), 4914-4959.


https://doi.org/10.1016/J.NA.2022.112818

DE GRUYTER An inhomogeneous non-Newtonian filtration equation == 33

)
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
31
32]
[33]
[34]
[35]
[36]
371
[38]

[39]

[40]

A. V. Martynenko and A. F. Tedeev, On the behavior of solutions to the Cauchy problem for a degenerate parabolic equation with
inhomogeneous density and a source, Comput. Math. Math. Phys. 48 (2008), no. 7, 1145-1160.

A. V. Martynenko and A. F. Tedeev, Cauchy problem for a quasilinear parabolic equation with a source term and an inhomogeneous
density, Comput. Math. Math. Phys. 47 (2007), 238-248.

A.V. Martynenko and A. F. Tedeev, Regularity of solutions of degenerate parabolic equation with inhomogenious density, Ukr. Mat. Visn.
5 (2008), 116-145.

A. V. Martynenko, A. F. Tedeev, and V. N. Shramenko, The Cauchy problem for a degenerate parabolic equation with inhomogeneous
density and a source in the class of slowly vanishing initial functions, Izv. Math. 76 (2012), no. 3, 563-580.

A. V. Martynenko, A. F. Tedeev, and V. N. Shramenko, On the behavior of solutions of the Cauchy problem for a degenerate parabolic
equation with source in the case where the initial function slowly vanishes, Ukr. Math. J. 64 (2013), no. 11, 1698-1715.

A. V. Martynenko, Global solvability for quasilinear parabolic equation with inhomogeneous density and a source, Appl. Anal. 92 (2013),
no. 9, 1863-1888.

P. Mastrolia, D. D. Monticelli, and F. Punzo, Nonexistence of solutions to parabolic differential inequalities with a potential on
Riemannian manifolds, Math. Ann. 367 (2017), 929-963.

A. D. Pablo, G. Reyes, and A. Sanchez, The Cauchy problem for a nonhomogeneous heat equation with reaction, Discrete Contin. Dyn.
Syst., Ser. A 33 (2013), 643-662.

R. G. Pinsky, Existence and nonexistence of global solutions for u; = Au + a(x)uP in R, ). Differ. Equations 133 (1997), 152-177.

F. Punzo, On the Cauchy problem for nonlinear parabolic equations with variable density, ). Evol. Equ. 9 (2009), 429-447.

A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, and A. P. Mikhailov, Blow-up in Quasilinear Parabolic Equations, Walter de
Gruyter, Berlin, 1995.

P. Souplet, Morrey spaces and classification of global solutions for a supercritical semilinear heat equation in RN, ). Funct. Anal. 272
(2017), 2005-2037.

P. Quittner, The decay of global solutions of a semilinear heat equation, Discrete Contin. Dyn. Syst. 21 (2008), 307-318.

Y. W. Qi, Critical exponents of degenerate parabolic equations, Sci. China Ser. A 38 (1995), 1153-1162.

Y. W. Qi, The global existence and nonuniqueness of a nonlinear degenerate equation, Nonlinear Anal. 31 (1998), 117-136.

A. F. Tedeev, Conditions for the time global existence and nonexistence of a compact support of solutions to the Cauchy problem for
quasilinear degenerate parabolic equations, Siberian Math. J. 45 (2004), no. 1, 155-164.

A. F. Tedeev, The interface blow-up phenomenon and local estimates for doubly degenerate parabolic equations, Appl. Anal. 86 (2007),
no. 6, 755-782.

F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Isr. J. Math. 38 (1981), no. 1-2, 29-40.
Z. Q. Wu, J. N. Zhao, J. X. Yin, and H. L. Li, Nonlinear Diffusion Equations, World Scientific, Singapore, 2001.

R.Z. Xu and . Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal. 264 (2013),
no. 12, 2732-2763.

H. Y. Xu, Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials, Commun.
Anal. Mech. 15 (2023), no. 2, 132-161.

J. N. Zhao, On the Cauchy problem and initial traces for the evolution p-Laplacian equations with strongly nonlinear sources, |. Differ.
Equations 121 (1995), no. 2, 329-383.



	1 Introduction
	2 Preliminaries
	3 Global existence for small initial data
	4 Blow-up for large initial data
	5 Blow-up for any nontrivial initial data
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


