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Abstract: We provide bounds for the sequence of eigenvalues {1;(Q)}; of the Dirichlet problem
I-MDy=Au inQ wu=0 in [RN\SZ,

where (I - A)™ is the Klein-Gordon operator with Fourier transform symbol In(1 + |&2). The purpose of this
study is to obtain the upper and lower bounds for the sum of the first k-eigenvalues by extending the Li-Yau’s
method and Kroger’s method, respectively.
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1 Introduction and main results

The purpose of this study, is to consider bounds for the spectrum of Klein-Gordon operator with the loga-
rithmic order, subject to the Dirichlet boundary condition, i.e.,
- In; = 3

I-AMA)"u=Au %n Q, 1)
u=0 in RMQ,

where Q is a bounded regular domain RY with N = 2 and the logarithmic Kein-Gordon operator (I — A4)I" is an

integro-differential operator with the Fourier symbol In(1 + |-*).

In recent years, problems involving nonlocal differential order operators have been studied extensively
and deeply, see [4,6,16,18,19,26,27] and references therein. The prototype model is the fractional power of the
Laplacian. Recall that for s € (0, 1) the fractional Laplacian of a function u € CZ(RY) is defined by

F-0yu)E) = @y [ e E(-ayu)e0dx = [EFaE) forall §eRY,
RN

where and in the sequel both # and * denote the Fourier transform. Equivalently, (-4) can be written as a
singular integral operator under the following form:

u(x) - u(x +y)

o) = avlim [ =y,
7 RMBL(0)
N+2s
N N .
where ¢y s = Zzsn‘zsﬁ and I' is the Gamma function.
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Another important class of nonlocal differential operators is the fractional power of the relativistic
Shrodinger operator. It is known that the pseudo-differential operator (m? - A)% appears in the prescriptions

of quantum mechanics to the Klein-Gordon Hamiltonian /|P]> + m?, which is a first-order pseudo-differential
operator used to model relativistic particles in quantum mechanics. Here m stands for the mass of particles.

Setting m = 1, the normalized operator (I - A)§ is also called as the Kein-Gordon operator with order %

corresponding to the Fourier symbol (1 + |~|2)% and (I - A)° is called as the s-order Klein-Gordon operator.
Moreover, (I — 4)° could be represented via hypersingular integral ([28, page 548] and [12]) that for a
regular function u : RY - R,

ux) —ulx +y)

(1= 800 = () + duspv. | =m0y, (12)
[RN
-N4s
where dy s = % is a normalization constant and the function w; is given by

N+2s yi?
2 et udt,

N+2s N+2s

z|_y|z

ws(ly) = 2 Kz = e
0
Here the function K, is the modified Bessel function of the second kind with index v > 0 and it is given by the
expression
1 ©
7/2)erve™
%Ie‘"t"‘%ﬂ + /2yt
2 0

Ky(r) =

The normalization constant dy s in (1.2) is chosen such that the operator (I — A4)° is equivalently defined via its
Fourier representation given by

F - Au)§) = A+ EPyFw)(E) forae § €RN.
The fractional Laplacian has the following limiting properties when s approaches the values 0 and 1:
lim(-A)u(x) = -Au(x) and lim(-A)’u(x) = u(x) for u € CARY),
s-T s—=0*
e.g., [28]. It is proved in [8] that a remarkable expansion at s = 0 is valid for u € Cf([RN) and x € RV,
(-A)su(x) = u(x) + s(-A)"u(x) + o(s) as s — 0%,

where, formally, the operator

d
—MNn .- —
O™ =5

(=4)
=0

S

is given as a logarithmic Laplacian. For compactly supported Dini continuous functions ¢ : R¥ - R, the
logarithmic Laplacian (-4)™ has the integro-differential formula defined by

Bo(Y) — ¢(¥)

Ix = yN

oyno00 = ovlim [ 28
-0

77 RMB,(x)

dy + py¢(x)

with the constants ¢y = r(gv/,f) and py = 2In2 + l/)(%) =Y.

It is easy to observe that

lLim(I - A)su=u for u € CXRY).
s—0*

Inspired by the logarithmic Laplacian (-4)I", the logarithmic Schrédinger operator (I - A)™ has been intro-
duced in [13] in a Taylor expansion with respect to the parameter s of the operator (I — 4)° near zero, i.e., for
u € CXRM) and x € RV

I - Dsulx) = ux) + s - Hux) + o(s) as s - 0%,
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where the logarithmic Schrédinger operator (I - A)™ appears as the first-order term in the above expansion
and it has the following properties: For u € C%(RY) for some a > 0 and any x € RY,

[ = A)°u]0)

"

s=0

u) -~ ux +y)

-y MO
[RN

= [ - ute + y)y oy,
[RN

d
(I - Drueo = <

w(|ly]dy (1.3)

w(y )
Iy

where dy = Ty = —limsqy%, Jy) =dy and

o) = 2 pltKy( = [t teciar, a4
0

Moreover, the author obtained a sequence of Dirichlet eigenvalues for the logarithmic order Klein-Gordon
operator. We denote by HI'(Q), the completion of C°(Q) with respect to the norm ||ull, = \/E.(u, u), where &,
is the bilinear form

Euw,v) = | [ @l - uy)weo - vyer - yyxdy.
RYRY

It is known that the logarithmic Schrodinger operator appears in the probability literature as the char-
acteristic exponent of the symmetric variance gamma process in RY and can be seen as a sub-class of
increasing Lévy process [2]. As a particular case of geometric stable processes In(1 + |-*¥) for s € (0, 1), it
plays an important role in the study of Markov process [1,30]. Very recently, [5] obtained the regularity result
of Poisson problem with the logarithmic Schrédinger operator.

We call a function u € H(Q) an eigenfunction of (1.1) corresponding to the eigenvalue A if

&u, ¢) = Afugdx forall ¢ € CZ(Q). 15)
Q

Feulefack [13, Theorem 1.3] provided the following characterization of the eigenvalues and eigenfunctions for
the operator (I - A)™ in an open bounded set Q of R¥:
(i) Problem (1.1) admits an eigenvalue 4 () > 0, which is characterized by

A(Q) = inf
1(Q) . 6121@)8‘“(”’ uw, 1.6)

with P4(Q) = {u € H{(Q) : |lull2q = 1} and there exists a positive function ¢; € H{'(Q), which is
an eigenfunction corresponding to 4(®?) and that attains the minimum in (1.6), ie., [|§]l;2q) =1
and A4(Q) = 8w(¢1: ¢1)
(ii) The first eigenvalue A (Q) is simple, ie., if u € [H%,“(Q) satisfies (1.5) with A = 4(Q), then u = a¢, for
some a € R.
(iii) Problem (1.1) admits a sequence of eigenvalues {A;(R)}ken With

0 < A(Q) < A(Q) <Ak (Q) = A1 (Q), <+

with the corresponding eigenfunctions ¢,, k € N and limy_..Ax(Q) = +». Moreover, for any k € N, the
eigenvalue Ax(Q) can be characterized as

&(Q) = uelgkf(g)Sw(u, uw, .7

where P(R) is given by
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PU@) = e HE(Q) : fugdx=0 forj=1,2,~k-1 and |dlie =1
Q

(iv) The sequence {¢;}xen Of eigenfunctions corresponding to eigenvalues A, (Q) forms a complete ortho-

normal basis of L(Q) and an orthogonal system of H(Q).

The asymptotic of the Dirichlet eigenvalues is one of the hottest topics in the area of partial differential
equations. It is well-known that the Hilbert-Pélya conjecture is to associate the zero of the Riemann zeta
function with the eigenvalue of a Hermitian operator. This quest initiated the mathematical interest for
estimating the sum of Dirichlet eigenvalues of the Laplacian while in physics, the question is related to count
the number of bound states of a one body Schrédinger operator and to bound their asymptotic distribution.

The eigenvalues of the Laplacian subject to the zero boundary condition has Weyl’s limit [31] and Pélya
lower bound [25] for “plane-covering domain.” The well-known Pélya’s conjecture has partially been solved in
[23] by considering the sum of the first k-eigenvalues and in a ball [14] very recently. More bounds for
eigenvalues could be seen in [15,20,21,24]. The eigenvalues of fractional Laplacians

(-AYu=pu inQ, u=0 in RMQ (1.8

have been studied in [3,9,11,32] and references therein. The related lower bound is

2s
N

k

X (1.9)
1<

Mo i (Q) 2 = G
For the %-order Klein-Gordon operator (I - Ay, Weyl’s limit of related Dirichlet eigenvalues has been studied
in [17] in a trace sense.

Very recently, Chen and Weth in [8] showed the existence of a sequence of Dirichlet eigenvalues {A*(2)}ien
of logarithmic Laplacian, i.e.,

(-D"y=Au in Q,

. (1.10)
u=0 in RMQ.

Later on, Laptev and Weth obtained in [23, Corollary 6.2] Weyl’s limit

i M@ 2
k—+o 1Nk N’

Furthermore, lower bounds for the first eigenvalue are considered there by a particular scaling property.
Recently, Chen and Véron [7, Theorems 1.2 and 1.3] show that the bounds of related eigenvalues are as follows:

() for any k € ¥, setting dy = gy, T (@) 2 ~dylQl;
i) if k> QL TEAK@) > 0;
(i) if k 2 g,
i)liL(Q) > % Ink - Inln 2K +1In 2 ;
b N eNdy|Q| eNdy|Q|
(iv) upper bound, setting p, = % for k > %m,

Py

12|

Wy

N

k
2k
dAEQ) < N Inln

i=1

In(k +1) + In

py(k + 1)]
Q)

Due to the lack of homogeneity of the logarithmic order operators, there is no scaling property. As a
consequence, homothety of the domain is inoperative for studying the variations in principle eigenvalue as it
is the case for the Laplacian or the fractional Laplacian. Different from the logarithmic Laplacian, the
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logarithmic Klein-Gordon operator combines the homogeneity and the logarithmic order differentiating,
which makes it more complicated to study the asymptotics of the Dirichlet eigenvalues.

Our purpose in this article is to provide the lower and upper bounds for the sum of the first k-eigenvalues
of (1.1) by developing the Berezin-Li-Yau methods and Kréger’s result for the Laplacian.

Theorem 1.1. Let @ C R¥(N 2 2) be a bounded domain, {1;(Q)}icy be the sequence of eigenvalues of problem (1.1).

eZ
Then, there exist positive constants C;, C,, which only depend on N such that for integer k > ‘ 2‘(”21; )‘,? ',
k
2k k 22m)Nk
A(Q) > —|In— - Inln|1 + Ck 1.11)
24> | Inig) “[ aniel )| "G (

22 ez
and for positive integer k < ° oo If'f covlel , 1],

2207 ll 220"

k
2A(Q) > G QI K.

i=1

In particular, it holds that

1 202m)N o eCuyQl
Zlln— - Inlnf1 + C, ,
Mo T e )] T ey
1(Q) > 2 1.12)
2 . eCwy|Q
o >
CZl |N1 lf 2(2”)]\]

Our second interest is to give an upper bound for the sum of the first k-eigenvalues. Motivated by Kroger’s
result for the Laplacian [20], we shall construct an upper bound by computing the related Rayleigh quotient
via a particular complex valued function. Together with the lower bound (3.2), we can derive the limit of the
sum of the first k-eigenvalues as k — +o. The results state as follows.

Theorem 1.2. Let @ C RY be a bounded domain, {1;(Q)};ey be the sequence of eigenvalues of problem (1.1). Then,
fork =2,

k
2
2 A(Q) < yKInk + C(nInk + Dk, (1.13)
j=1
where C = C(|Q|, |0Q|, N) > 0 is independent of k.

Corollary 1.3. Let Q C RN be a bounded domain and {};(Q)}ien be the sequence of eigenvalues of problem
(1.1). Then,

k
2
lim (k Ink)? Y 4(Q) = — (1.14)
koo i=1 N
and the Weyl’s limit
lim &) _ 2 (115)
k-+o INk N

Remark 1.4. Note that

Al"rff) and (k Ink)™ Zﬁll/li(g) have the same limit% as k —» +oo, which is independent of Q.

Due to the inhomogeneity of the expression of the Fourier symbol of In(1 + |-[2), our bounds are inspired
by [7], where the lower one is based on a developed Berezin-Li-Yau method for the non-homogeneous operator

and the upper one is based on the analysis of functions Zf-ile‘”"z)(gd)i(x)q)i(y).
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The rest of this work is organized as follows. In Section 2, we prove the following Li-Yau-type lower bound for the
sums of the first k-eigenvalues. Sections 3 and 4 are devoted to the lower and upper bounds for the sum of the first
k-eigenvalues of Theorems 1.1 and 1.2, respectively. Finally, we obtain the limits of the eigenvalues in Corollary 1.3.

2 Preliminary

The section is devoted to show Li-Yau-type lower bound for the sums of the first k-eigenvalues to the
Logarithmic Schrddinger operator. To be convenient for the analysis, we denote

N+2

ClzN‘l[ 2 ]2 @1
N+2(N+2
and
%
o= e%+1-1] . 2.2)

2.1 Li-Yau-type lemma

Proposition 2.1. Let f be a real measurable function defined in R¥ with 0 < f< M; a.e. in RYN and

[ @ + 12y @z = m,

R
Then,
-1 N
M)N|  MN MN N A Miwy (N + 2 MN |¥
z)dz < max{—|In - In|In|1 + +In—-1{ ,—
u;[,f @ 2 | Moy [ [ My 2 A, N |(N-1Muwy
-1 N
My ¢} N Mwy|N+2 |V
where A; = 12‘””% Ing - In(In(1 + @)) + In3 - 1] ,Ay = ;‘,”N Nilcl

To prove Proposition 2.1, we need some auxiliary lemmas.

Lemma 2.2. Let

2
&) = rlog[l + r%] o erT, vr € [0, to),

N
2

, the function

with to = [‘/1 r(Er+ -1

go(r)r re [O: tO]:

2.3)
&(to), >ty

gl(r) = [
and ¢ be given by (2.1).
Then, for any ¢ € (0, ], there exists a unique real number 1, such that
&) =c.

Moreover, it holds that

N
N+2 vz
I. < [N — 16] . (2.4)
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Proof. By direct computation, we have that

2

‘(r) =lo [1+r L2 2.4

= N — - — PN

& g Ni+r: N
2

” 2 it 2 2 2 4

go(r)zﬁ[gzz[“”‘ﬁ”"ﬁ”
1+rwn

and observe that g;'(r) > 0 when r € (0, t). Then, g; is increasing in [0, to], combining with the fact that
&;(0) = 0, we obtain that g; is increasing in (0, ¢o], so is g,.

2
. Note that tp >  and g,(tp) > g,(t) = ¢, then for any ¢ € (0, ¢], there is a unique real

Denote t; = ﬁ
number 7. € (0, ;) such that
gl(rc) =C

Now, we do the bound of 7. Since log(1 +r) =2 r - %rz for any r > 0, we have that

¢ = 1) = log(1 + 1) = 2
2 rc[rcN - 17’54] 2 rcNIGZ
2 N+2
- - T
N+2 2
N 1 Ne2

N+2 ’

)=

v+z| - Thus, (2.4) holds. The proof is completed.  [J

where the last inequality holds by the fact thatr. < t; = [ 2
Lemma 2.3. Assume that

&) =rin|l+ rv

2
- =, VYr = 0. 2.5
NT‘ r ( )

Then, for any c > 0, there exists a unique real number 7, such that
&) =c.

Furthermore, let ¢ and ¢, be given by (2.1) and (2.2), then
(D) for c = ¢, it holds that

ﬂ c
2 (2.6)

Inc - In(In(1 + ¢)) + In% -1’
(i) for c € (q, @), it holds that
Ne 4
2GIng - In(n(1 + ¢)) + In5 -1’

2.7

Proof. By direct computation, we have that

2
ry 2

1+rv N

&) =In

1+r2]+ 2
T -
N

and
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2,4
N N2

2 2 4
v-1 4+ Zpy-1
Nt + NrN

g (r) = > 0.

2P
1+rn

DE GRUYTER

. - 2
Then, the function g, is increasing in (0, +e) and then g, is increasing in [¢o, +%) with t, = (en - 1)% Observe
that g,(fo) = £,(0) = 0 and lim,—.«g,(r) = +e. Then, for any ¢ > 0, there exists a unique real number 7, > &

such that
gz(Fc) =

ie.,

Moreover, T, is increasing with respect to c.
Now, we do bounds for 7.
(i) In the case of ¢ = ¢. Note that g,(¢) = ¢ and ¢ > fo > 0. Letting

() = glc)-c=cln

1+cl] 2c ¢, Vczg
N|— — - = 0
N7 2

By direct computation, it yields that

2 v 2
) =g/(c)-1=1In|1+cr|+ = -=-1
P(c) = g;(c) n CN] Ni+cl N
and
% + :,—22 cx 1+ %Cﬁ_l
Y(c) = gy (c) = 5 > 0.
1+c¢N

2,
Then, ¥’ is increasing and by the fact that $(0) = ¥(¢) = 0 and Y'(¢) = %e”;ﬂl

2.8

> 0, we have that ¢ is

increasing in [, +). Thus, ¥ 2 0 in [¢, +=). Then, for any ¢ > ¢, we obtain that &,(c) 2 ¢ = g,(7), by the

monotonicity of g,, which implies that ¢ 2 7. Combining with (2.8), it holds that

- c c
i, = 5 > .
~ 2 2
Wi+ |- 2 Inftech|-2
For N 2 1, we have that for any a, b > 0,
a%+b%sz%(a+b)%_
Then,
1+ cv < 20(1 + o)W
and
2 2 2 2
—Inl+c¢)+ —In2- — < —In(1 + c).
Nn( c) Nn N Nn( c)

Combining with (2.9), it yields that

JN_¢
21In(1+c)

Te

(2.9

(2.10)
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Together with (2.8) and (2.10), for ¢ = ¢, it holds that

o c c N c
Te < 2 < ) N :
N ¢ |V 2 ¥ |- 2 Inc - In(In(1 + ¢)) + In5 - 1
Inf1 + 2d+o N N 2 In(1+c¢) N

(ii) In the case of ¢ € (g, ¢), observe that i, < 7, < It,, by (2.11), we have that

C

o N G < N o®
2Ing-Inn(l +¢) +In5 -1  2Ine-In(n(l + ) +Inj -1

The proof is completed.
Now, we are ready to give the proof of Proposition 2.1.

Proof of Proposition 2.1. Let R > 0, we observe that
(n@ + |z[*) = In(1 + RH)(f(2) - Milg,) 2 0.

By integration over RY, we obtain that

R
2Miwy J‘ ri+1

M, +
z N J1+p?

dr > In(1 + RZ)J' f(2)dz.
[RN

Since R is arbitrary, I[RNf (z)dz satisfies the following upper bound:

R

2Mywy NV
If(z)dz <supfA >0 st M+ ;{ le " >dr - Aln(1 + R?) > 0f.
RY 0 r
Set
Ty(R) = My + ZM“"N} I 4F - Aln(l + B2
AR) = M, N 01+r2r n( ),
then 7, achieves the minimum if M“’JTNRN = A, that is
1
| NA Y
wyM |
Let
- NA
A CL)NM]’
then,
N
1 ZleNtA rN+1 2
Ny — et b\ _ N
Tu(ty) =M, + N _0[1+r2dr Aln1+tAl20,
which implies that
1
21 2Myw, % ri+1
Aln|1+ )| - J;le+r2drsM2.

0

On the one hand, we denote

-_ 9

(211

(2.12)

(2.13)
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1
tN
3 rN+1
M0=tm1+t4—2{1+ﬂdn
by direct computation, it holds that
R(t) = In|1 + t%] >0,

then h is increasing in (0, +). Moreover, we note that

1
tN

1+ t%] - ZIrN”dr = tIn(1 + t8) -
0

2 N+2

N+2tT’

h(t) = tIn

combining with the monotonicity of h, it yields that h = g; in (0, +), where g, is given by (2.3). Together with
(2.13), we have that

M;N
_ >
My h(ts) = g (ta).

M, < Gwv

(i) When w SN ie, ¢ <q, there exists a unique real number r, such that g(r) =c. Then,

&) = % > g,(t4) and by the monotonicity of g, it holds that t4 < r;, by (2.4), we obtain that

N
ez
< cl ,
4= IN-1
and then
ez
<M16L)N
N

N+2 MyN
N - 1 Mywy

thus,

N
M1 Wy N+2

N

N+2 MyN
N—lleN

[r@az <
[RN

PN+

1+r2

On the other hand, by the fact that < rN-1 Inequality (2.13) could be replaced by

2
2} 2Mw
Aln|1+ ) A}ZN

ta < M,

and

2
Z 2 MyN
taln(1 + ¢)) - i s Mfw .
'N

.. ClN M, CoN
(if) When =~ < SN

ie, g < ¢ < ¢, applying Lemma 2.3 (ii), we have that

N g c
th< —— >
2 Glng - In(In(1 + @) + log5 -1
then
A< leNg G

2 Glng - In(In(1 + @)) + ln% -1

Thus, we obtain that
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Mywy ¢ N !
J' f@)dz < 22 g - In(In(1 + ) + In> - 1| =4,
het 2 q 2
and
_N_
Moy [N +2 MpN |2 Mywy(N + 2 ]NNz
> (¢} = A.
N |N-1Muwy N (N-1
Then,
N
Miwy sz N ]_1 Ay Miwy|N + 2 MyN |¥*?
——|Ing-Inlnl+¢) +In—-1| <—
2 gl ° (In@ +¢)) 2 A, N |N-1Muoy
Therefore, we have that
N
Ay Mywy|N + 2 MyN |V
[reaz < & N N1
RN 2 1WN
(iii) When % > '32% ie,c= AIZZZXV > ¢, by Lemma 2.3 (i), we obtain that
c
tA <= N 3
Z2Inc - In(n(1 + ¢)) +In3 -1
and then,
A< Mwy c _ ’
2 Inc-1In(logl +¢)) +In3 -1
which implies that
-1
M)N M,N M)N N
If(Z)dZ < == lln z . ln[ln[l + =2 {l+In= - 1] )
he! 2 1N 1N 2
Thus, we have that
-1 N
MN|. MN [ M,N N A Miwy (N + 2 M,N |+
z)dz < maxi—|In—— - In|{In|1 + +In—-1| ,— .
[J;f( ) [ leN [ leN 2 Az N N-1 leN
The proof is complete. O
2.2 Dual bounds
Lemma 2.4. Let
r
3(r) = or r > e,
£ Inr - InIn(1 +r) + aq f
where ay = min{0, lng - 1}. Then, fort > eez, there exists a unique point r; > e% such that (1) = t.
Furthermore,
(2.14)

;> t(Int - Inln(1 + t) + ay).
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Proof. Since

r

1 1-

~'(T‘) _ _ In(1+r)(1+71)
g Inr-Inln(1+r)+ay (nr-1Inln{ +r) + ag)?
1 1

g Inr - Inln(1 + r) + ay 1= Inr - Inln(1 + r) + ay )
Since r > e%, Inr - InIn(1 + r) + ay > 1, so
g'(r)>0,
the function g is increasing from (e%, +). Setting r;* = t(Int — InIn(1 + t) + ay), then

t(Int - Inln(1 + ¢t) + ayp)
Int + In(Int = InIn(1 + t) + ap) — InIn(1 + t(nt - InIn(1 + t) + ay)) + ao
< t(Int - InIn(1 + ) + ayp)
" Int + In(Int - Inln(1 + t) + ap) - Inln(tInt) + ag
Int - Inln(1 + t) + ag

g =

) Int - ln% + aot b
where the last inequality holds if
Int - 1111111;t(l1n?r) g, Ao,
and this inequality is equivalent to
In(t Int) <t

Int - InIn(1 + t) + ag
which is equivalent to
h(t) =12 -Inln(e* + )t -7+ ayr - Int>0, 7=Int.
Thanks to ay > -2, we have that

e’[

W@ > 20 = Inne™ + ) = ey

1
3-—=>0 ifr>e
T

and
R(e?) > e* - Inln(e® + 1)e? - 3¢ - 2 > 0.
Thus, for t > e"’z, it yields that
;> t(Int = Inln(1 + t) + ag).

The proof is complete. O

3 Proof of lower bound
This section gives the proof of lower bound in Theorem 1.1.
Proof of Theorem 1.1. Denote
(X, y) = gdy(xw,-(y), (x,y) € RV x R¥

and
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By, 2) = @y [ dx, y)e o,

R

where @ is the Fourier transform with respect to x. Since ;. is orthogonal in E(Q), we have the identity
[ [18y, Pazay = [[1@ucx, y)Paxdy = k.
RQ QQ

Furthermore, we note that

[Bv. pay = | dy
Q Q

k L
Z@(z)qu(y)”Z@-(z)qu(y)
j=1 j=1

k -
=[] 3 $@a.@908,0)

olie=1

k
dy = Y |6,2)P.
j=1

Using again the orthonormality of the {qu}iEN in I*(Q), we infer by the k-dim Pythagorean theorem,

2
k

2
j=1

[189, 2y = @y |

Q Q

[ertez,00x |,

Q

dy

2

=l o

k
= )N z [Ie‘“-z¢j(x)dx

<@ Y [_[e-wz(pj(x)dx
j=1

Q

= )™ [letv2pdx = @ryia).
Q
The Fourier expression of (I - A)™ applied in the variable x holds that

k
Z /1](9) = JI@k(X,y)(bk(X, )’)dydx
J=1 QQ

k
Y [18@Prm@ + 2Rz = [|[ 1@y, 2)Pdy|Int + |zP)dz.
j=1[RN

RrRMQ
Then, we obtain that
k= [f@uz
[RN

-1 N

M,N M,N M,N N Ay Miwy|N + 2 MoN |+
<max{——|In—— - In|In[1 + == +In—-1 ,—1 Bl 2
2 1N Miwy 2 Az N N-1 Miwy
Note that

MoN MoN MN
o in—"= - In|In|1 + ==
2 Mwy 1wy

-1
N
+In— -1 >k,

setting

CNM, | 2k 201Nk
Mwy’ Mwy wy|Q|
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and

r 2 Mwy

Inr - Inln(1 + r) + In% - 1 CInr-Inln(l+7) + Iy -1

NM, 2
X

Then, we have that
r 2%k 20Nk _
Inr - Inln(1 + r) + lng -1 Moy  wy|Q

By Lemma 2.4, if

202m)Nk S ez’
Wy (L
ie.,
K> eeszlgzl
22mN
then

N
r>n>t1nt—1n1n(1+t)+ln?—1],

which implies that

N N N
NM, _ 2m)Vk( (2emNk —lnln[l+ 202m)Nk |
Mwy  wy|Q] wWy|Q wWy|Q| 2
Then,
k
2k k 202m)Vk
Ai(Q) > —|[In— - Inln|1 + + (i, 3.1
121 i©@> 3" [ wyl@l |

where C; = C(N).

Letting k = 1 and |Q| < Z(ZZH)N, we have that
e® wy
M(Q) > E lni - Inln|1 + 22" +C
UON T e wvlel)
and
N
éleN N+ 2 M)N N+2 >k
A2 N N-1 M1wN ’
which leads to
k 2 2
2A(Q) > G QI ¥k, (32)

i=1

where C, = C(N).
Particularly, take k = 1, we have that

1(Q) > G, QI F.

2
eeleszl

When k > 2oy

we compare (3.1) and (3.2) and obtain
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2k k 22m)Nk 20142
—|In— - Inln|1 + + (1| < G |QI VKN,
N nIQI nn[ onl] 1| < G QI vk N
2
o oy 2]
Therefore, (i) if k > 22
k
2k k 221Nk
Y A@ > =~ |In— - lnln[l NECoAls S|
P N el wxlQ]
. ey | Q|
(i) If k < Z(ZIZ.[)N )
k 2 2
2A(Q) > G |QI VKb,
i=1
The proof is complete. 0

4 Upper bound

The definition of I - A)7, ie.,

ux) —ulx +y)

o w(lyDdy.

(I~ 2o = dy |

RN
For any bounded Hoélder continuous complex valued functions u, v admissible at infinity, there holds

u(x) - u(n)

I - A)uv)(x) = u(x)I - A)v(x) + dN_[ x =P v(mw(lx = nhdn. 4.1

RY |
Lemma 4.1. For z € RM\{0}, we denote
u,(x) = ez vx €RN,
then
(I = A)ru,(x) = (In(1 + |zP)u,(x), Vx €RN. 4.2)

Proof. Since s € (0, 1),
(I - A)Pu,(x) = @A+ |zP)u,(x), Vx€RN. 4.3)

1, is bounded, we can consider the distribution T, in RY defined by
(1,0 = [1,00reodx  forall 7€ CZRY).
[RN
Then, ((I - AYT, () = (T, (I = A)C). Since
d
—I - A = - A,
S IR ok

there holds in the sense of distributions

d
(- APT,|  =- 2T
ds Uy o0 Uy

in the sense that
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(A = AT, 0) = (T, (T = A7) = [, - A)Yngd.
IRN

By definition of the Fourier transform of distributions & in the class S’(R¥) [29], there holds

(@ - AT, )= @yt [ et X(T - A (x)dx
[RN
= (U - A)0)(2) = In(1 + [2P)FE) = (1 + [2) [ 1,000 0dx.
[RN

Since x = (I - A)"u,(x) is locally integrable, (I - A)"T, = T_ )z, hence
(Tgoay, §) = I(I ~ AT, dx = In(1 + |z|2)IyZ(dx.
RY RY
Because ¢ is arbitrary, this implies T;_syng, = In(1 + z[*)u,, a.e. in RV and finally everywhere by continuity,
which is the claim. O
For a given 0 < g < 1, we take O C Q be a C? domain such that
Q] - 10| <o and |00] < [9Q| + 1.
Let p(x) = dist(x, RMO), then it is C? near the boundary d0 and zero in RM\O. Now we denote
ws(x) = ny(a7'p(x)), VYx€O, 4.4)
where 1, : [0, +) = [0, 1] is a nondecreasing C? function such that
=1 ift=21, =0 ift<o0.

Here we can assume more that ||, ]|z= < 2.
Observe that w, € C%(RY) for ¢ > 0 small enough and

wy;—1 in O asag- 0%

then there exists a positive constant g; < 1 such that for g € (0, gy],

_[Wﬁdx >{x €0 : p(x) > a}| 2 10| - 80|02 |Q| - (|6Q| + D)o
Q

and

[waax <101 <101 - 0,
Q

thus

10l - (102] + Do < [widx < [wedx <[] - 0.
Q Q

Lemma 4.2. Let

a0 = [ YD iy gppag,

v =gl
then there holds

2 Cex=¢l 2
< S| ——=drs = e
| 2w (X)) U[,Q[vp( T df<—C forx€Q

. 00 x-¢?
with w(|x = {]) = [, t™*2ea dt.
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Proof. Actually, if x € Q,

W) = Wo(O) < [IDWs]|z=1x = €1 < a7 Mg llz=Ix = ¢

and

o0

-l
w(lx =] = J’t‘l*%e‘f‘%dt < Ce =4,
0

then there exists C = C(|0Q|) > 0 such that

W) = We() ., Inglle=  ce™=¢ 2
—_— " - {Pd | < d¢< —C,
IN ¢l - 1hag | < =) lex s
R R
since ||n,]lz> < 2, where C > 0 is independent of 0. O

Proof of Theorem 1.2. We recall that d;(x, y) and ®;(y, z) have been defined in the proof of Theorem 1.1. If we
denote

GU,Z(X) = Go(X, 2) = wy(x)e™2,

the projection of G, onto the subspace of L*(Q) spanned by the ¢; for 1 <j < k can be written in terms of the
Fourier transform of w,®; with respect to the x-variable:

[Got, 2)@x, y)dx = @)V 2 (WD, 2).
Q

Put
Ga,k(Y) Z) = Go(y’ Z) - (ZH)N/ZTX(WJ(DI()(Y) Z)

and the Rayleigh-Ritz formula shows that for any z € RY and ¢ > 0,

K@) 1651y, Py < (G 2 = A)35Gs 403, D)y,
Q Q
where the right-hand side is a real value
[Gr@. 20 - A)556Gony, 22y = [ Cor3. 2T = 2)556a 13, 2)dy
Q RY

= [ In(1 + 1ERIFGo 0 )1,
[RN

although G;  is a complex valued function. Then, integrating this last inequality with respect to z in B,, for
r > 1, we obtain

[, J Gk 2 - 8556540y, ydz
.[Br,[glGa,k(_y, z) |2 dydz

Aes1(Q) < inf
a>0

By Pythagorean theorem, we have that

k
[16240, 2)Pdy = [16a(y, DAy - oY [ 3 7o) P ().
Q e e/

Integrating over B, we obtain that

N k
[[16:4. 2pPayaz = = [y - @ 3. [i7mg)@)Pdz.
Q

B,Q Jj=1p,
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On the other hand, we see that

HGTM, 21 - A)§5Gr (v, 2)dydz

= [[G0 D - 2)556, 2)dydz - Qo [ [Fw 800, DU - 2)55F (s, 2)dydz,

B,Q B,Q

where
Hiﬂ(wacbk)(y (I - A)REFWe®)(, 2)dydz = ZA(sz)va(waeb, (2)Pdz

and

[[G0: D0 - 2)556s(y, 2ydydz

B.Q

IN

[Jwenia - a)sse v 1aydz + [ o) Zwo(y)ldydz
B.Q

B,Q

IN

[[weina + ipyayaz + 2 Hwa@)dydz
B,Q

€N+1 + ZO)NC
1+ 82 No

[ yayr

Q

= —Iwz(y)dy rNIn(l + r2) - z_[
< SN In@ + r%)iwé(y)dy + G,

Because of Parseval’s identity, there holds

[IFwop) @Rz < [ IFwap) 2Pz = [(wey)dx < 1
RY Q

Bl‘

Denote

w w wyrN
= VI + ) fwddy + Coieirt Ay = i fwda,
Q

then

4 - VYL M@ 1R g) P dz
0< X s = Ar1(Q)
Ay - @OVE L [ 1P )@ dz
(41 = Adier(@)) + VYL, (en(@) = 4], IF:w8)(@) Pz

A - @OVY L [, 1P )@z

(4 = Ak (@) + @YY (Re(@) - 4()
A - )Nk ’

IA

since Ax+1(Q) = A;(Q) for j < k + 1 and JBr|77X(WG¢j)(Z)|2dZ € (0,1). As a consequence, we obtain that

A - QOVYLA(Q)

<
Ak+1(g) = 142 _ (27T)Nk

Note that



DE GRUYTER Bounds for the sum of the first k-eigenvalues of Dirichlet problem =—— 19

1 1 1 1
7 S19r(ae + D Inln( + k) [2[(8Q] + 1) Inln(1 + k)
and let
@mNN @m)VN 1 220NN
rNe=—"——(k+1)< k+1 < k+1),
P T VT (- PN TR
where
[wiax > 11 - (@l + o
Q
Then,

k+1
@MY @ < A = NI + ) [y + Lgpr
=1 N o No

Wy Igwg(y)dy (2m)VN
TN

N
(27'[) N (k + 1) + wNCO
wy J'gwﬁdy No

(k+1DIn|1 + |Q|rY

wy Igwﬁdy

Co2T)NN

2
< N
<Q@m)VN—=(k +1) x|

In(k + 1) + In + Gk + DInln@ + k),

where C; = 2m)VCy |Q71(|0Q] + 1).
As a consequence, we have that

k+1
ZMms%@+nmw+n+q@+nmma+m+gw+u
j=1

Co(2m)NN
wy | Q|

where C, = %ln > 0. O

5 Limits

Proof of Corollary 1.3. The Limit (1.14) follows by (1.13) and (3.2) directly. Now, we prove (1.15). On the one
hand, it follows by the monotonicity of k = Ax(R) and (3.2) that

1X 2 N
() 2 =) A(Q) > —|Ink - InIn|1 + ——| - In(Ty|Q In— -1f. 5.1
(@2 3 M@ > Ik - Inln(1 + 0| = InCH{9) + Ing ] 1)
On the other hand, letting m = k, we obtain that
1 k+m k
Aen(@) S —| X 4(Q) - 2 A4(Q)
mlia j=1
2 202m)NN
< W(k + m)|In(k + m) + In (IS;I[—l)UN + c(InIn(k + m))l
2 k N
- mk Ink - Inln|1 + vl - In(Ty|Q|) + InE - 1]

2
< N(ln(k +1) +c+clnin(k + 1)),

where ¢ > 0, independent of k. Thus, we have that
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W@ 2
k-+o INk N’

The proof is completed O
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