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Abstract: We consider nonlinear sub-elliptic systems with VMO-coefficients for the case 1 < p < 2 un-
der controllable growth conditions, as well as natural growth conditions, respectively, in the Heisenberg
group. On the basis of a generalization of the technique of A-harmonic approximation introduced by Duzaar-
Grotowski-Kronz, and an appropriate Sobolev-Poincaré type inequality established in the Heisenberg group,
we prove partial Hélder continuity results for vector-valued solutions of discontinuous sub-elliptic problems.
The primary model covered by our analysis is the non-degenerate sub-elliptic p-Laplacian system with VMO-
coefficients, involving sub-quadratic growth terms.
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1 Introduction and statements of main results

In this paper, we consider discontinuous sub-elliptic systems with sub-quadratic growth coefficients that
belong to the space of functions with vanishing mean oscillation (VMO, for short) in the Heisenberg group H".
We establish optimal partial Holder continuity for vector-valued weak solutions in the sense that the solution
is Holder continuous on an open subset of its domain with full measure. More precisely, let Q be a bounded
domain, and horizontal gradient X = {X;, - - - X5, } with the horizontal vector fields X; i = 1, -+ , 2n) in H",
we consider sub-elliptic systems of the type

2n
=Y XA{(E, u, Xu) = B¢, u, Xu), inQ, a=1,2,---,N, (1.1)
i=1

where the primary coefficient A} € VMO and satisfies some standard ellipticity and growth conditions with
polynomial growth rate p € (1, 2), and the inhomogeneous term B* conforms to either controllable growth
conditions, or natural growth conditions under an additional smallness assumption on the weak solutions.
For the precise statement of the assumptions, and more details about the Heisenberg group, we refer to (H1)-
(H4)-(HC) and (HN) below, and Section 2, respectively.
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The main new aspect of this paper is the fact that we are able to deal with the inhomogeneity B* : R>"*! x
RN x R2™N _, RN that satisfies the sub-quadratic controllable growth conditions, as well as sub-quadratic
natural growth conditions, respectively, and the primary coefficient A% : R2™*1 x RN x R2™N _, R2™N that
satisfies only a VMO-condition in ¢ and is continuous in u. More precisely, we assume that the partial map-
ping £ — A%, u, P)/(1+|P|)P~! is VMO uniformly in (u, P), in the sense of (1.5) below and, moreover,
u— A, u,P)/(1+ \P|)p‘1 is continuous in the sense of (1.3) below. Our tool of choice is the use of an
appropriate Sobolev-Poincaré inequality, and the harmonic approximation lemma; see Lemma 3.1, Lemma
3.3 below, respectively. The method of proof employed here will avoid the use of LY — LP-estimates for the
horizontal gradient and reverse Holder inequalities. Our results essentially extend those results that the co-
efficients are continuous with respect to variables & and u to the case of the coefficients being VMO in the first
variable £. We point out that partial Hélder continuity is the best one can expect under such weak assump-
tions concerning regularity of the structural functions A{ and B* in the (¢, u)-variables.

We now impose the precise structure assumptions for coefficients A and B* we are dealing with.
(H1). The primary coefficient A satisfies following ellipticity and growth conditions for a growth exponent
1<p<2:

(1.2)

{ (DpAY(£,u, P)Po, Po) 2 (1 +|P)P~?|Po?,
|Af (&, u, P)| + (1 + |P|)|DpA{ (&, u, P)| < L(1 + [P,

for any choice of ¢ € Q, u, ug € RN and P, Py € R?™V, Here structure constants v< 1 < L < oo,
(H2). The vector field A{ is continuous with respect to the second variable u. More precisely, there exists a
bounded, concave and non-decreasing moduli of continuity w : [0, o) — [0, 1] with slg% w(s) = 0 = w(0)
such that

A&, u,P) - Af (&, uo, P)| < Lw (Ju - uo/’) (1 + |P)P™", 1<p<2. (1.3)

(H3). The vector field A{ is differentiable in the third variable P with continuous derivatives. This infers the

bounded, concave and non-decreasing modulus u : [0, o) — [0, 1] such that u(t) < t, lir% u(s) = 0 = u(0),
5—

and we have

|P - Po|

a - a P )
|DPA1’(€,U,P) DPAl(é”u’PONSLH<1+‘P|+‘P0‘

> (1+|P| +|Po|’, 1<p<2. (1.4)
With respect to the dependence on the first variable &, we do not impose a continuity condition, but we merely
assume the following VMO-condition.

(H4). The mapping & — A(&, u, P)/(1 + |P|)? ~1 satisfies the following VMO-condition uniformly in u and P:

A{(&,u, P) - (Af(,u, P))so,r < v, (&, N+ |P|)P1, forall £ € By(&), 1<p<2. (1.5)
where v, : R?™1 x [0, po] — [0, 2L] are bounded functions satisfying
lim V(p) = 0, where V(p) = sup sup ][ v, (&, )dé. (1.6)
p—0 $o€Q 0<rspo J B,(é)NQ

Here we have used the short-hand notation

(ASCu, P),, = ][

B,(&%)N2

AN, u, P)AC = [Bi(&) n Q| / A%, u, P)dC.

B,(¢)nQ
(HC) (Controllable growth condition). The inhomogeneity B satisfies sub-quadratic controllable growth
condition

p
a2 1 < < >
Q-p 1<P<C (17)

any constant p* 2p, p=Q,

*

3 -1
B, P) < € (14 u e PP, p -

where C is a positive constant. We note that Q > 3 is the homogeneous dimension in non-Abelian Heisenberg

groups (see (2.1) below), and the exponent p € (1, 2). So those infer that p < Q, and then, p* = g—_% in our
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setting.
(HN) (Natural growth condition). For |u| < M = sup |u|. The term B“ satisfies sub-quadratic natural growth
o)

condition
|B*(&,u, P)| <alPP +b, 1<p<2, (1.8)

where a = a(M) and b = b(M) are constants possibly depending on M.

Now we mention some results on elliptic systems. Duzaar and Grotowski [9] prove optimal partial Holder
continuity for nonlinear elliptic systems with quadratic growth p = 2, by a new method so-called .A-harmonic
approximation introduced by Duzaar and Steffen [15]. Then, the method was extended to non-quadratic
growth cases. Duzaar and Mingione [12, 13] consider systems of p-Laplacian type. Many partial regularity
results have been established for more general nonlinear elliptic problems with Hélder, or Dini continuous
coefficients; see, for example, [6, 8, 11, 28]. Furthermore, with respect to discontinuous elliptic problems, we
refer to Bogelein, Duzaar, Habermann and Scheven [1], Ragusa [23], Zheng [35], Kanazawa [26], Goodrich,
Ragusa and Scapellato [20], Polidoro and Ragusa [22], Scapellato [24], and Tan, Wang and Chen [27] and the
references therein.

Several regularity results were focused on sub-elliptic systems in Heisenberg groups, or HdSrmander vec-
tor fields; see Bramanti [2]. Xu and Zuily [34], Capogna and Garofalo [5], and Shores [25] showed partial reg-
ularity for quasi-linear sub-elliptic systems with quadratic growth p = 2. Their methods depend on gener-
alization of classical freezing coefficient method. Then, by the generalization of the method of A-harmonic
approximation, Foglein [16] treated homogeneous nonlinear sub-elliptic systems with Hélder continuous co-
efficients, under super-quadratic growth conditions p > 2 in the Heisenberg group, and established partial
Holder continuity for the horizontal gradient Xu. Later Wang and Liao [30] considered the case of 1 < p < 2 for
inhomogeneous systems in Carnot groups. Furthermore, Wang, Liao and Gao [31] weakened assumptions on
coefficients A with Holder continuity in the variables (¢, u) to the assumptions of Dini continuity, and proved
partial regularity result with optimal estimates for the modulus of continuity for the horizontal derivative Xu.

Regularity results for discontinuous sub-elliptic systems with VMO coefficients instead of continuous
coefficients have been established in the work [7] by Di Fazio and Fanciullo, and [19] by Gao, Niu and Wang
for the case of quadratic growth; [32] by Wang and Manfredi, [14] by Dong and Niu, [36] by Zheng and Feng,
and [33] by Wang, Zhang and Yang for non-quadratic growth conditions. We note that the regularity results in
[14] and [36] have a limitation of p near 2, and the result in [19] holds only under a strong smallness condition
for the dimension. In contrast, our partial H6lder continuity result stated below, is valid for the full range
1 < p < 2 in any dimension.

The typical strategy in partial regularity depends on decay estimates for certain excess functionals, which
measure the oscillations of the solution or its gradient in a suitable sense. In this paper, we are working with
a combination of a zero-order excess functional Cy and a first-order excess functional V. For the case p = 2,
the functional ¥ is defined by

p

dg,

. 2
u-1 u-1
Wauno- f [l
LA {pu FIXD| T et
with the horizontal affine functions I : R?" — RY defined in the subsection 2.2 below. It is straightforward
to adapt the standard .A-harmonic approximation lemma by utilizing L2-theory combined with the standard
Sobolev inequality; see Wang and Manfredi [32] for the super-quadratic natural growth case. However, in the

present situation, we treat the case of sub-quadratic controllable growth, and sub-quadratic natural growth,
respectively. So one should establish the decay estimate for the following excess functional

v (u -1 )

o
where V(4) = (1 + \A|2)ﬁA for A € RX, k € N.. On the other hand, we define the Campanato type excess
functional Cy by

2
W(Z,p, 1) = f de, (19)

Bp(fo)

Cy(fo,p)=p7py][ lu-ug ,[Pdé, 1<p<2,0<y<1,

B, (&)
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which provides a measure of the oscillations in the weak solutions u itself. It is remarkable that the excess
functionals defined above involve only u, which simplifies the proofs of our partial regularity results. It is
shown that if ¥ is small enough on a ball B, (p) cc U, then, for some fixed 6 € (0, 1), one obtain an excess
improvement ¥(&, 0r, | &, or) < C40?Wi(&o, 1, 1 50’,) under smallness condition assumptions; see for example,
Lemma 4.3. At this point, one has to assume smallness on the ¥x-excess. Also we note that such an excess
improvement estimate has two different quantities ¥ and ¥« on the left, and the right hand side, respec-
tively. Therefore, in contrast to the standard proof of partial regularity, the excess improvement cannot be
iterated directly to yield an excess-decay estimate for ¥-excess. In the present situation, however, iteration
of the excess improvement yields that the ¥-excess in (1.9) and also the Cy-excess remain bounded. Finally,
the boundedness of the Cy-excess on any scale leads immediately to desired H6lder continuity of weak so-
lutions u via the integral characterization of continuity by Campanato. We point out that the idea of such a
combination of two excess functionals has its origin by Foss and Mingione [17] for continuous vector fields
and integrands, and then, adapted to discontinuous problems with VMO coefficients for p = 2 by Bogelein-
Duzaar-Habermann-Scheven [1]. It is worth mentioning that we obviously do not have access to use L2-theory
for functions in the horizontal Sobolev space HW? with 1 < p < 2. Therefore, we have to establish the fol-
lowing Sobolev-Poincaré inequality with the function V (see Lemma 3.1 below),
%

" u-u P %’J " :
f V(ﬂ) a) <co(f wowpas)
JB,(&) p By(%o)

with the constant Cp dependence only on N, p, Q. This inequality is an essential tool in order to get the reg-
ularity result. It is also one technique point where our case differs from the case p = 2 in [32].

Under the previous assumptions (H1)- (H4) and (HC), and (H1)- (H4) and (HN), respectively, we establish
the following two partial Holder continuity results.

Theorem 1.1. Assume that coefficients A (¢, u, Xu) and B*(&, u, Xu) satisfy the assumptions (H1)- (H4) and
(HC). Let u € HWYP(Q, RN) with 1 < p < 2 be weak solutions to the systems (1.1), i.e.,

/ AXE, u, Xu) - Xodé = / BYE, u, Xu) - pdE, Vo € C2(Q,RY). (1.10)
Q 0

Then, there exists a relatively closed singular set Qo C Q such that u € co (Q\Qo, RY) foreveryy € (0, 1).

loc

Moreover, for any A € (0, Q) we have Xu < Lp’A(Q\QO, R2™NY with the Morrey parameter A = Q — p(1 - y).

loc
Finally, we have that the singular set satisfies Qo C X1 U 2,, where

2= {8 < 0 limoup| (g | = o).
2 =14& € Q: liminf [V(Xw) - V (X, ) |2d‘f >0
r—=0 By (%)

with the functional V defined in (2.3), and the singular set has (2n + 1)-Lebesgue measure zero |Qo| = 0 and its
complement Q \ Qq is a set of full measure in Q.

Theorem 1.2. Assume that coefficients A (¢, u, Xu) and B*(¢, u, Xu) satisfy the assumptions (H1)- (H4) and
(HN). Letu € HWYP(Q, RN)NL*(Q, RY) be weak solutions to the system (1.1). Then, we have the same results
that u € C?O”C’(Q\Qo, RYN) and Xu € LPA(Q\Qo, R2™N) as Theorem 1.

loc

Remark 1.3. It is worth noting that the choice
p22
2

A%, u, P) = a(€) (1+ \P|2) P* forie{1,---,2n},ac{1,---,N}

makes the sub-elliptic p-Laplacian system with VMO-coefficients, involving sub-quadratic growth terms

2n p-2
- (4 (14 7)) - B, )
i-1
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just as a special case of (1.1), where A}(§) € VMO, and 1 < p < 2. So, combining the result for 2 < p < oo
established by Wang and Manfredi in [32], our partial Holder continuity results covers the model case of sub-
elliptic p-Laplacian system with 1 < p < oo, It is remarkable that Zheng and Feng [36] showed everywhere
regularity for weak solutions of sub-elliptic p-harmonic systems while p is very closed to 2.

The organization of this paper is as follows. In Section 2, we collect some basic notions and facts associated to
Heisenberg groups, involving quasi-distance, horizontal Sobolev spaces, and horizontal affine function and
some estimates. In Section 3, firstly an appropriate Sobolev-poincaré inequality which plays an important
part on proving Holder regularity is established. Then, an .A-harmonic approximation lemma, and a prior es-
timate for weak solution h € HW'! to the constant coefficient homogeneous sub-elliptic systems are given.
In Section 4, we prove partial regularity results of Theorem 1.1 under sub-quadratic controllable structure as-
sumptions (H1)-(H4) and (HC) by several steps. Step 1 is to gain a suitable Caccioppoli-type inequality which
is an essential tool to get partial regularity. An appropriate linearization strategy is given in the second step.
Then, one can achieve that solutions are approximately A-harmonic by the linearization procedure, and an
excess improvement estimate for the functional ¥ is obtained under two smallness condition assumptions,
by combining with A-harmonic approximation lemma in the third steps. Once the excess improvement is
established, the iteration for the ¥-excess and the Cy-excess can be acquired in Step 4. Finally, we show
boundedness of the Campanato-type excess which leads immediately to desired Hélder continuity and Mor-
rey regularity of Theorem 1.1. The last section shows the results of Theorem 1.2 under sub-quadratic natural
structure assumptions (H1)-(H4) and (HN). In such a case, we establish appropriate estimates just for the
natural growth term, and the rest procedure is similar to the proof of Theorem 1.1.

2 Preliminaries
In this section, we will give introduction of the Heisenberg group H" and definitions of several function
spaces, and some elementary estimates which will be used later.
2.1 Introduction of the Heisenberg group H"
The Heisenberg group H" is defined as R?"*! endowed with the following group multiplication:
1 n

Faan Ao [ Fan = 1 ioi i

&0, D <£+mt+t+2;;(xy xy)>,
forall & = (£,6) = (', %%, -+, X"yt y%, oy 0, &= @0 = G4 %%, 3 7L 72,70, D Its

neutral element is 0, and its inverse to (£, t) is given by (-&, —t).
The basic vector fields corresponding to its Lie algebra can be explicitly calculated, and are given by

oy 0 _Vio —x 9 X0 O
Xi = Xi(§) = ox; 2 ot’ Xnei = Xnsi(§) = oy; " 2 ot’ T=T() = ot
fori=1,2,---,n, and note that the special structure of the commutators:

[Xi, Xiun] = - [Xiens X1 = T, else [X;,Xj] =0, and [T, T]=[T,X{]=0,

that is, (H", ) is a nilpotent Lie group of step 2. X = (X1, - -+ , X5,) is said to be the horizontal gradient, and
T vertical derivative.

The homogeneous norm is defined by ||(, £)||,, = (H%’ ||4 + 16t2) e , and the metric induced by this

homogeneous norm is given by

aE o=t -g -
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The measure used on H" is the Haar measure (Lebesgue measure in R2"*1), and the volume of the homoge-

neous ball Bg(£o) = {& € H" : d(éo, §) < R} is given by [Bg(&)|,, = R*™ [B1(éo) 4 w.RQ, where the
number

Hnr

Q=2n+2 (2.1)

is called the homogeneous dimension of H", and the quantity wy is the volume of the homogeneous ball of
radius 1.
Let 1 < p < +oo. We denote by

HW'P(Q) = {u € IP(Q)|Xu € [P(Q),i=1, -+, k}

the horizontal Sobolev space. Then, HW?(Q) is a Banach space under the norm

k

ull oy = lloy + > Xt 1oy
i=1

Foru e HWY9(Bg(&)),1<g<Qand1<p < g—g], Lu [29] showed the following Poincaré type inequality

associated with Hérmander vector fields, which is naturally valid for H" :

1 1
p q
]l lu-ug g|"dé ] <CpR ][ \Xu|9dE )| . 2.2)
Br(&0) Br(%)

The inequality (2.2) is valid for p = g (= 2).
Throughout the paper, we shall use the functions V, W : RX — R¥ defined by

V() =(1+[g) ¢ W) =¢/(+[g] ) (2.3)

for each ¢ € R¥, k € Nand p > 1. The functions V and W are locally bi-Lipschitz bijection on R,
The following inequality
(1+15?)

(W(e)| < |V(9)| <27 [W(g)]. 2.4)

2p 2p
2 2

<1+[gPP <28 (146) 7,
immediately yields
The purpose of introducing W is the fact that in contrast to | V| n , the function |W| n is convex. In fact,

firstly by direct computation yields that W () = tr (1+t27P) % is a convex and monotone increasing function
2
on [0, oo) with W (0) = 0; secondly we have

()

2 2 2
P ow <|c1\ + |§z|)” W (e)[P + W (52)l?
< : < : ,

The following lemma includes some useful properties of the function V. The proof can be found in Lemma
2.1 of [4]. For simplicity, here, we replace the coefficient 27~2/* with % in the left of the first inequality (1)

below, since the fact that 271/2 < 20-2/4 for p > 0.

Lemma?2.1. Letp € (1,2) and V : R¥ — R¥ be the functions defined in (2.3). Then, for any ¢1, ¢, € RX and
t > 0, the following inequalities hold:
@. 5 min (Je1l, [1]%) <202 min (|g1], l611%) <V (sl < min (Jsa], 61/ )
@) [Vitsy)| < max (¢, ¢8) [V(e))
3). |Vis1 +62)| < COY(|V(51)| + | V(62)])s
(4). 5161 - 62| < |V(g1) - V(62| /(1 + [61]* + [52|*)
(). |V(s1) - V(52)| < Cp, k) |V(s1 - 62)
(6). |V(s1 - 62)| < Clp, M) |V(s1) - V(52)

p2
%

< Cp, k) g1 -62];

>

for all ¢, with |¢,| < M.
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2.2 Horizontal affine function and estimates in H"
Let u € L2(B,(&), RY), & € R?"™*1, and consider the horizontal components

E=(d, Xyt o,y and &= (X3, e, XB, V0, ens YB).
If the function
lg, (&) = Lg, ,(&0) + X1y, (& - &0),

minimizes the functional
1 lu-1°dé,
B, (&)

among horizontal affine function ! : R?" — RY, then, we have

L, p (&) = g, - ][ ude,
Bp(fo)

and
Q-20+2

cQ p?

Xlg, , = ﬁp%) u® @ - &)dE, 25)

where the vector u ® (£ - &) has components u®(x* - x3, x* = x3, ..., x*" - x3") witha = 1, 2, ..., N, and co
is a positive constant defined by

[(Qk-212 2
c =M= (2k—1)!!(2k-3)uﬁ’n‘Zk‘l, o6
’ f(;T (sin@)"-1do [(zk_ 1)”]2 P - .

Qonk-2n2°" "

Here, we use the notation 2k -2)!' = 2k-2)2k-4)---4x2and k- 1)!""'=(2k-1)(2k-3)---3 x 1. The
proof of the results above can be found in [32] by Wang and Manfredi. On the basis of this formula, elementary
calculations yield the following estimates.

Lemma2.2. Let u € L*(Bp(¢o),RY), 8 € (0, 1).We denote by Iy, , and Iy, o,, the horizontal affine function
defined as above for the radii p and 0p. Then, we have

-20+2\’
Xl, - XI PS(L > ][ u-1, P de, @.7)
Xl o = Xlgo00l” = | 20 () 56 u-lg,,p|" d§
and, more generally,
-20+2\’
X1 —les(Q ) ][ u-11Pde, (2.8)
{ $0.p | cQ p By (&) | | f

for every horizontal affine function I : R** — RN,

Proof. By the identity (2.5) and Holder’s inequality, we obtain

p

Q-2Q+2\*
|Xlg,p — Xlg, 00 }p B ( coQ (Gp)p)

p r-1
Q-20Q+2\ [ : RN ST
< -1 ~Xl, ,(E-%&)"d ~&|"d
(COQ (W) . 1 tootE) =X, 6 - ) .f<f39p(&)|£ &l 5)

Q-2Q+2 P ][ P
< —— -1 d N 2.9
( coQ (9/)) ) B, ($0) ‘u fo,P| ‘S ( )

b

. p-1
where we have used the fact that ( fBep ) ’.{ -& ’ p1 dg) < (6p)7P.

f (u = lg, p(E0) = Xlg, (& - 20)) @ (€ - So)d§
By (%0)
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For (2.8), it follows

e L N & T A L
Xy, , - X -(COQ - ) .Yip@o)‘” I(E) - XI(E - E0)[” d& (ﬁp(%)ye | dé’)

b
- 1P dé.
cQ p ) 71[39,,(50)

(&)
N
(=)
+

N

Il
7/~
S
I
N
S
+
N

O

According to the definition of the function [ £o.p0 the following version of the Poincaré inequality (2.2) is true,

that is,
. ; i
(][ =1y, (@) ds) < Cop (f
B, (%) B, (&

| | Xu - Xlg, ,|? d.{) ,
p\S0.

Where1<q<Q,1spsg—SI.

3 Sobolev-Poincaré type inequality and .A-harmonic
approximation

We know that L2-theory cannot be directly used to obtain appropriate estimates for solutions u € HW? with
1 < p < 2, so in this section, we first establish a suitable version of Sobolev-Poincaré type inequality with
functions V. This inequality is an essential tool in proving partial regularity. Then, we give a prior estimate
for A-harmonic functions h € HW'1, and introduce an .A-harmonic approximation lemma which plays an
important part in getting excess improvement estimates.

Lemma 3.1. (Sobolev-Poincaré type inequality). Let p < (1,2) and u € HWP (Bp(.{o),]RN ) with B, (&) C Q,
b

then, it follows
u-u v > :
- p
][ V(WN d¢ <Cp ][ |V (Xu)|*d¢ | (3.1)
B, (&) P By(&)

withp® = 5—_% the Sobolev critical exponent of p; here the constant Cp depends only on Q, N and p. In particular,

the inequality also holds if we substitute 2 for 27”*.

Proof. We introduce the operator of fractional integration on Q of order 1 as follows

_ ()
L) - /Q 1015 g iy @ € < Boléo)

Based on Theorem 2.7 in [3] by Capogna, Danielli and Garofalo, we deduce for 1 < p < +oo

1

1 1
. v P
(][ L df) - ¢p (f |f(s)|”d£) , (52
B, (&) B, (&)
where we denote by p” = % the Sobolev critical exponent of p, and the number Q the homogeneous dimen-

sion in H".
Lu [21] gave a representation formula for a function on graded nilpotent Lie groups for the left invariant
vector fields; see Lemma 3.1 there. One form of the representation states that there exist constants ¢ > 1 and

C > 1 such that e )
X 2

)~ g <€ [ B(E, &)

Bcﬂ({O)

d}], Lf 6 BP({O)*
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Noting that W2/P(¢) is monotone increasing and convex, we apply W2/?(¢) to both sides of the last in-
equality and have by Jensen’s inequality

ap (|4E) ~ g ) .C 2 lp CdE
v < p “p /R W (Xu) 5 age, py
and
” _ 0, ne¢ Bcp(‘fo),
W (|xuCp]) = { W (|Xu(n)]), n € Bep(&o).

One can check that W (|Xu(n)|) € L? (B (&)), which implies w (|Xu(n)|) € LP (R*"*1). Then, applying the
inequality (3.2) yields

- Q-p

= Tp 2 rQ
M) T’Pd ¢ _ 2p M -p p
|:/B/J(fo) W< p § ~/Bp(§o) w ) &
29 rQ
<£ 72/ M Q-p
K |:]ip(~fo) ( R2n+1 W (Xu(n)) B (5, dae, ’7)) dn) df]

P
|:]ip(§0)

&5 ’5} "
<( ]/V2 X é d{- ’
) |:]ip(fo) (| ! )D :| ’

=]

?
S

=]

<

I (WP (xw) (§)

or
Q,

w 1%
w - orqg <C
Mp(&)) W () g, 5] H’ (&)

p G0

w2 (|Xu®)) d{] .

We obtain the assertion of the theorem, first for W, and then, also for V by (2.4). O

Let A € Bil(Q x RN x R2™N R2™N) he 3 bilinear form with constant tensorial coefficients. We say that a map
h € C=(B,(&), RY) is A-harmonic if and only if

][ A(Xh, Xp)dE = 0
Bp({())

holds for all testing function ¢ € C5(B,(&), RY).

Shores in [25] showed that weak solutions h € HW2(Q, R) of the constant coefficient homogeneous
sub-elliptic systems belongs to C* in the subset Q¢ C Q. Then, the following estimate holds for the solution
h € HW*2(Q,RM),

sup (\Xh\z + ‘thr) < Cop? \Xh|? dé.
By2(%0) J Bp(&)
Therefore, we can argue as the proof of Proposition 2.10 in [4] to obtain the same estimate for any A-harmonic
function h € HWS1(Q, RM).

Lemma3.2. Let h ¢ HW1(Q, RN) be weak solutions of the constant coefficient systems. Then, h is smooth
and there exists Cy = 1 such that for any B,(&,) C Q

2 2, |2 -2 2
sup (\Xh\ +‘x h) >sCop IXh? dé. (3)
B,2(&0) B, (&)

Similarly to [10], one can establish the following version of A-harmonic approximation for the case 1 < p < 2
in Heisenberg groups.
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Lemma3.3. LetO<v<Land1 < p < 2 be given. For every € > 0, there is a constant 6 = §(Q, N, p,v,L,€) €
(0, 1] assume that y € [0, 1] and that A is a bilinear form on R?>™N with the properties

A(P,P)=v|P> and A(P,P)<L|P||P|, P,PcR>™N,

Furthermore, let w € HW"P(B,(&), RN) be an approximate A-harmonic map in the sense that the following
estimate holds

f A(Xw, Xp)d£ < 8y sup |Xp|, Ve € C3(Bp(&), RY),
By (&0) B, (%)

and
][ |V(Xw)|2d¢ < y°.
Bp(fo)

Then, there exists an A-harmonic map h € C*(B,(&p), RN) which satisfies

]ﬁp ({0)

2
v (W‘J’h)' d¢ <y*s and |V(Xh)*dE =< 1.
p B, (&)

4 Partial Holder continuity for sub-quadratic controllable growth

In this section, we prove the partial regularity result of Theorem 1 under the assumptions of sub-quadratic
controllable structure conditions. Now we begin with the following.

4.1 Caccioppoli-type inequality

We know that Caccioppoli-type inequality is a preliminary tool to prove partial regularity for systems. So in
this subsection, we shall prove a Caccioppoli-type inequality for weak solutions to the sub-elliptic systems
(1.1) with sub-quadratic controllable growth conditions.

Lemma 4.1. (Caccioppoli-type inequality). Let u ¢ HWP(Q,R") be weak solutions of the nonlinear sub-
elliptic systems (1.1) under the assumptions (H1)-(H4)-(HC). Then, for any &, = (x*, -+, x", yt, .-+ ,y", ) €
Q with B/(&,) cC Q, and any horizontal affine functions | : R?" — RN with |I(&)| + |XI| < Mo, we have the

estimate
][ \V(Xu - X1 dE <Ce ][ v(L">
By (§0) By(§0) r

'
, ) Y
+ (P2 +rP) ][ (XulP +ulP +1)d¢ ,
B, (&)

2
dE+w 7[ (u - 1E)P)de | + Vi)
Br({O)

where C_ is a positive constants depending only on Q, p, v, L, My, and the exponent p' = £, and (p*)’ = pf’—_l

p-T’
pQ

With p* = ﬁ.

Proof. We choose a standard cut-off function ¢ € Cg5 (Br(&), [0, 1]) with ¢ = 1 on Bg(fo) and |X¢| < é
Then, @ = ¢*(u - I) can be taken as a testing function for sub-elliptic systems (1.1). Hence, we have

][ AX(E, u, Xu)p?(Xu - X1)dé = -2 ][
B/(&)

Br(fo

AS(E, u, Xu)p(u — DXPAE + ][ B, u, Xu)>(u - DdE,
)

B, (%)

where we have used the fact that X¢ = ¢2(Xu - XI) + 2¢(u - DX¢p.



430 — Jialin Wang et al., Regularity for sub-elliptic systems with VMO-coefficients DE GRUYTER
In view of the identities fo(fo) (A%(-, 1(&), XI)){0 X@d¢ =0,and

—]l AS(E, u, XD (Xu — XDdE = 2 ]l A%E u, XDp(u - DXBdE - f ANE, u, XDXodE.
B, (%) B, (&) B, (&)

It follows for weak solutions u of systems (1.1) that
Toi=f 1A u,Xu) - A, u, XDI (ku - XD
Br({o)
=2][ [Af (€, u, XI) - A{ (¢, u, Xu)lp(u - NXpdE
B, (%)
+ ][ [A%(E, 1(&o), XD) - AZ(E, u, XD]Xpdé&
B, (&)
+ ][ (A7, 1(€0), XD)g, » — AT (E, (&), XD)XpdE
B, (%)

" ][ BA(E, u, Xu)p>(u - Ddé
Br({O)
=22[1 +Iz+[3 +I4, (41)

with the obvious labelling for Iy — I4.

We first estimate the left-hand side of (4.1). By the first inequality of (1.2), Young’s inequality and definition
of the function V (2.3), we have

. 1
Ip = ]l / (DpA%(&, u, X1 + s(Xu - X1))(Xu - XI), (Xu - XI))¢p*ds dé¢
B/(&) Jo
1
27[ / V(1 + X1+ s(Xu - XD~ Xu - X2 ¢ ds dE
Br({O) 0

p-2
27[ v 300+ X2+ [Xu - X1D)] T (- X2
Br({o)
p-2 p-2
27[ v[30 M) T (1exu-X12) T X - XIPpRdg
B,(50)
p=2
v [3(1 + Mé)} ’ P2V (Xu - XI)[2d¢, 4.2)
B, (%)
where we have used the elementary inequality 1 + |a|*> + |b - a|® < 3 (1 +]a>+|b|*),and1<p<2.
Now, we are going to estimate the terms I; — I, on the right-hand side of (4.1). For small positive € < 1
appearing in lines, it will be fixed later.
Estimate for I; . We shall decompose the ball B,(&p) into four subsets: Q; := By(é) N {|Xu - XI| < 1} n
{ wl| 1} , Q5 = By(&) N {|Xu-XI| <1} n { > 1} , Q5 = B(&) N {|Xu-XI| = 1} n {‘“T’
Q4 = By(&) N {|Xu-XI| = 1} 0 {’“T’( > 1}.
Case 1: Using the second inequality of (1.2), |[X¢| < é Young’s inequality, and Lemma 2.1, we derive the
following bound for I; on the subset Q;.

u=l
r

sl},and

; [AF(§, u, Xu) - A7 (§, u, XD]$(u - DXPpdE

1
sL][ / (1 + |X1+ s(Xu - XD|)P~2ds |Xu - XI||u - 1||Xp|pdé
.Ql 0

<4L 4 ¢|V2V(Xu - XD)|
01

u-1
r’d"r
2
dé, (4.3)

2e 4+ ¢*|V(Xu - XD)|*dé + 32L%¢™! ][
01 Q

()
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where we have used the inequality (1 + |XI + s(Xu - Xl)|)1"’2 <lforl<p«<2.
Case 2: Similarly to the case 1, there is

[AF(E, u, Xu) - AF(&, u, XD]p(u - DXpd&

[0}

r » ” o
QW Dg ¢H|V(Xu—Xl)|;ﬁd§+(4L)p€1-p7[ uTl d&
OB To,

2
e | gvon-xopags2ape | v (2 ae,
o8 0,

(4.4)

where we have used Lemma 2.1, and the inequality\V(Xu—Xl)|z% < |[V(Xu-XD|?> < | Xu-XI> < 1for1<p <2

on the set Q5.
Case 3: By Young’s inequality and Lemma 2.1, it follows that on the subset Q3,

0 [A?({’ u, Xu) - A?({’ u, Xl)]¢(u - I)X(Pdf

2

ag
v(*7)

< 1 on the subset Q5.

u-1

58][ ¢F|Xu - XIPdE + (4L)7TeTs ][
Q3 Q3

2

dg,

5287[ 2| V(Xu - XD|2dé + 2(4L) 7 1eTs ][
Q5 Q3

£ 2
p- p
< asﬁEZand

u-l

u=l u=l
r r r

where we have used the fact that
Case 4: On the subset Qy, it holds that by the assumption |I(&)| + | XI| < Mo

g [Af (&, u, Xu) - A{ (€, u, XD]p(u - DXpdE

2?5 L 7[ ¢ |V(Xu - XD)|?
JQy

=

57[ e |V(Xu - XI)|77 dg + 22117 7[ glp dg
Q4 Q,

v (u -1 )
r
here, we have used the smallness assumption ®@(&y, r, ) := J&;,({O) |V(Xu - XI)|?>d¢ < 1 and ¢z%
From (4.3), (4.4), (4.5) and (4.6), we have the estimate for the term I; as follows

v (u - l)
r
where we have used the inequality e > 1> elP for small positive constant £ < 1.
Estimate for I,. By the first inequality of (1.3), we get

u-1°
r

2
e &2 V(Xu - XD)PdE + Clp, L)e* ][ de,
Q4

Q4

2
I < 2¢ ¢ V(Xu - XD)|*dé + Cp, L, Mo)e™s 7[ dé,

Br({O) 37(50)

L sL][ w (lu~ 1)) (1 + XU |Xp|dE
Br({O)
<C(p, L, Mo) f w (ju-1E)P) ¢2|Xu - X1|dg
B, (&)

+C(p, L, Mo) 7{3 o @ (=) Blu =X

=2121 + 122.

(4.5)

(4.6)

< ¢

(4.7)

(4.8)

To estimate the term I, we divide the domain of integration into two parts Qs := By(é) N {|Xu-X1| < 1}

and Qg := B,(&) N {|Xu - XI| > 1}.
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Case 1: On the set Q5 where [Xu - XI| < 1, it holds

I>1 (on Qs) szejﬁ ¢ |\V(Xu - XD|*d¢ + C(p, L, Mp)e™* ][ W’ (lu-U&)P)dé

5

e+ ¢*|V(Xu - X1)|*dé + Clp, L, Mo)e *w <
Qs

- 1(5‘0)\%5) , 4.9)

Qs

where we have used in turn Young’s inequality, w? < w, the concavity of w and Jensen’s inequality.
Case 2: On the part Q¢ where |[Xu - XI| > 1, we find

Ly (on Q5) efg ¢2p\Xu—x1|pd5+C(p,L,Mo)sﬁ][ W (ju-1(E)P)dé

6

2e 4 2|V(Xu - XD)|2dé + C(p, L, Mo)eTr w (][ u - 1(.{0)|pd§) , (4.10)
Qé Qé
where we have used the inequality wrT < w.
Combining (4.9) with (4.10) leads to
I1 < 2¢ 2| V(Xu - XI)2dé + C(p, L, Mo)e ™7 w (][ lu - l(‘f_o)pd<f> , (4.11)
B,(50) B,(&)

where we have use the fact 7% > ¢ for 0 < £ < 1.

The term I, can be estimated similarly as I;; above. Here, we split the ball B,(,) into two subsets Q7 :=
Br(&0) N {|%4| < 1} and Qg := B,(§o) N {%4] > 1}.

Case 1: On the subset Q7, it yields

I, (on Q7) < 2¢ ( l) dé + C(p, L, Mp)e™tw <f lu - l(fo)\pd.f) . (4.12)
Case 2: We deduce on Qg
I, (on Qg) < 2¢ ¢p ( l) dé+C(p, L, Mo)s% (f lu - l(é‘_o)\pd.f> . (4.13)
Qg
From (4.12) and (4.13), it follows
3 u-1)[* 5 i)
I < Zs]iy(so) V( . ) dé+C(p, L, Mp)e™ w (_7[’ . [u - 1(&)] d{) . (4.14)

Joining (4.8), (4.11) and (4.14), we obtain

I, < 2¢ ¢\ V(Xu - XD|*dé + 237[
P By(fo) h Br(fo)

()

We are now in the position to handle the term I3. By VMO-condition (1.5), the term I3 can be estimated
as follows

dg + C(p, L, Mo)e™F w (7@ mlu—l(-‘fo)lpdf) .

(4.15)

I 57[ ve, (1 + X" |Xo|dE
Br({O)

sC(p,Mo)][ V$O¢Z\Xu—Xl|d.f+C(p,Mo)][ Vi, |u - | Xp|dE
B(%o) B, (&)
=!I31 +I32. (416)

We can argue the terms I5; and I3, as the same way treating the terms I, and I;.
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Case 1: On the set Q5 where |Xu - XI| < 1, we use Vg, < 2L and (1.6) to infer the following estimate
2
I31 (on Q5) s][ e [VaVCru - X0| g + C(p, Mo)f e7v} dg
.Qs QS
2e 4+ ¢?|V(Xu - X1)|>dé + C(p, L, Mo)e *V(r). (4.17)

Qs

P 1
Case 2: On the part Q¢ where |Xu - XI| > 1, we use (1.6) and the fact that vgl = Vg - vgl Vg, < 2L, to
deduce

I1 (on Q¢) s]{) £p? |Xu - X1|Pdé¢ + C(p, MO)]{) gﬁvfp d¢
6 6
<2¢ | 2 |V(Xu - XD|2dé + C(p, L, Mo)e ™7 V(r). (4.18)
6
Using (4.17) and (4.18), we get
I < zg][B o &2 V(X - XD[2dE + C(p, L, Mo)e T V(). (4.19)
r\so

Similarly, the term I5, can be estimated as follows

Is < Ze][ v <”—">
By(&) r

Joining (4.16), (4.19) with (4.20), we have

2
d& + C(p, L, Mo)eTr V(). (4.20)

2
I < 2¢ 2| V(Xu - XD)|2dE + 2¢ 7[ v (L‘l) d& + C(p, L, Mo)eTr V(7). (4.21)
By(&) J B, (&) r
Estimate for I,. Using Holder inequality, one has
. 1-%
L sC][ (|Xu|p + P+ 1) " p2(u - z)‘ dé
(&)
1-L . L
* p p p
sc|f (e er)ag| C(f |erw-0| ) (4.22)
Br({O) Br({O)

To obtain an appropriate estimate for I, we take the domain B.(&p) into four parts as the same way of I;.
Case 1: For the case of Q; = B;(é) N {|Xu - Xl| < 1} n {’“7‘1‘ < 1}, by Sobolev type inequality, Hélder’s
inequality, Young’s inequality and Lemma 2.1, it follows that

[7{) (1xu? s +1) df} ” [(f) - df) ]
-1,

<Cp {]{21 (|Xu\p + |u|p* + 1) d{] "y [7@1 (
<C(Cp, p, &)r* {f (|Xu\1[J + \u|p* + 1) d{] 2(1_;) + Cpeji

. 2Cp£][ 4| V(Xu - XD)| dé
Q

(|Xu\p + \u|l’* + 1) d{r@;«) + ZCPSJ{) 74 (HT_I)

+ che][ ¢% |V (Xu - XD)|* dé. (4.23)
O,

u-1
r

+ ¢? ’ﬁV(Xu —xz)Dp d;’} :

u-10°

2

sC(Cp,p,e)r2 {7[

(o3
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Case 2: On the part Q, = Br(£o) N {|Xu - XI| < 1} N { u-l

M; (il +1) df} - !<7€2 -] dé’)”l"]

. 1-% )5
<C(Cp, p, E)ri V (|Xu\p +uf + 1) d{}(
Q;

> 1}, the following estimate holds

—1P
r

B
! + Cp[':][ u
Q;

2 * 2( ) 4 2
+C(Cp,p, &)r [][ (|Xu|l’ +ulP + 1) d£} + Cpe][ ¢ | V(Xu - XD)|" d¢
.Qz -QZ
1-%) 5

() [f (et )]z f (45

. che][ &2 |V (Xu - X1)|? d, (4.24)
0,

where we have used the fact that f, (&) (|Xu\p + \u|p* + 1) déz1,and ¢ < 1.
Case 3: On the part Qs = B,(£) N {|Xu - XI| > 1} N { 1}, it yields

[]ﬁ (1w +up” +1) df} N ( At of” d§) A

P u-1

<Cp []{)3 <|Xu|p + |u|p' + 1) dﬂ i r {]{)3 < +¢? | Xu —XI|)p d{];
A
)

u-l
r

u-1
r

<C(Cp, p) H) (|Xu\P+\u|P*+1) d{] o {r 2d.{>% +r( g % |Xu—Xl|p>;d§}

. (1-3) & N
<C(Cp, p, ) (ﬂ% +r2) V (\Xu|p+ ufP +1 ] ror +2Cps][ V(MTZ>
Qs Q;

+ zc,,g][ % |V (Xu - X1)|* d¢, (4.25)
Q3

Case 4: For the last case of Q; = B(ép) N {|[Xu-Xl| =1} n {

M)Q (|Xu|p+|u|P*+1)d§'} ’ [(f ‘¢ (u- l)‘ d¢ ]
2% Cp M) (|Xup+|u|P*+1)d{r_; {r( )

P » o (1_%) 71 u-1/°
<C(Cp, p, e)rr1 {][ (\Xu| +ul? + 1) d{} + 2Cp£][ —
Q4

Q4

> 1} we get

( ¢ |Xu - Xl\p) ' d.{]

+ 2cpe][ ¢\ Xu - XI|P d¢
Qy

1-L)-2

p-1 2

<C(Cp, p, e)rit {7[ (\Xu|p + \u\p' + 1) d{} (

+ 4Cp£ 7l 174 (L_l>
Ja, r

+4Cpet % |V (Xu - XD)|* dé. (4.26)
Qy

Combining the estimates (4.22)-(4.26), we find that

4

L <4cpe][ @2 |V (Xu - XD)|> d& + C(Cp, p, €) (r +rL1) V (\Xu|1’+|u\l"+1) d{}(

Br(é’O)
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+4cpe][ V<”">
By(&) r

Joining the estimates(4.2),(4.7),(4.15),(4.21), (4.27) with (4.1), we arrive at

2
(4.27)

(3(1 + Mg)) T . 2| V(Xu - XD|2dé&

<(6€ + 4Cpe) % V(Xu - XD|*dé + [C(p, L, Mo)e™s + 4e(1 + cp)} ][
Br('fo) Br({())

+Clp, L, Mo)e™ w (]i ol l({o)pd£> + C(p, L, Mo)e™s V(r)

, (5)
+C(Cp, p, €) (r2+r1%) [7[ <|Xu|p+|u|p +1) d&} Y .
J B+(&o)

=
Here, choosing ¢ < %, we can absorb the first integral of the right-hand side into the left. Keeping

in mind the properties of ¢, we have thus shown

][ |V(Xu—Xl)|2d¢'520][ V(Xu - XDP$>dE
B (&

B, (&)
v (u - l)
r

SCc][
B, (&)
. 0
f (Xl + "+ Dag| |,
B, (&)

2
dé+w ][ (u - UE)P)dE | + V()
Br(fo)

+ (41"

with a constant C. = Cc(Q, p, v, L, My), p’ = p%l, and (p*) = p&”—:l. This proves the claim. O

For sake of simplicity, we motivated the form of the Caccioppoli inequalities in Lemma 4.1. We set

Do, 1, 1) o= ]ﬁ Vo xpPas,
v u-1
—

lu - 1(.{0)|Pd.g) +V()

. 2
Vo, r, D) = ]l de,

B:(40)

Va(lo, 1, ) =¥, 7, D) + @ <][ .

»

@

+ (r2 + rp,) [][ (XuP + |ulP +1)de
Br(fo)

In the sequel, when the choice of &, or [ is clear, we frequently write @(r, I) or @(r) respectively, as a
replacement of @(¢y, 1, 1).

4.2 Approximate A-harmonicity of weak solutions

To apply A-harmonic approximation lemma, we need to establish the following lemma, which provides a
linearization strategy for non-linear sub-elliptic systems (1.1).
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Lemma 4.2. Under the assumptions of Theorem 1.1 are satisfied, B,,(&) C Q with p < po and an arbitrary
horizontal function | : R*" — RN, we define
a _
A = (DpA{(, 1(50)’)“))50,;; and w=u-1,

then, w is approximately A-harmonic in the sense that

]i « )A(Xw,Xgo)d.f <Cq [‘P*(Zp) +U (‘I’é(Zp)) + U (‘I’;(Zp))] sup |X¢|

B, (&)

forall ¢ € C3(Bp(&o), RM), and the positive constant C, = C(p, My, L, Ce).

Proof. Without loss of generality, we assume that sup |X¢| < 1. Noting that w = u - I, we compute

By(&)
A(Xw, X)d&
Bp(é'o)
1
=][ / [(DPA?(', 160), XD) ., , = (DpAF (-, (o), X1 + sXw)) }des dé sup |Xg|
B,(&) /0 0P 0P B, (%)
1
+][ / (DpASC, (&), X1+ sXw)),  Xwds df sup |Xg|
By (&) Jo 0P B, (&)

=:(J1 +J2) sup |Xo|, (4.28)

Bp ({0)

with obvious labelling of J; and J5.
In order to get the bound for the first term J;, we first use the inequality (1.4) to obtain

1 - -
/O |(DpAZC, 160, XD) ., - (DpAZC, 1), X1+ sXw)),, | ds

=/01

1
< / f IDPAL(-, 1(€0), XI) - DpAX(-, (&), X1 + sXw)| déds
0 JBp(%0)

Xu —Xl| -2
sL][ u (|7) (1 +21X1)P~7dé.
B \ 1+IXI

By the monotonicity of y and the inequality above, it yields

ds

7{9 o DpA{ (-, 1(&o), XI) - DpA{ (-, I(&), X1 + sXw)dé

| Xu - X1 -2 v,
I sL]i o ( ) O+ 21X X - Xl
p\S0.

<C(p, L, My) u(Xu - X1))| Xu - X1|d¢.
B, (&)

Here, we decompose the ball B, (£)) into two parts Qs and Q.
Case 1: On the domain Qs where |Xu - XI| < 1, it follows by Lemma 2.1 Young’s inequality, Jensen’s
inequality, and Hélder’s inequality in turn

J1 on 0) <C(p, L, Mo) | (V0 - XD)) [VCKu - XD)dg

<C(p, L, Mo) [uz (7{) |V(Xu —Xl)|d£) + 7@ |V(Xu —Xl)\zd.f}

<C(p, L, Mo) [u ((]ﬂs |V (Xu —Xl)|2d¢') %> + ]{25 |V(Xu —Xl)|2d§} ,
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where we have used the inequality p? < .
Case 2: On the set Q¢ where |Xu - XI| > 1, we have the following bound

J1 (on Q¢) <C(p, L, Mo) 7{) u(Xu - XI)|Xu - X|d&

P

<C(p, L, Mo) |up1 ( |Xu —Xl|d§') +7[ |Xu —Xl|pd§]
A Jog Jas

<C(p, L, My) _p ((7{26 |Xu—led.{>;) +]£26 |V(Xu —Xl)|2d.{}

<C(p, L, Mo) _}1 ((]{)6 |V(Xu—X1)|2d§)'l’> +f06 |V(Xu —Xl)|2d§] ,

where we have used ;u% < p and Lemma 2.1. Then, we get the following estimate

J1 5 C(p, L, Mo) [W(@ (p)) + k(@7 (p) + Do) . (4.29)
Based on the following facts
f 4G ux0. Xp)dE - (B, X, g)dg =0 and (A, 1), XD),,,, Xp)dE =0,
B, (&) B, (&) B, (&) ’
the integral J, can be rewritten as
J2= 7{%@0) [(AFC, 1), X)) g, = (ATC, 1E0), XD) | Xpdg
-f, . (AT 1, ), A 1), 0] g
e f ARG 160, X - AFCE. . X)) Xpag
B,(%o)
B*(¢, u, Xu)pd
+]£p(fo) $u, Kpds
=tJo1 +J22 + 23, (4.30)

with the obvious meaning of Jo1 + J22 + J23.
Using the assumption of |I(&)| + |XI| < My and VMO-condition (1.5), We find that

J21 S]Z Ve, (1+ Xul)P~tdé

By(%o

s][ Ve, (1+ IXIP~Y + | Xu - XIP"Hdé
B

5 (80)
<(1 +M€’1)][ (v§O +v50|Xu—Xl|p_1)d$,
B, (&)
where we have used the inequality O < p — 1 < 1 in the second line.
Now, we discuss it on the domain Q5 and Qg, respectively.

Case 1: On the set Q5 where | Xu - X1 < 1, the following estimate holds

Jor (o0 05) <1+ ME) (v, v V2V - K0P

. p-1 5 Y2
<1+ M )(]ésvfod{+]{)5v50 d§+2]é§|V(Xu X0)| ds)

<C(p, L, My) (]ﬁ vfod§+]é \V(Xu—XI)\Zd.{),
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2 P
where we have used vgz =V, Vg" Vg, < 2L and Lemma 2.1.
Case 2: On the part Qg where | Xu - XI| > 1, it yields

J21 (on Qg) <(1 + M) <]i v€0d§+]i V?Od{+]i |Xu —Xl|pd.{)

<C(p, L, My) (]i V§0d§+]{) \V(Xu—Xl)\zd.,f),

where we have used the assumption vy, < 2L and Lemma 2.1.
Then, we get the following estimate for J,;

Ja1 = C(p, L, Mo) (V(p) + @(p)) .

By first inequality of (1.3), the term J,, can be estimated as follows

T2 sL][ w (Ju- UE)P) (1 + |XuPdg

B,(&

<L+ M5 E; o [a) (lu=1€)P) + w (lu - U&)P) | Xu —Xl\p‘l}dé'.

DE GRUYTER

(4.31)

Similarly, for the case of |[Xu - XI| < 1 on Qs, applying Young’s inequality, Jensen’s inequality and Lemma 2.1,

we deduce that

J2» (on Qs) <C(L, p, Mo) [(u (7{) lu - l(f_o)|pd£) +]€2 |V(Xu —Xl)|2d¢'] ,

where we have used wﬁ <sw<1.
For the other case of | Xu — XI| > 1 on Qy, it follows

Jo» (on Qg) <C(L, p, Mo) [w (]f) \u—z(éo)|”ds)+ ]‘Q |V(Xu—Xl)|2ds],

where we have used w? < w < 1, Jensen’s inequality and Lemma 2.1.
Thus, we get the following estimate for J,,

J22 < C(L, p, M) {w (][ u- l(é”_o)"d<f> + Gﬁ(p)} .
Bp(f())
Finally, we handle the term J,3 by the same as the way for I, to obtain
v (u - l)
p
b

. (1"1%)11-1
+C(Cp, €) (p2 +pz%) []i o <|Xu|p +ulf + 1) d‘f}

2

a3 s4cpe][ % |V (Xu - XI)|* d¢ + 4cpe][
B, (&) B, (&)

0
<C(Cp, &) | D(p) + P(p) + (pz +pz%) [7@ (|Xu|p +ulf + 1) d{}

p(fo)

Joining the estimates (4.31)-(4.33) with (4.30), we have

J> <Cp, L, Mo, Cp) [qb(p) V() + w (f

By(%o

+ (p2 +p1%) <]ip(¢'o) (|Xu|’[J +uf + 1) d{) (

lu - l({o)|pd{) +V(p)

JES T I 2
1-4)

(4.32)

(4.33)
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=C(pa L’ MO’ Cp) [Q)(P) + W*(P)} . (4.34)

Plugging (4.29) and (4.34) into (4.28), we finally arrive at

£ aow, X<p)ds‘ <Cp, L Mo, Cy) [1(@* (0) + (@} () + 0(p) + W) sup (Xl
B, (&) B, (&)

<C(p, L, My, Cc, Cp) {y(‘f’é(Zp)) + y(‘Pﬁl’ (2p)) + ‘I’*(Zp)} sup |Xo|,

p({O

where we have employed the Caccioppoli-type inequality from Lemma 4.1, ¥«(p) < C(n, p)¥«(2p) in the last
step. This yields the claim. O

4.3 Excess improvement

The strategy of our proof is to approximate the given solution in the sense of L? by A-harmonic functions.
Now we are in the position to establish the excess improvement.

Lemma 4.3. Suppose that the assumptions of Theorem 1.1 are satisfied and consider a ball B:(&,) C Q with
r < po. For the constants 6 = §(Q, N, p, L, v, 8%**) € (0, 1] and y < (0, 1] from the A-harmonic approximation

lemma 3.3, we let O < 8 < 1 be arbitrary and also impose the following smallness conditions:

0. v <d;

(ii). y:= \/‘I’*(r) + @)_2 [}1 (‘I’é(r)) +u (‘le’(r))]z < 1.

Then, there holds an excess improvement estimate

W(&o, Or, 1, ) < C40°Wel&o, 1, 1, 1)

with some constants C, that depend only on n, N, p,v, 6 and L. Here, | &0.0r and 150,, denote the minimizing
affine functions introduced in Lemma 2.2.

Proof. We denote ¥x(r) = ¥+(éo, 1, I, ,), and take

u- Ifo,r

W= c,

with I, , = ug, , + Xlg, (& - &) and C; = max{Cy, /Cc}. We claim that W satisfies the assumptions of A-
harmonic approximation lemma 3.3.
First note that, for our choice of the bilinear form

A = (DpA{ (s 1g, 1 (60), Xlg, 1)) -

Next by Lemma 4.2 with p = § and [ = I, ,, and the assumptions (i) and (ii), we find the map W is approxi-
mately A-harmonic in the sense that

)+ p (V) + (Wi(r))

][ AXW, Xp)dé& syﬂ sup |X¢|
I
sy |P2()+ 5| sup |Xo|
21 B )
<y8 sup |Xg| (4.35)

B%(fo)
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forall ¢ € C3'(B; (&), RY), and

O/2,1,,)
2

Cz — lI’*(T) < y (4.36)

. 1 2
|V(Xw)\2d£=—7[ V(Xu - X1, )2dE <
-71[95(50) C3 Jb @) o C2

2 JBr

The estimates (4.35) and (5.2) tell us that the conditions of Lemma 3.3 are satisfied. So, there exists an A-
harmonic h € C5'(B; (&), RYM) such that

]1[95(50)

In order to estimate excess functional

~ 2
V(W_yh>’ d¢ <y’e, and \V(XR)|2dE < 1.
r By (£)

u- l“ro’gr 2
v ( : ) e,
we now have to handle the integral fBe &) | V(X2h(&)) | 2 d¢. Since the function h(¢) is A-harmonic, we know

that h(§) € C*(Q) by Lemma 3.2. Noting that the boundedness |Xh(¢)| < M in the ball Bg(tfo) cc Q,and
using Holder’s inequality, we have the estimate for 6 € (0, 7)

‘fBBr(fo)

lII(gO’ ery lfo,er) = f
B@r(fo)

V(th(-f))] dé < sup

Br fo)

th(g)’ <Cor™? ][ |Xh(&)|” d&

Bro

- -2 p ’

<CoMr [(]i . XKD dg) +<]i£(§o) IXK(D)| d{) ]

<2CoMr2 [(7[ [V(XR©)[ df) + (7[ [V(XR(E)| df) ]
. Bg(fo) . B%(fo)

<Cr?, (4.37)

Nl=

where we have used the estimate (3.3) and Lemma 2.1.
We write I"(&) = h &.6r + (XR) 50’9,(5 - &). Based on (3.1) and (4.37), it follows that

][ (W ylt
Bﬂr(fo)

- - 2

h-hy g —(Xh -

5C f ( yh> dé’+ f YV fo;er ( )fo,er(‘f {0) d{

Ber(£0) 6 Ber(&0) or
. ~ 2 N
<C672(260)2 7[ v <W —y h) dé + CCpy> |V (Xh - (Xh)g, 0)|* d&
P Br (fo) r “ Bﬂr(fo)

2

<CO2(20) %)% + CCA(0r)%)> V(th)‘ dé

BQr(fO)
<C(Cp, Co)y? (9—2'% + 92) < C(Cp, Co)(1 + 16872)0> (1),

where we have taken € = 24,
Scaling back to u, we infer

2
f v u- l{o’r - Czylh
Borlo) or

In view of the defining property of Iz 4,, we arrive at

dé < C3C(Cp, Co)(1 + 1687 2)0% Wu(r).
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—1 2
4 <%) ‘ dé < C3C(Cp, Co)(1 + 168207 Wu(r) < C,0°W4(1),

]ier(fo)

here, we have denoted C, = C3C(Cp, Co)(1 + 16672). Then, it implies excess improvement estimate

lI/(fo, 91’, I{O’gr) < C462lp*(fo, r, l{o’r).

4.4 Iteration
First, let y € (0, 1) be an fixed Holder exponent. We define the Campanato-type excess

CylEorp) = p f

B,(%o

lu-ug ,Pdé, 1<p<2.
)
Next, we iterate the excess improvement estimate from Lemma 4.3.

Lemma 4.4. Suppose that the assumptions of Theorem 1.1 are satisfied. For every y € (0, 1), there are constant
&x, k=, p«and 0 € (0, 3], if
Y(&o, 1, lg, ) <&« and  Cy(&o, 1) < K, (4p)

forr € (0, p+) with Br(&) C Q, then,
¥(&o, 0°r, lg, or) <&« and  Cy(&o, 60kr) < K+, (A
respectively, for every k € N.

Proof. We begin by choosing the constants. First, we let

i ©e |7 11,1
G_mmHW(Q—Z)(QﬂJ ’2C4}' ! (438)

where cg is defined in (2.6), and C, is determined in Lemma 4.3, respectively. We note that the choice of 6
fixes the constant § = 6(Q, N, p, v, L, GQ“‘) from Lemma 3.3. Next, we fix an &« small sufficiently to ensure

' @Y\ 82 .
&+ < min ( g > ' 357148 and u(es) < &-. (4.39)
Then, we choose k« > 0 so small that
W(K+) € &x.
Finally, we fix p» > 0 small enough to guarantee
p+ < min {po, Kk 1} , V(ps)<e«, and F(p«) <&, (4.40)

i
here we have abbreviated F(r) =: (r> + ?) [fo(go)(\XuP +ulP + 1)d§] @

Now, we are in the position to prove the assertion (4;) by induction. We assume that (4;) is true for up to
some k € N. Then, we prove the first part of the assertion (4;,4), that is, the one concerning w(ok1r, 1 foyemr).
For this we are going to prove that the small assumptions for the excess improvement in Lemma 4.3 are sat-
isfied. Firstly, by the assumptions of (4;) and the choices of &+, k+« and p«, we deduce

V. (&, 651, lg, o) <¥ (S0, ok, lg, o) + w(Cy (S0, %) + V(6 r) + F(6%r)
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<&« + w(x+) + V(p«) + F(p+)
<hex.

Now it is easy to check that our choice of e+ implies that the smallness condition assumptions (i)-(ii) in Lemma
4.3 are satisfied on the level 6%r, that is, we have

3 )
lP*Z ({0’ ekr, Ifo,ekr) < 2./€Ex < E’

2 . 2 .
where we have used &« < % due to the choice of &x < ﬁ in (4.39), and

y(Gkr) :=\/‘I’*(9kr) + <g)_2 [p (\/ lP*(Gkr)) +U ({/ ‘P*(Gkr))}2

S\/3£* + <g)_2 (\/E+ {/3?)2

4 2 362+ 48
S\/38* + (ﬁ) (2 38*) = \/e* (T) <1.

Consequently, we apply Lemma 4.3 with the radius 6%r instead of r, this leads to

W(&o, 011, I, gin,) < Cab” W&o, 0°1, 1, gi,) < 4C407 6 < &,

by the choice of 8 in (4.38). This is the result for the first part of (A;,1).
Now it remains to show the second part, that is, the one concerning Cy (o,
Xlgo’gkr((? - &), we can estimate

6**1r). Since Iy, i, = Ug, gi, +

Cy(&o, 0 1r) =(6F*1r)PY ][ u - ug, g, [PdE
Bglwl,(fo)

(@1 7[ U - g, g, PdE
E ng+1,({0)

<P Y@k iy Py V u =1y, g [P dE + |X150,9k,|1’(e"+1r)1’}
Bgki1,(80)

<206 )Y G'Q][ U= I, g, P dE + XL, i, P (61 1)
Bk, (50)

u-— lfo,gkr

p
=2(6%rPay) [Q—Q—py][ o dé + Xlgo,ekrpep(l_y)} .
B

ok, (£0)

-1 p
Now we are going to estimate the term f, &) % dé. Similarly, we divide the domain of integration
6%r

-1 -1
into two subsets Qg := By, (o) N {' ! e‘fgfk' > 1} and Q19 := Bg,(é0) N { ! gg:’k' < 1}.
On the subset Qg, we get
u-1g g0, |° u-1l g\ |?
— b g <z][ v(—f ) g
_7{)9 Okr &< Q Okr §

uil{gﬂkr
okr

< 1 on 9, noting the fact of 1 < p < 2, we find

pd{s (]{210

For the case of

]{:’10

u—lé' Oky 2 % '
9")‘ > < Q10

u- l{o’ekr
Okr
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Therefore, we deduce the following estimate

p
][ dé<2 ][
Bk, (50) Bk, (50)

By means of (2.8) with the choice of | = u Z,0kr> and the assumption A, we obtain

Q-2Q+2\*
‘Xl&)’g,(r‘p : (%ﬁW) 7€3 k, (&) i u{g,@"r|pd§
6%r

< ((Q - i?)(QQ + 2))}7 (ekr)p(yfl) Cy('fo, ekr)

. [@-2)Q+2) P kApO-1)
-[7%@ ] G

u- l{o’ek,
Okr

p
u-1 z2 N2 )
4 (Tforekr> ‘ df) <295 (80, 07, I g1, < 2e!.

Recalling that r € (0, p«), we deduce that

Dg-awr b, [(Q=2Q+2)] payy, ke ke
Cy (&, 05 1r) < 4pPI Vg CPye; o {T PV, < St sk,

where we have used the choice of e« in (4.39), the choice of p« from (4.40) and 6 in (4.38).
This proves the second part of the assertion (4;,) and finally complete the proof of the lemma. O

4.5 Proof of Theorem 1.

Proof. By Lebesgue’s differentiation theorem, we obtain |X; U 25| = 0. So our aim is to show that every &, €
0\ (2, UZ,)isaregular point. For every O < p < dist(&y, 0Q), by Sobolev-Poincaré type inequality, it follows

WEoup, L, ) = 71 v(i) de
207 Joe P
< cl%][ IV (Xu - (Xug, ,)|*dg
B, (&)
< C3C(p, M) [V(XW) - V ((Xu)g, ,)|*dé. (4.41)
Bp({O)
Moreover, for any y € (0, 1) and p < 1, the following estimate holds
OG0 ) =p™ f =g,
B, (&)
. p
Spp—py][ u-lgp dé.
By&) | P
If Ui | 1, we have
_ p . _ 2
][ o gy z]l v (7“ lf‘)”’) dé.
By&) | P By (&) p
_ 2
If u_f.# < 1, we obtain ‘# P < u:# + 1. Then, it implies
u-1lg o u-lg 2
][ — 0P d{sz][ V(ip) dé +1.
B,(&) | P B, (&) p
So, it yields
u-1 2
Cy(éo, p) < ZpP’W][ 1% (%) dé +pP™P < pP™PY [2¥ (&0, p, Iz, p) + 1] . (4.42)
B, (&)
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Keeping in mind the definitions of 2, %>, from the estimates (4.41) and (4.42), we know that there exists
aradius p : 0 < p < min{p~, dist(&y, 0Q)} such that

¥(%0,p,lg, p) <&« and  Cy(&o,p) < Kx.
Using the absolute continuity of the integral, there exists a neighborhood U C Q of &, with
lI’(.ﬁ’,p,l,&)’p) <ex and Cy(&,p)<kx, VEeU.
Applying Lemma 4.4 in any point ¢ € U, then, we get
W&, 0,1 g,) <& and Cy(&,0%) <ke, VEeU,keN. (4.43)

This together with Campanato’s characterization of Hélder continuous functions imply that

sup o‘Wf U-ug Pdn = sup  Cy(&,0) < ke < oo,
¢£eU,0€(0,p) JB4(8) ¢eU,0€(0,p)

Hence u € C®”(U, RY).

loc

Furthermore, it holds for |Xu - XI; ;| > 1

][ | Xu - Xlg ,|Pd& <2 ][ [V(Xu - Xl o)|*dé, (4.44)
Bo(é) Bo(&)

and we have if |[Xu - Xl; 5| < 1

][ X - Xl o[PdE <2 7[ VXt - Xl )| 2dE +1. (4.45)
Bs(¢) Bs(¢)
Combining (4.44) and (4.45) with (4.43) and (1.6), we get for y € (0, 1)

sup oPUY 7L |Xu - Xl 4P d&
&eU,o€(0,p) J Bo(£)

< sup oPUY 2][ \V(Xu—le,U)\zd.{+1
£cU,0€(0,p) +(&)

< sup PP [2Cc (¥(¢, 0, lg, o) + w(Cy(é, 0)) +V(0) + F(0)) + 1] < oo,
&eU,0€(0,p)

'
with abbreviation of F(r) =: (2 + 1) {fo(&))ﬂXu\p +ulP + 1)d¢'} @
In view of the well known equivalence of Campanato and Morrey spaces for parameters A ¢ (0, Q), it
yields Xu € L? AU, R*"NywithA = Q-p(1 - y). In particular, the parameter A can be chosen arbitrary chose
to Q. This concludes the proof of Theorem 1.1. O

5 Partial Holder continuity for sub-quadratic Natural growth

In this section, we prove the partial regularity result of Theorem 1.2 under the assumptions of sub-quadratic
natural structure conditions (H1)-(H4) and (HN). In this case, we will need to restrict ourselves to bounded
solution of (1.1), where the bound M = sup |u| satisfies the smallness assumption

Q

2p
2

2a(M)(M + M) (3(1 + M(z))) <V

in our present situation with a(M) defined in (1.8). Such a similar smallness condition is necessary for a partial
regularity result even in the elliptic case with quadratic growth (p = 2); for example, see [18].

We first introduce an elementary inequality showed by Kanazawa in [26]. It is useful to get suitable esti-
mates for the natural growth term in proving Caccioppoli-type inequality.
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Lemma 5.1. Consider fixed a, b >0, p > 1. Then, for any € > 0, there exists K = K(p, €) > 0 satisfying

(a+b) <(1+¢e)a’ + Kb*. (5.1)

Lemma 5.2. (Caccioppoli-type inequality). Let u ¢ HWP(Q, RN) n L>=(Q, RN) be weak solutions of the sys-

2-p
tems (1.1) under the assumptions (H1)-(H4)-(HN) with v > 2a(M)(M + M) (3(1 + M(z))) 2 . Then, for any
& = (Yo, XNyl oo,y € Qandr < 1 with B/(&) cC Q, and any horizontal affine functions
1:R*™ — RN with |1(&)| + | X1| < Mo, we have the estimate

][ \V(Xu - XD|2dé < Ce ][ V(L‘I>
B (%) By(§) r

where C. is some positive constants depending only on Q, N, p, a, b, L, v, M, My, and the exponent p’ = z%'

2
d& + w f (u-UE)P)AE ) + V() + P 47|
B, (&)

Proof. Let @ = ¢?(u-1) be a testing function for sub-elliptic systems (1.1), where the standard cut-off function
¢ € C5(Br(80), [0, 1)) with ¢ = 10on B: (&) and |X¢p| < 4 By the same way as the case of controllable growth,
we have for weak solutions u of the systems (1.1)

Io ==][ [AL(€, u, Xu) - AX(E, u, XD]$* (Xu - X1)d&
Br({O)
=2][ [AF (&, u, XD - AF (&, u, Xw]pu - DXpdé
Br(fo)
AR 0, X - A%, u, XDIXpag
B, (%)
* ][ [(AF -, 1&), XD)g, , — AT (&, (&), XD]Xpd&
Br({o)

+ ][ B*(&, u, Xu)p?(u - 1)dé¢
B, (&)
=21+ L+ 5+ 1), (5.2)

with the obvious meaning for Ij) — I,.
With respect to the terms I, — I3, here, we choose the same estimates as (4.2), (4.7), (4.15) and (4.21), that
is,

p-2
1 sv [3(1 + M%)} ’ P2V (Xu - XD2d¢, (5.3)
B/ (&)
2

I, <2¢ 2| V(Xu - X1)|2dé + C(p, L, Mo)e s ][ 14 <L_’) d¢, (5.4)

B, (&) B,(&) r

2

1, <2¢ ¢2|V(Xu—Xl)|2d§+2£][ 14 (L"> d¢

B, (&) B, (&) r

+C(p, L, Mo)e™r w 7[ lu-1&)Pdé |, (5.5)
JB.(&)
u-1\|? 1

I <2¢ ¢%|\V(Xu - XD)|*dé + ze][ 1% (—) dé + C(p, L, Mp)e ™ V(). (5.6)

B, (&) B, (&) r

Now we are in the position to get an appropriate bound for the term I;. By (H4), elementary inequality
(5.1) and Young’s inequality, it yields

I, s][ (alXu[? + b)?|u  I|dE
Br({O)

sa]l (1 Xu - X1 + |XI)YY p?|u-1|dé + b][ ¢ |lu-1dé
B, (&) B, (&)
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sa][ [(1+6)[Xu-XIPP +(1+K)|XIP] §*|u-1dE+Db rp?
B, (&) B, (%)

“T'l ‘d.{. (5.7)
We denote by I; the first term of the right-hand side of (5.7). If | Xu - XI| = 1, the following estimate holds

Ié;l <2a(My + M)(1 +€)]L |V(Xu—Xl)|2¢2d§+a(1+K) |X”p][ or
B, (&) o)

“r"‘ dé.

r

If | Xu - XI| < 1, we have |Xu - XI[P < |Xu - XI|> + 1. Then, it follows

u-1

Iy <2a(Mg + M)(1 + e)][ |V(Xu - XD|*¢p?dé +a (1 +K) (1 +|XI|P) . ¢or .

B, (&) B,(%o)

Combining these estimates above, we have

de.

I, <2a(My + M)(1 + e)]i © [V(Xu - XD)*p*dE + [a(1+K) (1 +|XIP) + b] 7{3 © ¢r

u-1
r‘ dé. (5.8)

We denote by I, the second term of the right-hand side of (5.8). If

u-l
r

> 1, it leads to

p ’

d¢+rP

v <L")
r

u-1
r

y(u-!
r
I, <2a(Mo + M)(1 + €) |V(Xu - XD |*¢p>dé
B/ (&)
¥ [a(1+K)(1+Mg)+b]2][ V(MT_Z)
- 6e-2a(Mo + M)(1 + e)} ][ |V(Xu - XD|*p*d¢
B

B, (&)
r(&0)
v (u - l)
r

+C(p, L, Mo)e™r w (7[ u- l(éo)lpd5> +C(p, L, M)e ™ V(1) + 12 + 17", (5.10)
Br({O)

Ip<[a@+K)@+|XUP)+b)P ][ @”
B, (%)

u-1
r

2
< [a(1+K)(1+|Xl|p)+b]p][ ¢? de+ 1.
B, (%)

If ur—l

2] <1, ityields

2
dé +1r°

L < [a@+K)(1+|XUP) + b)) f ¢?
Br({O)

2
s[a(1+K)(1+|Xl|p)+b]27[ ¢° dé +r%.
B, (%)

So, we finally arrive at

2
dé+rt+ ' (5.9)

Combining (5.3)-(5.6), (5.9) and (5.2), we have

[v (3(1 + M(z)))

p-2
2

2
<C(p, L, Mo) {e™ + 4 1+K)(1+M2)+b)? d
(p o){e +4e+[a(1+K)(1+ME) +b] }]ﬁy(&)) £

2-p
Noting that the smallness condition 2a(M+ M) (3(1 + M(Z))) 2 < v, wefix the constant € > 0 small sufficiently
p=2
2

such that the coefficient [v (3(1+ M(Z))) -6 -2a(M+ My)(1 + e)} > 0. Dividing the inequality (5.10) by
the positive constant, finally we deduce
v (u -1 )
r

][ \V(Xu - XDPdE <C ][
B%(fo) B: (&)

where C. = C(Q, p, a, b, L, v, My, M). This yields the claim. O

2
dé+w ][ lu - 1(&)IPdé VO +ri+ P
Br({o)
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For sake of simplicity, we motivated the form of the Caccioppoli inequalities in Lemma 5.2. We write

B, 1. ] :=f Ve xpPas,
V(L")
r

lu - I(.f_o)|pd.f> +V(r) + (rz + rp') .

. 2
Vo1, 1) 1= 7[ de,

J Br(%0)

Y&, 1, 1) :=P(&, 1, ) +w <][

r(%0)

Lemma 5.3. Under the assumptions of Theorem 1.1 are satisfied, sz({o) C Q with p < po and an arbitrary
horizontal function 1 : R?™ — RY, we define

A = (DpA{(, l(f_o),Xl))go’p and w=u-1I,

then, w is approximately A-harmonic in the sense that

][ AQXw, Xp)dE
Bp(f())

<C} [W*(Zp) + U (W*%(Zp)> + U (?é (Zp))} sup |Xg|

B, (%0

forall p € C3(Bp(&p), RN), and the positive constant C; = C(p, a, b, Mo, L, C¢).

Proof. The proof is similar as the case of controllable growth. Here, we just give the different estimate for the
natural growth term, that is,

J23 2a(Mo + M)(1 + €) [V(Xu - XD)*¢p*dé
B, (&)
2
+[a(1+K)(1+Mg)+b]2][ V(L_l) d£+p2+pp/
B, (£0) p

<C(p, a, b, My, M) (E(p) +¥(p) + p? +pp’)
SC(p, a, by MO! M, CC) (a(p) + ?*(p)) ,

where we have used the bound for the natural growth term I, in (5.9). The rest procedure is very similar as
the proof in Lemma 4.2, and we omit them. So we obtain the claim. O

Applying Lemma 5.2 and Lemma 5.3, we can establish the improvement estimate for Excess functional ¥ with
the same form as Lemma 4.3, that is,

Lemma 5.4. Suppose that the assumptions of Theorem 1.2 are satisfied and consider a ball B(&,) C Q with
r < po. For the constants 8 = 6(Q, N, p, L, v, 82**) € (0, 1] and y € (0, 1] from the A-harmonic approximation

lemma 3.3, we let 0 < 0 < 1 be arbitrary and also impose the following smallness conditions:

(). T <$;

(ii). y:= \/‘I’,(r) + (g)—z {y (?é(r)) +u (‘{’il’(r)ﬂ2 <1.

Then, the following excess improvement estimate holds

Y(&, 0r, 1, o) < CLO°Fs(&o, 1, 1, ),

where constants CQ depend onlyon Q, N, p,a, b, v, 6§ and L.

By Lemma 5.4, the iteration for the ¥-excess and the Cy-excess can be obtained as follows,
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Lemma 5.5. Suppose that the assumptions of Theorem 1.2 are satisfied. For every y € (0, 1), there are constant
&x, K«, pr and 0 € (0, gl, if
¥Y(&o,1,1;,,) <&« and  Cy(&o, 1) < ks, (40)

forr € (0, p+) with B;(&,) C Q, then,
W(é‘o, ekr; lfo,gkr) < Ex and Cy(nfo, Gkr) < K, (Ak)
respectively, for every k € N.

Proof of Theorem1.2. It is enough to use Lemma 5.5, and repeat the procedure for the proof of Theorem 1.1
in the previous Subsection 4.5.

Acknowledgement: The authors wish to thank the referees for their careful reading of my manuscript and
valuable suggestions.

Funding: The research is supported by the National Natural Science Foundation of China (No.11661006), and
the Science and Technology Planning Project of Jiangxi Province, China (No. GJJ190741).

References

[1] V.Bogelein, F. Duzaar, . Habermann, C. Scheven, Partial Holder continuity for discontinuous elliptic problems with VMO-
coefficients, Proc. Lond. Math. Soc. 103 (2011), 371-404.

[2] M. Bramanti, An Invitation to Hypoelliptic Operators and Hérmander’s Vector Fields, Springer, 2014.

[3] L.Capogna, D. Danielli, N. Garofalo, An embedding theorem and the Harnack inequality for nonlinear sub-elliptic equa-
tions, Comm. Partial Differential Equations 18 (1993), 1765-1794.

[4] M. Carozza, N. Fusco, G. Mingione, Partial regularity of minimizers of quasiconvex integrals with sub-quadratic growth,
Ann. Mat. Pura Appl. 175 (1998), 141-164.

[5] L.Capogna, N. Garofalo, Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of sys-
tems of Hérmander type, ). European Math. Society 5 (2003), 1-40.

[6] S.Chen,Z.Tan, The method of A-harmonic approximation and optimal interior partial regularity for nonlinear elliptic sys-
tems under the controllable growth condition, J. Math. Anal. Appl. 335 (2007), 20-42.

[7] G.DiFazio, M. Fanciullo, Gradient estimates for elliptic systems in Carnot-Carathéodory spaces. Comment. Math. Univ.
Caroline. 43 (2002), 605-618.

[8] F.Duzaar, A. Gastel, Nonlinear elliptic systems with Dini continuous coefficients, Arch. Math. 78 (2002), 58-73.

[9] F. Duzaar, ). F. Grotowski, Partial regularity for nonlinear elliptic systems: The method of A-harmonic approximation,
Manuscripta Math. 103 (2000), 267-298.

[10] F.Duzaar, ). F. Grotowski, M. Kronz, Regularity of almost minimizers of quasi-convex variational integrals with sub-
quadratic growth, Ann. Mat. Pura Appl. 184 (2005), 421-448.

[11] F. Duzaar, A. Gastel, G. Mingione, Elliptic systems, singular sets and Dini continuity, Comm. Partial Differential Equations
29 (2004), 1215-1240.

[12] F.Duzaar, G. Mingione, The p-harmonic approximation and the regularity of p-harmonic maps, Calc. Var. Partial Differen-
tion Equations 20 (2004), 235-256.

[13] F. Duzaar, G. Mingione, Regularity for degenerate elliptic problems via p-harmonic approximation, Ann. Inst. H. Poincaré
Anal. Non Linéaire 21 (2004), 735-766.

[14] Y. Dong, P. Niu, Estimates in Morrey spaces and Holder continuity for weak solutions to degenerate elliptic systems,
Manuscripta Math. 138 (2012), 419-437.

[15] F. Duzaar, K. Steffen, Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals, J.
Reine Angew. Math. 546 (2002), 73-138.

[16] A.Foglein, Partial regularity results for sub-elliptic systems in the Heisenberg group, Calc. Var. Partial Differential Equa-
tions 32 (2008), 25-51.

[17]1 M. Foss, G. Mingione, Partial continuity for elliptic problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), 471-503.

[18] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press,
Princeton, NJ, 1983.

[19] D. Gao, P. Niu, J. Wang, Partial regularity for degenerate sub-elliptic systems associated with Hérmander’s vector fields,
Nonlinear Anal. 73 (2010), 3209-3223.



DE GRUYTER Jialin Wang et al., Regularity for sub-elliptic systems with VMO-coefficients =——— 449

[20] C.S. Goodrich, M. A. Ragusa, A. Scapellato, Partial regularity of solutions to p(x)-Laplacian PDEs with discontinuous
coefficients, J. Differential Equations 268 (2020), 5440-5468.

[21] G. Lu, Embedding theorems on Campanato-Morrey space for vector fields on Hormander type, Approx. Theory Appl. 14
(1998) 69-80.

[22] S. Polidoro, M. A. Ragusa, Harnack inequality for hypoelliptic ultraparabolic equations with a singular lower order term,
Revista Matematica Iberoamericana 24 (2008), 1011-1046.

[23] M. A. Ragusa, A. Tachikawa, Regularity of minimizers of some variational integrals with discontinuity, Z. Anal. Anwend. 27
(2008), 469-482.

[24] A. Scapellato, New perspectives in the theory of some function spaces and their applications, AIP Conference Proceedings
1978, 140002(2018); https://doi.org/10.1063/1.5043782.

[25] E.Shores, Regularity theory for weak solutions of systems in Carnot groups, Ph. D. Thesis, University of Arkansas. 2005.

[26] T. Kanazawa, Partial regularity for elliptic systems with VMO-coefficients, Riv. Math. Univ. Parma (N.S.) 5 (2014), 311-333.

[27] Z.Tan,Y.Wang, S. Chen, Partial regularity in the interior for discontinuous inhomogeneous elliptic system with VMO-
coefficients, Ann. Mat. Pura Appl. 196 (2017), 85-105.

[28] Z.Tan,Y.Wang, S. Chen, Partial regularity up to the boundary for solutions of sub-quadratic elliptic systems, Adv. Nonlin-
ear Anal. 7 (2018), 469-483.

[29] G. Lu, The sharp Poincaré inequality for free vector fields: an endpoint result, Revista Matematica Iberoamericana 10
(1994), 453-466.

[30] J. Wang, D. Liao, Optimal partial regularity for sub-elliptic systems with sub-quadratic growth in Carnot groups, Nonlinear
Anal. 75 (2012), 2499-2519.

[31] ). Wang, D. Liao, S. Gao, Z. Yu, Optimal partial regularity for sub-elliptic systems with Dini continuous coefficients under
the superquadratic natural growth, Nonlinear Anal. 114 (2015), 13-25.

[32] J. Wang, Juan ). Manfredi, Partial Holder continuity for nonlinear sub-elliptic systems with VMO-coefficients in the Heisen-
berg group, Adv. Nonlinear Anal. 7 (2018), 96-114.

[33] ). Wang, S. Zhang, Q. Yang, Partial regularity for discontinuous sub-elliptic systems with sub-quadratic growth in the
Heisenberg group, Nonlinear Anal. 195 (2020), 111719; https://doi.org/10.1016/j.na.2019.111719.

[34] C.Xu, C. Zuily, Higher interior regularity for quasilinear sub-elliptic systems, Calc. Var. Partial Differential Equations 5
(1997), 323-343.

[35] S.Zheng, Partial regularity for quasi-linear elliptic systems with VMO coefficients under the natural growth, Chinese Ann.
Math. Ser. A 29 (2008), 49-58.

[36] S.Zheng, Z. Feng, Regularity of sub-elliptic p-harmonic systems with subcritical growth in Carnot group, ). Differential
Equations 258 (2015), 2471-2494.



	Regularity for sub-elliptic systems with VMO-coefficients in the Heisenberg group: the sub-quadratic structure case
	1 Introduction and statements of main results
	2 Preliminaries 
	2.1 Introduction of the Heisenberg group Hn
	2.2 Horizontal affine function and estimates in Hn

	3 Sobolev-Poincaré type inequality and A-harmonic approximation
	4 Partial Hölder continuity for sub-quadratic controllable growth
	4.1 Caccioppoli-type inequality
	4.2 Approximate A-harmonicity of weak solutions 
	4.3 Excess improvement 
	4.4 Iteration
	4.5 Proof of Theorem 1. 

	5 Partial Hölder continuity for sub-quadratic Natural growth


