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Abstract: In this paper, we are concerned with the existence of multi-bump solutions for a class of semiclas-
sical saturable Schrodinger equations with an density function:

I(ex) + v2

. _v=Ay, R?.
1+I(ex)+v2v Vi X €

-Av+T
We prove that, with the density function being radially symmetric, for given integer k > 2 there exist a family
of non-radial, k-bump type normalized solutions (i.e., with the L? constraint) which concentrate at the global
maximum points of density functions when € — 0*. The proof is based on a variational method in particular
on a convexity technique and the concentration-compactness method.
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centrations
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1 Introduction and main results

This paper deals with the existence of solutions (v, 1) € H L(R?, R) x R to the following nonlinear eigenvalue
problem with saturable nonlinearity

I(ex) + v?

_ 2
WV = /‘V, X e R > (1.1)

-Av+T
where ¢ is a small parameter (related to the Planck constant), I is a coupling constant, and I(x), the den-
sity function, is a bounded continuous function. This model describes paraxial counter-propagating beams
in isotropic local media (e.g., [1-5]). An interesting issue concerning (1.1) is the existence of semiclassical
states, which concerns the study of (1.1) for small € > 0. From the physics point of view, semiclassical states
describe a sort of transition from quantum mechanics to classical mechanics as the parameter € goes to zero.
In (1.1), one can either consider the parameter A € R to be given, or to be an unknown of the problem. In
this paper, we study the latter case, i.e., we look for normalized solutions with the L? norm prescribed and
A as a Lagrange multiplier. For small € > 0 in (1.1), we will make a first attempt to study the existence and
concentration behavior of multi-bump type solutions in H!(R?). We refer [6-8] for results on the problems
of saturable nonlinearity without constraints and references therein such as existence and concentration
property of solutions.
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The main goal of this paper is to establish the existence and concentration behavior of multi-bump solu-
tions with a localizing potential I(ex) for small € > 0

I(ex) + u?

mu = Au, fOl’ X € Rz. (1.2)

-Au+T
It is well known that equation (1.2) is the Euler-Lagrange equation of the following minimization problem
subiject to a L? constraint

me(I', I) = inf{Ec(p) | p € H'(R?), / p? =1}, (1.3)
R2
where

_[ p’
Eg(p)—/|Vp\2+1"[pz—ln(1+m)].
R2

Also observe that in this case the parameter A € R depending on ¢ (so in what follows, we denote A = A¢),
comes from problem (1.3) and can be interpreted as a Lagrange multiplier. Among all possible standing waves
for equation (1.2), typically the most relevant are ground state solutions. Recently, in [9], by a global minimiza-
tion method, we have obtained the existence and concentration behavior of positive normalized ground state
solutions of equation (1.2) in H'(R?) for small € > 0, under the condition
(B1) I(x) satisfies
L =maxI(x) > limsupI(x) = I« > I} =infI(x) > -1.
X€ER? |X|—>+o0 R2

We remark that in most cases the global minimizers are not necessarily multi-bump solutions, and that
when I(x) is radially symmetric the global minimizers may be radially symmetric functions. In this paper we
investigate conditions on I(x) = I(|x|) under which the minimizers are non-radial and multi-bump type solu-
tions. In order to solve this problem, we introduce a local minimization procedure and work on a subspace of
H'(R?). The main ideas come from the methods introduced in [10, 11] of the second author. This local min-
imization procedure has been successfully used to treat nonlinear Dirichlet problems [10, 12] and nonlinear
Neumann problems [13]. The advantage of this method is that we can get qualitative properties of the solu-
tions constructed such as the concentration behavior and the shape of solutions with a discrete number of
bumps. However this type of method and results have not been studied before for normalized solutions and
there are new difficulties which require new ideas and variational techniques.

Let k = 2 be a fixed positive integer. We define

H}(R?) = {u € HYR?) | u(g *x) = u(x), a.e.inR?, forallg € Gk} ,

where

Gy = {g € 0(2) | glx1,x2) = (x1 cos ZTHI + X, sin 2’—:[1, —x1 sin 2’—:[1 + X3 COS ZTHI), (x1,x2) € Rz} ,
1=1,2,...,k and O(2) is the group of orthogonal transformations in R?. It is easy to see that G, is a cyclic

group of order k. In order to get multi-bump type solutions, we consider the following minimization problem

mr () = inf H:(u
F’k( ) UEH(R?), [52 u?=1 g( )
2 (1.4)
= inf /|Vu|2 + Iu? - In(1 + ui)]dx,
uEHL(R?), [ u?=1 : 1+ I(ex)
R

If (B1) is satisfied and I(x) = I(|x|) € C(R%,R) n L=(R?, R) is radially symmetric, using a similar proce-
dure as in the proof of Theorem 2.1 in [9], we may deduce the existence result of a minimizer for the above
minimization problem my ;(€). But to show the minimizers are non-radial and of multi-bump type we would
need additional conditions on the density function I(x).

By (B1) we deduce that the maximum value of I(x) must be obtained on a bounded closed set. We suppose
that
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(B2) I(x) = I(|x|) is radial and achieves its unique maximum on S! = {x € R?| |x| = 1}, and there exist §y > 0
and rg > 0 such that I(x) = I + 6 for ||x| - 1] < 1g.

Then we have the following Theorem.

Theorem 1.1. Assume that I(x) satisfies (B1)—-(B2). For any integer k > 2 fixed, there exists I'y = I'y(I-, k, 89, o)
(but independent of € > 0, I and 1(0)), for each fixed I < T, there exist £g = £o(I') > 0 and agy = ao(I') > O such
thatif 0 < € < gg and 0 < 1 +1(0) < ag, mr (€) has a minimizer solution u. € H,%(]Rz) satisfying
(@)
lim mp(e) = km(l, D),
£—0* ’ k

where

u2

1+Iz

m(1,12)= inf /\Vu\2+1"[u2—ln(l+
k ueH (R?), [ u>=4 :
R

)]dx.

(ii) ue is of k—bump type in the sense that u¢ has exactly k maximum points which form a Gy—orbit Gy (y¢)
for some y. € R? satisfying |€y:| — 1 and up to subsequences

k
Ug—ZW(Xi'%)

i=1

-0, ase — 0",
H(R2)

where w(x) is a minimizer of m(%,I;) and e; € S' = {x e R?| |x| = 1}.

The existence of a minimizer follows from the work of [14] (will be stated in Theorem 2.1), and we mainly con-
cern whether there are multi-bumps for the local minimizers us € H ,1 (R?)as ¢ € (0, &9). Generally speaking,
this conclusion is not necessarily true. For example, if only (B1) is satisfied, by Theorem 2.4 in [14], we see that
Ue € H,% (R?) may be a radially symmetric solution and has only one bump centered at the origin. Therefore,
in order to construct multi-bump solutions, we need to impose some additional conditions on I(x). We prove
that (B2) and the condition on I(0) are sufficient to assure the minimizers are of multi-bump type solutions.

This paper is structured as follows. In Section 2 we will present and show some useful lemmas which are
useful for the proof of Theorem 1.1. Afterwards, in Section 3 we will give the proof of Theorem 1.1.

Notation. Throughout this paper, we denote by C a positive constant, which may vary from line to line; all
integrals are taken over R?; All dx in the integrals are omitted; L? = LP(R?)(1 < p < +oo) is the usual
Lebesgue space with the norm ||u| |§,’ = [g2 lUPs H I = H'(R?) denotes the uaual Sobolev space with the norm
[l = [ (IVul® +u]?); on(1) (resp. 0£(1)) will denote a generic infinitesimal as n — oo (resp. & — 0%); —
denotes the strong convergence and — the weak convergence.

2 Some technical results

In this section, we will establish several lemmas, which will be useful to prove Theorem 1.1 in next Section.
First using a similar procedure as in the proof of Theorem 2.1 in [9], we may deduce the existence result of a
minimizer for mr i ().

Theorem 2.1. Suppose that I(x) = I(|x|) satisfies (B1)-(B2). Then for given integer k > 2, there exists Iy =
T'y(Iss, k) < O (independent of € > 0, I and I(0)), for each fixed I < T}, there exists €9 = £o(I') > 0 such that for
all € € (0, &), the minimization problem

mr x(e) = inf He(u)
ucH(R?), [, u?=1
2 2 u?
= inf /\Vu| +IMu” -1In(1 + ———)]
ucH(R?), [, u?=1 : 1+ I(ex)
R
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possesses a solution ug, which solves equation (1.2) for some A < 0.

This follows from the proofs in [9], in which I(x) is fixed throughout the proof there. As we need to place
a condition on I(0) as in Theorem 1.1, closer examination tells us that the proof of the above result works
through if we fix the property of I in the neighborhood of the maximum points while allowing changes of
1(0). We omit the details here.

Next in order to analyze the asymptotic behavior of the minimizers u, we prepare some estimates.

Lemma 2.1. For given integer k > 2, there exist I'y = I'1(I,, k) < 0 and O < a = a(I», k) < %, such that for each
fixedI' < I't,

2
mE )= inf /|w|2 AT —1n(1 + )]
k UEH!(R2), [, w>=1 1+
RZ
is achieved by uj which is radially symmetric. Moreover,
1 In
km(E, Iz) < 1+ 12 . (2.1)
In particular, we have
1 al kar
m(E, L)< 5 and 5 +1<0. 2.2

Proof. Using the same arguments as Theorem 2.1 in [14], we know that there exists I'; = I} (I, k) < 0, such
that for each fixed I < I'; the minimization problem m(3, I,) is attained by u k- In addition, by Theorem 2.3
in [14], uy is a radially symmetric function.

Moreover, we have

2
mE L)-  inf /|Vu|2 FIT? -n(1+ )]
k UEH(R2), [, w2=1 1+1
RZ
2 2 2
. u u I'lbu
= inf Vu|? + I[—— - 1n(1 + +/
ueH (R2), [, u2=%/| | [1+Iz ( 1+Iz)] 1+1,
R? R?
< I, ’
k(l +12)
and this implies
1 rn
km(5, L) < .
m(k’ 2) 1+1

On the other hand, we may find a sequence of functions uy, such that ||us||3 = % and an = [p, [uz -In(1 +

{‘—EI)] — % as n — oo. In fact, this can be done by choosing v(x) € C5’(B1(0)) such that fRZ vZ = %, and setting
un(x) = nv(nx), then

an = /[u% -In(1 + 1?_%12 ) = /[nzvz(nx) -In (1 + nzlvi(lr;x))]

R2 R2

~ 200 1 nvy\,_1 [ 1 n’v(y)

—/[v(y) Fln<l+7l+l2 ]_E /ﬁln 1+ YA
R? R?

1
— 1> AN oo

Here we used the fact for b > 0 fixed,

1r1(1}+bp)_>0, asp — +oo.

Hence, there is a function ug with ||uo||3 = % and

2
Yo 1
+Iz)]< k’

O<aza([z,k)=/[u(2)—ln(1+ I

R2
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Noticing that

1 2 2 u?
lim M > lim fRz [Vutol” + Iutp ~ In(1 + “7(}2)] =a>0.

I'——oco F I'—-o0 F
Therefore, there exists I'Y = I'/ (I, k), such that

1 al kal’
m(%,lz) < 5 and T+1 <0
ifr<ry.
As a result, taking
Fl = FI(IZ’ k) = mln{ri(IZ, k), F/ll(IZ’ k)};

we can get the desired results for Lemma 2.1. O

Now in the following, for given k € N*, we always fix
I'< Ty =Ty, Is, k) = min{T'1(I2, k), [H(Is, k)} <O,

where I'} (I, k) is given in Theorem 2.1.

We remark that by Theorem 2.1 and (B2), we know that no matter how I(x) changes outside the neighbor-
hood of ]|x| - 1| < 21y, for each fixed I' < I'y, there exists £ = £o(I') > 0, such that mr y(¢) is always achieved
by some us € H ,1 (R?) for & € (0, £o). At the same time, by Theorem 2.1, we know that u. satisfies

I(ex) + u?

/7 "% U = Aclg, ]Rz, 2.
1+I(.€x)+u§u‘g eUe, X € @3)

-Aug +T

where A; is associated Lagrange multiplier.
Next, we start to study the qualitative properties for the minimizer u, of my ;(e).

Lemma 2.2. It holds that 1
lim mpr (e) < km(53, ).
£—0* ’ k

Proof. Taking e; € S! and the G,—orbit of e; containing exactly k points, {g;e; | i = 1,2,...,k}, and
defining

k
Uelo) = Y wix + 8190,

A &
i=1

where w(x) € H*(R?) is the minimizer of m(%, I,) so w(x) — 0 as |x| — co. Moreover, by Lemma 2.1, w is
radially symmetric. Since

lim BICLT8CL | o fori#),
£—0*
we have
k
|U(0)|13 =/|Zw(x+%€1)|zdx
Re =1
L e
= / lw(x + g—’g L)|2dx + 0s(1)
i=1
—1, ase —» 0".
Setting
Ue(x)
Ve(¥) = ——~5—,
) 100012

then ||Ve(x)]|3 = 1 and Ve(x) € H}(R?).
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Therefore, according to I(x) = I(|x|) satisfying (B2), we have

Ve

1+ I(ex))]

myr (&) < He(Ve) = / |V Ve|? + TVZ - In(1 +

_ Us 2 U2 _ U2
‘RZ Vigoon e MY iR e

Kk Kk k
|3 Vwlx + £21)2 |2 wlx + 212 > wlc+ £2))?

= i=1 i=1 —1 i=1
R[ v T mer T M R s )

k ) ) .
_y [Tl B L iwlcs BR)E wlx + 802
_X;R/ ez v M e ey o
k
- [Vw(x)|? [ w)> w()|? }
Z/ 10:03 * " L0Gorz ~ " 0T+ Hex—gen’| *

2

w +
Titeel) +I(gi€1))] (ase —0%)

HZ/|VW| +I'w” -1In(1 +
lle

=k |VW\2+F[wz—ln(1+ w? )]=km(1 L)
1+Iz k’ ’

Thus,
hm my () < km( , D).

Lemma 2.3. There exists O < g1 < &g, such that for € c (0, 1), the Lagrange multiplier A¢ in (2.3) satisfies
kal’

m(1, ;) + <Ae <

r
1+Il +1<0’

where a > 0 is given in Lemma 2.1.

Proof. By Lemma 2.2, we know that there exists 0 < & < &g, such that for € € (0, £1), we have
mr () < km(%,]z) +1.

Therefore, by (2.2), we have

Iex)+uz 5
/ug /\Vu£| 1+I(sx)+u£u£

2 2 2
_ 2 2 Ug Iex)+ug > 2 Ug
_/|Vug|+1"[ug 1n(1+71+1(£x))]+r/{71+I(sx)+u§u€ u€+ln(1+71+l(gx))
R2

IEex)+u: 5 5
- rf|-2e0rue o 20
mri(€) + / {1 +I(ex) + u? up —uz +In(1 +

u
1+ I(ex) )}

u2 u?
=mFJ<(£)+F/ {1n(1+ 1+I(£x))_ 1+I(8X)+u%}

RZ
< my () < km(%,lz) +1
kaF
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2 _ “g _ U,
Here we have used [, ug = 1 and [g,[In(1 + 1+I(Sx)) 1+I(sx)+ug] >0

On the other hand, according to (2.3), we obtain

/\g—/lg/u‘g /|Vug| I(SX)HJ‘E ug

1+ I(ex) + uZ

2 2 2

_ 2 2_ U M) ruz oo U
—/\Vu£\+1"[u‘E 1n(1+1+1(€x))]+1"/{14_1(5)()1%‘%11‘E u£+1n(1+1+1(gx))
2

R2

1+I(ex)+u? 5 > u?
> r T Cug - In(1+ ————
> mr i) + /{1+I(sx)+u§ug uz + In( +1+I(€x))
RZ

- U2
=mr’k(s)+1"/ln(1+ " I( )) my () +F/1n(1+ 11)
RZ
>mp(e)+T u
=Tk 1+ Il
RZ
r
2 m(l Iz) + — 1+ I
Therefore, we have finished the proof of Lemma 2.3. O

Lemma 2.4. There exists O < &, < €, such that for € € (0, €,), the minimizer ue of mr () satisfies

I
1+Iz'

uellmmey s L=1/2+
Proof. By Lemma 2.2, there exists O < &, < &, such that for € € (0, £,), we have

1+ km(%, L) = mp(e) = / |Vue ()] + Tluz(x) - In(1 + 1 uSI((X)X))]
R2

/\wg(x)ﬁ ‘T

Here we have used the fact that fRz u2(x) = 1. Thus, by Lemma 2.1, we have

Iuelyeny = [ 190600 + 20
RZ
1
52—F+km(E,Iz)
rn
1+Iz
e
1+12 =1L

<2-T+

=2+

O

Let ue be the minimizer of m i () for € € (0, min{eq, £,}). Now we can obtain that there exists a sequence
of points {yn} =: {ye,} in R? such that most of the “mass" of u3(x) =: uz, (x) is contained in a ball of fixed
size centered at {yn}. Here and below, we note that e, — 0 if and only if n — +co. At the same time, in the
following we may assume that, up to a subsequence, un, — vin H,i (R?) as n — +oo.

Lemma 2.5. There exist positive constants R and § and a sequence {yn} such that

lim 1nf u(x) = B> 0.

n—+
BR(yn)
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Proof. We will do it by a contradiction argument. If not, for any R > 0, there exists a sequence u, =: ug, such
that

lim sup / u2(x) = 0.

n—+eo . po
Y B

Then by Lions’s Lemma (e.g., [15]) one has ||un||, — O for any p > 2. By the fact that t* - In(1 + t?) < Ct* for

some C > 0, we have

He,(un) = /IVun\ +IMu? - 1In(1 + ”7%)]

1+ I(enx)
R2
I(enx) uz
- 2 1"/7” 24 / -1In(1
/IVun\ * 1+I(enx) " [1 I(snx) n( +1+I(£nx))]
R? R2
2, I'h

2/|Vun| + i+h +on(1).

RZ

Therefore, by extracting a further subsequence if necessary, we can define = as
E = hm Hgn(un).
n—oo

In view of Lemma 2.2, we have km(}, I,) 2 £ 2> {2, a contradiction to (2.1). O

1+

Lemma 2.6. If the sequence {yn} C R? obtained in Lemma 2.5 is bounded, and un, — v in HL(R?) as n — +oo,
then [|v|[; = 1.

Proof. Withoutloss of generality, we may assume that y, = 0. By Lemma 2.5, we know that there exist positive

constants R and f such that
lim inf u2(x) = B >0. (2.4)
n—+oo
Bg(0)

Since un — vin Hi(R?) as n — +oo, by (2.4), we have

vZ(x)= B > 0. (2.5)
Bg(0)
Thus, v # 0 and un — vin L}, (R?) as n — +oo.

Therefore, un(x) — v(x) in H*(R?) and u, — vin L?>(Bg(0)). Hence, up to a subsequence, we may assume
that un(x) — v(x) a.e. in Bg(0). In view of (2.5), v # 0 in Bg(0). By (2.5) there exists o > 0 such that

un(x) — v(x) in Q, (2.6)
where
Q={x:|v(x)| 2 g, x € Bg(0)} c Bx(0) 2.7
and
u(Q) > o.

Here u(Q) is the Lebesgue measure of Q.
Now we assert that ||v||, = 1. We argue it by contradiction, assuming that A = ||v||3 € (0, 1). We get a

N . I _ v(x) a0 Un—v
contradiction as follows. For the sake of convenience, we write 7(x) Toled and i Wit Then, by
(2.6) and (2.7), we have
2 2
-2 ve(x) o .
_ 2.8

72 (x) 1+I(Snx)zl+lz>01n.QforVr1 (2.8)

and X X
fin(x) = () = vO))” _ (un(x) = V() 5 0inQasn — +oo. (2.9)

1+I(enx) 1+1;
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Let f(s) = s —In(1 + s), s = 0. By (2.8) and (2.9), using Lemma 5.2 in [14], we can find a > 0 independent
of n such that
/ f (A( Jr(1-a) I ) v [ary -, (210)
[[un Hz ) [[un

||2

asn — oo,
Then using the convexity of f(s) = s - In(1 + s), s = 0 and (2.10), we have

mI‘,k(en) = He,(un)

2
- 2 2 Un
= / |Vun|® + Iuy - 1In(1 + 17160 +I(£nx))]

R2

- 190 P [ -7 (1 )
R2

1+ I(enx)

=/mv(v/uvuznz+(1—A)\v((un—v)/|\un—v||2)|2

]RZ
+FR/ZI(€nx)(v +un)+l"/f< ]:/4 +(1- A)||~||2> +0¢,(1) 1)
2/Alwv/nvuznz+(1—A)\V((un—v)/lwun—vllz)\z
RZ
r / Henx)(7 4 12)+ T / (Af( -G |2)) dx - T+ 06, (1)
R2 ]RZ
= AHe,(+—) + (1 - A)He,(————) - T'a + 0¢,(1)

|lv || || H
= Amp (en) + (1 - A)mp (en) - Tat + 0g,(1).
In particular, by (2.11), for sufficiently small &, satisfying |o, (1)| < -L&, we have
mr i(en) 2 mr i (en) — Ta + 0¢,(1)
ra
2 ’

a contradiction. Therefore, we have showed ||v||, = 1 and Lemma 2.6 is proved. O

= my i (en) -

Proposition 2.1. The sequence {yn} obtained in Lemma 2.5 satisfies |yn| — +oo asn — +oo.

Proof. Suppose for the contrary, there exist a constant C > 0 and a subsequence of {yx}, still denoted by

{yn}, such that
lyn| < C. (212)

We may assume without loss of generality that y, = 0.

According to Lemma 2.4, {un(x)} is bounded in H ,% (R?). Then, passing to a subsequence if necessary, we
have that un — v in Hy(R?) as n — +oo.

By Lemma 2.6, we know that

IvIl2 = 1.
Since uy satisfies
pup s p JE) U = Ae,Un, x € R2, (2.13)
1+ I(enx) + u
by the elliptic estimates to (2.13), we have
-Av+T 10) +v? v=Arv, x € R% (2.14)

1+1(0) +v2
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Here we have used Lemma 2.3 which implies A¢, — Ar < 0 as &, — O (up to a subsequence). Since v > 0
satisfying (2.14) depends on I', we denote v as vr. Rewriting (2.14) as

~Avr +d(X)vr =0, x € R?, (2.15)
withd(x) =T % — Ar. Moreover,
100) +v2 \"
dx) =Ar-T(——TL_) <|I, x € R?, 2.16
) r <1+I(O)+V%) 1T, x (2.16)

where u* = max{u, 0}, u~ = max{-u, 0}.
Now we will prove that there exists M = M(I') > 0 depending only on I', such that

vrlles = [VrllL=r2) < M. (2.17)

In particular, ||vr||e is independent of I(0).
To prove (2.17), we need the following lemma.

Lemma 2.7. (Subsolution estimate, Theorem C.1.2 of [16])
Suppose u € H'(B;(xg)) solves
-Au+V(x)u=0 inBy(xp).

Then
lu(xo)| < C / lul,
Bi(xo)

where C > 0 is a constant depending only on the following quantities:

sup / V(y) dy ifN=1;

x€B1(xo)

ly-x|=<1
sup [ InGx=y VO dy ifN-2;
X€Bi(xo0)

ly-x|<3

' 2-N1r( - .

sup / x -yl V(y) dy ifN=z3.
x€Bi(xo0)

ly-x|<1

By (2.16), for N = 2, we have

/ In(x -y dGy)" dy < |T| / In(lx - y[™) dy

ly-x|s3 ly-x|s3

< [T / In(z| 1) dz (2.18)

|z|<3

< Cy|T).

Here C; does not depend on I'.
Therefore, by Lemma 2.7 and (2.18), we obtain

vkl <C [ Ivrldy for xo € B2, (219)
Bi(xo)

where C = C(I') > 0 is a constant depending only on I'. In view of fRz [vr(y)|?dy = 1, by (2.19), we know that
there exists M = M(I') > 0 depending only on I', such that

lvr(xo)| < M for xo € R?. (2.20)
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Thus, the proof of (2.17) is complete.
Meanwhile, we have

2
lim He,(un) = lim /|Vun\2 + T2 - In(1+ — 1)
£, —0 e —0

1+ I(enx)
R , 2.21)
> inf Vv2+1"v2—1n1+v7 .
VEH(R?), [ v2=1 / | | [ ( 1+1(0) )
]RZ
Now we will prove
Assertion 2.1.
/|Vv| +Iv? - 1In(1 + v — )] > km(l,lz). 2.22)
vEHl(]Rz) fmz v2=1 1+ 1(0) k .

Postponing the proof of Assertion 2.1, we finish the proof of Proposition 2.1. If Assertion 2.1 holds, by
(2.21), we have
lim He,(un) > km(:, 1),
en—0 k

which is a contradiction to Lemma 2.2. Therefore, the previous assumption (2.12) is false, and we obtain the
conclusions of Proposition 2.1.

We now return to the proof for Assertion 2.1.
Firstly, we note that

Lemma 2.8. Forgiven T > 0, there exists ag > 0, such that

y
"1+ 100)

v
>eth, for 0<y<T,

aslongas0 < 1+1(0) < ap.
The proof of Lemma 2.8 is elementary, we omit it here.

For given k € N*, it is easy to see

k
L _y 2
el > 1+k(1+12) for 0<y<M-.

Then, by Lemma 2.8, for T = M 2 there exists ag = ao(I') > 0, such that
y y ¢
—7 > (1+—2— ) f < M? 2.2
+1+I(O)>( +k(1+12)> or 0<ys (2.23)

if0<1+1I(0) < ag.
Since 0 < vp(x) < M for x € R?, by (2.23), we have

k

V2 V2
/ln<1+1+7§(0))>/ln<1+k(17_€12)> . (2.24)
R2 R2

On the other hand, since v satisfies (2.14) and |, v =1, denoting vi = f’ we have [, vr V]“ =% L and
k/ [vvrl® +k1"/[vF In(1 +

~2

G

k(l Iz) k/\va| +F[v,— -In(1+ 025

> km(E, Iz)
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Consequently, by (2.25) and (2.24), we obtain

2

inf > +T v2—1n1+V7
VEH(R?), [i2 v2=1 / | ‘ [ ( 1+ I(O))
RZ

2
=/va|2+l"{v%—ln(1+ v )]
R2

1+ 1(0)
i\ (2.26)
2 2 T .

>/|va| +F[vr In (1+7k(1+lz)> }

R2

_ |Vvr|? / VP vi

—k/ T + kI 2 1n(1+7k(1+lz))

R2 R2

> km(Tlc,Iz).

Here we have used [;, vf = 1.
Hence, by (2.26), the proof of Assertion 2.1 is complete. O

Lemma2.9. Let en — 0 and un(x) € Hy(R?) satisfy [, uz(x) = 1 and
T 1
lim Hgn(Ur[) < km(fa IZ)’
N—s+o0 k

where un(x) is the minimizer of mr i (en). Then there exist a subsequence of {un(x)}(still denoted by {un(x)})
and {yn} satisfying #G;(yn) = k, such that for each -y > O there exists R = R(v) > 0,

/ w0 = % -,

Br(yi)

[uny

where i = giyn, 8 € Gy, i=1,2,...,kand ggyn = Yn.

Remark 2.1. The #G;(x) in Lemma 2.9 stands for the cardinal number of Gy (x), the orbit of x under the action
Gy.

Proof. We only consider k > 2 (for k = 1, this is the case of Lemma 3.1 in [9]). Applying the concentration
compactness principle [17, 18], we get three possibilities: vanishing, dichotomy and compactness. Vanishing
can be ruled out by using Lemma 2.5. If compactness happens, there exists a subsequence of {un(x)} (still
denoted by {un(x)}), and {y»} such that for any ~ > 0 there exists R = R(y) > 0 with the property that

2
up(x) =21 -+. (2.27)
BR(Yn)

Now we can also get a contradiction as follows. Firstly, we claim that there exists Ry > 0 such that {y,} in
(2.27) satisfying
[ynl < Ro. (2.28)

If (2.28) is not true, then for a subsequence |yn| — +oo as n — +oo. By the symmetry of R? and un(g™'x) =

un(x) with g € G4, we have
/uﬁ(x) > / u(x) = k - k.

R2 Uk Br(yL)

This is a contradiction with [, u(x) = 1.
On the other hand, by Proposition 2.1, we know that {yn} in (2.27) satisfying |yn| — +oc as n — +oo,
which produces a contradiction with (2.28). Therefore, compactness does not happen.
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With vanishing and compactness both being ruled out, we obtain dichotomy of the sequence. Now by
Proposition 2.1, we note that the orbit of {y»} under the action of G, contains exactly k points:

Vis Vos oo Ve L Yk = yn

and the distance between any two of these k points tends to infinity as n — oo. By the symmetry of the domain
R? and the fact that u,(x) are G-invariant, one obtains for any fixed n sufficiently large,

0< / u%(x)s%, i=1,2,...,k.
Br(y%)

Since un(gix) = un(x), i=1,2,...,k, we have

/uﬁ(x)= / UA(X), i#j.

Br(y) Br(Y))

Now we claim that for all v > 0, there exists R = R(y) > 0, such that

/ WA= %y i=1,2,. 0k,
Br(y})
as n — +oo. If not, we assume that there exists a satisfying 0 < a < %, such that for all v > 0, there exists
R=R(>) >0,
| / uz(x)-al<v, i=1,2,...,k, (2.29)
Br(y})
asn — +oo, Then A := ka < 1. We will derive a contradiction as follows.
Let .
Wy i(X) = un(x +yn), i=1,2,..., k. (2.30)
Then

I(enx + enyh) + W ;

-Awp; + Wp,i = Aey,Wn i, X € R?. (2.31)

i 2
1+ I(enx + enyl) + Wi

By Lemma 2.5, for O < v < §, there exists R = R(y) > 0, such that

lim inf wﬁ,i(x)zgzﬁ>0,i=1,2,...,k.

n-—>+oo (2.32)
Br(0)
From Lemma 2.4,
Wy, ; is bounded in H'(R?), i=1,2,...,k. (2.33)
Hence, w,,; — w; in H(R?) and wy, ; — w; # 0in L?(Bg(0)),i=1,2,..., k.
By (2.32), fBR(o) wi2 2f>0,i=1,2,..., k. Therefore, there exists 7 > 0 such that
D; = {x:w;i(x) 2 T,x € Bg(0)} c Bg(0) (2.34)
and
u(D,) > 0, (2.35)
where u(D;) denotes Lebesgue measure of D;, i=1,2,...,k.
Denoting
Dy:=D;j+yn={x+yn: xeD;}, i=1,2,...,k,
we have

w,-(x+y£,)z‘r, xeD;, i=1,2,...,k.
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Moreover, from the fact w, ; — w; in L?(Bg(0)), we have

lim / [Wy,i(x) - w,-(x)\2 =0 and wp ;(x) — w;(x) # 0 a.e. in D;. (2.36)
D;
Then, by elliptic estimates we have maxg, ) [Wp,i(x) - w; (x)| —0fori=1,2,...,kasn — oo.
Since |yh| — +e0, i=1,2,...,k, asn — +ooand |y}, - y,,| — +oo, 1 #jasn — +co, we have
DD}y =0, i#], (237)
as n — +oo, Then, we get
k . k .
Jdim 1> wie-yh)iB = tim S [ whe-yh) - ka- . (238)
i=1 i=1 1,
Therefore, by (2.38) and Brezis-Lieb Lemma [19], we have
k .
W3 . (2.39)

k
1A= funll3 = || Y wilx =yn)l|3 + 0n(1) = uun—z/wi(x—yn)uﬁon(l)

i=1 i=1 R2
Let f(s) = s — In(1 + s). Based on (2.36) and the fact
k k
max |un Zw (x-yh)| < Zmax|wn i) -wi(x)] =0
1 1 l 1
as n — oo, using Lemma 5.2 in [14] we can find § > 0 such that
Z] 1 X y}'l))
[[un

/f<A WGy
12K wilx - Y131 + I(enx) - ZH wi(x—yn)||§(1 +I(enx))

K wil-yh))?

UL, D
(O, wilx - yh)? ) < (un )
<=6 Af : . (1-A)f .
+U_k/D ,. <| Siea Wil = yI B+ Tenx) +U_k/D ,, I = 31 Wil = yRI 31+ Tenx)
i=1 i=1"n (2.40)
asn — oo,

Thus, using the above facts we have
myr y(en) = He,(un) = [ |Vu |2+F[u2—ln(1+u7%)]

Liaen el " " 1+ I(enx)
RZ
I(enx)u3

2 2
= r ~ent)¥n
/ |Vun|” + / |Vun|® + / 1+ Ien)

R2\UX Br(y%) Uk Br(yL)

Uk Br(YL)
I(snx)un Un
+r / 1+I(enx) /[1+I( £nX) ~In(1+ 1+I(£nx))]
R2\UK  Br(y%)
_/A VK, wilx - yn)) L2 Vun - 32K, wilx - y) ’
R2 I Zl 1 Wi i(x - Yn)||2 [|un - Zl 1 Wi i(x - Yn)||2 (2.41)
I(enX)(un - S wilx - Y1)

i )2

/A IIESnX)(ZlEl.Wi(X - )/n)) + (1 _ A) X 3

2 | D Wilx = y)l13(1 + I(€nx)) [lun =321 wilx =yR)I[3(1 + (enx)

k iy)2 K wil-yh))?
R2 1> icq wilx = yI13(1 + I(enx)) [lun = 325 Wil = y)l[3(1 + I(enx))

k i
>+( - )Hg"<|“"‘2f'1w"("‘y”) )—r6+on(1)

] .
> AH,, ( Z,fl wilx = yn)
1> i wilx = yll2

> Amp (en) + (1 - A)mp g (€n) — I'S + on(1).

k .
i=1 wilx = yhll2
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Sending n — oo we obtain a contradiction.

Hence, we conclude that a = %

As aresult, there exist a subsequence {un(x)} and {yn}, such that for each v > 0 there exists R = R(~) > O,
1
[ o=,
Br(yl)

where yi, =gi¥n, 8i € Gy, 1=1,2,...,kand gxyn = ¥n. O

3 Proof of Theorem 1.1

In this section, we will give the proof for the conclusions (i) and (ii) of Theorem 1.1 as € — 0*. To be more
specific, the conclusions of (i) in Theorem 1.1 will be proved by Lemma 3.1, and the conclusions of (ii) in
Theorem 1.1 will be proved by Lemma 3.2 and Lemma 3.3.

Lemma 3.1. 1
lim mp(e) = km(5, I).
e—0* ’ k

Proof. By Lemma 3.1 in [9], we have lirr(l) mr, 1(g) = m(1, I). Now in the following, we always assume k > 2.
£—

Suppose the conclusion is not true, by Lemma 2.2, we know that there exist £, — 0 and un(x) € H,% R?») a
solution of (1.2) with [, u2(x) = 1, such that

lim mp(en) = lim He, (un) = B < km(l,lz). (3.1
en—0 ’ en—0 k

On the other hand, by Lemma 2.9, for each « > 0, there exists R = R(~) > 0, such that
uz(x)>1—7 i=1,2 k
n —< ’ 3 &y e ooy e (3'2)
Br(y%)

Let n = n(t) be a smooth nonincreasing function on [0, +o0) such that n(¢t) = 1, for t € [0, 1], n(t) = 0, for
t>2,and |n'(t)| < 2. Setting

i
Wri00) = 1 (X2 Y un(0), x € R2,

R
then Wy, ;(x) € H'(R?). By choosing R large enough (for fixed v > 0), we may assume
1 - - 1 .
Ee/wn,i x) = / Wn.i (X)EE—Z’y,l=1,2,...,k. (3.3)
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Therefore, we have

2
u
Ee, (un) = / Vuaf? + Tl ~In(1 + )
RZ
2
u
- / |Vun|2 +IMu? -1In(1 + ﬁ(nenx))] +0~(1)
Uk Br(yh)
2 2 uﬁ
> / |Vun|® + Iuj; - In(1 + 1+IZ)]+07(1)
Uk Br(yh)
k -
_ Wni (x
-3 [ IV T2 -1+ 22 4 o0,0)
=1 ) 2
2 2 w?
>k inf /|Vw| +Iw” = 1n(1 + ———)] + 0~(1)
WEH(R2), [, w2=% 1+1
RZ
1
= km(E, L) +04(1).
Letting €, — 0 and v — 0, we have
1
B> km(ﬁy IZ))
a contradiction to (3.1). O

Lemma 3.2. The sequence {yn} obtained in Lemma 2.5 satisfies
enlyn| — |e1l =1 asn — +oo, where e; € st
Proof. Suppose on the contrary that there exists a sequence €, such that |enye,| — +o0asn — +oo.

By (B1), we have I, = max I(x) > limsup I(x) = I > I; > —1, then there exists § > 0, such that
xeR |x|—+oo

I(enx + enyn) <L -6and1+1,-6>0

for n large enough and |enx| < 1.
Accordingly, under the action of G, we have

I(snx+£ny§1)<lz—6, i=1,2,...,kand1+1,-6>0 (3.4)

for n large enough and |enx| < 1.
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Let 17 = n(t) be the cut-off function used in Lemma 3.1. Also, we define wy, ;(x) = (%) wn,i(x) = n(% ) un(x+
yh), x € R?. Then we have

2

B 2 2 _ Un
Ee,(un) = / |Vtn|” + Iup - In(1 + 1 +I(£nx))]
]RZ
- |Vun|® + Iuy - In(1 + uiﬁ)] +0y(1)
n n 1+ I(enx) 7

UleBR()’i.)

k . . 2 i
=y / [Vun(x + yo)|? + Tlup(x + yh) - In(1 + M)] +04(1)
- 1+ I(enx + €nyh)
N0
Wi (1)

1+ I(enx + £ny£1))] +0,(1)

k

=3 [ 1900 + Tl 200 ~ .+
i=1 0,

Wi ()

k
= Vw2 + Twn i () - In(1 + — L =22
S [ TCOR T 60 - In ¢ e

i=1
®n{xls}

2
Whn,i ()

1+ I(enx + eny;))] +0,(1)

k
n Z / [V Whi (0 + F[VT,:,-Z(X) -In(1 +

i=1
Rzﬂ{|x\z$}

2
Wi, i 9]

k
— 2 —2
> Z / |VWy (0] + Ty (x) - In(1 + oI+ oD

i=1
RN {jx]s2 }

)N+ 07(1)

k
2> [ IVWC0P ¢ Il 00 - 1 +
i-1

2
Wh,i 9]

m)] + 07(1)-

R2N{ \x|s$}
By (2.30), (2.33), Lemma 2.4 and Lemma 2.9, and let n — +oo and v — 0, one has

km(l,lz)z lim Eg,(un)
k n—s+oco

k 2
_ ——2 Wn,i (x)
2 Z / |VWn,i(X)|2 +F[Wn,i (0 -1In(1 + #2—6)] + 0’7(1)
1:1R2ﬂ{|x\s$}
>k [ |vw;)? + Tw? - In(1 + wi )]
2 [Vw; w; —In 1+5,-6
RZ
>k [ |vwi? + ITw? - 1In(1 + wi )]
RZ

> km(7, 1),

a contradiction. Here we have used w,, ; — w; in H'(Bg(0)), strongly in L?(B(0)) and and for each v > 0,
there exists R = R(y) > 0, such that [; wizg-n,i= .1, 2,.. g k. .

Therefore, there exists a subsequence &, such that Xy, = enyh — x4, w,; — w; 2 0in H*(R?) and a.e. in
R?, where xg =giXo, 8i € Gy, i=1,2,...,kand gyxp = Xp.

Applying the elliptic estimates theory to (2.31), we have w, ; — w;in C (R?) and

2
loc

I04) +w?

-Aw;+———1—
! 1+1(x)) + w?

Wi=/10Wi,XGRZ,i=1,2,...,k,

here A < 0 derives from Lemma 2.3 which implies A¢, — Ag as ex — 0" (up to a subsequence).
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Next, we will prove I(x}) = I, i=1,2,..., k.
Since wy, ;(x) = un(x + ¥y, i=1,2,...,k andasn — +oo, Wy,i(x) = w;(x) in L?(Bg(0)), by Lemma 3.1,
Lemma 2.9, and the weakly lower semi-continuity of norm, we have

km(%,]z)= lim mr,k(sn)

2
= _ Un
= hm /|Vun| +IMuz -In(1 + I +I(€nx))]
= lim S |Vun(x)|? + Iua(x) - In(1 + ﬂ)] +0-(1)
[ areny Z Un Un 1+ I(enx) v
=1 Br(y)
k W2
_ 12 2 n,i
- nL“IL,Z / |VWy > + Twy ; - In(1 + T lGx s enD) Snyﬁ))] +04(1)
L B(0) (3.5)
S 2 Wi (X)
= i Vw02 +Mwp i () -In(1 + — %1 22 1
Jim 3 R/ V00 + T 760 - In(1 + 014 0,(1)
= k/ |Vw;|* + Iw? - 1n(1 + W7"2)] +0-(1)
! ! 1+ I(xg) K
]RZ
> k/ |Vw1 +F[w -In(1 + )] +0~(1)

> km(FIZ) +04(1).

Letting v — O, this implies that I, = I(x}), i = 1,2,..., k. By (B2), welet e; € {x},x3,...,x5} c S!, then
|61| =1. O

At last, combining Lemma 3.2 and the proof process of Lemma 3.2, we can obtain

Lemma3.3. ForI < T, fixed, let uc be a minimizer of mr i (&), then we have

— 0, as € — 0 (up to a subsequence),
HL(R2)

k
i€
- Z Wi(X + gils 1)

i=1

where w;(x) is the minimizer of m(}, I,) and eq € S* = {x € R?| |x| = 1}.
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