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Abstract: In this paper, we are concerned with the existence of multi-bump solutions for a class of semiclas-
sical saturable Schrödinger equations with an density function:

−∆v + Γ I(εx) + v2
1 + I(εx) + v2 v = λv, x ∈ R2.

We prove that, with the density function being radially symmetric, for given integer k ≥ 2 there exist a family
of non-radial, k-bump type normalized solutions (i.e., with the L2 constraint) which concentrate at the global
maximum points of density functions when ε → 0+. The proof is based on a variational method in particular
on a convexity technique and the concentration-compactness method.

Keywords: Schrödinger equations; saturable nonlinearity; semiclassical states; multi-bump solution; con-
centrations
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1 Introduction and main results
This paper deals with the existence of solutions (v, λ) ∈ H1(R2,R) ×R to the following nonlinear eigenvalue
problem with saturable nonlinearity

−∆v + Γ I(εx) + v2
1 + I(εx) + v2 v = λv, x ∈ R2, (1.1)

where ε is a small parameter (related to the Planck constant), Γ is a coupling constant, and I(x), the den-
sity function, is a bounded continuous function. This model describes paraxial counter-propagating beams
in isotropic local media (e.g., [1–5]). An interesting issue concerning (1.1) is the existence of semiclassical
states, which concerns the study of (1.1) for small ε > 0. From the physics point of view, semiclassical states
describe a sort of transition from quantummechanics to classical mechanics as the parameter ε goes to zero.
In (1.1), one can either consider the parameter λ ∈ R to be given, or to be an unknown of the problem. In
this paper, we study the latter case, i.e., we look for normalized solutions with the L2 norm prescribed and
λ as a Lagrange multiplier. For small ε > 0 in (1.1), we will make a �rst attempt to study the existence and
concentration behavior of multi-bump type solutions in H1(R2). We refer [6–8] for results on the problems
of saturable nonlinearity without constraints and references therein such as existence and concentration
property of solutions.
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The main goal of this paper is to establish the existence and concentration behavior of multi-bump solu-
tions with a localizing potential I(εx) for small ε > 0

−∆u + Γ I(εx) + u2
1 + I(εx) + u2 u = λu, for x ∈ R2. (1.2)

It is well known that equation (1.2) is the Euler-Lagrange equation of the following minimization problem
subject to a L2 constraint

mε(Γ , I) = inf{Eε(ρ) | ρ ∈ H1(R2),
∫
R2

ρ2 = 1}, (1.3)

where
Eε(ρ) =

∫
R2

|∇ρ|2 + Γ[ρ2 − ln(1 + ρ2
1 + I(εx) )].

Also observe that in this case the parameter λ ∈ R depending on ε (so in what follows, we denote λ = λε),
comes fromproblem (1.3) and can be interpreted as a Lagrangemultiplier. Among all possible standingwaves
for equation (1.2), typically themost relevant are ground state solutions. Recently, in [9], by a globalminimiza-
tionmethod, we have obtained the existence and concentration behavior of positive normalized ground state
solutions of equation (1.2) in H1(R2) for small ε > 0, under the condition
(B1) I(x) satis�es

I2 = max
x∈R2

I(x) > lim sup
|x|→+∞

I(x) = I∞ ≥ I1 = inf
R2
I(x) > −1.

We remark that in most cases the global minimizers are not necessarily multi-bump solutions, and that
when I(x) is radially symmetric the global minimizers may be radially symmetric functions. In this paper we
investigate conditions on I(x) = I(|x|) under which the minimizers are non-radial and multi-bump type solu-
tions. In order to solve this problem, we introduce a local minimization procedure and work on a subspace of
H1(R2). The main ideas come from the methods introduced in [10, 11] of the second author. This local min-
imization procedure has been successfully used to treat nonlinear Dirichlet problems [10, 12] and nonlinear
Neumann problems [13]. The advantage of this method is that we can get qualitative properties of the solu-
tions constructed such as the concentration behavior and the shape of solutions with a discrete number of
bumps. However this type of method and results have not been studied before for normalized solutions and
there are new di�culties which require new ideas and variational techniques.

Let k ≥ 2 be a �xed positive integer. We de�ne

H1
k (R

2) =
{
u ∈ H1(R2)

∣∣ u(g−1x) = u(x), a.e. in R2, for all g ∈ Gk
}
,

where

Gk =
{
g ∈ O(2)

∣∣ g(x1, x2) = (x1 cos
2πl
k + x2 sin

2πl
k , −x1 sin

2πl
k + x2 cos

2πl
k ), (x1, x2) ∈ R2

}
,

l = 1, 2, . . . , k, and O(2) is the group of orthogonal transformations in R2. It is easy to see that Gk is a cyclic
group of order k. In order to get multi-bump type solutions, we consider the followingminimization problem

mΓ ,k(ε) = inf
u∈H1

k (R2),
∫
R2 u2=1

Hε(u)

= inf
u∈H1

k (R2),
∫
R2 u2=1

∫
R2

|∇u|2 + Γ[u2 − ln(1 + u2
1 + I(εx) )]dx.

(1.4)

If (B1) is satis�ed and I(x) = I(|x|) ∈ C(R2,R) ∩ L∞(R2,R) is radially symmetric, using a similar proce-
dure as in the proof of Theorem 2.1 in [9], we may deduce the existence result of a minimizer for the above
minimization problem mΓ ,k(ε). But to show the minimizers are non-radial and of multi-bump type we would
need additional conditions on the density function I(x).

By (B1) we deduce that themaximumvalue of I(x)must be obtained on a bounded closed set.We suppose
that
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(B2) I(x) = I(|x|) is radial and achieves its uniquemaximum on S1 = {x ∈ R2| |x| = 1}, and there exist δ0 > 0
and r0 > 0 such that I(x) ≥ I∞ + δ0 for ||x| − 1| ≤ r0.

Then we have the following Theorem.

Theorem 1.1. Assume that I(x) satis�es (B1)–(B2). For any integer k ≥ 2 �xed, there exists Γ0 = Γ0(I∞, k, δ0, r0)
(but independent of ε > 0, I1 and I(0)), for each �xed Γ < Γ0, there exist ε0 = ε0(Γ) > 0 and α0 = α0(Γ) > 0 such
that if 0 < ε < ε0 and 0 < 1 + I(0) < α0, mΓ ,k(ε) has a minimizer solution uε ∈ H1

k (R
2) satisfying

(i)
lim
ε→0+

mΓ ,k(ε) = km(
1
k , I2),

where
m(1k , I2) = inf

u∈H1(R2),
∫
R2 u2=

1
k

∫
R2

|∇u|2 + Γ[u2 − ln(1 + u2
1 + I2

)]dx.

(ii) uε is of k−bump type in the sense that uε has exactly k maximum points which form a Gk−orbit Gk(yε)
for some yε ∈ R2 satisfying |εyε| → 1 and up to subsequences∣∣∣∣∣

∣∣∣∣∣uε −
k∑
i=1

w(x + gie1ε )

∣∣∣∣∣
∣∣∣∣∣
H1(R2)

→ 0, as ε → 0+ ,

where w(x) is a minimizer of m(1k , I2) and e1 ∈ S
1 = {x ∈ R2| |x| = 1}.

The existence of a minimizer follows from the work of [14] (will be stated in Theorem 2.1), and wemainly con-
cern whether there are multi-bumps for the local minimizers uε ∈ H1

k (R
2) as ε ∈ (0, ε0). Generally speaking,

this conclusion is not necessarily true. For example, if only (B1) is satis�ed, by Theorem 2.4 in [14], we see that
uε ∈ H1

k (R
2) may be a radially symmetric solution and has only one bump centered at the origin. Therefore,

in order to construct multi-bump solutions, we need to impose some additional conditions on I(x). We prove
that (B2) and the condition on I(0) are su�cient to assure the minimizers are of multi-bump type solutions.

This paper is structured as follows. In Section 2 we will present and show some useful lemmas which are
useful for the proof of Theorem 1.1. Afterwards, in Section 3 we will give the proof of Theorem 1.1.

Notation. Throughout this paper, we denote by C a positive constant, which may vary from line to line; all
integrals are taken over R2; All dx in the integrals are omitted; Lp ≡ Lp(R2)(1 ≤ p < +∞) is the usual
Lebesgue space with the norm ||u||pp =

∫
R2 |u|p; H1 ≡ H1(R2) denotes the uaual Sobolev space with the norm

||u||2 =
∫
R2 (|∇u|2 + |u|2); on(1) (resp. oε(1)) will denote a generic in�nitesimal as n → ∞ (resp. ε → 0+);→

denotes the strong convergence and⇀ the weak convergence.

2 Some technical results
In this section, we will establish several lemmas, which will be useful to prove Theorem 1.1 in next Section.
First using a similar procedure as in the proof of Theorem 2.1 in [9], we may deduce the existence result of a
minimizer for mΓ ,k(ε).

Theorem 2.1. Suppose that I(x) = I(|x|) satis�es (B1)–(B2). Then for given integer k ≥ 2, there exists Γ′0 =
Γ′0(I∞, k) < 0 (independent of ε > 0, I1 and I(0)), for each �xed Γ < Γ′0, there exists ε0 = ε0(Γ) > 0 such that for
all ε ∈ (0, ε0), the minimization problem

mΓ ,k(ε) = inf
u∈H1

k (R2),
∫
R2 u2=1

Hε(u)

= inf
u∈H1

k (R2),
∫
R2 u2=1

∫
R2

|∇u|2 + Γ[u2 − ln(1 + u2
1 + I(εx) )]
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possesses a solution uε, which solves equation (1.2) for some λ < 0.

This follows from the proofs in [9], in which I(x) is �xed throughout the proof there. As we need to place
a condition on I(0) as in Theorem 1.1, closer examination tells us that the proof of the above result works
through if we �x the property of I in the neighborhood of the maximum points while allowing changes of
I(0). We omit the details here.

Next in order to analyze the asymptotic behavior of the minimizers uε we prepare some estimates.

Lemma 2.1. For given integer k ≥ 2, there exist Γ1 = Γ1(I2, k) < 0 and 0 < a = a(I2, k) < 1
k , such that for each

�xed Γ < Γ1,

m(1k , I2) = inf
u∈H1(R2),

∫
R2 u2=

1
k

∫
R2

|∇u|2 + Γ[u2 − ln(1 + u2
1 + I2

)]

is achieved by uk which is radially symmetric. Moreover,

km(1k , I2) <
ΓI2
1 + I2

. (2.1)

In particular, we have
m(1k , I2) ≤

aΓ
2 and kaΓ

2 + 1 < 0. (2.2)

Proof. Using the same arguments as Theorem 2.1 in [14], we know that there exists Γ′1 = Γ′1(I2, k) < 0, such
that for each �xed Γ < Γ′1 the minimization problem m(1k , I2) is attained by uk . In addition, by Theorem 2.3
in [14], uk is a radially symmetric function.

Moreover, we have

m(1k , I2) = inf
u∈H1(R2),

∫
R2 u2=

1
k

∫
R2

|∇u|2 + Γ[u2 − ln(1 + u2
1 + I2

)]

= inf
u∈H1(R2),

∫
R2 u2=

1
k

∫
R2

|∇u|2 + Γ[ u2
1 + I2

− ln(1 + u2
1 + I2

)] +
∫
R2

ΓI2u2
1 + I2

< ΓI2
k(1 + I2)

,

and this implies
km(1k , I2) <

ΓI2
1 + I2

.

On the other hand, we may �nd a sequence of functions un such that ||un||22 = 1
k and an =

∫
R2 [u2n − ln(1 +

u2n
1+I )]→

1
k as n →∞. In fact, this can be done by choosing v(x) ∈ C∞0 (B1(0)) such that

∫
R2 v2 = 1

k , and setting
un(x) = nv(nx), then

an =
∫
R2

[u2n − ln(1 +
u2n

1 + I2
)] =

∫
R2

[n2v2(nx) − ln
(
1 + n

2v2(nx)
1 + I2

)
]

=
∫
R2

[v2(y) − 1
n2 ln

(
1 + n

2v2(y)
1 + I2

)
] = 1

k −
∫
R2

1
n2 ln

(
1 + n

2v2(y)
1 + I2

)

→ 1
k , as n →∞.

Here we used the fact for b > 0 �xed,
ln(1 + bρ)

ρ → 0, as ρ → +∞.

Hence, there is a function u0 with ||u0||22 = 1
k and

0 < a ≡ a(I2, k) =
∫
R2

[u20 − ln(1 +
u20

1 + I2
)] < 1

k .



X. Wang and Z.-Q. Wang, Normalized multi-bump solutions for saturable Schrödinger equations | 1263

Noticing that

lim
Γ→−∞

m(1k , I2)
Γ ≥ lim

Γ→−∞

∫
R2 |∇u0|2 + Γ[u20 − ln(1 +

u20
1+I2 )]

Γ = a > 0.

Therefore, there exists Γ′′1 = Γ′′1 (I2, k), such that

m(1k , I2) ≤
aΓ
2 and kaΓ

2 + 1 < 0

if Γ < Γ′′1 .
As a result, taking

Γ1 = Γ1(I2, k) ≡ min{Γ′1(I2, k), Γ′′1 (I2, k)},

we can get the desired results for Lemma 2.1.

Now in the following, for given k ∈ N+, we always �x

Γ < Γ0 = Γ0(I2, I∞, k) ≡ min{Γ1(I2, k), Γ′0(I∞, k)} < 0,

where Γ′0(I∞, k) is given in Theorem 2.1.
We remark that by Theorem 2.1 and (B2), we know that nomatter how I(x) changes outside the neighbor-

hood of
∣∣|x| − 1∣∣ ≤ 2r0, for each �xed Γ < Γ0, there exists ε0 = ε0(Γ) > 0, such that mΓ ,k(ε) is always achieved

by some uε ∈ H1
k (R

2) for ε ∈ (0, ε0). At the same time, by Theorem 2.1, we know that uε satis�es

−4uε + Γ
I(εx) + u2ε

1 + I(εx) + u2ε
uε = λεuε , x ∈ R2, (2.3)

where λε is associated Lagrange multiplier.
Next, we start to study the qualitative properties for the minimizer uε of mΓ ,k(ε).

Lemma 2.2. It holds that
lim
ε→0+

mΓ ,k(ε) ≤ km(
1
k , I2).

Proof. Taking e1 ∈ S1 and the Gk−orbit of e1 containing exactly k points, {gie1 | i = 1, 2, . . . , k}, and
de�ning

Uε(x) =
k∑
i=1

w(x + gie1ε ),

where w(x) ∈ H1(R2) is the minimizer of m(1k , I2) so w(x) → 0 as |x| → ∞. Moreover, by Lemma 2.1, w is
radially symmetric. Since

lim
ε→0+

|
gie1 − gje1

ε | = +∞ for i ≠ j,

we have

||Uε(x)||22 =
∫
R2

|
k∑
i=1

w(x + gie1ε )|2dx

=
k∑
i=1

∫
R2

|w(x + gie1ε )|2dx + oε(1)

→ 1, as ε → 0+.

Setting
Vε(x) =

Uε(x)
||Uε(x)||2

,

then ||Vε(x)||22 = 1 and Vε(x) ∈ H1
k (R

2).
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Therefore, according to I(x) = I(|x|) satisfying (B2), we have

mΓ ,k(ε) ≤ Hε(Vε) =
∫
R2

|∇Vε|2 + Γ[V2
ε − ln(1 +

V2
ε

1 + I(εx) )]

=
∫
R2

|∇ Uε
||Uε(x)||2

|2 + Γ[ U2
ε

||Uε(x)||22
− ln(1 + U2

ε
||Uε(x)||22(1 + I(εx))

)]

=
∫
R2

|
k∑
i=1
∇w(x + gie1

ε )|2

||Uε(x)||22
+ Γ


|
k∑
i=1
w(x + gie1

ε )|2

||Uε(x)||22
− ln(1 +

|
k∑
i=1
w(x + gie1

ε )|2

||Uε(x)||22(1 + I(εx))
)


=

k∑
i=1

∫
R2

|∇w(x + gie1
ε )|2

||Uε(x)||22
+ Γ
[
|w(x + gie1

ε )|2

||Uε(x)||22
− ln(1 +

|w(x + gie1
ε )|2

||Uε(x)||22(1 + I(εx))
)
]
+ oε(1)

=
k∑
i=1

∫
R2

|∇w(x)|2

||Uε(x)||22
+ Γ
[
|w(x)|2

||Uε(x)||22
− ln(1 + |w(x)|2

||Uε(x)||22(1 + I(εx − gie1))
)
]
+ oε(1)

→
k∑
i=1

∫
R2

|∇w|2 + Γ[w2 − ln(1 + w2

1 + I(gie1)
)] (as ε → 0+)

= k
∫
R2

|∇w|2 + Γ[w2 − ln(1 + w2

1 + I2
)] = km(1k , I2).

Thus,
lim
ε→0

mΓ ,k(ε) ≤ km(
1
k , I2).

Lemma 2.3. There exists 0 < ε1 ≤ ε0, such that for ε ∈ (0, ε1), the Lagrange multiplier λε in (2.3) satis�es

m(1, I2) +
Γ

1 + I1
≤ λε ≤

kaΓ
2 + 1 < 0,

where a > 0 is given in Lemma 2.1.

Proof. By Lemma 2.2, we know that there exists 0 < ε1 ≤ ε0, such that for ε ∈ (0, ε1), we have

mΓ ,k(ε) ≤ km(
1
k , I2) + 1.

Therefore, by (2.2), we have

λε = λε
∫
R2

u2ε =
∫
R2

|∇uε|2 + Γ
I(εx) + u2ε

1 + I(εx) + u2ε
u2ε

=
∫
R2

|∇u2ε | + Γ[u2ε − ln(1 +
u2ε

1 + I(εx) )] + Γ
∫
R2

[
I(εx) + u2ε

1 + I(εx) + u2ε
u2ε − u2ε + ln(1 +

u2ε
1 + I(εx) )

]

= mΓ ,k(ε) + Γ
∫
R2

[
I(εx) + u2ε

1 + I(εx) + u2ε
u2ε − u2ε + ln(1 +

u2ε
1 + I(εx) )

]

= mΓ ,k(ε) + Γ
∫
R2

[
ln(1 + u2ε

1 + I(εx) ) −
u2ε

1 + I(εx) + u2ε

]

≤ mΓ ,k(ε) ≤ km(
1
k , I2) + 1

≤ kaΓ2 + 1 < 0.
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Here we have used
∫
R2 u2ε = 1 and

∫
R2 [ln(1 + u2ε

1+I(εx) ) −
u2ε

1+I(εx)+u2ε
] ≥ 0.

On the other hand, according to (2.3), we obtain

λε = λε
∫
R2

u2ε =
∫
R2

|∇uε|2 + Γ
I(εx) + u2ε

1 + I(εx) + u2ε
u2ε

=
∫
R2

|∇u2ε | + Γ[u2ε − ln(1 +
u2ε

1 + I(εx) )] + Γ
∫
R2

[
I(εx) + u2ε

1 + I(εx) + u2ε
u2ε − u2ε + ln(1 +

u2ε
1 + I(εx) )

]

≥ mΓ ,k(ε) + Γ
∫
R2

[
1 + I(εx) + u2ε
1 + I(εx) + u2ε

u2ε − u2ε + ln(1 +
u2ε

1 + I(εx) )
]

= mΓ ,k(ε) + Γ
∫
R2

ln(1 + u2ε
1 + I(εx) ) ≥ mΓ ,k(ε) + Γ

∫
R2

ln(1 + u2ε
1 + I1

)

≥ mΓ ,k(ε) + Γ
∫
R2

u2ε
1 + I1

≥ m(1, I2) +
Γ

1 + I1
.

Therefore, we have �nished the proof of Lemma 2.3.

Lemma 2.4. There exists 0 < ε2 ≤ ε0, such that for ε ∈ (0, ε2), the minimizer uε of mΓ ,k(ε) satis�es

||uε||H1
k (R2) ≤ L =

√
2 + |Γ|

1 + I2
.

Proof. By Lemma 2.2, there exists 0 < ε2 ≤ ε0, such that for ε ∈ (0, ε2), we have

1 + km(1k , I2) ≥ mΓ ,k(ε) =
∫
R2

|∇uε(x)|2 + Γ[u2ε (x) − ln(1 +
u2ε (x)

1 + I(εx) )]

≥
∫
R2

|∇uε(x)|2 + Γ .

Here we have used the fact that
∫
R2 u2ε (x) = 1. Thus, by Lemma 2.1, we have

||uε||2H1
k (R2) =

∫
R2

|∇uε(x)|2 + u2ε (x)

≤ 2 − Γ + km(1k , I2)

≤ 2 − Γ + ΓI2
1 + I2

= 2 + |Γ|
1 + I2

:= L2.

Let uε be the minimizer of mΓ ,k(ε) for ε ∈ (0, min{ε1, ε2}). Now we can obtain that there exists a sequence
of points {yn} ≡: {yεn} in R2 such that most of the “mass" of u2n(x) ≡: u2εn (x) is contained in a ball of �xed
size centered at {yn}. Here and below, we note that εn → 0 if and only if n → +∞. At the same time, in the
following we may assume that, up to a subsequence, un ⇀ v in H1

k (R
2) as n → +∞.

Lemma 2.5. There exist positive constants R and β and a sequence {yn} such that

lim inf
n→+∞

∫
BR(yn)

u2n(x) ≥ β > 0.
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Proof. Wewill do it by a contradiction argument. If not, for any R > 0, there exists a sequence un ≡: uεn such
that

lim
n→+∞

sup
y∈R2

∫
BR(y)

u2n(x) = 0.

Then by Lions’s Lemma (e.g., [15]) one has ||un||p → 0 for any p > 2. By the fact that t2 − ln(1 + t2) ≤ Ct4 for
some C > 0, we have

Hεn (un) =
∫
R2

|∇un|2 + Γ[u2n − ln(1 +
u2n

1 + I(εnx)
)]

=
∫
R2

|∇un|2 + Γ
∫
R2

I(εnx)
1 + I(εnx)

u2n + Γ
∫
R2

[ u2n
1 + I(εnx)

− ln(1 + u2n
1 + I(εnx)

)]

≥
∫
R2

|∇un|2 +
ΓI2
1 + I2

+ on(1).

Therefore, by extracting a further subsequence if necessary, we can de�ne Ξ as

Ξ = lim
n→∞

Hεn (un).

In view of Lemma 2.2, we have km(1k , I2) ≥ Ξ ≥
ΓI2
1+I2 , a contradiction to (2.1).

Lemma 2.6. If the sequence {yn} ⊂ R2 obtained in Lemma 2.5 is bounded, and un ⇀ v in H1
k (R

2) as n → +∞,
then ||v||2 = 1.

Proof. Without loss of generality,wemayassume that yn ≡ 0. ByLemma2.5,weknow that there exist positive
constants R and β such that

lim inf
n→+∞

∫
BR(0)

u2n(x) ≥ β > 0. (2.4)

Since un ⇀ v in H1
k (R

2) as n → +∞, by (2.4), we have∫
BR(0)

v2(x) ≥ β > 0. (2.5)

Thus, v ≠ 0 and un → v in L2loc(R
2) as n → +∞.

Therefore, un(x)⇀ v(x) inH1(R2) and un → v in L2(BR(0)). Hence, up to a subsequence, wemay assume
that un(x)→ v(x) a.e. in BR(0). In view of (2.5), v ≠ 0 in BR(0). By (2.5) there exists σ > 0 such that

un(x)→ v(x) in Ω, (2.6)

where
Ω = {x : |v(x)| ≥ σ, x ∈ BR(0)} ⊂ BR(0) (2.7)

and
µ(Ω) > 0.

Here µ(Ω) is the Lebesgue measure of Ω.
Now we assert that ||v||2 = 1. We argue it by contradiction, assuming that A = ||v||22 ∈ (0, 1). We get a

contradiction as follows. For the sake of convenience, we write ṽ(x) = v(x)√
1+I(εnx)

and ũn = un−v√
1+I(εnx)

. Then, by
(2.6) and (2.7), we have

ṽ2(x) = v2(x)
1 + I(εnx)

≥ σ2
1 + I2

> 0 in Ω for ∀ n (2.8)

and
ũ2n(x) =

(un(x) − v(x))2
1 + I(εnx)

≤ (un(x) − v(x))
2

1 + I1
→ 0 in Ω as n → +∞. (2.9)



X. Wang and Z.-Q. Wang, Normalized multi-bump solutions for saturable Schrödinger equations | 1267

Let f (s) = s − ln(1 + s), s ≥ 0. By (2.8) and (2.9), using Lemma 5.2 in [14], we can �nd α > 0 independent
of n such that ∫

Ω

f
(
A( ṽ

2

A ) + (1 − A) ũ2n
||un − v||22

)
≤ −α +

∫
Ω

Af ( ṽ
2

A ) + (1 − A)f ( ũ2n
||un − v||22

), (2.10)

as n →∞.
Then using the convexity of f (s) = s − ln(1 + s), s ≥ 0 and (2.10), we have

mΓ ,k(εn) = Hεn (un)

=
∫
R2

|∇un|2 + Γ[u2n − ln(1 +
u2n

1 + I(εnx)
)]

=
∫
R2

|∇(v + (un − v))2| + Γ
[
(v + (un − v))2 − ln

(
1 + (v + (un − v))2

1 + I(εnx)

)]

=
∫
R2

A|∇(v/||v||2)|2 + (1 − A)|∇((un − v)/||un − v||2)|2

+ Γ
∫
R2

I(εnx)(ṽ2 + ũ2n) + Γ
∫
R2

f
(
A ṽ

2

A + (1 − A) ũ2n
||un − v||22

)
+ oεn (1)

≥
∫
R2

A|∇(v/||v||2)|2 + (1 − A)|∇((un − v)/||un − v||2)|2

+ Γ
∫
R2

I(εnx)(ṽ2 + ũ2n) + Γ
∫
R2

(
Af ( ṽ

2

A ) + (1 − A)f ( ũ2n
||un − v||22

)
)
dx − Γα + oεn (1)

= AHεn (
v
||v||2

) + (1 − A)Hεn (
un − v
||un − v||2

) − Γα + oεn (1)

≥ AmΓ ,k(εn) + (1 − A)mΓ ,k(εn) − Γα + oεn (1).

(2.11)

In particular, by (2.11), for su�ciently small εn satisfying |oεn (1)| ≤ − Γα2 , we have

mΓ ,k(εn) ≥ mΓ ,k(εn) − Γα + oεn (1)

≥ mΓ ,k(εn) −
Γα
2 ,

a contradiction. Therefore, we have showed ||v||2 = 1 and Lemma 2.6 is proved.

Proposition 2.1. The sequence {yn} obtained in Lemma 2.5 satis�es |yn| → +∞ as n → +∞.

Proof. Suppose for the contrary, there exist a constant C > 0 and a subsequence of {yn}, still denoted by
{yn}, such that

|yn| ≤ C. (2.12)

We may assume without loss of generality that yn ≡ 0.
According to Lemma 2.4, {un(x)} is bounded in H1

k (R
2). Then, passing to a subsequence if necessary, we

have that un ⇀ v in H1
k (R

2) as n → +∞.
By Lemma 2.6, we know that

||v||2 = 1.

Since un satis�es
−∆un + Γ

I(εnx) + u2n
1 + I(εnx) + u2n

un = λεnun , x ∈ R2, (2.13)

by the elliptic estimates to (2.13), we have

−∆v + Γ I(0) + v2
1 + I(0) + v2 v = λΓv, x ∈ R2. (2.14)
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Here we have used Lemma 2.3 which implies λεn → λΓ < 0 as εn → 0 (up to a subsequence). Since v ≥ 0
satisfying (2.14) depends on Γ, we denote v as vΓ . Rewriting (2.14) as

−∆vΓ + d(x)vΓ = 0, x ∈ R2, (2.15)

with d(x) = Γ I(0)+v2Γ
1+I(0)+v2Γ

− λΓ . Moreover,

d(x)− = λΓ − Γ
(

I(0) + v2Γ
1 + I(0) + v2Γ

)+
≤ |Γ|, x ∈ R2, (2.16)

where u+ = max{u, 0}, u− = max{−u, 0}.
Now we will prove that there exists M = M(Γ) > 0 depending only on Γ, such that

||vΓ ||∞ = ||vΓ ||L∞(R2) ≤ M. (2.17)

In particular, ||vΓ ||∞ is independent of I(0).
To prove (2.17), we need the following lemma.

Lemma 2.7. (Subsolution estimate, Theorem C.1.2 of [16])
Suppose u ∈ H1(B2(x0)) solves

−∆u + V(x)u = 0 in B2(x0).

Then
|u(x0)| ≤ C

∫
B1(x0)

|u|,

where C > 0 is a constant depending only on the following quantities:

sup
x∈B1(x0)

∫
|y−x|≤1

V(y)− dy if N = 1;

sup
x∈B1(x0)

∫
|y−x|≤ 12

ln(|x − y|−1)V(y)− dy if N = 2;

sup
x∈B1(x0)

∫
|y−x|≤1

|x − y|2−NV(y)− dy if N ≥ 3.

By (2.16), for N = 2, we have ∫
|y−x|≤ 12

ln(|x − y|−1) d(y)− dy ≤ |Γ|
∫

|y−x|≤ 12

ln(|x − y|−1) dy

≤ |Γ|
∫

|z|≤ 12

ln(|z|−1) dz

≤ C1|Γ|.

(2.18)

Here C1 does not depend on Γ .
Therefore, by Lemma 2.7 and (2.18), we obtain

|vΓ(x0)| ≤ C
∫

B1(x0)

|vΓ(y)|dy for x0 ∈ R2, (2.19)

where C = C(Γ) > 0 is a constant depending only on Γ . In view of
∫
R2 |vΓ(y)|2dy = 1, by (2.19), we know that

there exists M = M(Γ) > 0 depending only on Γ , such that

|vΓ(x0)| ≤ M for x0 ∈ R2. (2.20)
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Thus, the proof of (2.17) is complete.
Meanwhile, we have

lim
εn→0

Hεn (un) = lim
εn→0

∫
R2

|∇un|2 + Γ[u2n − ln(1 +
u2n

1 + I(εnx)
)]

≥ inf
v∈H1

k (R2),
∫
R2 v2=1

∫
R2

|∇v|2 + Γ[v2 − ln(1 + v2
1 + I(0) )].

(2.21)

Now we will prove
Assertion 2.1.

inf
v∈H1

k (R2),
∫
R2 v2=1

∫
R2

|∇v|2 + Γ[v2 − ln(1 + v2
1 + I(0) )] > km(

1
k , I2). (2.22)

Postponing the proof of Assertion 2.1, we �nish the proof of Proposition 2.1. If Assertion 2.1 holds, by
(2.21), we have

lim
εn→0

Hεn (un) > km(
1
k , I2),

which is a contradiction to Lemma 2.2. Therefore, the previous assumption (2.12) is false, and we obtain the
conclusions of Proposition 2.1.

We now return to the proof for Assertion 2.1.
Firstly, we note that

Lemma 2.8. For given T > 0, there exists α0 > 0, such that

1 + y
1 + I(0) > e

y
1+I2 , for 0 < y ≤ T,

as long as 0 < 1 + I(0) < α0.

The proof of Lemma 2.8 is elementary, we omit it here.

For given k ∈ N+, it is easy to see

e
y

1+I2 ≥
(
1 + y

k(1 + I2)

)k
for 0 < y ≤ M2.

Then, by Lemma 2.8, for T = M2, there exists α0 = α0(Γ) > 0, such that

1 + y
1 + I(0) >

(
1 + y

k(1 + I2)

)k
for 0 < y ≤ M2 (2.23)

if 0 < 1 + I(0) < α0.
Since 0 < vΓ(x) ≤ M for x ∈ R2, by (2.23), we have∫

R2

ln
(
1 + v2Γ

1 + I(0)

)
>
∫
R2

ln
(
1 + v2Γ

k(1 + I2)

)k
. (2.24)

On the other hand, since vΓ satis�es (2.14) and
∫
R2 v2Γ = 1, denoting ṽΓ = vΓ√

k
, we have

∫
R2 ṽΓ

2 = 1
k and

k
∫
R2

|∇vΓ |2
k + kΓ

∫
R2

[ v
2
Γ
k − ln(1 +

v2Γ
k(1 + I2)

)] = k
∫
R2

|∇ṽΓ |2 + Γ[ṽΓ
2 − ln(1 + ṽΓ

2

(1 + I2)
)]

≥ km(1k , I2).

(2.25)
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Consequently, by (2.25) and (2.24), we obtain

inf
v∈H1

k (R2),
∫
R2 v2=1

∫
R2

|∇v|2 + Γ
[
v2 − ln(1 + v2

1 + I(0) )
]

=
∫
R2

|∇vΓ |2 + Γ
[
v2Γ − ln(1 +

v2Γ
1 + I(0) )

]

>
∫
R2

|∇vΓ |2 + Γ
[
v2Γ − ln

(
1 + v2Γ

k(1 + I2)

)k]

= k
∫
R2

|∇vΓ |2
k + kΓ

∫
R2

[
v2Γ
k − ln(1 +

v2Γ
k(1 + I2)

)
]

≥ km(1k , I2).

(2.26)

Here we have used
∫
R2 v2Γ = 1.

Hence, by (2.26), the proof of Assertion 2.1 is complete.

Lemma 2.9. Let εn → 0 and un(x) ∈ H1
k (R

2) satisfy
∫
R2 u2n(x) = 1 and

lim
n→+∞

Hεn (un) ≤ km(
1
k , I2),

where un(x) is the minimizer of mΓ ,k(εn). Then there exist a subsequence of {un(x)}(still denoted by {un(x)})
and {yn} satisfying #Gk(yn) = k, such that for each γ > 0 there exists R = R(γ) > 0,∫

BR(yin)

u2n(x) ≥
1
k − γ,

where yin = giyn , gi ∈ Gk , i = 1, 2, . . . , k and gkyn = yn .

Remark 2.1. The #Gk(x) in Lemma 2.9 stands for the cardinal number of Gk(x), the orbit of x under the action
Gk .

Proof. We only consider k ≥ 2 (for k = 1, this is the case of Lemma 3.1 in [9]). Applying the concentration
compactness principle [17, 18], we get three possibilities: vanishing, dichotomy and compactness. Vanishing
can be ruled out by using Lemma 2.5. If compactness happens, there exists a subsequence of {un(x)} (still
denoted by {un(x)}), and {yn} such that for any γ > 0 there exists R = R(γ) > 0 with the property that∫

BR(yn)

u2n(x) ≥ 1 − γ. (2.27)

Now we can also get a contradiction as follows. Firstly, we claim that there exists R0 > 0 such that {yn} in
(2.27) satisfying

|yn| ≤ R0. (2.28)

If (2.28) is not true, then for a subsequence |yn| → +∞ as n → +∞. By the symmetry of R2 and un(g−1x) =
un(x) with g ∈ Gk , we have ∫

R2

u2n(x) ≥
∫

∪k
i=1BR(yin)

u2n(x) ≥ k − kγ.

This is a contradiction with
∫
R2 u2n(x) = 1.

On the other hand, by Proposition 2.1, we know that {yn} in (2.27) satisfying |yn| → +∞ as n → +∞,
which produces a contradiction with (2.28). Therefore, compactness does not happen.
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With vanishing and compactness both being ruled out, we obtain dichotomy of the sequence. Now by
Proposition 2.1, we note that the orbit of {yn} under the action of Gk contains exactly k points:

y1n , y2n , . . . , yk−1n , ykn = yn

and the distance between any two of these k points tends to in�nity as n →∞. By the symmetry of the domain
R2 and the fact that un(x) are G−invariant, one obtains for any �xed n su�ciently large,

0 <
∫

BR(yin)

u2n(x) ≤
1
k , i = 1, 2, . . . , k.

Since un(gix) = un(x), i = 1, 2, . . . , k, we have∫
BR(yin)

u2n(x) =
∫

BR(yjn)

u2n(x), i ≠ j.

Now we claim that for all γ > 0, there exists R = R(γ) > 0, such that∫
BR(yin)

u2n(x) ≥
1
k − γ, i = 1, 2, . . . , k,

as n → +∞. If not, we assume that there exists α satisfying 0 < α < 1
k , such that for all γ > 0, there exists

R = R(γ) > 0,
|
∫

BR(yin)

u2n(x) − α| ≤ γ, i = 1, 2, . . . , k, (2.29)

as n → +∞. Then A := kα < 1. We will derive a contradiction as follows.
Let

wn,i(x) = un(x + yin), i = 1, 2, . . . , k. (2.30)

Then

−∆wn,i + Γ
I(εnx + εnyin) + w2

n,i
1 + I(εnx + εnyin) + w2

n,i
wn,i = λεnwn,i , x ∈ R2. (2.31)

By Lemma 2.5, for 0 < γ < α
2 , there exists R = R(γ) > 0, such that

lim inf
n→+∞

∫
BR(0)

w2
n,i(x) ≥

α
2 ≥ β > 0, i = 1, 2, . . . , k. (2.32)

From Lemma 2.4,
wn,i is bounded in H1(R2), i = 1, 2, . . . , k. (2.33)

Hence, wn,i ⇀ wi in H1(R2) and wn,i → wi ≠ 0 in L2(BR(0)), i = 1, 2, . . . , k.
By (2.32),

∫
BR(0) w

2
i ≥ β > 0, i = 1, 2, . . . , k. Therefore, there exists τ > 0 such that

Di = {x : wi(x) ≥ τ, x ∈ BR(0)} ⊂ BR(0) (2.34)

and
µ(Di) > 0, (2.35)

where µ(Di) denotes Lebesgue measure of Di , i = 1, 2, . . . , k.
Denoting

Din := Di + yin = {x + yin : x ∈ Di}, i = 1, 2, . . . , k,

we have
wi(x + yin) ≥ τ, x ∈ Di , i = 1, 2, . . . , k.
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Moreover, from the fact wn,i → wi in L2(BR(0)), we have

lim
n→∞

∫
Di

|wn,i(x) − wi(x)|2 = 0 and wn,i(x)→ wi(x) ≠ 0 a.e. in Di . (2.36)

Then, by elliptic estimates we have maxBR(0) |wn,i(x) − wi(x)| → 0 for i = 1, 2, . . . , k as n →∞.
Since |yin| → +∞, i = 1, 2, . . . , k, as n → +∞ and |yin − yjn| → +∞, i ≠ j as n → +∞, we have

Din ∩ Djn = ∅, i ≠ j, (2.37)

as n → +∞. Then, we get

lim
n→+∞

||
k∑
i=1

wi(x − yin)||22 = lim
n→+∞

k∑
i=1

∫
R2

w2
i (x − yin) = kα = A. (2.38)

Therefore, by (2.38) and Brezis-Lieb Lemma [19], we have

1 − A = ||un||22 − ||
k∑
i=1

wi(x − yin)||22 + on(1) = ||un −
k∑
i=1

∫
R2

wi(x − yin)||22 + on(1). (2.39)

Let f (s) = s − ln(1 + s). Based on (2.36) and the fact

max
∪k
i=1Din
|un −

k∑
i=1

wi(x − yin)| ≤
k∑
i=1

max
BR(0)

|wn,i(x) − wi(x)| → 0

as n →∞, using Lemma 5.2 in [14] we can �nd δ > 0 such that∫
∪k
i=1Din

f
(
A

(
∑k

i=1 wi(x − y
i
n))2

||
∑k

i=1 wi(x − yin)||22(1 + I(εnx))
+ (1 − A)

(un −
∑k

i=1 wi(x − y
i
n))2

||un −
∑k

i=1 wi(x − yin)||22(1 + I(εnx))

)

≤ −δ +
∫

∪k
i=1Din

Af
(

(
∑k

i=1 wi(x − y
i
n))2

||
∑k

i=1 wi(x − yin)||22(1 + I(εnx))

)
+
∫

∪k
i=1Din

(1 − A)f
(

(un −
∑k

i=1 wi(x − y
i
n))2

||un −
∑k

i=1 wi(x − yin)||22(1 + I(εnx))

)
(2.40)

as n →∞.
Thus, using the above facts we have

mΓ ,k(εn) = Hεn (un) =
∫
R2

|∇un|2 + Γ[u2n − ln(1 +
u2n

1 + I(εnx)
)]

=
∫

∪k
i=1BR(yin)

|∇un|2 +
∫

R2\∪k
i=1BR(yin)

|∇un|2 + Γ
∫

∪k
i=1BR(yin)

I(εnx)u2n
1 + I(εnx)

+ Γ
∫

R2\∪k
i=1BR(yin)

I(εnx)u2n
1 + I(εnx)

+ Γ
∫
R2

[ u2n
1 + I(εnx)

− ln(1 + u2n
1 + I(εnx)

)]

=
∫
R2

A

∣∣∣∣∣ ∇(
∑k

i=1 wi(x − y
i
n))

||
∑k

i=1 wi(x − yin)||2

∣∣∣∣∣
2

+ (1 − A)

∣∣∣∣∣∇(un −
∑k

i=1 wi(x − y
i
n))

||un −
∑k

i=1 wi(x − yin)||2

∣∣∣∣∣
2

+ Γ
∫
R2

A
I(εnx)(

∑k
i=1 wi(x − y

i
n))2

||
∑k

i=1 wi(x − yin)||22(1 + I(εnx))
+ (1 − A)

I(εnx)(un −
∑k

i=1 wi(x − y
i
n))2

||un −
∑k

i=1 wi(x − yin)||22(1 + I(εnx))

+ Γ
∫
R2

f
(
A

(
∑k

i=1 wi(x − y
i
n))2

||
∑k

i=1 wi(x − yin)||22(1 + I(εnx))
+ (1 − A)

(un −
∑k

i=1 wi(x − y
i
n))2

||un −
∑k

i=1 wi(x − yin)||22(1 + I(εnx))

)
+ on(1)

≥ AHεn

( ∑k
i=1 wi(x − y

i
n)

||
∑k

i=1 wi(x − yin)||2

)
+ (1 − A)Hεn

(
un −

∑k
i=1 wi(x − y

i
n)

||un −
∑k

i=1 wi(x − yin)||2

)
− Γδ + on(1)

≥ AmΓ ,k(εn) + (1 − A)mΓ ,k(εn) − Γδ + on(1).

(2.41)
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Sending n →∞we obtain a contradiction.
Hence, we conclude that α = 1

k .
As a result, there exist a subsequence {un(x)} and {yn}, such that for each γ > 0 there exists R = R(γ) > 0,∫

BR(yin)

u2n(x) ≥
1
k − γ,

where yin = giyn , gi ∈ Gk , i = 1, 2, . . . , k and gkyn = yn .

3 Proof of Theorem 1.1
In this section, we will give the proof for the conclusions (i) and (ii) of Theorem 1.1 as ε → 0+. To be more
speci�c, the conclusions of (i) in Theorem 1.1 will be proved by Lemma 3.1, and the conclusions of (ii) in
Theorem 1.1 will be proved by Lemma 3.2 and Lemma 3.3.

Lemma 3.1.
lim
ε→0+

mΓ ,k(ε) = km(
1
k , I2).

Proof. By Lemma 3.1 in [9], we have lim
ε→0

mΓ ,1(ε) = m(1, I2). Now in the following, we always assume k ≥ 2.

Suppose the conclusion is not true, by Lemma 2.2, we know that there exist εn → 0 and un(x) ∈ H1
k (R

2) a
solution of (1.2) with

∫
R2 u2n(x) = 1, such that

lim
εn→0

mΓ ,k(εn) = lim
εn→0

Hεn (un) = B < km(1k , I2). (3.1)

On the other hand, by Lemma 2.9, for each γ > 0, there exists R = R(γ) > 0, such that∫
BR(yin)

u2n(x) ≥
1
k − γ, i = 1, 2, . . . , k. (3.2)

Let η = η(t) be a smooth nonincreasing function on [0, +∞) such that η(t) = 1, for t ∈ [0, 1], η(t) = 0, for
t ≥ 2, and |η′(t)| ≤ 2. Setting

wn,i(x) = η
( x − yin

R
)
un(x), x ∈ R2,

then wn,i(x) ∈ H1(R2). By choosing R large enough (for �xed γ > 0), we may assume

1
k ≥

∫
R2

wn,i2(x) ≥
∫

BR(yin)

wn,i2(x) ≥
1
k − 2γ, i = 1, 2, . . . , k. (3.3)
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Therefore, we have

Eεn (un) =
∫
R2

|∇un|2 + Γ[u2n − ln(1 +
u2n

1 + I(εnx)
)]

=
∫

∪k
i=1BR(yin)

|∇un|2 + Γ[u2n − ln(1 +
u2n

1 + I(εnx)
)] + oγ(1)

≥
∫

∪k
i=1BR(yin)

|∇un|2 + Γ[u2n − ln(1 +
u2n

1 + I2
)] + oγ(1)

=
k∑
i=1

∫
R2

|∇wn,i(x)|2 + Γ[wn,i2(x) − ln(1 +
wn,i2(x)
1 + I2

)] + oγ(1)

≥ k inf
w∈H1(R2),

∫
R2 w2= 1

k

∫
R2

|∇w|2 + Γ[w2 − ln(1 + w2

1 + I2
)] + oγ(1)

= km(1k , I2) + oγ(1).

Letting εn → 0 and γ → 0, we have
B ≥ km(1k , I2),

a contradiction to (3.1).

Lemma 3.2. The sequence {yn} obtained in Lemma 2.5 satis�es

εn|yn| → |e1| = 1 as n → +∞, where e1 ∈ S1.

Proof. Suppose on the contrary that there exists a sequence εn such that |εnyεn | → +∞ as n → +∞.
By (B1), we have I2 = max

x∈R2
I(x) > lim sup

|x|→+∞
I(x) = I∞ ≥ I1 > −1, then there exists δ > 0, such that

I(εnx + εnyn) < I2 − δ and 1 + I2 − δ > 0

for n large enough and |εnx| ≤ 1.
Accordingly, under the action of Gk , we have

I(εnx + εnyin) < I2 − δ, i = 1, 2, . . . , k and 1 + I2 − δ > 0 (3.4)

for n large enough and |εnx| ≤ 1.
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Let η = η(t) be the cut-o� function used in Lemma3.1. Also,we de�ne w̃n,i(x) = η
( x
R
)
wn,i(x) = η

( x
R
)
un(x+

yin), x ∈ R2. Then we have

Eεn (un) =
∫
R2

|∇un|2 + Γ[u2n − ln(1 +
u2n

1 + I(εnx)
)]

=
∫

∪k
i=1BR(yin)

|∇un|2 + Γ[u2n − ln(1 +
u2n

1 + I(εnx)
)] + oγ(1)

=
k∑
i=1

∫
BR(0)

|∇un(x + yin)|2 + Γ[u2n(x + yin) − ln(1 +
u2n(x + yin)

1 + I(εnx + εnyin)
)] + oγ(1)

=
k∑
i=1

∫
R2

|∇w̃n,i(x)|2 + Γ[w̃n,i
2(x) − ln(1 + w̃n,i

2(x)
1 + I(εnx + εnyin)

)] + oγ(1)

=
k∑
i=1

∫
R2∩{|x|≤ 1

εn }

|∇w̃n,i(x)|2 + Γ[w̃n,i
2(x) − ln(1 + w̃n,i

2(x)
1 + I(εnx + εnyin)

)]

+
k∑
i=1

∫
R2∩{|x|≥ 1

εn }

|∇w̃n,i(x)|2 + Γ[w̃n,i
2(x) − ln(1 + w̃n,i

2(x)
1 + I(εnx + εnyin)

)] + oγ(1)

≥
k∑
i=1

∫
R2∩{|x|≤ 1

εn }

|∇w̃n,i(x)|2 + Γ[w̃n,i
2(x) − ln(1 + w̃n,i

2(x)
1 + I(εnx + εnyin)

)] + oγ(1)

≥
k∑
i=1

∫
R2∩{|x|≤ 1

εn }

|∇w̃n,i(x)|2 + Γ[w̃n,i
2(x) − ln(1 + w̃n,i

2(x)
1 + I2 − δ

)] + oγ(1).

By (2.30), (2.33), Lemma 2.4 and Lemma 2.9, and let n → +∞ and γ → 0, one has

km(1k , I2) ≥ lim
n→+∞

Eεn (un)

≥
k∑
i=1

∫
R2∩{|x|≤ 1

εn }

|∇w̃n,i(x)|2 + Γ[w̃n,i
2(x) − ln(1 + w̃n,i

2(x)
1 + I2 − δ

)] + oγ(1)

≥ k
∫
R2

|∇wi|2 + Γ[w2
i − ln(1 +

w2
i

1 + I2 − δ
)]

> k
∫
R2

|∇wi|2 + Γ[w2
i − ln(1 +

w2
i

1 + I2
)]

≥ km(1k , I2),

a contradiction. Here we have used wn,i ⇀ wi in H1(BR(0)), strongly in L2(BR(0)) and and for each γ > 0,
there exists R = R(γ) > 0, such that

∫
BR(0) w

2
i ≥ 1

k − γ, i = 1, 2, . . . , k.
Therefore, there exists a subsequence εn such that xin ≡ εnyin → xi0, wn,i ⇀ wi ≥ 0 in H1(R2) and a.e. in

R2, where xi0 = gix0, gi ∈ Gk , i = 1, 2, . . . , k and gkx0 = x0.
Applying the elliptic estimates theory to (2.31), we have wn,i → wi in C2loc(R

2) and

−∆wi + Γ
I(xi0) + w2

i
1 + I(xi0) + w2

i
wi = λ0wi , x ∈ R2, i = 1, 2, . . . , k,

here λ0 < 0 derives from Lemma 2.3 which implies λεn → λ0 as εn → 0+(up to a subsequence).



1276 | X.Wang and Z.-Q. Wang, Normalized multi-bump solutions for saturable Schrödinger equations

Next, we will prove I(xi0) = I2, i = 1, 2, . . . , k.
Since wn,i(x) = un(x + yin), i = 1, 2, . . . , k, and as n → +∞, wn,i(x)→ wi(x) in L2(BR(0)), by Lemma 3.1,

Lemma 2.9, and the weakly lower semi-continuity of norm, we have

km(1k , I2) = lim
n→+∞

mΓ ,k(εn)

= lim
n→+∞

∫
R2

|∇un|2 + Γ[u2n − ln(1 +
u2n

1 + I(εnx)
)]

= lim
n→+∞

k∑
i=1

∫
BR(yin)

|∇un(x)|2 + Γ[u2n(x) − ln(1 +
u2n(x)

1 + I(εnx)
)] + oγ(1)

= lim
n→+∞

k∑
i=1

∫
BR(0)

|∇wn,i|2 + Γ[w2
n,i − ln(1 +

w2
n,i

1 + I(εnx + εnyin)
)] + oγ(1)

= lim
n→+∞

k∑
i=1

∫
R2

|∇w̃n,i(x)|2 + Γ[w̃n,i
2(x) − ln(1 + w̃n,i

2(x)
1 + I(εnx + εnyin)

)] + oγ(1)

= k
∫
R2

|∇wi|2 + Γ[w2
i − ln(1 +

w2
i

1 + I(xi0)
)] + oγ(1)

≥ k
∫
R2

|∇wi|2 + Γ[w2
i − ln(1 +

w2
i

1 + I2
)] + oγ(1)

≥ km(1k , I2) + oγ(1).

(3.5)

Letting γ → 0, this implies that I2 = I(xi0), i = 1, 2, . . . , k. By (B2), we let e1 ∈ {x10, x20, . . . , xk0} ⊂ S1, then
|e1| = 1.

At last, combining Lemma 3.2 and the proof process of Lemma 3.2, we can obtain

Lemma 3.3. For Γ < Γ0 �xed, let uε be a minimizer of mΓ ,k(ε), then we have∣∣∣∣∣
∣∣∣∣∣uε −

k∑
i=1

wi(x +
gie1
ε )

∣∣∣∣∣
∣∣∣∣∣
H1(R2)

→ 0, as ε → 0 (up to a subsequence),

where wi(x) is the minimizer of m(1k , I2) and e1 ∈ S
1 = {x ∈ R2| |x| = 1}.
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