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Abstract: This paper is devoted to the study of the dynamical behavior for the 3D incompressible �ow of
liquid crystals. We prove that this system under smooth external forces possesses time dependent periodic
solutions, bifurcating from a steady solution.
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1 Introduction and Main Results
We consider the 3D incompressible �ow of liquid crystals under external time-independent force

∂U
∂t + U ·∇U − µ4U +∇P = −λ∇ · (∇d �∇d) + fα , (1)

∂d
∂t + U ·∇d = γ(4d − f (d)) + hα , (2)

∇ · U = 0, (3)

where U ∈ R3 denotes the velocity, d ∈ R3 the director �eld for the averaged macroscopic molecular orien-
tations, P ∈ R the pressure arising from the incompressibility; and they all depend on the spatial variable
x = (x1, x2, x3) ∈ R3 and the time variable t > 0. The positive constants µ, λ, γ stand for viscosity, the compe-
tition between kinetic energy and potential energy, and microscopic elastic relaxation time or the Deborah
number for the molecular orientation �eld, respectively; fα and hα are external time independent forces. The
symbol∇d �∇d denotes a matrix whose ijth entry is < ∂xid, ∂xjd >, and it is easy to see that

∇d �∇d = (∇d)T∇d,

∇ · (∇d �∇d) = ∇( |∇d|
2

2 ) + (∇d)T4d, (4)

where (∇d)T denotes the transpose of the 3 × 3 matrix ∇d. In (2), f (d) is the penalty function which will be
assumed to be

f (d) = |∇d|2d. (5)
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One of the most common liquid crystal phases is the nematic, where the molecules have no positional
order, but they have long-range orientational order. For more details of physics, we refer the readers to the
two books of de Gennes-Prost [7] and Chandrasekhar [2]. Ericksen and Leslie cf.[6, 14] established the hy-
drodynamic theory of liquid crystals in 1960s. The Ericksen-Lislie theory describes the liquid crystal �ow,
including the velocity vector u and direction vector d of the �uid. Since the general Ericksen-Leslie system is
very complicated, we only consider a simpli�ed model (1)-(3) of the Ericksen-Leslie system, but still retains
most of the essential features. One can see [16–18, 20] for more discussions on the relations of the two mod-
els. Both the Ericksen-Leslie system and the simpli�ed one (1)-(3) describe the time evolution of liquid crystal
materials under the in�uence of both the velocity �eld u and the director �eld d. Hence, a natural question
of the existence of time-periodic solution arises when (1)-(3) under the e�ect of the external forces.

Since the Ericksen-Leslie system (1)-(3) with |u| = 1 is complicated, Lin and Liu [18, 19] proposed to
investigate an approximation model of the Ericksen-Leslie system by Ginzburg-Landau functionals. In order
to relax the constraint |u| = 1 for the functional

∫
|∇u|2dx, Lin and Liu [18, 19] considered Ginzburg-Landau

functionals ∫
Ω

[|∇d|2 + 1
2ϵ2 (1 − |d|2)2]dx,

for any function d ∈ H1(Ω;R3) with a parameter ϵ > 0. They obtained the global existence of weak solutions
with large initial data and the global existence of classical solutions was also obtained if the coe�cient µ
is large enough in three dimensional spaces. Hu and Wang [12] prove the existence and uniqueness of the
global strong solution with small initial data are established. Meanwhile, they obtained that when the strong
solution exists, all the global weak solutions constructed in [18] must be equal to the unique strong solution.
Hong [11] proved that the global existence of regular solutions to the Ericksen-Leslie system in R2 with initial
data except for at a �nite number of singular times. Li and Yan [15] showed this system admits a stable smooth
steady solutions by assumption of existence of it.

Since thework of Sattinger [29], Iudovich [24] and Iooss [21] in 1971, the bifurcation of stationary solutions
into time periodic solutions (i.e. Hopf-bifurcation) of incompressible Navier-Stokes equation has attracted
much attention, see [3, 9, 13, 22, 23], etc.When the linearized operator possesses a continuous spectrumup to
the imaginary axis and that a pair of imaginary eigenvalues crosses the imaginary axis, Melcher, A, et al. [26]
proved Hopf-bifurcation for the vorticity formulation of the incompressible Navier-Stokes equations in R3.
Their work is mainly motivated by the work of Brand, T, et al. [1] who studied the Hopf-bifurcation problem
and its exchange of stability for a coupled reaction di�usion model in Ra. We mention that Crandall and
Rabinowitz [5] gave an abstract in�nite-dimensional version of Hopf bifurcation theorem which has found
many application.We refer the readers to [4, 27, 30, 32–35] correspondingHopf-bifurcation result (bifurcating
from viscous shock waves) has been established in.

In this paper, our aim is to establish the corresponding Hopf-bifurcation result for the three-dimensional
incompressible �ow of liquid crystals. But we can not directly use the method of dealing with Navier-Stokes
equation to three-dimensional incompressible �ow of liquid crystals because the presence of the velocity
�eld and its interactionwith the director �eld in the liquid crystals �ow of large oscillation. Aweighted Young
theorem (see Lemma 6) is derived to deal with strong coupled between the velocity �eld and the director �eld.

We assume that fα and hα depend smoothly on some parameter α, which can be chosen suitably so that
(uα(x) + uc , dα(x) + dc , pα(x)) (the steady solution has certain smoothness property) is the solution of the
three-dimensional steady incompressible �ow of liquid crystals

U ·∇U − µ4U +∇P = −λ∇ · (∇d �∇d) + fα , (6)
U ·∇d = γ(4d − f (d)) + hα , (7)
∇ · U = 0, (8)

with uc = (c1, 0, 0)T , dc = (c1, 0, 0)T and

lim
|x|→∞

uα(x) = 0, lim
|x|→∞

dα(x) = 0,
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where 0 = (0, 0, 0)T .
To seek the periodic solution, we linearize system (1)-(2) about the steady state (uα , dα , pα) by writing

U(x, t) = u(x, t) + uα(x),
d(x, t) = z(x, t) + dα(x),

P = p + pα .

Then, the deviation (u, z, p) from the stationary (uα , dα , pα) satis�es

∂u
∂t − µ4u + c1∂x1u + uα ·∇u + u ·∇uα + u ·∇u +∇p = −λ∇( |∇z|

2

2 ) − λ∇(|∇z||∇dα|)

− λ(∇z)T4(z + dα) − λ(∇dα)T4z, (9)

∂z
∂t − γ4z + c1γ∂x1 z + uα ·∇z + u ·∇dα + u ·∇z = −γ|∇z|2z − γ|∇z|2dα

−γ|∇dα|2z − 2γ|∇z||∇dα|(z + dα), (10)

Here, for general matrices u = (uij)i,j=1,2,3,

∇ · u = (
3∑
j=1

∂x1u1j ,
3∑
j=1

∂x1u2j ,
3∑
j=1

∂x1u3j)T .

We introduce a 3 × 3 matrix

v = ∇z, vα = ∇zα , (11)

and take the gradient of (10) and notice (4)-(5) to rewrite (9)-(10) as

∂u
∂t − µ4u + c1∂x1u + uα ·∇u + u ·∇uα + u ·∇u +∇p = −λ∇( |v|

2

2 ) − λ∇(|v||∇dα|)

+λvT∇(v + vα) + λvTα∇v, (12)

∂v
∂t − γ4v + c1γ∂x1v + uα ·∇v + v∇uα + u ·∇vα + vα∇u + u ·∇v + v∇u

= −γ∇(|v|2z + |v|2dα) − γ∇(|∇dα|2z + 2|v||∇dα|(z + dα)), (13)

with incompressible condition

∇ · u = 0, (14)

where we used, for all i, j, k = 1, 2, 3,

∂
∂xk

(uj
∂di
∂xj

) =
∂uj
∂xk

∂di
∂xj

+ uj
∂
∂xj

( ∂di∂xk
) = (v∇u + u ·∇v)ik .

In fact, by the incompressible condition (14), it follows that

∇ · (uvT) = u ·∇u + u∇ · u = u ·∇u. (15)

Thus using (14) and (15) to (12)-(13), we obtain

∂u
∂t − µ4u + c1∂x1u + ∇ · (uαuT) +∇ · (uuTα ) +∇ · (uuT) +∇p

= −λ∇( |v|
2

2 ) − λ∇(|v||∇dα|) + λvT∇(v + vα) + λvTα∇v, (16)
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∂v
∂t − γ4v + c1γ∂x1v + uα ·∇v + v∇uα + u ·∇vα + vα∇u + u ·∇v + v∇u

= −γ∇(|v|2z + |v|2dα) − γ∇(|∇dα|2z + 2|v||∇dα|(z + dα)). (17)

The vorticity associated with velocity �eld u of the �uid is de�ned by ω = ∇ × u. Then, using

∇ ×∇ · (uuT) = ∇ · (ωuT − uωT),

we can rewrite system (16) as

∂ω
∂t − µ4ω + c1∂x1ω + ∇ · (ωαuT − uαωT) +∇ · (ωuTα − uωTα ) +∇ · (ωuT − uωT)

= −λ∇(∇ × |v|
2

2 ) − λ∇(∇ × (|v||∇dα|))

+λ∇ × (vT∇(v + vα)) + λ∇ × (vTα∇v). (18)

Note that the space of divergence free vector �elds is invariant under the evolution (18). We can assume that

∇ · ω = 0.

Moreover, we can reconstruct the velocity u from the vorticity ω by solving the equation

∇ × u = ω, ∇ · ω = 0.

The velocity �eld u is de�ned in terms of the vorticity via the Biot-Savart law

u(x) = − 1
4π

∫
R3

(x − y)⊥ × ω(y)
|x − y|3 dy, x ∈ R3. (19)

Denote φ = (ω, v)T . Then, we can write system (17)-(18) as the evolution equation form

dφ
dt + Nφ + G(φ) = F(φ), (20)

where

N =
(
−µ4 + c1∂x1 0

0 −γ4 + c1∂x1

)
,

and

G(φ) =
(
g1

g2

)
, F(φ) =

(
g3

g4

)

with

g1 = ∇ · (ωαuT − uαωT) +∇ · (ωuTα − uωTα ) + λ∇(∇ × (|v||∇dα|)) − λ∇ × (vT∇vα)
−λ∇ × (vTα∇v),

g2 = uα ·∇v + v∇uα + u ·∇vα + vα∇u + γ∇(|∇dα|2z + 2|v||∇dα|dα),

g3 = −∇ · (ωuT − uωT) − λ∇(∇ × |v|
2

2 ) + λ∇ × (vT∇v),

g4 = −u ·∇v − v∇u − γ∇(|v|2z + |v|2dα) − 2γ∇(|v||∇dα|z).

For convenience, we denote the Fourier coe�cient of operatorsN and G by N̂ and Ĝ, respective. To over-
come the essential spectrumof operator −(N̂+Ĝ) up to the imaginary axis, we need the following assumption:

(H1) For any α ∈ [αc − α0, αc + α0], 0 is not an eigenvalue of N̂ + Ĝ.
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(H2)For α = αc, the operator −(N̂ + Ĝ) has two pair eigenvalues (λ+
0, µ+

0) and (λ−0, µ−0) satisfying

λ±0(αc) = µ±0(αc) = ±iξ0 ≠ 0, for ξ0 > 0,
d
dαRe(λ±0(α)) |α=αc ,

d
dαRe(µ±0(α)) |α=αc > 0.

(H3) The rest eigenvalue of −(N̂ + Ĝ) is strictly bounded away from the imaginary axis in the left half
plane for all α ∈ [αc − α0, αc + α0].

Under the generic assumption the cubic coe�cient terms a1, a2 ≠ 0 in (64)-(65), Hopf-bifurcation result
about 3D incompressible �ow of liquid crystals is stated:

Theorem 1. Assume that (H1)-(H3) hold. Then system (1)-(3) admits a one dimensional family of small time-
periodic solutions, i.e.

U(x, t) = U(x, t + 2π/ξ1), d(x, t) = d(x, t + 2π/ξ2)

with α = αc + ϵ, ϵ ∈ (0, α0), and positive frequencies ξ1 and ξ2. Moreover,

ξ1 = ξ0 + O(ϵ), ξ2 = ξ0 + O(ϵ),

and

‖U(x, t)‖C0
b(R3×[0,2π/ξ1]) = O(ϵ), ‖d(x, t)‖C1

b(R3×[0,2π/ξ2]) = O(ϵ).

Above result also holds in a three dimensional torus T3 and a bounded domain.
This paper is organized as follows. In section 2,we introduce somenotations andpreliminaries. In section

3, The main proof of Theorem 1 is carried out by using Lyapunov-Schmidt method.

2 Preliminary and Some notations
We start this section by introducing some notations. Consider the following standard Sobolev space, spatially
weighted Lebesgue space

Wq
κ := {u : ‖u‖qκ :=

∑
|α|≤κ

‖Dαu‖qLq < ∞},

Lps := {u : ‖u‖ps :=
∫
R3

ρs(x)up(x)dx < ∞},

where weighted function ρ(x) =
√

1 + |x|2. The Fourier transform is a continuous mapping from Lps intoWq
κ .

Especially, when p = 2, the Fourier transform is an isomorphism between Hp and L2
p with ‖u‖L2

p
= ‖ρpu‖L2 .

To investigate periodic solutions of system (1)-(2), we also introduce the space

X := {u = (un)n∈Z : ‖u‖X < ∞}

and weighted space

L
p
s = Lps × Lps , Hm = Hm ×Hm , X = X × X,

with norms

‖u‖X =
∑
n∈Z
‖un‖Hp , ‖φ‖X := ‖u‖X + ‖v‖X,

‖φ̂‖Lp
s

:= ‖û‖Lps + ‖v̂‖Lps , ‖φ̂‖Hm := ‖u‖Hm + ‖v‖Hm .
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for φ = (u, v)T ∈ L
p
s or X, respectively.

In this paper, we consider the following form of time-periodic solution

ω = ω(x, t/ξ1), v = v(x, t/ξ2),

where ξ1, ξ2 ∈ R+ denote the corresponding frequencies.
Thus we need to �nd 2π time periodic solutions of

Ξ dφdt + Nφ + G(φ) = F(φ), (21)

where

Ξ =
(
ξ1 0
0 ξ2

)
, N =

(
−µ4 + c1∂x1 0

0 −γ4 + c1∂x1

)
,

and

G(φ) =
(
g1

g2

)
, F(φ) =

(
g3

g4

)

with

g1 = ∇ · (ωαuT − uαωT) +∇ · (ωuTα − uωTα ) + λ∇(∇ × (|v||∇dα|)) − λ∇ × (vT∇vα)
−λ∇ × (vTα∇v),

g2 = uα ·∇v + v∇uα + u ·∇vα + vα∇u + γ∇(|∇dα|2z + 2|v||∇dα|dα),

g3 = −∇ · (ωuT − uωT) − λ∇(∇ × |v|
2

2 ) + λ∇ × (vT∇v), (22)

g4 = −u ·∇v − v∇u − γ∇(|v|2z + |v|2dα) − 2γ∇(|v||∇dα|z). (23)

By the classical result in [10], we know that the essential spectrum of the operatorN+G is relatively compact
perturbation ofN which has the essential spectrum

essspec(N̂) = {λ ∈ C2 : λ = (−µ|y|2 + icy1, −γ|y|2 + icy1), y ∈ R3}.

Moreover, the spectra ofN+G andN only di�er by isolated eigenvalues of �nite multiplicity. Above spectrum
properties are critical to prove our main result.

For convenience, we can rewrite (21) as

ξ1ωt = M1ω + g3(ω, u, v), (24)
ξ2vt = M2v + g4(ω, u, v), (25)

where g3 and g4 de�ned in (22)-(23),

M1 = M1 + g1 = µ4 + c1∂x1 + g1,
M2 = M2 + g2 = γ4 + c1∂x1 + g2.

We make the ansatz

ω(x, t) =
∑
n∈Z

ωn(x)eint , v(x, t) =
∑
n∈Z

vn(x)eint
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to (24)-(25), we obtain

(inξ1 −M1)ωn = g3
n(ω, u, v), (26)

(inξ2 −M2)vn = g4
n(ω, u, v), (27)

where

g3(ω, u, v)(x, t) =
∑
n∈Z

g3
n(ω, u, v)eint ,

g4(ω, u, v)(x, t) =
∑
n∈Z

g4
n(ω, u, v)eint .

Note that we are interested in real valued solution only. We will always suppose that (ωn , vn) = (ω−n , v−n)
for n ∈ Z. These series are uniformly convergent on R3 × [0, 2π] in the spaces which we have chosen. More
precisely, we have the following results:

Lemma 1. A linear operator J : X −→ C0
b(R3 × [0, π], C2) is de�ned by

(Ju)(x, t) = ũ(x, t) :=
∑
n∈Z

un(x)eint , u = (un)n∈Z ∈ X.

Then J is bounded.

The counterpart to multiplication uv in physical space is given by the convolution (
∑
k∈Z

un−kvk)n∈Z, since

uv =
∑
l∈Z

ul(x)eilt
∑
j∈Z

vj(x)eijt =
∑
n∈Z

(∑
k∈Z

un−k(x)vk(x)
)
eint .

Lemma 2. For u = (un)n∈Z, v = (vn)n∈Z ∈ X, the convolution u * v ∈ X is de�ned by

(u * v)n =
∑
k∈Z

un−kvk , n ∈ Z.

Then there exists C > 0 such that

‖u * v‖X ≤ C‖u‖X‖v‖X.

Lemma 3. Let a linear operator Mi : X −→ X be de�ned component-wise as (Miu)n = Minun for u = (un)n∈Z.
Then

‖Miu‖X = (‖Mi0‖Hm−→Hm + sup
n∈Z\{0}

‖Mi‖Hm−→Hm )‖u‖X, for i = 1, 2.

The proof of above three Lemmas are standard, so we omit it.
For any bounded analytic semigroup Aϑσ, the following result holds.

Lemma 4. [28] For every 0 < ϑ < 1 and p > 1 there exists a constant M > 0 such that for all t > 0 one has

‖AϑσeAσ t‖Lp−→Lp ≤
M
tϑ
.

The proof of following result can be found in [8] for bounded domain and [28] for Rn.

Lemma 5. For every 1
2 < ϑ < 1 and p > 1 there exists a constant C > 0 such that

‖A−ϑσ f‖Lp ≤ C‖f‖W−2ϑ,p .

The following result shows a weighted Young theorem.
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Lemma 6. There exists a positive constant C such that

‖ω * u‖L2
m
≤ C‖ω‖L2

m
‖u‖L2

m
.

Proof. It is easy to check that

ρ(x) ≤ ρ(x − y)ρ(y), ∀x, y ∈ R3, (28)

where we take the weighted function as

ρ(x) = (1 + |x|2)
1
2 .

Then, There exist positive constants s1, s2, s such that s1 + s2 = m + s, with s1, s2, s < m. using Young
inequality and (28), we derive

‖ω * u‖2
L2
m

=
∫
R3

ρ2m(ω * u)2(x)dx

=
∫
R3

∫
R3

ω(x − y)u(y)ρm(x)dy

2

dx

=
∫
R3

ρ−2s(x)

∫
R3

ρs1 (x − y)ω(x − y)ρs2 (y)u(y)dy

2

dx

≤
∫
R3

ρ−2s(x)

∫
R3

ρ2s1 (z)ω2(z)dz

∫
R3

ρ2s2 (y)u2(y)dy

 dx
≤ C‖ω‖2

L2
s1
‖u‖2

L2
s2
≤ C‖ω‖2

L2
m
‖u‖2

L2
m
.

This completes the proof.

3 Proof of Theorem 1
In this section, we will give the detail of proof of Theorem 1. By (H2) and (H3), we know that the operator Mi
has two eigenvalues λ±0(β) and all other eigenvalues ofMi are strictly bounded away from the imaginary axis
in the left half plane. Thus we construct a Mi-invariant projections P±1,c by

P1,cω = (ψ+,*, ω)L2ψ+, P−1,cω = (ψ−,*, ω)L2ψ−, (29)
P1,cv = (ψ+,*, v)L2ψ+, P−1,cv = (ψ−,*, v)L2ψ−, (30)

where ψ± denotes the associated normalized eigenfunctions, ψ±1,* denotes the associated normalized eigen-
functions of the adjoint operator M*i . The bounded “stable” part of the projection is P±1,s = I − P±1,c, we also
know that P±,cMi = MiP±,c and P±,sMi = MiP±,s. Thus we can split ω±1 and v±1 as

ω1 = ω1,c + ω1,s , ω−1 = ω−1,c + ω−1,s ,
v1 = v1,c + v1,s , v−1 = v−1,c + v−1,s

with

ω±1,c = P±1,cω1, ω±1,s = P±1,sω1,
v±1,c = P±1,cv1, v±1,s = P±1,sv1.
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Using above decompositions to (26)-(27), we have

(inξ1 −M1)ωn = g3
n(ω, u, v), n = ±2, ±3, . . . , (31)

(inξ2 −M2)vn = g4
n(u, v), n = ±2, ±3, . . . , (32)

M1ω0 = g3
0(ω, u, v), n = 0, (33)

M2v0 = g4
0(u, v), n = 0, (34)

(±iξ1 −M1)ω±1,s = P±1,sg3
±1(ω, u, v), (35)

(±iξ2 −M2)v±1,s = P±1,sg4
±1(u, v), (36)

(±iξ1 −M1)ω±1,c = P±1,cg3
±1(ω, u, v), (37)

(±iξ2 −M2)v±1,c = P±1,cg4
±1(u, v). (38)

The organization of proof of Theorem 1 is that we �rst solve the equations (33)-(34). Then using the �xed point
theorem to solve equations (31)-(32) and (35)-(36)which is nontrivial due to the nonlinear term g3

n(ω, u, v) and
g4
n(u, v). At last, we employ the implicit function theorem to solve equation (37)-(38). The process of solving

equation (37)-(38) is inspired by the classical Hopf-Bifurcation result [25].
Rewrite (31)-(38) as

(inΞ + N + G)φn = Fn(φ, u), n = ±2, ±3, . . . , (39)
(N + G)φ0 = F0(φ, u), n = 0, (40)
(±iΞ + N + G)φ±1,s = P±1,sF±1(φ, u), (41)
(±iΞ + N + G)φ±1,c = P±1,cF±1(φ, u). (42)

Now we �rst solve the equation (40). The linear operatorN has essential spectrum up to the imaginary axis,
it can be be inverted in the following sense.

Lemma 7. For j = 1, 2 and f = (f 1, f 2)T ∈ (Hm−1 ∩ L1), the equation

Nφ = ∂j f

admits a unique solution φ = N−1∂j f ∈ Hm. Moreover,

‖φ‖Hm ≤ C‖f‖Hm−1∩L1 .

Proof. De�ne a smooth cut-o� function χ taking its value in [0, 1] as

χ(y) :=
{

1, |y| ≤ 1,
0, |y| ≥ 2.

We denote

(f̂ 1
1 , f̂ 2

1 ) = (f̂ 1χ, f̂ 2χ) and (f̂ 1
2 , f̂ 2

2 ) = (f̂ 1(1 − χ), f̂ 2(1 − χ))

with f̂ = (f 1, f 2) = (f̂ 1
1 + f̂ 1

2 , f̂ 2
1 + f̂ 2

2 ). Then

ω̂1(y) =
iyj f̂ 1

1
inξ1 − µ|y|2 − ic1y1

and ω̂2(y) =
iyj f̂ 1

2
inξ1 − µ|y|2 − ic1y1

,

v̂1(y) =
iyj f̂ 2

1
inξ2 − γ|y|2 − ic1y1

and v̂2(y) =
iyj f̂ 2

2
inξ2 − γ|y|2 − ic1y1

.

Note that (ω, v) = (ω1 + ω2, v1 + v2). Moreover, it holds

‖ω1‖2
Hm = ‖ω̂1‖2

L2
m

=
∫
R2

|yj|2|f̂ χ(y)|2

|inξ1 − µ|y|2 − ic1y1|2
ρ2m(y)dy

≤ C‖f‖2
L1

∫
|y|≤2

|yj|2

r4 + c2y2
1
dy

≤ C‖f‖2
L1 ,
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and

‖ω2‖2
Hm = ‖ω̂2‖2

L2
m

=
∫
R2

|yj|2|f̂ (1 − χ(y))|2

|inξ1 − µ|y|2 − ic1y1|2
ρ2m(y)dy

≤ C
∫
R2

|f̂ (y)|2ρ(2m−1)(y)dy

≤ C‖f‖2
Hm−1 .

By the same process, we can obtain

‖v1‖2
Hm = ‖v̂1‖2

L2
m
≤ C‖f‖2

L1 ,

‖v2‖2
Hm = ‖v̂2‖2

L2
m
≤ C‖f‖2

Hm−1 .

This completes the proof.

This Lemma tells us that N̂(iyi , iyi)T · is bounded compact operator in from L2
m ×L2

m to itself. Furthermore, the
spectra of N̂ + Ĝ and N̂ only di�er by isolated eigenvalues of �nite multiplicity (see the book of Henry [10]
p.136).

The following Lemma gives the solvable of the equation (40).

Lemma 8. Assume that (H1)-(H3) holds. Then the equation (40) has a unique solution

φ0 = (N + G)−1F0(φ, u). (43)

Moreover,

‖φ0‖Hm ≤ C‖y−1
j I2×2 ̂F0(φ, u)‖L2

m
.

Proof. Since the operator N̂−1Ĝ : L2
m −→ L2

m is compact, the operator I + N̂−1Ĝ is Fredholm with index
0. If (I + N̂−1Ĝ)φ̂ = 0 had a nontrivial solution, then (N̂ + Ĝ)φ̂ = N̂(I + N̂−1Ĝ)φ̂ = 0 would also have a
nontrivial solution. This would contradict (H1). Hence the Fredholm property implies that the existence of
(I + N̂−1Ĝ)−1 : L2

m −→ L2
m. Then we have

N̂(I + N̂−1Ĝ)φ̂ = iyj I2×2 f̂ ,

where I2×2 is the unit matrix.
Thus, by Lemma 7, we obtain

‖φ‖Hm = ‖φ̂‖L2
m

≤ ‖(I + N̂−1Ĝ)−1‖L2
m−→L2

m
‖N̂−1iyj I2×2 f̂‖L2

m

≤ C‖f̂‖L2
m
.

This completes the proof.

Lemma 9. There exist a constant C > 0 such that

‖u‖Hm ≤ C‖ω‖Hm , ‖∂xiu‖Hm ≤ C‖ω‖Hm . (44)

Proof. The related equation of the velocity u and the vorticity ω is

∇ × u = ω,
∇ · u = 0, ∇ · ω = 0.
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This leads in Fourier space to
0 −iy3 iy2
iy3 0 −iy1
−iy2 iy1 0
iy1 iy2 iy3


 û1

û2
û3

 =


ω̂1
ω̂2
ω̂3
0

 .

We can get

N̂ω̂ = − 1
|y|2

 0 iy3 −iy2 iy1
−iy3 0 iy1 iy2
iy2 −iy1 0 iy3


 ω̂1

ω̂2
ω̂3

 =

 û1
û2
û3

 = û.

Using Hölder’s inequality, for 1
p1

+ 1
p2

= 1, p1, p2 > 1, s1 + s2 = 2m and s1, s2 > 0, we have

‖u‖2
Hm = ‖û‖2

L2
m
≤ C(‖χ|y|≤1N̂‖2

L2p1
s1
2

‖ω̂‖2
L2p2
s2
2

+ ‖χ|y|≥1N̂‖2
L∞‖ω̂‖2

L2
m

)

≤ C(‖χ|y|≤1N̂‖2
L2p1
s1
2

+ ‖χ|y|≥1N̂‖2
L∞ )‖ω̂‖2

L2
m

≤ C‖ω̂‖2
L2
m

= C‖ω‖2
Hm ,

where we use the weighted function ρ(y) = |y|(1 + |y|) 1
2 , the boundedness of ‖χ|y|≥1 iyi

|y|2 ‖
2
L∞ and

‖χ|y|≤1
iyi
|y|2 ‖

2
L2p1
s1
2

=
∫
|y|≤1

| iyi
|y|2 |

2p1ρp1sdy

=
∫
|y|≤1

| iyi
|y|2 |

2p1 |y|p1s(1 + |y|)
p1s

2 dy ≤ C
1∫

0

ϱ2p1

ϱ4p1
ϱp1s(1 + ϱ)p1sϱ2dϱ

= C
1∫

0

ϱp1s−2p1+2(1 + ϱ)p1sϱ2dϱ ≤ ∞, for p1s − 2p1 + 2 > 0.

The second estimate in (44) is followed by

‖∂xiu‖Hm = ‖iyi ûρm‖L2 ≤ ‖iyiN̂‖L∞‖ω̂‖L2
m
≤ C‖ω‖Hm .

This completes the proof.

From the formof thenonlinear terms g3 and g4, it is critical to estimate the termas uv and u2. For convenience,
we derive some estimates about the nonlinear term N1(φ) = φ2 and N2(φ, ψ) = φψ. This proof is similar with
Lemma 4 in [1], so we omit it.

Lemma 10. De�ne N1 : X −→ X by N1(φ)n = N1
n(Jφ) and N2 : X × X −→ X by N2(φ)n = N2

n(Jφ, Jψ) for
φ, ψ ∈ X. Then there exists C > 0 such that

‖N1(φ)‖X ≤ C‖φ‖2
X, ‖N2(φ, ψ)‖X ≤ C‖ψ‖X‖φ‖X (45)

for φ, ψ ∈ X with ‖φ‖X ≤ 1 and ‖ψ‖X ≤ 1. Moreover, there exists C > 0 such that

‖N1(φ1) − N1(φ2)‖X ≤ C(‖φ1‖X + ‖φ2‖X)‖φ1 − φ2‖X, (46)

‖N2(φ1, ψ1) − N2(φ2, ψ2)‖X ≤ C
(
‖φ1‖X + ‖φ2‖X + ‖ψ1‖X + ‖ψ2‖X

)
×
(
‖φ1 − φ2‖X + ‖ψ1 − ψ2‖X

)
, (47)

for φ1, φ2, ψ1, ψ2 ∈ X with ‖φ1‖X, ‖φ2‖X, ‖ψ1‖X, ‖ψ2‖X ≤ 1.
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Then we have the following result.

Lemma 11. Assume that ξi close enough to ξ0 for i = 1, 2. Then there exists a constant C > 0 such that

‖(inΞ + N)−1‖X−→X ≤ C,
‖(inΞ + N − G)−1‖X−→X ≤ C,
‖(inΞ + N − G)−1P±1,s‖X−→X ≤ C,

for n ≠ 0.

Proof. We observe that the solution φ of the equation (inΞ + N)φ = f is given by

φ̂(y) =
(
inξ1 + µ|y|2 − ic1y1 0

0 inξ2 + γ|y|2 − ic1y1

)−1

f̂ (y), y ∈ R3.

For δ1 = µ2ξ2

ξ2
1 +4c2

1
and δ2 = γ2ξ2

2
ξ2

2 +4c2
1
, we have

|inξ1 + ν|y|2 − ic1y1|2 = µ2|y|4 + (c1y1 + nξ1)2 ≥ ω
2

4c2
1
χ|y|≤ ω

2c1
+ δ2

1(1 + |y|2)χ|y|≥ ω
2c1

,

|inξ2 + γ|y|2 − ic1y1|2 = γ2|y|4 + (c1y1 + nξ2)2 ≥ ω
2

4c2
1
χ|y|≤ ω

2c1
+ δ2

2(1 + |y|2)χ|y|≥ ω
2c1

.

It follows for f ∈ Hm that φ̂ ∈ L2
m+2, thus φ ∈ Hm+2.

Let f̂ ∈ L2
m+2 ⊂ L2

m, ̂̄ω = ρ(y, ϵ)ω̂ and ̂̄v = ρ(y, ϵ)v̂ with ρ(x, ϵ) =
√

1 + ϵ|x|2. Note that φ is a solution of
the equation (inΞ + N)φ = f . By a direct computation, we have

(inΞ + N̂ ̂̄φ) + ϵL(y, ϵ) ̂̄φ = ĝ,

where φ̄ = (ω̂, v̂)T , ĝ = ρ(y, ϵ)f̂ and

ϵL(y, ϵ) =
(

(inξ1 + µ|y|2 − icy1)(1 − ρ−1(y, ϵ)) 0
0 (inξ2 + γ|y|2 − icy1)(1 − ρ−1(y, ϵ))

)

Here we use the fact thatN is elliptic of order of 2. Hence it derives from the form of ρ(y, ϵ) =
√

1 + ϵ|y|2 that

L(y, ϵ) ∼ ϵ|y|4

1 + ϵ|y|2 +
√

1 + ϵ|y|2

(
µ 0
0 γ

)
.

Using a Neumann series, it derives from the boundness of the operator L : L2
m+2 −→ L2

m that

(inΞ + N̂) + ϵL : L2
m+2 −→ L2

m

is invertible with a bounded inverse, for su�cient small ϵ > 0. This implies that φ̄ ∈ L2
m+2, i.e., φ ∈ Hm+2.

Moreover, we have

‖φ‖Hm+2 = ‖φ̂‖L2
m+2

= ‖ ̂̄φ‖L2
m+2

≤ C‖ĝ‖L2
m

= C‖f‖Hm+2 .

Above result shows that (inΞ+N)−1 : Hm −→ Hm+2 is bounded. Butwe only need this operator to be bounded
X −→ X. This implies that the spectrum ofN inXwell separated from inΞ for n ≠ 0 and ϵ > 0 su�cient small.
In a similar manner to prove the �rst inequality, the rest two inequalities can be obtained, so we omit it. This
completes the proof.

By the same proof in Lemma 11, we obtain the following result.
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Lemma 12. Assume that ξi close enough to ξ0 for i = 1, 2. Then there exists a constant C > 0 such that

‖(inξi −Mi)−1‖Hm−→Hm ≤ C, ‖(inξi −Mi)−1∇j · ‖Hm−→Hm ≤ C,
‖(inξi −Mi)−1‖Hm−→Hm ≤ C, ‖(inξi −Mi)−1∇j · ‖Hm−→Hm ≤ C,
‖(inξi −Mi)−1P±1,s‖Hm−→Hm ≤ C, ‖(inξi −Mi)−1∇j · P±1,s‖Hm−→Hm ≤ C,

for n ≠ 0 and j = 1, 2.

Thus by Lemmas 11-12, we can obtain the solution of equations (39) and (41) as

φn = (inΞ + N)−1Fn(φ, u), n = ±2, ±3, . . . ,
φ±1,s = (±iΞ + N)−1P±1,sF±1(φ, u),

i.e.

ωn = (inξ1 −M1)−1g3
n(ω, u, v), n = ±2, ±3, . . . , (48)

vn = (inξ2 −M2)−1g4
n(ω, u, v), n = ±2, ±3, . . . , (49)

ω±1,s = (±iξ1 −M1)−1P±1,sg3
±1(ω, u, v), (50)

v±1,s = (±iξ2 −M2)−1P±1,sg4
±1(ω, u, v). (51)

The following Lemma shows the solvable of equations (48)-(51).

Lemma 13. Assume that there exist σ1, σ2 > 0 such that for all ξ1, ξ2 > 0 with |ξ1 − ξ0|, |ξ2 − ξ0| ≤ σ1 and
all ω±1,c , v±1,c ∈ Hm with ‖ω±1,c‖Hm , ‖v±1,c‖Hm ≤ σ2. Then equations (48)-(51) has a unique solution (ω̃, ṽ) =
Φ(ωc , vc) ∈ X, where

ωc = (ω−1,c , ω1,c), vc = (v−1,c , v1,c),
ω̃ = (. . . , ω−2, ω−1,c + ω−1,s , ω0, ω1,c + ω1,s , ω2, . . .),
ṽ = (. . . , v−2, v−1,c + v−1,s , v0, v1,c + v1,s , v2, . . .).

Moreover, there exits C > 0 such that

Φ(0, 0) = (0, 0), ‖ω̃ − ωc‖X ≤ C(‖ω−1,c‖2
Hm + ‖ω1,c‖2

Hm ), (52)
‖ṽ − vc‖X ≤ C(‖v−1,c‖2

Hm + ‖v1,c‖2
Hm ), (53)

with

ω̃ − ωc := (. . . , , 0, ω−1,c , 0, ω1,c , 0, . . .),
ṽ − vc := (. . . , , 0, v−1,c , 0, v1,c , 0, . . .).

Proof. For �xed ξ1, ξ2 > 0 so close to ξ0 and given ω±1,c , v±1,c ∈ Hm with

‖ω±1,c‖Hm , ‖v±1,c‖Hm ≤ σ2.

De�ne the operator

Γ : (ω̃*, ṽ*) 7−→ (ω̃, ṽ)
= (ω̃* + (. . . , 0, ω−1,c , 0, ω1,c , 0, . . .), ṽ* + (. . . , 0, v−1,c , 0, v1,c , 0, . . .))
7−→ (ω, v) 7−→ (ω̃**, ṽ**) = right hand side of (48) − (51),

where (ω, v) = (Jω̃, Jṽ) are de�ned in Lemma 1 and

(ω̃*, ṽ*) = ((. . . , ω−2, ω−1,s , ω0, ω1,s , ω2, . . .), (. . . , v−2, v−1,s , v0, v1,s , v2, . . .)),
(ω̃, ṽ) = (ω̃* + ωc , ṽ* + vc)

= (ω̃* + (. . . , 0, ω−1,c , 0, ω1,c , 0, . . .), ṽ* + (. . . , 0, v−1,c , 0, v1,c , 0, . . .)).
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By Lemma 2, Young inequality, (11) and the form of nonlinear terms g3 and g4 in (22)-(23), we derive

‖g3‖Hm−2 ≤ C(‖∇ · (ωuT − uωT)‖Hm−2 + ‖∇(∇ × |v|
2

2 )‖Hm−2 + ‖∇ × (vT∇v)‖Hm−2 )

≤ C(‖ω‖Hm−1‖u‖Hm−1 + ‖v‖2
Hm )

≤ C(‖ω‖2
Hm−1 + ‖u‖2

Hm−1 + ‖v‖2
Hm ),

‖g4‖Hm−2 ≤ C
(
‖u ·∇v‖Hm−2 + ‖v∇u‖Hm−2 + ‖∇(|v|2z + |v|2dα)‖Hm−2 + ‖∇(|v||∇dα|z)‖Hm−2

)
≤ C

(
‖u‖Hm−1‖v‖Hm−1 + ‖v‖2

Hm−1‖z‖Hm−1 + ‖v‖Hm‖z‖Hm

)
≤ C

(
‖u‖2

Hm−1 + ‖v‖2
Hm−1 + ‖z‖2

Hm−1 + ‖v‖4
Hm−1 + ‖v‖2

Hm + ‖z‖2
Hm

)
≤ C

(
‖u‖2

Hm−1 + ‖v‖2
Hm−1 + ‖v‖4

Hm−1

)
.

Now we prove the operator Γ is a self-map of a su�ciently small ball inX. Using Lemma 9 and Lemma 12, we
have

‖ω̃**‖X ≤ C sup{‖(inξ1 −M1)−1‖Hm−→Hm , ‖(±iξ1 −M1)−1P±1,s‖Hm−→Hm ,
‖(inξ1 −M1)−1∇j‖Hm−→Hm , ‖(±iξ1 −M1)−1∇jP±1,s‖Hm−→Hm

: n ∈ Z \ {−1, 1}} × (‖ω̃‖2
X + ‖u‖2

X + ‖ṽ‖2
X)

≤ C(‖ω̃*‖2
X + ‖ω−1,c‖2

Hm + ‖ω1,c‖2
Hm + ‖ṽ*‖2

X + ‖v−1,c‖2
Hm + ‖v1,c‖2

Hm )
≤ C(‖ω̃*‖2

X + ‖ṽ*‖2
X + σ2

2), (54)

‖ṽ**‖X ≤ C sup{‖(inξ2 −M2)−1‖Hm−→Hm , ‖(±iξ2 −M2)−1P±1,s‖Hm−→Hm ,
‖(inξ2 −M2)−1∇j‖Hm−→Hm , ‖(±iξ2 −M2)−1∇jP±1,s‖Hm−→Hm

: n ∈ Z \ {−1, 1}} × (‖ũ‖2
X + ‖ṽ‖2

X + ‖ṽ‖4
X)

≤ C(‖ω̃*‖2
X + ‖ω−1,c‖2

Hm + ‖ω1,c‖2
Hm + ‖ṽ*‖2

X + ‖v−1,c‖2
Hm + ‖v1,c‖2

Hm )
≤ C(‖ω̃*‖2

X + ‖ṽ*‖2
X + σ2

2). (55)

Thus, for σ2 ≤ 1√
2C

and (ω̃*, ṽ*) ∈ X with ‖(ω̃*, ṽ*)‖X ≤ 1√
2C

, we have

‖Γ(ω̃*, ṽ*)‖X = ‖ω̃**‖X + ‖ṽ**‖X
≤ C

(
(‖ω̃*‖X + ‖ṽ*‖X)2 + σ2

2

)
≤ 1,

which implies that for su�cient small σ2 > 0, Γmaps the ‖ ·‖X ball of radius r = 1. Hence, we obtain a unique
�xed point (ω̃*, ṽ*) ∈ X of Γ, which means that equations (48)-(51) has solution of (ω̃, ṽ) = (ω̃* + ωc , ṽ* + vc).
Moreover, if (ω±1,c , v±1,c) = (0, 0), then Φ(0, 0) = (0, 0). Next we prove the second inequality in (52). Note
that

(ω̃*, ṽ*) = Γ(ω̃*, ṽ*) = (ω̃**, ṽ**),

which combine with (54)-(55), we derive

‖ω̃ − ωc‖X = ‖ω̃*‖X = ‖ω̃**‖X
≤ C(‖ω̃*‖2

X + ‖ω−1,c‖2
Hm + ‖ω1,c‖2

Hm ),
‖ṽ − vc‖X = ‖ṽ*‖X = ‖ṽ**‖X

≤ C(‖ṽ*‖2
X + ‖v−1,c‖2

Hm + ‖v−1,c‖2
Hm ).

Thus we deduce that for su�cient small ball Br(0) ⊂ B1(0),

‖ω̃ − ωc‖X ≤ C(‖ω−1,c‖2
Hm + ‖ω1,c‖2

Hm ), (56)
‖ṽ − vc‖X ≤ C(‖v−1,c‖2

Hm + ‖v1,c‖2
Hm ), (57)
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where

ω̃ − ωc := (. . . , , 0, ω−1,c , 0, ω1,c , 0, . . .), ṽ − vc := (. . . , , 0, v−1,c , 0, v1,c , 0, . . .).

This completes the proof.

Proof ofTheorem1ToproveTheorem1, the rest remains to analyze equations (37)-(38).We restate equations:

(±iξ1 −M1)ω±1,c = P±1,cg3
±1(ω, u, v),

(±iξ2 −M2)v±1,c = P±1,cg4
±1(u, v).

It follows from (ω−1, v−1) = (ω1, v1) and (g3
±1, g4

±1) = (g3
±1, g4

±1) that the ”−” equation is the complex conjugate
of the ”+” equation. By Lemma 1, we can denote (ω, v) = (Jω̃, Jṽ) by means of

(ω̃, ṽ) = Φ(ωc , vc) = Φ((ω1,c , ω1,c), (v1,c , v1,c)).

Our target is to �nd (ξ1, β) and (ξ2, β) close to (ξ0, βc) and a nontrivial solution (ω1,c , v1,c) = (ω1,c , v1,c)(x) of

−iξ1ω1,c + M1ω1,c + P1,cg3
1(JΦ(ω1,c , ω1,c , v1,c , v1,c)) = 0, (58)

−iξ2v1,c + M2v1,c + P1,cg4
1(JΦ(ω1,c , ω1,c , v1,c , v1,c)) = 0. (59)

Due to ω1,c , v1,c ∈ Cψ+ and (M1ψ+,M2ψ+) = (λ+
0(β)ψ+, µ+

0(β)ψ+), we can write

ω1,c = ηψ+, v1,c = δψ+.

Then by (58)-(59), we obtain

−iξ1ηψ++ λ+
0(β)ηψ+ + P1,cg3

1(JΦ(ηψ+, ηψ+, δψ+, δψ+)) = 0, (60)
−iξ2δψ++ µ+

0(β)δψ+ + P1,cg4
1(JΦ(ηψ+, ηψ+, δψ+, δψ+)) = 0, (61)

for some η, δ ∈ C \ {0}.
To be simple, we introduce (p1,c , θ1,c) by

(P1,cω, P1,cv) = (p1,c(ω)ψ+, θ1,c(v)ψ+).

Then equations (60)-(61) can be written as

−iξ1η + λ+
0(β)η + g3(β, η, δ) = 0, for some η ∈ C, (62)

−iξ2δ + µ+
0(β)δ + g4(β, η, δ) = 0, for some δ ∈ C, (63)

where the cubic coe�cient µ ≠ 0 in

g3(β, η, δ) := p1,c
(
g3

1(JΦ(ηψ+, ηψ+, δψ+, δψ+)
)
, (64)

g4(β, η, δ) := θ1,c
(
g4

1(JΦ(ηψ+, ηψ+, δψ+, δψ+)
)
. (65)

Note that

|p1,c(ω)| ≤ C‖P1,cω‖Hm ≤ C‖ω‖Hm , (66)
|p1,c(v)| ≤ C‖P1,cv‖Hm ≤ C‖v‖Hm . (67)

So by (64)-(65), (66)-(67), we derive

|p1,c
(
g3

1(JΦ(ηψ+, ηψ+, δψ+, δψ+)
)
| ≤ C‖g3

1(JΦ(ηψ+, ηψ+, δψ+, δψ+)‖Hm

≤ C‖Φ(ηψ+, ηψ+, δψ+, δψ+)‖X
≤ C(‖ω1,c‖2

Hm + ‖ω1,c‖2
Hm + ‖v1,c‖2

Hm + ‖v1,c‖2
Hm )

≤ C(‖ηψ+‖2
Hm + ‖δψ+‖2

Hm )
≤ C(|η|2 + |δ|2),
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|θ1,c
(
g4

1(JΦ(ηψ+, ηψ+, δψ+, δψ+)
)
| ≤ C‖g4

1(JΦ(ηψ+, ηψ+, δψ+, δψ+)‖Hm

≤ C‖Φ(ηψ+, ηψ+, δψ+, δψ+)‖X
≤ C(‖ω1,c‖2

Hm + ‖ω1,c‖2
Hm + ‖v1,c‖2

Hm + ‖v1,c‖2
Hm

+‖v1,c‖4
Hm + ‖v1,c‖4

Hm )
≤ C(‖ηψ+‖2

Hm + ‖δψ+‖2
Hm + ‖δψ+‖4

Hm )
≤ C(|η|2 + |δ|2 + |δ|4),

where we use the notation

(ω̃, ṽ) = Φ(ωc , vc) = Φ(ηψ+, ηψ+, δψ+, δψ+).

Inspired by the classical Hopf-Bifurcation result [25], if we exclude the zero solution, we can employ the
implicit function theorem to �nd real value solutions (i.e. �nd (γ1, γ2) = (η, δ) ∈ R2) of equations (62)-(63).
Hence, we de�ne the complex-valued smooth function

Υ1(γ1, γ2; ϱ, β) :=
{

−i(ξ0 + ϱ) + λ+
0(βc + ϵ) + γ−1

1 g3(βc + ϵ, γ1, γ2), γ1 ≠ 0,
−i(ξ0 + ϱ) + λ+

0(βc + ϵ), γ1 = 0,

Υ2(γ1, γ2; ϱ, β) :=
{

−i(ξ0 + ϱ) + µ+
0(βc + ϵ) + γ−1

2 g4(βc + ϵ, γ1, γ2), γ2 ≠ 0,
−i(ξ0 + ϱ) + µ+

0(βc + ϵ), γ2 = 0.

It follows from (λ+
0(βc), µ+

0(βc)) = (iξ0, iξ0) that (Υ1(0, 0, 0, 0), Υ2(0, 0, 0, 0)) = (0, 0). Moreover, by assump-
tion (H2) the Jacobi Matrix

Dρ,ϵΥ1(γ1, γ2; ϱ, ϵ)|γ1=γ2=ϱ=ϵ=0 =
(

0 d
dβReλ

+
0(β)|β=βc

−1 d
dβ Imλ

+
0(β)|β=βc ,

)

Dρ,ϵΥ2(γ1, γ2; ϱ, ϵ)|γ1=γ2=ϱ=ϵ=0 =
(

0 d
dβReµ

+
0(β)|β=βc

−1 d
dβ Imµ

+
0(β)|β=βc

)
with respect to ρ, ϵ has

detDρ,ϵΥ1(γ1, γ2; ϱ, ϵ)|γ1=γ2=ϱ=ϵ=0 = d
dβReλ

+
0(β)|β=βc > 0,

detDρ,ϵΥ2(γ, γ2; ϱ, ϵ)|γ1=γ2=ϱ=ϵ=0 = d
dβReµ

+
0(β)|β=βc > 0.

Thus, for su�cient small γ1, γ2 > 0, we �nd a function γ1 7→ (ϱ(γ1), ϵ(γ1)) and γ2 7→ (ϱ(γ2), ϵ(γ2)) with
ϱ(0) = ϵ(0) = 0 such that

−i(ξ0 + ϱ(γ1)) + λ+
0(βc + ϵ(γ1)) − γ−1

1 g3(βc + ϵ(γ1), γ1, βc + ϵ(γ2), γ2) = 0,
−i(ξ0 + ϱ(γ2)) + µ+

0(βc + ϵ(γ2)) − γ−1
2 g4(βc + ϵ(γ1), γ1, βc + ϵ(γ2), γ2) = 0

Note that the degree of nonlinearity. Then it follows fromdi�erentiating this equation that ϵi ≠ 0 for some�rst
i. Hence, the function γ1 7→ ϵ(γ1) and γ1 7→ ϵ(γ2) are locally invertible, and have ϵ 7→ γ1(ϵ) and ϵ 7→ γ2(ϵ). It
implies that the following equation holds

− i(ξ0 + ϱ(γ1(ϵ)))γ1(ϵ) + λ+
0(βc + ϵ)γ1(ϵ) − g3(βc + ϵ, γ1(ϵ), γ2(ϵ)) = 0,

− i(ξ0 + ϱ(γ2(ϵ)))γ2(ϵ) + µ+
0(βc + ϵ)γ2(ϵ) − g4(βc + ϵ, γ1(ϵ), γ2(ϵ)) = 0,

for su�cient small ϵ > 0.
Therefore we obtain the desired solutions of (58)-(59) by setting (ξ1, ξ2) = (ξ0 + ϱ(γ1(ϵ)), ξ0 + ϱ(γ2(ϵ))),

β = βc + ϵ and (ω1,c , v1,c) = (γ1(ϵ)ψ+
βc+ϵ , γ2(ϵ)ψ+

βc+ϵ)(x). This result combining with Lemma 8, Lemma 13 and
(19) give the proof of Theorem 1.
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