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Abstract: This paper is devoted to the study of the dynamical behavior for the 3D incompressible flow of
liquid crystals. We prove that this system under smooth external forces possesses time dependent periodic
solutions, bifurcating from a steady solution.
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1 Introduction and Main Results

We consider the 3D incompressible flow of liquid crystals under external time-independent force

(?Tlt]+U-VU—yAU+VP=—AV-(Vd@Vd)+fa, ©
%+U.vd=y(Ad—f(d))+ha, @
v.U=0, 3

where U € R® denotes the velocity, d € R the director field for the averaged macroscopic molecular orien-
tations, P € R the pressure arising from the incompressibility; and they all depend on the spatial variable
x = (X1, X2, x3) € R? and the time variable ¢ > 0. The positive constants u, A, y stand for viscosity, the compe-
tition between kinetic energy and potential energy, and microscopic elastic relaxation time or the Deborah
number for the molecular orientation field, respectively; fo and h, are external time independent forces. The
symbol Vd © Vd denotes a matrix whose ijth entry is < 0x,d, 0x;d >, and it is easy to see that

vdovd = (vVd)'vd,

VAl | v ad, “)

V- (Vdovd) =V( 3

where (Vd)T denotes the transpose of the 3 x 3 matrix Vd. In (2), f(d) is the penalty function which will be
assumed to be

f(@ =|vd*d. (5)
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One of the most common liquid crystal phases is the nematic, where the molecules have no positional
order, but they have long-range orientational order. For more details of physics, we refer the readers to the
two books of de Gennes-Prost [7] and Chandrasekhar [2]. Ericksen and Leslie cf.[6, 14] established the hy-
drodynamic theory of liquid crystals in 1960s. The Ericksen-Lislie theory describes the liquid crystal flow,
including the velocity vector u and direction vector d of the fluid. Since the general Ericksen-Leslie system is
very complicated, we only consider a simplified model (1)-(3) of the Ericksen-Leslie system, but still retains
most of the essential features. One can see [16—18, 20] for more discussions on the relations of the two mod-
els. Both the Ericksen-Leslie system and the simplified one (1)-(3) describe the time evolution of liquid crystal
materials under the influence of both the velocity field u and the director field d. Hence, a natural question
of the existence of time-periodic solution arises when (1)-(3) under the effect of the external forces.

Since the Ericksen-Leslie system (1)-(3) with |u| = 1 is complicated, Lin and Liu [18, 19] proposed to
investigate an approximation model of the Ericksen-Leslie system by Ginzburg-Landau functionals. In order
to relax the constraint |u| = 1 for the functional f |Vu|2dx, Lin and Liu [18, 19] considered Ginzburg-Landau
functionals

2, 1 2y2
Juvar+ SLa-japiar,
Q

for any function d € H'(Q; R?) with a parameter € > 0. They obtained the global existence of weak solutions
with large initial data and the global existence of classical solutions was also obtained if the coefficient u
is large enough in three dimensional spaces. Hu and Wang [12] prove the existence and uniqueness of the
global strong solution with small initial data are established. Meanwhile, they obtained that when the strong
solution exists, all the global weak solutions constructed in [18] must be equal to the unique strong solution.
Hong [11] proved that the global existence of regular solutions to the Ericksen-Leslie system in R? with initial
data except for at a finite number of singular times. Li and Yan [15] showed this system admits a stable smooth
steady solutions by assumption of existence of it.

Since the work of Sattinger [29], Iudovich [24] and Iooss [21] in 1971, the bifurcation of stationary solutions
into time periodic solutions (i.e. Hopf-bifurcation) of incompressible Navier-Stokes equation has attracted
much attention, see [3, 9, 13, 22, 23], etc. When the linearized operator possesses a continuous spectrum up to
the imaginary axis and that a pair of imaginary eigenvalues crosses the imaginary axis, Melcher, A, et al. [26]
proved Hopf-bifurcation for the vorticity formulation of the incompressible Navier-Stokes equations in R>.
Their work is mainly motivated by the work of Brand, T, et al. [1] who studied the Hopf-bifurcation problem
and its exchange of stability for a coupled reaction diffusion model in R%. We mention that Crandall and
Rabinowitz [5] gave an abstract infinite-dimensional version of Hopf bifurcation theorem which has found
many application. We refer the readers to [4, 27, 30, 32-35] corresponding Hopf-bifurcation result (bifurcating
from viscous shock waves) has been established in.

In this paper, our aim is to establish the corresponding Hopf-bifurcation result for the three-dimensional
incompressible flow of liquid crystals. But we can not directly use the method of dealing with Navier-Stokes
equation to three-dimensional incompressible flow of liquid crystals because the presence of the velocity
field and its interaction with the director field in the liquid crystals flow of large oscillation. A weighted Young
theorem (see Lemma 6) is derived to deal with strong coupled between the velocity field and the director field.

We assume that f and hq depend smoothly on some parameter a, which can be chosen suitably so that
(ua(x) + uc, da(x) + dc, pa(x)) (the steady solution has certain smoothness property) is the solution of the
three-dimensional steady incompressible flow of liquid crystals

U-VU-uAU+VP=-AV-(Vd ® Vd) + fa, (6)
U-vd =y(Ad - f(d)) + ha, @)
vV-U=0, (8)

with u¢ = (1, 0,0)7, de¢ = (¢c1,0,0)" and

lim uq(x) =0, lim du(x) =0,
[x]|—o0 |x] =00
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where 0 = (0,0, 0)7.
To seek the periodic solution, we linearize system (1)-(2) about the steady state (uq, da, pa) by writing

Ux,t) = ulx,t)+uax),
dix,t) = z(x,t)+da(x),
P = p+pa.

Then, the deviation (u, z, p) from the stationary (uq«, da, pa) satisfies

ou |Vz|?
3 —UAU+C10x U+ Ug*VU+U-VUg + U-VU+Vp= —AV(T) - AV(|Vz||Vda|)
AV2) Az + do) - A(Vda) Az, ©)
% —YAZ+C1Y0Z + Ua-VZ+u-Vde+u-Vz=-y|Vz|’z-y|Vz|’da
—y|Vda|*z - 2y|V2||Vda|(z + da), (10)

Here, for general matrices u = (u); j-1,2,3,

3 3 3
V U= (Z axlull‘, Z axluz]', Z 6;(1 U3]')T-
j=1 j=1 j=1
We introduce a 3 x 3 matrix

v=Vz, Vq=Vzq, (11)

and take the gradient of (10) and notice (4)-(5) to rewrite (9)-(10) as

% —UAU+ C10U+Ug*VU+U-VUg + U-VU+Vp= —AV(@) -AV(|v||Vda|)
+/1vTV(v +Vy) + Av,)T(Vv, (12)
a—]t/—yAv+clan1v + Ua - VV+VWVWUa+ U -VVg+VeVUu+u-Vv+vVu
= —yV(v]’z + |[v|*da) - yV(|Vda|*z + 2|v||Vda|(z + da)), 13)
with incompressible condition
V-.-u=0, (14)

where we used, foralli,j, k=1, 2, 3,

au,- % 0 ,od;

0 od
a—xk(u]-a—xj = oy ox, + ul-a—xj(axk) =(WVu+u- V).

In fact, by the incompressible condition (14), it follows that
V- =u-Vu+uv-u=u-vu. (15)

Thus using (14) and (15) to (12)-(13), we obtain

% —pUAU+ 10U + V- e +v - ul) +v - @ul) + Vp

2
= —AV(%) - AV(|v||Vda)) + WV +va) + Avhvy, (16)



1318 — Hengyan Li et al., Bifurcation of time-periodic solutions for the incompressible flow DE GRUYTER

%—y&v+c1yaxlv + Ua - VV+VVWlUg+U-VVg+VaVUu+u-Vv+vVu

= —yV(v]’z + |v|’da) - yV(|Vda|*z + 2|v||Vda|(z + da)). (17)
The vorticity associated with velocity field u of the fluid is defined by w = V x u. Then, using
vxV-ul)=v-(wu’ -uwh),

we can rewrite system (16) as

(?Tat) —UAW +C10xw  + V- (wau! —ugw”) + V- (wul - uwl) + v - (wu” - uw’)
2
= AV AT x (v Vdal)

AV x (VIV(V + va)) + AV x (VI VV). (18)
Note that the space of divergence free vector fields is invariant under the evolution (18). We can assume that
V.w=0.
Moreover, we can reconstruct the velocity u from the vorticity w by solving the equation
Vxu=w, V-w=0.
The velocity field u is defined in terms of the vorticity via the Biot-Savart law

1 [ (x-p*xw)y)
u(x)=—4—n %dy, x eR>. (19)

R3

Denote ¢ = (w, v)T. Then, we can write system (17)-(18) as the evolution equation form

d
L+ Np+Glo) = Fly), (20)
where
N = —UN + C10x, 0]
0 —yA+C10x1 ’
and
1 3
g g
G(op) = , Flp)=
@ ( g2 ) ¢ g
with
g1 = V- (e ~uawH+v- (a)ug - uwg) +AV(V x (|v||[Vda])) - AV x vIVva)
AV x (vEw),
g = Ua VVHVVUg+ U VVa + Vo VU + yV(Vda|?z + 2|v||Vda|da),
2
g = —V-(qu—uwT)—/lV(vX2|v| Y+ AV x (v W),

gt = —u-Vv-vVu-yV(v]’z + |v]’da) - 2yV(|[V||Vda|2).

For convenience, we denote the Fourier coefficient of operators N and G by N and §, respective. To over-
come the essential spectrum of operator —(N+ G) up to the imaginary axis, we need the following assumption:
(H1) For any a € [ac - ag, ac + &p], O is not an eigenvalue of N + G.
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(H2)For a = a., the operator —(if + 5) has two pair eigenvalues (A, ug) and (Ag, up) satisfying
Aolac) = polac) = +i&y # 0, for &y > 0,
d

+ d +
@Re(/ta(a)) la=ac» %Re(ya(a)) la=a.> 0.

(H3) The rest eigenvalue of —(ﬁ + 5) is strictly bounded away from the imaginary axis in the left half
plane for all a € [a. — ag, ac + ap).

Under the generic assumption the cubic coefficient terms aq, a, # 0 in (64)-(65), Hopf-bifurcation result
about 3D incompressible flow of liquid crystals is stated:

Theorem 1. Assume that (H1)-(H3) hold. Then system (1)-(3) admits a one dimensional family of small time-
periodic solutions, i.e.

U, t) =Ux, t+2m/&1), d(x,t)=d(x,t+2m/&)
with a = a¢ + €, € € (0, ap), and positive frequencies &; and &,. Moreover,
&1 =4 +0(e), & =& +0(e),
and
10 Ollo@exio,2nsep = O€)s 1A Ol gexto, 2n1,7) = O€)-

Above result also holds in a three dimensional torus T> and a bounded domain.
This paper is organized as follows. In section 2, we introduce some notations and preliminaries. In section
3, The main proof of Theorem 1 is carried out by using Lyapunov-Schmidt method.

2 Preliminary and Some notations

We start this section by introducing some notations. Consider the following standard Sobolev space, spatially
weighted Lebesgue space

W= {us Jufld = D ullf, < oo},

|a|<k

LY = {u: ||lu|f := /ps(x)up(x)dx < oo},
R3

where weighted function p(x) = \/1 + |x|2. The Fourier transform is a continuous mapping from L into W{,
Especially, when p = 2, the Fourier transform is an isomorphism between H” and Lf, with \|u||L§ = ||pPu||2-
To investigate periodic solutions of system (1)-(2), we also introduce the space

X = {u = (un)nez : llullx < oo}
and weighted space
LP=12xL?, H™"=H"xH", X=XxX,
with norms

lullx =3 unllgws 19l = lulx + VI,
nei

1§ llcp o= I@lly + [9llgzs 1@ llgcn 2= lullen + IV]lsen.
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for o = (u, v)T € LE or X, respectively.
In this paper, we consider the following form of time-periodic solution
w = (U(X, t/fl), V= V(X’ t/{z)’

where &1, & € R* denote the corresponding frequencies.
Thus we need to find 27 time periodic solutions of

~d
550 + No + Glg) = Fp), @
where
-_[ & O N = —UA + €10x, 0
- 0o & /)’ 0 YA +C10x, |
and
1 3
g g
G(p) = , Flp) =
with
g1 = V- (e -uawH+v- (a)ug - uwg) +AV(V x (|v||[Vda])) - AV x vTVva)
AV x (vEw),
g% = Ua-VVHVVUg+ U Ve + Vo VU +yV(Vda|’z + 2|V||Vda|da),
2
g3 = —V-(a)uT—ua)T)—AV(%)+/\VX(VTVV), (22)
gt = —u-Vv—vVu-yV(v]’z + v’ da) - 2yV(|V||Vda|2). (23)

By the classical result in [10], we know that the essential spectrum of the operator N + G is relatively compact
perturbation of N which has the essential spectrum

essspec(N) = {A € @ : A = (-ply|? +icyr, -yly]* +icy1), y € R’}

Moreover, the spectra of N+ G and N only differ by isolated eigenvalues of finite multiplicity. Above spectrum
properties are critical to prove our main result.
For convenience, we can rewrite (21) as

{1(1)[ = M1w+g3(a}’ u, V)’ (24)
Ly = Myv+ghw,u,v), (25)
where g° and g* defined in (22)-(23),
My = Mi+g' =pl+cion +8',

M, = My+g>=yA+ci0x +8°.
We make the ansatz

w(x,t) = Z wn()e™, vix,t) = Zvn(x)ei"t

nez nez
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to (24)-(25), we obtain

(iné; — M1)wn
(in&; — Ma)vn

ga(w, u,v), (26)
gn(w,u,v), @7)

where

g, u, M 0= g(w,u,ve",
nez

g' @, u,Vx, 0 =Y ghlw,u,v)e™.
neZ

Note that we are interested in real valued solution only. We will always suppose that (wn, vn) = (W-n, V-n)
for n € Z. These series are uniformly convergent on R> x [0, 27] in the spaces which we have chosen. More
precisely, we have the following results:

Lemma 1. A linear operator]: X — Cg(R3 x [0, 1], C?) is defined by

Ju(x, 0) = 406 0 == un()e™, u = (un)pez € X.
nezZ

Then J is bounded.

The counterpart to multiplication uv in physical space is given by the convolution (Z Up_kVidnez, Since
keZ

uyv = Z ul(x)e”t Zvj(x)eiit = Z (Z u,,_k(x)vk(x)) etnt,

leZ jEeZ neZ \keZ
Lemma 2. For u = (Un)yez, V= (Vn)nez € X, the convolution u * v € X is defined by

Ww*v)p = Z Un_iVk» N EZ.
kez

Then there exists C > 0 such that
[u*vlx < Cllulxl[v]lx-

Lemma 3. Let a linear operator M; : X — X be defined component-wise as (M;u)n = Mi,un for u = (Un)ncz.
Then

IMiullx = (|| Mio|lgm —pm + sup || M;||gm—gm)l|ullx, for i=1,2.
nez\{0}

The proof of above three Lemmas are standard, so we omit it.
For any bounded analytic semigroup A%, the following result holds.

Lemma 4. [28] Forevery 0 < 9 < 1 and p > 1 there exists a constant M > O such that for all t > O one has
M
|45e™ I —1r < -
The proof of following result can be found in [8] for bounded domain and [28] for R".

Lemma 5. Forevery 1 <9< 1andp > 1 there exists a constant C > 0 such that
1AS Fllz> < CIfll 20

The following result shows a weighted Young theorem.
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Lemma 6. There exists a positive constant C such that
lw * ullgz < Cllalgs fullgs -
Proof. 1t is easy to check that
p() <plx-y)p(y), Vx,yeR’, (28)
where we take the weighted function as
pl) =01+ \x|2)%.

Then, There exist positive constants s1, s,, s such that s; + s, = m + s, with s, s, s < m. using Young
inequality and (28), we derive

wruly, - [P (dx

R3

2
- / / wlx - Yuly)p™()dy | dx
R3 3

2
= / P> (%) (.1/ p* (x = y)wx - y)p*2()u(y)dy | dx
R’ 3
 [o | [po@ered: | ( [ronod | a
R3 3 3
< Cllwliz lulliz < Clelg; ulz-
This completes the proof. O

3 Proof of Theorem 1

In this section, we will give the detail of proof of Theorem 1. By (H2) and (H3), we know that the operator M;
has two eigenvalues A5(f) and all other eigenvalues of M; are strictly bounded away from the imaginary axis
in the left half plane. Thus we construct a M;-invariant projections P.; . by

P cw= W, wpYp’, Pogcw= W™, W)Y, (29)
Pl,CV = (l/}+’*’ V)LZ¢+’ P*]_,CV = (l/)_’*’ V)LZ l,b—, (30)

where 1)* denotes the associated normalized eigenfunctions, )*** denotes the associated normalized eigen-
functions of the adjoint operator M;. The bounded “stable” part of the projection is P.; s = I - P, ¢, we also
know that P, cM; = M;P. . and P. sM; = M;P-. s. Thus we can split w., and v, as

W1 =Wi,ct+Wys, W1 =W-1,c+W-1s,

Vi=Vic+tVis, V-1 =Voq,ctVois
with

Wiy,c = Ptl,Cwls Wil,s = Pil,swl’

Vil,c = Ptl,cvla Vil,s = Pil,svl-
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Using above decompositions to (26)-(27), we have

(inéy - Mwn = ga(w, u,v), n=2+2,%3,..., (31)
(in&, - My)vy = ghu,v), n=4%2,43,..., (32)
Miwo = g3(w, u,v), n=0, (33)
Myvo = g5(u,v), n=0, (34)
(2i&1 ~ M1)w.1 s = Ptl,sgil(a)r u,v), (35)
(#1E — My)Vvar s = Puy 584 (u, v), (36)
(18 = M)w.1,c = Puy 81 (w, u,v), 37)
(i€ - My)Vsr,c = P, e84 (U, V). (38)

The organization of proof of Theorem 11is that we first solve the equations (33)-(34). Then using the fixed point
theorem to solve equations (31)-(32) and (35)-(36) which is nontrivial due to the nonlinear term g3(w, u, v) and
gh(u, v). At last, we employ the implicit function theorem to solve equation (37)-(38). The process of solving
equation (37)-(38) is inspired by the classical Hopf-Bifurcation result [25].

Rewrite (31)-(38) as

(inE+N+ G)n = Fnlp,u), n=12,13,..., (39)
N+ G)po = Folp,u), n=0, (40)
(212 + N+ G)@.1,s = Puy sFui(@, u), (41)
(+E + N+ G)@s1,c = Pa1,cFar(, u). (42)

Now we first solve the equation (40). The linear operator N has essential spectrum up to the imaginary axis,
it can be be inverted in the following sense.
Lemma?7. Forj=1,2andf = (f', f2)T € (K™ n L), the equation
NQD = a]f
admits a unique solution ¢ = N’lajf € H™. Moreover,

l@llgem < Clifllgem1ngr-

Proof. Define a smooth cut-off function y taking its value in [0, 1] as

L 1, |lyl=<1,
xX(y): { o, Iyl 2.

We denote
(FL. D) = (Fx. 20 and (5.F5) = F*(1-x), f2(1-x)
with f = (f1, f2) = (f} + f3, f + f3). Then

.21 st
. iyifi . iyifs
W1(y) = - . and @,(y) = - - ,
W= g - uly2 - e 2V g~ uly2 - iciys
. 2 .72
. iy; R iy;
71(y) = Vil and 1,(y) = il

in& - yly|? -iciy1 in& - yly|> —iciy1”

Note that (w, v) = (w1 + w,, v1 + V). Moreover, it holds
i)
lin&y - ply|? - ic1y1|?
RZ

lo1lfm = ll@1lf: = P (y)dy
2
2 il
Wl [ s ®
lyls2

ClIfI:,

IN

IN
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and

i 2IF - x0)?

2m
- - d
[ gy~ iy e Y
R

2 ~ 2
l|w2 |l @2lg2 =

IN

c / FOI2p2mD(y)dy
RZ

2
< ClflEm
By the same process, we can obtain
2 5 12 2
Ivallan = V1l < ClIfllL:
2 512 2
Vallan = [IV2llz, < Cllfllgn-1-
This completes the proof. O

This Lemma tells us that ﬁ(z’ v;, iy;)T- is bounded compact operator in from L2, x L2, to itself. Furthermore, the
spectra of N+ Gand N only differ by isolated eigenvalues of finite multiplicity (see the book of Henry [10]
p.136).

The following Lemma gives the solvable of the equation (40).

Lemma 8. Assume that (H1)-(H3) holds. Then the equation (40) has a unique solution
9o = (N +G) ' Folp, u). (43)
Moreover,
I@ollsen < Clly; Tz Fol@, w)] 2.

Proof. Since the operator N"1G : £2, —» L2, is compact, the operator I + NG is Fredholm with index
0.1f I + N"1G)p = 0 had a nontrivial solution, then (N + G)¢ = N(I + N"1G)$ = 0 would also have a
nontrivial solution. This would contradict (H1). Hence the Fredholm property implies that the existence of
(I+N16)1: £2 — £2%. Then we have

j\\f(I+ 5\\1.716)@ = l'yj12x2f,

where I,,, is the unit matrix.
Thus, by Lemma 7, we obtain

l@lsen = [1llc2
T+ NG g2 —p IN T iyiInof 22

ClIfllz2 -

IN

IN

This completes the proof. O
Lemma 9. There exist a constant C > O such that

[ullgm < Cllw|lgm, |0xullgm < Cllw||gm. (44)
Proof. The related equation of the velocity u and the vorticity w is

Vxu = w,
V-u 0, V:w=0.
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This leads in Fourier space to

0 -iys3 iy2 i 1
iys 0 -iyg 1 |- @,
-y, iy1 0 ity @3
iyr iy, iy3 0
We can get
. 1 0 iys -iy2 iy1 1 i
No = _W —iy3 0 lyl ly2 C?}z = ﬂz = 1.
iy, -iy1 0 iy w3 ii3

Using Hélder’s inequality, for p% + p% =1,p1,p2 > 1,51 +5> = 2mand sy, s, > 0, we have
2 pan2 Si2 A2 B2 A2
lullam = llallgz < C(”X\y|slN”L25il HCUHLZSE + X1 NIl @Ig2 )
2 2
a2 a2 A2

< C(||X\y|slN||LZSP1 + ||X\y|21]\’||L°°)HwHLfﬂ
°1
2

a2 2
< (g = Cllwllgm,

where we use the weighted function p(y) = |y|(1 + |y|)2, the boundedness of || Xly|s1 % l{- and

iy; fvs
HXIJ’|51#”]2_‘ZSI;1 = / ‘L|2P1pplsdy
2
1
i s 2py
! s
= / ‘L|2p1|y‘pls(1+|y|) T dy < C/%Qpls(1+g)plsgzdg
0

1
= C/@‘“S’z””z(l +0)P**g%dp < o0, forpis-2p;+2>0.
0

The second estimate in (44) is followed by
[[0x;ullgm = [liy;tp™ (|2 < HiYiN”L””d)HL}n < Cllwllum.

This completes the proof.

O

From the form of the nonlinear terms g and g*, it is critical to estimate the term as uv and u?. For convenience,
we derive some estimates about the nonlinear term N'(¢) = ¢ and N*(¢, ) = 1. This proof is similar with

Lemma 4 in [1], so we omit it.

Lemma 10. Define N' : X — X by N'(¢)n = Ni(Jp) and N> : X x X —s X by N*(¢)n = N2(Jo, ip) for

@, Y € X. Then there exists C > O such that
IN' (@)l < Cllol%, [IN*(@, Yl < Cllxll@llx
for o, Y € X with |||« < 1 and ||| < 1. Moreover, there exists C > O such that

IN' (@) - N (@)lx = CUl@" [Ix + @)@ = @7l

IN*@" 9D - N @ Yl = (19" + 19 + 19l + 1)1 )
< (lle" - @7l + 9" =92l

for pt, %, 91, ? € Xwith " |, |9 [lac, [P* e, 1]l < 1.

(45)

(46)

(47)
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Then we have the following result.

Lemma 11. Assume that &; close enough to &, for i = 1, 2. Then there exists a constant C > O such that

[inE + N) " x—x < C,
IinZ + N = 6) |x—x < G,

|(inE + N = G) "Puy sllx_x < C,
forn #0.

Proof. We observe that the solution ¢ of the equation (inZ + N)¢ = f is given by

-1
~ in&y +uly|® - iciy1 0 2 3
W= ) . f), ye®.
¢ 0 in&; +yly|* —iciy
For 6; = £ and 6, = 2%, , weh
oréy = gz and 6, = g7k, we have
2
. . w
jing+viy? —icayal® = W y" +(CynFng)? 2 Sy + 0T+ Yy
1
2
. . w
in& +yly? —icayal® = YAyI"+ (a4 n)’ 2 oKy + 30 YNy -
1

It follows for f € H™ that ¢ € L£2,,,, thus ¢ € H™*2,
Letf € £2,,, C Lk, @ = p(y, €)@ and ¥ = p(y, €)¥ with p(x, €) = \/1 + €[x|2. Note that ¢ is a solution of
the equation (inZ + N)¢ = f. By a direct computation, we have

(ing + N) + eL(y, €)p = 8,
where ¢ = (@, V)7, & = p(y, €)f and

_( Gn& +puly)? —icy))@-p 7y, €) 0
eLb €)= ( Y (in& +yly|* —icy)(A - p (v, €) >

Here we use the fact that N is elliptic of order of 2. Hence it derives from the form of p(y, €) = /1 + €|y|? that

Ly, €) ~ ely|* poo
1+ely2++/1+ely2\ 0 y
Using a Neumann series, it derives from the boundness of the operator L : £%,, — £, that
(inE+N) +e€L : L£2.5 — L2
is invertible with a bounded inverse, for sufficient small € > 0. This implies that ¢ € Lfmz, ie, € M2,
Moreover, we have

@llgeme = [1@llgz,, = 9]l

m+2 m+2

Cligll ez, = Clifllgenea.

IN

Above result shows that (inZ+N)™! : H™ — H™*? ishounded. But we only need this operator to be bounded
X — X. This implies that the spectrum of N in X well separated from in= for n # 0 and € > O sufficient small.
In a similar manner to prove the first inequality, the rest two inequalities can be obtained, so we omit it. This
completes the proof. O

By the same proof in Lemma 11, we obtain the following result.
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Lemma 12. Assume that é; close enough to &, fori = 1, 2. Then there exists a constant C > O such that

[(in& - M) |lgm—gm < C, ||(in& = M) 'V« ||gm__gm < C,
[(in& = My) " |gm —mm < C, ||(in& - My)™'V -+ |lgm_—_gm < C,
[(in&; = M) Pa s

forn#0andj=1,2.

Thus by Lemmas 11-12, we can obtain the solution of equations (39) and (41) as
@n = (nE+N) " Fn(p,u), n=12,43,...,
Pars = (#E + N)'Puy sFaa (9, ),
ie.
wn = (iné; - M) *ga(w,u,v), n=1+2,43,...,
vn = (iné; —Mz)"lgﬁ(w, u,v), n=+2,+3,...,
War,s = (+1&1 - M) "Pag 58 (W, u, v),

Vars = (18 - M) ' Pay 584 (w, u, v).

The following Lemma shows the solvable of equations (48)-(51).

m—pm < C, ||(in& = M) 'V« Puy | lgm —pm < C,

(48)
(49)
(50)
(51)

Lemma 13. Assume that there exist 01, 0, > O such that for all &1, &, > 0 with &1 — &), |&2 — &| < 01 and

all ws1,c, Vi1, € H™ with lws1,cllmms ||Vt e
D(we, ve) € X, where

Wce = ((U—l,c, wl,c), Ve = (V—l,c, Vl,c)9
W= (' ey W2, W_1,ctW-15,Wo, W1,ct+ W1, W2,.. ')a
V=

(oo Vo2, Vol,c + V1,55 VOs Vi,e + Vi,ss Vs - - 2)
Moreover, there exits C > 0 such that

@(0,0) = (0,0), [|@ - welx < Cl@-1,cllfm + [|w1,cllfm),

17 = vellx < CUv-r,cllfm + IVacllEm),

with

S
|

S
Il

(- sy O; w*l,C; 0’ Wi, 0’ .. -)a

7-ve = (..,,0,v_1,6,0,v1,,0,...).

Proof. For fixed &1, & > 0'so close to &y and given w.1 ¢, V.1, € H™ with

lwsr,cllgms Vet cllam < 02.
Define the operator

r:@,v — (@7

~ % ~x
= (@ +(..,0,w-1,6,0,w1,6,0,...),7 +(...,0,v_1,,0,v1,,0,...

—  (w,v) — @, ") = right hand side of (48) - (51),

where (w, v) = J@, J¥) are defined in Lemma 1 and

~~
[
*
<
*
Nt
I

(@ +we, V" +ve)

—
S
<

N

I

~K

((~ ey Wo2, w—l,s; Wo, W1,s, wr, .. ')y (' cesV_2,V_15,Y0, V1,5, V2, ..

oK
(CU + (' L) 0) W-1,c, 09 Wi,c, O’ .. -)9 vV + (- L) Oy V_1,c» O, Vi,c» Oy ..

-))’

J).

Hm < 0,. Then equations (48)-(51) has a unique solution (&, V) =

(52)
(53)
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By Lemma 2, Young inequality, (11) and the form of nonlinear terms g> and g* in (22)-(23), we derive

V x |v|?
1€ < UV - @u” =M g + 1V g + 19 07 ) )

A

2
C(llwllgm-r [[ullgn-r + [[v][m)

IN

IN

2 2 2
C(lwllggms + [[ullgn-r + VIIEm),

4+ V|2 + VYUl + [ V(VI22 + VI da) [gn2 + HV(lvl\VdaIZ)HHmfZ)

IN

4
g™ llgm-2

IN

IN

c

C (el Vs + 11V 2l -+ 1Vl 2l )

C (11ulans + 1V0Gans + l1gos + [VIlgocs + VIl + 121
< C ([l + VIgms + 1Vl ) -

Now we prove the operator I is a self-map of a sufficiently small ball in X. Using Lemma 9 and Lemma 12, we
have

16 x < Csup{ll(ing ~ M1) an —mm, (261 ~ M1) " Pay,s

S H" —H™
[(inéy = My) 'V lgm g, || (81 = M) VPl
tne Z\{-1,1}} x (@[ + llulx + I7]%)
s C@" 1% + lw-,cllfn + lwrcllfm + 177 1% + [V-1,cllfn + [Iv1,cllim)
< Cl@"|Ix + IV [Ix + 03), (54)
177x < Csup{||(in& — My) " |lgm —mm, ||(£i& — M) "Pay s|lam—spm,
[(in&> = M) 'V lgm _pam, || (&2 — M2) ' WPy |l
tne Z\{-1,1}} < (&g + | 7]% + | 7]%)
< C|@"|Ix + lw-1,cllfm + llwr.cllfm + 17 1% + [V-1,cllfm + [Iv1.cllfm)
< Cl@" g+ V"I + 03). (55)
L - e )

Thus, for 0, < and (@, V") € X with |[(@", V")||x < 5o We have

V2e
~ KK ~KKk
@ flac + 1V lIx

C (U@ + 17" 1x)° + 03) = 1,

0@, 7))«

IN

which implies that for sufficient small o, > 0, I'maps the || - || ball of radius r = 1. Hence, we obtain a unique
fixed point (&", 7*) € X of I', which means that equations (48)-(51) has solution of (&, ¥) = (@" + we, V" + ve).
Moreover, if (W.1,c, V+1,c) = (0, 0), then @(0, 0) = (0, 0). Next we prove the second inequality in (52). Note
that

@, 7)=T@",7)=(@

which combine with (54)-(55), we derive

~ o~ P
[@-wcllx = [l@x=I[a [x

~%02 2 2
< Cll@ x + llw-1cllem + llwa,cllzen),

~ ~% ~*K
[V=vellx = [IVIx=IV"lx

~% D 2 2
< CUV lix + [Iv-1,cllzem + [[V-1,cll5em)-

Thus we deduce that for sufficient small ball B,(0) c B1(0),

~ 2 2
@ -welx = C(lw-1,cllim + [|w1,cllam), (56)

. P 2
[V-velx = CUv-1,clliam + Iva,cllam), (57)
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where

b-wei=(..,,0,w-1,6,0,wW1,6,0,...), V=vei=(..,,0,v_1,0,v1,,0,...).
This completes the proof. O
Proof of Theorem 1 To prove Theorem 1, the rest remains to analyze equations (37)-(38). We restate equations:
(281 - M)war,e = Puycgh(w,u,v),

(218 —~ Mp)Var,e = Pupcgii(u,v).

It follows from (w_1, v_1) = (w1, V1) and (gfl, gi‘l) = il, gi‘l) that the ”—” equation is the complex conjugate
of the ”+” equation. By Lemma 1, we can denote (w, v) = (J@, J¥) by means of

(@,7) = P(we, ve) = P((W1,c, w1,0)s V1,c, Vi,c))-
Our target is to find (&1, B) and (&5, B) close to (&y, Bc) and a nontrivial solution (w1 ¢, V1,c) = (W1,c, V1,c)(x) of
—ifiwi,e + Mywic+Pr gl 0D@rc, wie, Vies Vi) = 0, (58)
—i&vie + Mavic+Pcgi0P@rc, wic, Vi, vi,e) = 0. (59)
Due to wq,¢, v1,c € CY* and (M1y*, Mayp*) = AG(BYT, us(B™), we can write
wi,c=NP*, vic=6Y".
Then by (58)-(59), we obtain
iy AGBNY* + Pycgi0OMP*, ny*, §9*, 697) =0, (60)
—i&8Y"+  U(B)SY* + Py gl IOy, nyp, 5P+, 69) = 0, (61)

for somen, 6§ € C\ {0}.
To be simple, we introduce (p1,c, 01,c) by

(P1,cw, P1,cv) = (p1,c(@)P*, 01, (VY™).
Then equations (60)-(61) can be written as

—i&in + AS(Bn+g>(B,n,8) =0, forsomen e C, (62)
-i&6 + u(B)s+g*(B,n,8) =0, forsomeéd eC, (63)

where the cubic coefficient y # 0 in

£B.n.6) = pic(si000YT. Ny’ Y7, 697)). (64)
'B.n.6) = Oic(si0OMYT, Ny’ 597, 69)). (65)
Note that
Pre(@)] < ClPyLwlr < Clw]ae, (66)
Pre] = CIPyev]ae < Clviae. (67)

So by (64)-(65), (66)-(67), we derive
P1.c (8300097, ", 69%.89) | = Clgl0@yT. ", 897, 5"
Clomp*, np*, 69+, 59" x
C(ll@rcllfm + |w1,cllfm + [[VLcllfm + Vacllfn)
CInY™ [l + 1169 ||fm)
Cnl* +181%),

IN

IN

IN

IN

IN
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IN

ClgidoMmp*, ny*, 6%, 6°) |un
Cllomp*, np*, 69+, 61")|lx

2 2 2 2
C|wrcliam + lwr,cllian + [[Viellan + v, cllam

101 (100G, ny", 697, 69 |

IN

IN

+[Vicllfm + [1va,cllim)
CUIMY* llfm + 169" [fam + (|69 [|gym)
C(in|* +18% + 6",

IN

IN

where we use the notation
(@, 7) = D(we, ve) = PP+, np*, 6P+, §*).

Inspired by the classical Hopf-Bifurcation result [25], if we exclude the zero solution, we can employ the
implicit function theorem to find real value solutions (i.e. find (y1, y») = (1, §) € R?) of equations (62)-(63).
Hence, we define the complex-valued smooth function

1 0 B) e =i +0) + A5(Bc + €) + y1'8° (B + €,y1,2), ¥1#0,
Y (ylay2’0aﬁ) '_{ _i(§0+g)+/\6(ﬁc+€)y )/1=0,

20y v ) e -i(§0 + 0) + M (Be + ) +y3'8" (Be + €,y1,2), ¥2#0,
Y1, y250,B) = { ~i(& +0) + ug(Bc +€), y2=0.

It follows from (A§(Bc), ud(Bc)) = (&, i&) that (Y1(0, 0, 0, 0), Y*(0, 0, 0, 0)) = (0, 0). Moreover, by assump-
tion (H2) the Jacobi Matrix

0 LReA{(B)|p-p

Dy, V' (U1, Y25 0, €)ly1=yr=p=e0 = dp ~=0 ‘

p,€ Y1=y2=0=¢€ 1 diﬂlma(ﬁ)'ﬁ:ﬁc,

0 ZReuj(B)lpp

Dp.eY2(y1, Y23 0, €)ly,—y,-p-c-0 = 4 ‘

p,€ V1,)2;0 |y1 Y2=p0=€=0 < 1 diﬁlmlla(ﬁ)‘[}:ﬁc

with respect to p, € has

d
detD, Y (y1,y2;50, €)|y,=y,=p=¢=0 = TBRGAB(ﬁ)\ﬁzpC >0,

d
detDp,eYZ(y, Y250, €)|y1=y2=g=e=0 = @Reﬂa(ﬁ)|ﬁ=ﬁc > 0.

Thus, for sufficient small y;,y> > 0, we find a function y; — (o(y1), €(y1)) and y2 — (o(y2), €(y2)) with
0(0) = €(0) = 0 such that

~i(&o + 0(y1)) + A5(Be + €(1)) - 18> (Be + €(v1), y1, Be + €(y2), ¥2) = O,
~i(&0 + 0(2)) + Mo (Be + €(y2)) — y2' g4 (Be + €(y1), y1, Be + €(y2), y2) = 0
Note that the degree of nonlinearity. Then it follows from differentiating this equation that e’ # 0 for some first

i. Hence, the function y; — €(y1) and y; — €(y>) are locally invertible, and have € — y;(€) and € — y,(€). It
implies that the following equation holds

- i(& +o1(e)yi(e) + A5(Be + €)y1(€) - 82 (Be + €, y1(€), y2(€)) = O,
- i(& +o(2(e))ya(€) + ub(Be + €)y2(€) - g*(Be + €, y1(€), y2(€) = 0,
for sufficient small € > 0.
Therefore we obtain the desired solutions of (58)-(59) by setting (&1, &) = (& + 0(y1(€)), & + 0(y2(€))),

B =Bc+eand (w1,c,v1,c) = (yl(e)lphw yz(e)w,bgc+ -)(0). This result combining with Lemma 8, Lemma 13 and
(19) give the proof of Theorem 1.



DE GRUYTER Hengyan Li et al., Bifurcation of time-periodic solutions for the incompressible flow = 1331

Acknowledgement: This work is supported by NSFC No 11771359, and the Fundamental Research Funds for
the Central Universities (Grant No. 20720190070, N0.201709000061 and No. 20720180009). The second author
is supported by Huizhou University Professor Doctor Launch Project Grant, No. 20187B037.

References

[1] T.Brand, M. Kunze, G. Schneider, T. Seelbach, Hopf bifurcation and exchange of stability in diffusive media, Arch. Rational
Mech. Anal., 171 (2004), pp. 263-296.

[2] S.Chandrasekhar, Liquid Crystals. 2nd ed., Cambridge: Cambridge University Press (1992).

[3] Z.M.Chen, W.G. Price, Time dependent periodic Navier-Stokes flows on a two-dimensional torus, Comm. Math. Phys., 179
(1996), pp. 577-597.

[4] M. Cencelj and D. Repovs, V.D. Radulescu, Double phase problems with variable growth, Nonlinear Analysis 177 (2018)
270-287.

[5] M.G. Crandall, P. Rabinowitz, The Hopf Bifurcation theorem in infinite dimensions, Arch. Rational Mech. Anal., 67 (1977),
pp. 53-72.

[6] ). Ericksen, Equilibrium Theory of Liquid Crystals, Academic Press, New York (1976).

[7]1 P.G.de Gennes, J. Prost, The Physics of Liquid Crystals, New York: Oxford University Press (1993).

[8] Y. Giga, The Stokes operator in L, spaces, Proc. Japan Acad. Ser. A Math Sci., 57 (1981), pp. 85-89.

[9] R. Glowinski, G. Guidoboni, Hopf bifurcation in viscous incompressible flow down an inclined plane: a numerical ap-
proach, ). math. fluid mech., 10 (2008), pp. 434-454.

[10] D. Henry, Geometric theory of semilinear parabolic equations, New York: Springer-Verlag (1981).

[11] M.C. Hong, Global existence of solutions of the simplified Ericksen—Leslie system in dimension two, Calc. Var. PDE., 40
(2011), 15-36

[12] X.P.Hu, D.H. Wang, Global solution to the three-dimensional incompressible flow of liquid crystals, Commun. Math. Phys.,
296 (2010), pp. 861-C880.

[13] D.D.)Joseph, D.H. Sattinger, Bifurcating time periodic solutions and their stability. Arch. Rational Mech. Anal. 45, 75-109
(1972)

[14] F.Leslie, Theory of flow phenomemum in liquid crystal, In: Brown (ed.) Advances in Liquid Crystals, vol. 4, pp. 1-81. Aca-
demic Press, New York (1979)

[15] H.Y.Li, W.P. Yan, Nonlinear stability for the three dimensional incompressible flow of nematic liquid crystals, Appl. Math.
Lett., 39 (2015), pp. 42-46.

[16] F.H.Lin, Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena, Commun. Pure.
Appl. Math., 42 (1989), pp. 789-814.

[17] F.H.Lin, Mathematics theory of liquid crystals, In: Applied Mathematics at the Turn of the Century, Lecture Notes of the
1993 Summer School, Universidad Complutense de Madrid: Editorial Complutense (1995).

[18] F.H.Lin, C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Commun. Pure. Appl. Math., 48
(1995), pp. 501-537.

[19] F.H.Lin, C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals, Disc. Cont. Dyn. Sys., 2 (1996),
pp. 1-22.

[20] C. Liu, Walkington, N.J.: Approximation of liquid crystal flow, SIAM J. Numer. Anal., 37 (2000), pp. 725-741.

[21] G. looss, Bifurcation des solutions périodiques de certains problemes dévolution, C.R. Acad. Sci. Paris., 273 (1971), série
A, pp. 624-627.

[22] G.looss, Bifurcation of a periodic solution of the Navier-Stokes equations into an invariant torus, Arch. Rational Mech.
Anal., 58 (1975), pp. 35-56.

[23] G.looss, A. Mielke, Bifurcating time-periodic solutions of Navier-Stokes equations in infinite cylinders, ). Nonlinear. Sci., 1
(1991), pp. 107-146.

[24] V.I. ludovich, Apprearance of auto-oscillations in a fluid, Prikl. Mat. Mek. 35 (1971), pp. 638-655.

[25] ).E. Marsden, M. Mccracken, The Hopf bifurcation and its applications, Berlin-New York: Springer (1976).

[26] A. Melcher, G. Schneider, H. Uecker, A hopf-bifurcation theorem for the vorticity formulation of the Navier-Stokes equa-
tions in R, Commun.Partial Differential Eqs., 33 (2008), pp. 772-783.

[27] P. Mironescu, V.D. Radulescu, A bifurcation problem associated to a convex, asymptotically linear function, C.R. Acad. Sci.
Paris, Ser. 1 316 (1993), 667-672.

[28] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York, Springer-Verlag
(1983).

[29] D.H. Sattinger, Bifurcation of periodic solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 41 (1971),
pp. 66-80.

[30] B.Sandstede, A. Scheel, Hopf Bifurcation From Viscous Shock Waves, SIAM . Math. Anal., 39 (2008), pp. 2033-2052.



1332 — Hengyan Li et al., Bifurcation of time-periodic solutions for the incompressible flow DE GRUYTER

[31] R.Temam, Some developments on Navier-Stokes equations in the second half of the 20th century, Development of mathe-
matics 1950-2000, Basel, Birkhduser: 2000, pp. 1049-1106

[32] B.Texier, K. Zumbrun, Hopf bifurcation of viscous shock waves in compressible gas dynamics and MHD, Arch. Rational
Mech. Anal., 190 (2008), pp. 107-140.

[33] N. Papageorgiou, V.D. Radulescu, Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann
problems with competing nonlinearities, Discrete and Continuous Dynamical Systems 35 (2015) 5003-5036.

[34] M. Xiang, B. Zhang, V.D. Radulescu, Superlinear Schrodinger-Kirchhoff type problems involving the fractional p-Laplacian
and critical exponent, Advances in Nonlinear Analysis 9 (2020) 690-709.

[35] W.P.Yan, Hopf-bifurcation theorem and stability for the magneto-hydrodynamics equations, Topol. Methods. Nonlinear
Anal., 46 (2015), pp. 471-493.



	Bifurcation of time-periodic solutions for the incompressible flow of nematic liquid crystals in three dimension
	1 Introduction and Main Results
	2 Preliminary and Some notations
	3 Proof of Theorem 1


