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Abstract: Some inequalities connected to measures of noncompactness in the space of regulated function
R(J, E) were proved in the paper. The inequalities are analogous of well known estimations for Hausdor�
measure and the space of continuous functions.Moreover two su�cient and necessary conditions that super-
position operator (Nemytskii operator) can act from R(J, E) into R(J, E) are presented. Additionally, su�cient
and necessary conditions that superposition operator Ff : R(J, E)→ R(J, E) was compact are given.
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1 Introduction
When studying solvability of various non-linear equations, it is signi�cant to properly choose the space in
which the equation is considered. Knowledge about some properties of the space e.g. easy to calculate for-
mulas for measures of noncompactness or characteristic of superposition operator etc. combined with �xed
point theorems allow to obtain general conditions for solvability of studied equations.

The space of regulated functions R(J, E), where J = [a, b] ⊂ R and E is a Banach space, is one of such
spaces, recently intensively studied (see [1-14]). So far except stating general properties of this space [1, 5, 7-12]
it is also possible to use formulas for measures of noncompactness, conditions su�cient for the superpo-
sition operator Ff to act from R(J, E) into R(J, E), and conditions for continuity of this operator [2-6, 12-13].
However, so far non-trivial su�cient and necessary conditions for compactness of the superposition opera-
tor Ff : R(J, E)→ R(J, E) were not known. There was also lack of any estimations of such measures, so often
needed. This paper will try to �ll these gaps.

In the third chapter several theorems dealing with various types of inequalities, integral, but not only
integral, that hold in the spaces of regulated functions and are expressed in terms of measures of noncom-
pactness, will be formulated. These inequalities are analogues of known and often used inequalities holding
in the class of continuous functions. In the fourth chapter two theorems (Theorem 4.4 and Theorem 4.6) that
give su�cient and necessary conditions that superposition operator acted from the space of regulated func-
tions into that space,will be presented. Known so far results in this area usually give only su�cient conditions
and the only known su�cient and necessary conditions are actually rather “tautological”. Moreover, su�-
cient and necessary conditions that superposition operator is compact in the space of regulated functions
will be given (Theorem 4.9).
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2 Notation, de�nitions and auxiliary facts
This section is focuses on recalling some facts which will be used in our investigations.
Assume that E is a real Banach space with the norm || · || and the zero element θ. Denote by BE(x, r) the closed
ball centered at x and with radius r. The ball BE(θ, r) will be denoted by BE(r). We write X, ConvX to denote
the closure and the convex closure of a set X, respectively. The symbol ‖X‖ will stand for the norm of the set
X ⊂ E i.e., we have ‖X‖ := sup{‖x‖ : x ∈ X}. Furthermore, let ME denote the family of all nonempty and
bounded subsets of E andNE its subfamily consisting of all relatively compact sets. We accept the following
de�nition of a measure of noncompactness [15].

De�nition 2.1. Amapping µ : ME → R+ = [0,∞) is said to be ameasure of noncompactness in E if it satis�es
the following conditions:
1o The family kerµ := {X ∈ME : µ(X) = 0} is nonempty and kerµ ⊂ NE .
2o X ⊂ Y ⇒ µ(X) ≤ µ(Y).
3o µ(ConvX) = µ(X).
4o µ(λX + (1 − λ)Y) ≤ λµ(X) + (1 − λ)µ(Y) for λ ∈ [0, 1].
5o If (Xn) is a sequence of closed sets fromME such that Xn+1 ⊂ Xn (n = 1, 2, ...) and if lim

n→∞
µ(Xn) = 0, then

the intersection X∞ :=
∞⋂
n=1

Xn is nonempty.

Subsequently, we will use measures of noncompactness having some additional properties. Namely, a mea-
sure µ is said to be sublinear if it satis�es the following two conditions:
6o µ(λX) = |λ|µ(X), λ ∈ R.
7o µ(X + Y) ≤ µ(X) + µ(Y).

A sublinear measure of noncompactness µ satisfying the condition (strong maximum property)
8o µ(X ∪ Y) = max{µ(X), µ(Y)}

and such that kerµ = NE is said to be regular.
Except condition 8o we can also consider the condition (weak maximum property)
9o µ(X ∪ {y}) = µ(X), y ∈ E.

For a given nonempty bounded subset X of E, we denote by βE(X) the so-called Hausdor� measure of non-
compactness of X. This quantity is de�ned by formula

βE(X) := {r > 0 : X has a �nite r−net in E}.

The function βE is an example of regular measure of noncompactness in E.
Now we recall some facts concerning regulated functions.

De�nition 2.2. A function x : [a, b] → E, where E is a topological vector space, is said to be a regulated
function if for every t ∈ [a, b) the right-sided limit x(t+) := lim

s→t+
x(s) exists and for every t ∈ (a, b] the left-

sided limit x(t−) := lim
s→t−

x(s) exists.

From now on, real Banach space will be denoted by E.
Denote by R(J, E) the space consisting of all regulated functions de�ned on the interval J = [a, b] with

values in a real Banach space E. Since every regulated function x ∈ R(J, E) is bounded on the interval J, then
the space R(J, E) can be normed via the classical supremum norm

||x||∞ := sup{||x(t)|| : t ∈ J}.

It is easy to show that R(J, E) is a real Banach space. Moreover, every regulated function x : J → E is Riemann
integrable.
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Now, we remind a criterion for relative compactness in the space R(J, E). To this end, we introduce the
concept of a equiregulated subset of the space R(J, E) (cf. [3, 9]).

De�nition 2.3. We will say that the set X ⊂ R(J, E) is equiregulated on the interval J if the following two
conditions are satis�ed:

∀t∈(a,b] ∀ε>0 ∃δ>0 ∀x∈X ∀t1 ,t2∈(t−δ,t)∩[a,b] ||x(t2) − x(t1)|| ≤ ε,

∀t∈[a,b) ∀ε>0 ∃δ>0 ∀x∈X ∀t1 ,t2∈(t,t+δ)∩[a,b] ||x(t2) − x(t1)|| ≤ ε.

Theorem 2.4. [3-5, 9] A nonempty subset X ⊂ R(J, E) is relatively compact in R(J, E) if and only if X is equireg-
ulated on the interval J and the sets X(t) are relatively compact in E for t ∈ J.

Nowwe are going to recall the construction of ameasure of noncompactness in the space R(J, E). To this end,
let us take a set X ∈MR(J,E). For x ∈ X and ε > 0 let us denote the following quantities:

ω−(x, t, ε) := sup{||x(t2) − x(t1)|| : t1, t2 ∈ (t − ε, t) ∩ J}, t ∈ (a, b],

ω+(x, t, ε) := sup{||x(t2) − x(t1)|| : t1, t2 ∈ (t, t + ε) ∩ J}, t ∈ [a, b).

The quantities ω−(x, t, ε) and ω+(x, t, ε) can be interpreted as left hand and right hand sided moduli of con-
vergence of the function x at the point t. Furthermore, let us put:

ω−(X, t, ε) := sup{ω−(x, t, ε) : x ∈ X}, t ∈ (a, b],

ω+(X, t, ε) := sup{ω+(X, t, ε) : x ∈ X}, t ∈ [a, b),

ω−(X, t) := lim
ε→0+

ω−(X, t, ε), t ∈ (a, b],

ω+(X, t) := lim
ε→0+

ω+(X, t, ε), t ∈ [a, b),

ω−(X) := sup
t∈(a,b]

ω−(X, t), ω+(X) := sup
t∈[a,b)

ω+(X, t).

Finally, let us de�ne the following quantity

µm(X) := max{ω−(X), ω+(X)} + sup
t∈J

βE(X(t)). (2.1)

Theorem 2.5. [13]The function µm given by formula (2.1) satis�es conditions1o−7o and9o in the space R(J, E).

Remark 2.6. Above construction of the measure (2.1) addresses inaccuracies existent in the construction of
measures given in [3, 4].

3 Inequalities including measures of noncompactness
This section we start with the proof of inequality which analogue for equicontinuous family of continuous
functions is often used in studying solvability of nonlinear equations.
For a �xed nonempty subset X ⊂ R(J, E), let us put

X(t) := {x(t) : x ∈ X}, t ∈ J,

b∫
a

X(t)dt :=
{ b∫
a

x(t)dt : x ∈ X
}
.
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Theorem 3.1. Let X ⊂ R(J, E) be nonempty, bounded and equiregulated. Then the function J 3 t 7→ βE(X(t)) ∈
R+ is regulated and the following inequality holds

βE
( b∫
a

X(t)dt
)
≤

b∫
a

βE(X(t))dt.

Proof. Let us �x ε > 0. The condition of X being equiregulated implies that

∀s∈[a,b) ∃δs>0 ω+(X, s, δs) < ε and (s, s + δs) ⊂ [a, b), (3.1)

∀s∈(a,b] ∃δ′s>0 ω−(X, s, δ′s) < ε and (s − δ′s , s) ⊂ (a, b]. (3.2)

Since the family of intervals {[a, a + δa), (b − δ′b , b], (s − δ
′
s , s + δs) : s ∈ (a, b)} is an open cover of compact

interval J, then there is a �nite subcover. Obviously it contains intervals [a, a + δa) and (b − δ′b , b]. From this
�nite subcover we can choose following subcover

[s0, s0 + δs0 ), (s1 − δ′s1 , s1 + δs1 ), (s2 − δ
′
s2 , s2 + δs2 ), ...,

..., (sk−1 − δ′sk−1 , sk−1 + δsk−1 ), (sk − δ
′
sk , sk] (3.3)

such that a = s0 < s1 < ... < sk = b and additionally every two consecutive intervals from (3.3) have nonempty
intersection. Nowwe choose one point s′i belonging to each of those k intersections, i.e. we have the sequence
of points

a = s0 < s′1 < s1 < s′2 < s2 < ... < sk−1 < s′k < sk = b.

For simplicity let us denote them by ti , i = 0, ..., n where n = 2k i.e.

t0 = s0, t1 = s′1, t2 = s1, t3 = s′2, t4 = s2, ..., tn−1 = s′k , tn = sk .

From (3.1) and (3.2) we yield that

∀τ1 ,τ2∈(ti−1 ,ti) ∀x∈X ‖x(τ2) − x(τ1)‖ ≤ ε, i = 1, ..., n. (3.4)

Hence
∀τ1 ,τ2∈(ti−1 ,ti) |βE(X(τ2)) − βE(X(τ1))| ≤ ε, i = 1, ..., n, (3.5)

whichmeans that the function J 3 t 7→ βE(X(t)) is regulated, thus Riemann integrable. Let us choose arbitrary
si ∈ (ti−1, ti), i = 1, ..., n. Then by (3.5) we have

∣∣∣ b∫
a

βE(X(t))dt −
n∑
i=1

(ti − ti−1)βE(X(si))

∣∣∣∣∣ ≤
n∑
i=1

(ti − ti−1)ε = (b − a)ε. (3.6)

For each i = 1, ..., n there exist vij ∈ E, j = 1, ...,mi, such that

X(si) ⊂
mi⋃
j=1
B(vij , βE(X(si)) + ε).

Hence and by (3.4) we have

∀t∈(ti−1 ,ti) X(t) ⊂
mi⋃
j=1
B(vij , βE(X(si)) + 2ε), i = 1, ..., n. (3.7)

Let us set functions yj1 ,...,jn ∈ R(J, E), ji ∈ {1, ...,mi}, i = 1, ..., n by formulas

yj1 ,...,jn (t) :=
{
θ for t = ti , i = 0, 1, ...n,
viji for t ∈ (ti−1, ti), i = 1, ..., n.
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We prove that the set of vectors given by
b∫
a
yj1 ,...,jn (t)dt for ji ∈ {1, ...,mi}, i = 1, ..., n is

( b∫
a
βE(X(t))dt +

3ε(b − a)
)
-net for

b∫
a
X(t)dt. Let x ∈ X. Because of (3.7) there exists such a sequence j1, ..., jn, that

‖x(t) − viji‖ ≤ βE(X(si)) + 2ε, t ∈ (ti−1, ti), i = 1, ..., n. (3.8)

Then, using (3.8) and (3.6) we have

∥∥∥ b∫
a

x(t)dt −
b∫
a

yj1 ,...,jn (t)dt
∥∥∥ ≤ n∑

i=1

ti∫
ti−1

‖x(t) − yj1 ,...,jn (t)‖dt

=
n∑
i=1

ti∫
ti−1

‖x(t) − viji‖dt ≤
n∑
i=1

(ti − ti−1)(βE(X(si)) + 2ε)

≤
n∑
i=1

(ti − ti−1)βE(X(si)) + 2ε(b − a) ≤
b∫
a

βE(X(t))dt + 3ε(b − a),

which means that

βE
( b∫
a

X(t)dt
)
≤

b∫
a

βE(X(t))dt + 3ε(b − a),

which for ε → 0 proves the theorem.

Without the assumption about X ⊂ R(J, E) being equiregulated, the function J 3 t 7→ βE(X(t)) does not have
to be measurable in Lebesgue sense. However, for countable subsets of the space R(J, E) we have (see [16]).

Theorem 3.2. If {xn : n ∈ N} ⊂ R(J, E) and there exists Lebesgue integrable function g : J → R+ such that
‖xn(t)‖ ≤ g(t) for t ∈ J, n ∈ N, then the function J 3 t 7→ βE({xn(t) : n ∈ N}) is Lebesgue integrable on J and

βE
({ b∫

a

xn(t)dt : n ∈ N
})
≤ 2

b∫
a

βE
(
{xn(t) : n ∈ N}

)
dt.

Remark 3.3. Above theorem is also true given weaker assumption that functions xn are strongly measurable
[16]. The example from [17] shows that factor 2 from the above theorem cannot be replaced by smaller even
for the sequence {xn} of regulated functions.

In some applications of measures of noncompactness the following lemma can be useful.

Lemma 3.4. [18] If E is a Banach then for each non-empty and bounded set X ⊂ E there exists such countable
set X0 ⊂ X, that βE(X) ≤ 2βE(X0).

One can ask what can be an analogue of this lemma for measure µm and space R(J, E) ? The answer is given
in two following theorems.

Theorem 3.5. For each non-empty and bounded set X ⊂ R(J, E), where E is a �nite dimensional Banach space,
there exists such countable set X0 ⊂ X that µm(X0) = µm(X).

Proof. Without loss of generality we can assume that max{ω−(X), ω+(X)} = ω+(X). Let {tn} ⊂ J be such a
sequence that ω+(X) = sup

n∈N
ω+(X, tn). Let us arbitrarily �x n ∈ N. Then for each i ∈ N there exists such a

function xni ∈ X that lim
i→∞

ω+(xni , tn , 1i ) = ω
+(X, tn). Denote X0 := {xni : i, n ∈ N}. Then based on the above

we have ω+(X0) = ω+(X), ω−(X0) ≤ ω−(X) and hence µm(X0) = µm(X).
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In the general case the assertion of the previous theorem has to be weakened.

Theorem 3.6. For each non-empty and bounded set X ⊂ R(J, E) and any ε > 0, there exists such countable set
X0 ⊂ X, that µm(X) ≤ 2µm(X0)+ ε. In the above estimation factor 2 cannot be replaced by smaller (see Example
3.7).

Proof. Let X̃0 be a countable set constructed the same way as in the proof of Theorem 3.5. Thus

max{ω−(X), ω+(X)} = max{ω−(X̃0), ω+(X̃0)}.

Let us arbitrarily �x ε > 0. There exists such a number t0 ∈ J that
sup
t∈J

βE(X(t)) < βE(X(t0)) + ε. Using Lemma 3.4 we get that there exists such a sequence {xn} ⊂ X that

βE(X(t0)) ≤ 2βE({xn(t0) : n ∈ N}).

Hence
sup
t∈J

βE(X(t)) ≤ 2βE({xn(t0) : n ∈ N}) + ε

≤ 2 sup
t∈J

βE({xn(t) : n ∈ N}) + ε.

Let X0 := X̃0 ∪ {xn : n ∈ N}. Obviously X0 is countable and

sup
t∈J

βE(X(t)) ≤ 2 sup
t∈J

βE(X0(t)) + ε,

max{ω−(X), ω+(X)} = max{ω−(X0), ω+(X0)}.

Hence
µm(X) = sup

t∈J
βE(X(t)) + max{ω−(X), ω+(X)}

≤ 2 sup
t∈J

βE(X0)(t)) + max{ω−(X0), ω+(X0)} + ε ≤ 2µm(X0) + ε.

By 1A we denote the indicator function of a subset A. When the subset A = {a} is singleton, we will write 1a.
Additionally, for arbitrary u ∈ E let û denotes the function û : J → E given by

û(t) ≡ u, t ∈ J. (3.9)

Example 3.7. Let E be a space consisting of all bounded functions x : R+ → R such that for each of them
there exists such countable set Tx ⊂ R+, that function x(t) tends to 0 as t →∞and t ∈ R+ \Tx. We assume the
supremum norm in E. Now we can de�ne a subset A ⊂ E by A := {1t : t ∈ R+} and next we de�ne a subset
X ⊂ R(J, E) by X := {â : a ∈ A}where â is de�ned in (3.9). Thus ω−(X) = ω+(X) = 0, sup

t∈J
βE(X(t)) = βE(A) = 1

which means that µm(X) = 1 and for any countable subset X0 = {1̂tn : n = 1, 2, ...} ⊂ X we have ω−(X0) =
ω+(X0) = 0, sup

t∈J
βE(X0(t)) = βE({1tn : n = 1, 2, ...}) = 1

2 because {1tn : n = 1, 2, ...} ⊂ BE(12
∞∑
n=1

1tn , 12 ) which

means that µm(X0) = 1
2 and that proves that factor 2 from the above theorem cannot be replaced by smaller.

4 Superposition operator
Consider a function f : J × E → E. Then, to every function x : J → E, we may assign the function
(Ff x)(t) := f (t, x(t)), t ∈ J. Operator Ff de�ned in such way is said to be superposition (or Nemytskii) op-
erator generated by the function f (see [19-21]). In connection with the space R(J, E), the natural question
appears: what properties must the function f satisfy in order for operator Ff to map the space R(J, E) into
itself?

In the paper by Aziz [2] and Michalak [12] the following results were obtained.
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Theorem 4.1. [12] A superposition operator Ff maps R(J, E) into itself if and only if the function f has the
following properties:
(1) the limit lim

[a,t)×E3(s,v)→(t,x)
f (s, v) exists for every (t, x) ∈ (a, b] × E,

(2) the limit lim
(t,b]×E3(s,v)→(t,x)

f (s, v) exists for every (t, x) ∈ [a, b) × E.

Given the notation
gt(x) := lim

(t,b]×E3(s,v)→(t,x)
f (s, v), t ∈ [a, b), x ∈ E, (4.1)

condition (2) of Theorem 4.1 can be written in an equivalent form using quanti�ers

∀x∈E∀t∈[a,b)∃gt(x)∈E∀ε>0∃δ>0∃τ>0∀v∈BE(x,δ)∀s∈(t,t+τ)‖gt(x) − f (s, v)‖ ≤ ε. (4.2)

Analogically condition (1) of Theorem 4.1 can be written - we omit the details.

Theorem 4.2. [2] Suppose that the function f (·, u) is regulated on [0, 1] for all u ∈ E, and the function f (t, ·)
is continuous on E, uniformly with respect to t ∈ J. Then the superposition operator Ff maps R(J, E) into itself
and is (norm) bounded.

Theorem 4.3. [12] A superposition operator Ff maps R(J, E) into itself is continuous if and only if a function
f̃ : E 3 x 7→ f (·, x) ∈ R(J, E) is continuous.

Let us denote by EE the linear space consisted of all, not necessarily continuous functions h : E → E. This
space will become a linear topological space when we introduce a topology of almost uniform convergence
through a family of pseudonorms {‖ · ‖K}K∈K given by ‖h‖K := sup

x∈K
‖h(x)‖ for h ∈ EE, whereK is is a family

of all non-empty compact sets in E. So given family {hs}s∈J ⊂ EE the convergence {hs} to h ∈ EE in this
topology with s → t ∈ J means uniform convergence hs to h on all compact subsets in E when s → t.

Furthermore given �xed function f : J × E → E we shall denote: for each t ∈ J let

f t(x) := f (t, x), x ∈ E.

Thus we have f t ∈ EE for t ∈ J.
Now we can formulate a theorem that gives (in terms of the function f t) necessary conditions for any

space E and su�cient ones when dim E < ∞ such that superposition operator Ff maps R(J, E) into itself.

Theorem 4.4. Let the superposition operator Ff maps R(J, E) into itself. Then the family of functions {f t}t∈J ⊂
EE satis�es the following conditions:
(a) The mapping J 3 t 7→ f t ∈ EE is a regulated function.
(b) The following limits of pointwise convergence exist and

(b1) lim
s→t+

f s is continuous in E for t ∈ [a, b),

(b2) lim
s→t−

f s is continuous in E for t ∈ (a, b].
Conversely, if additionally E is a �nitely dimensional Banach space and conditions (a) and (b) are satis�ed then
the superposition operator Ff maps R(J, E) into itself.

Proof. (⇒) Let us �x t ∈ [a, b). Using condition (2) of Theorem 4.1 and based on notation (4.1) we have the
following equality

gt(x) = lim
s→t+

f s(x), x ∈ E.

First we prove (b1). Let us �x x ∈ E and ε > 0. Because of (4.2) we have the existence of δ > 0 and τ > 0 such
that

‖gt(x) − f s(v)‖ ≤ ε, s ∈ (t, t + τ), v ∈ B(x, δ).

Now going from s → t+ we have ‖gt(x) − gt(v)‖ ≤ ε which proves continuity of gt in x and thereby on E.
Analogically we can prove (b2).
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Wewill nowprove (a) i.e. that f s converges to gt almost uniformly on Ewhen s → t+. Let us �x non-empty
and compact set K ⊂ E and ε > 0. Then, because of (4.2) and already proven continuity of gt, we have that
for each x ∈ K there exist δx > 0, τx > 0 such that concurrently

∀s∈(t,t+τx)∀v∈BE(x,δx) ‖gt(x) − f s(v)‖ ≤
ε
2 (4.3)

and
‖gt(x) − gt(v)‖ ≤

ε
2 , v ∈ BE(x, δx). (4.4)

Out of family {BE(x, δx)}x∈K covering compact set K we choose a �nite subcover {BE(xi , δxi )}ni=1. Let
τ := min{τi : i = 1, ..., n}. Let us �x arbitrary v ∈ K. Then there exists such i that v ∈ BE(xi , δi). Thus for
s ∈ (t, t + τ) based on (4.3) and (4.4) we have the following estimation

‖gt(v) − f s(v)‖ ≤ ‖gt(v) − gt(xi)‖ + ‖gt(xi) − f s(v)‖ ≤
ε
2 + ε2 = ε

for any v ∈ K, i.e. we have uniform convergence on K. Similarly we can prove the existence of the limit lim
s→t−

f s
in the topology of almost uniform convergence.
(⇐) Assume that E has a �nite dimension and �x t ∈ [a, b). Condition (a) assures the existence of the limit
gt := lim

s→t+
f s which, based on (b) is continuous on E. Let us �x x ∈ E and ε > 0. Continuity of gt means that

for some r > 0 we have
‖gt(x) − gt(v)‖ ≤

ε
2 , v ∈ BE(x, r). (4.5)

Moreover (a) implies that for a compact set BE(x, r) there exists τ > 0 such that

‖gt(v) − f s(v)‖ ≤
ε
2 , v ∈ BE(x, r), s ∈ (t, t + τ).

When we combine it with (4.5), for v ∈ BE(x, r), s ∈ (t, t + τ) we have

‖gt(x) − f (s, v)‖ ≤ ‖gt(x) − gt(v)‖ + ‖gt(x) − f (s, v)‖ ≤
ε
2 + ε2 = ε

i.e. condition (4.2) is satis�ed and thereby (2) in Theorem 4.1 holds. Similarly we can prove (1) in Theorem 4.1,
so actually Ff acts from R(J, E) into R(J, E).

Corollary 4.5. If E is a �nitely dimensional Banach space then superposition operator Ff acts from R(J, E) into
R(J, E) if and only if both conditions (a) and (b) in Theorem 4.4 are satis�ed.

Nowwe give further su�cient and necessary conditions that superposition operator Ff acts from R(J, E) into
R(J, E).

To this end, let us recall so-called module of continuity of a mapping h : E → E at a point v ∈ E given by

ν(h, v, δ) := sup{‖h(v) − h(u)‖ : u ∈ BE(v, δ)}, δ > 0. (4.6)

For a �xed mapping f : J × E → E and v ∈ E let us denote

Dv := {t ∈ J : the mapping f t is not continuous at v}. (4.7)

For any subset S ⊂ J, in the space R(J, E) we will use a pseudonorm ‖ · ‖S given by

‖x‖S := sup{‖x(t)‖ : t ∈ S}, x ∈ R(J, E).

Now we can give another su�cient and necessary criterion that superposition operator Ff acts from R(J, E)
into R(J, E).

Theorem 4.6. Superposition operator Ff acts fromR(J, E) into R(J, E) if andonly if the following four conditions
are satis�ed:
(a) ∀v∈E f (·, v) ∈ R(J, E).
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(b) For each v ∈ E set Dv is �nite or countable.
(c) For each v ∈ E, if the set Dv = {tn} is in�nite then

lim
(n,δ)→(∞,0+)

ν(f tn , v, δ) = 0.

(d) The mapping E 3 u 7→ f (·, u) ∈ R(J, E) is continuous in every point v ∈ E in regard to pseudonorm ‖ · ‖J\Dv ,
i.e. for each v ∈ E and each sequence vn → v we have ‖f (·, v) − f (·, vn)‖J\Dv → 0 when n →∞.

Before we prove Theorem 4.6 we give technical lemma, necessary in the next part of the paper.

Lemma 4.7. If there exist a number ε0 > 0, a sequence {tn} ⊂ J convergent to a point t0 ∈ J from one side and
a sequence {vn} ⊂ E convergent to vector v ∈ E, such that

‖f (tn , v) − f (tn , vn)‖ ≥ ε0, n = 1, 2, ... (4.8)

then superposition operator Ff does not act from R(J, E) into R(J, E).

Proof. We give a proof by contradiction. Let us assume that Ff acts from R(J, E) into R(J, E). Hence we have

∀v∈E f (·, v) ∈ R(J, E). (4.9)

Let assume that {tn} is convergent to some t0 ∈ J from one side, for example tn → t+0, and moreover {tn}
is strictly decreasing (we can have that choosing a proper subsequence). Let us put

y(t) :=
{
θ for t ∈ [a, t0] ∪ (t1, b],
vn for t ∈ (tn+1, tn], n = 1, 2, ... .

Obviously y ∈ R(J, E). Since Ff y ∈ R(J, E), then there exists a limit

lim
t→t+0

(Ff y)(t) = lim
n→∞

f (tn , vn).

Moreover, by (4.9), there exists a limit lim
n→∞

f (tn , v). Hence, by (4.8) we get

|| lim
n→∞

f (tn , vn) − lim
n→∞

f (tn , v)|| ≥ ε0. (4.10)

Now let us de�ne next function z ∈ R(J, E) as follows

z(t) :=


θ for t ∈ [a, t0] ∪ (t1, b],
v for t ∈ (t2n , t2n−1], n = 1, 2, ...,
vn for t ∈ (t2n+1, t2n], n = 1, 2, ... .

Since Ff z ∈ R(J, E) then there is a limit lim
t→t+0

(Ff z)(t) which means that

lim
n→∞

f (t2n , v2n) = lim
n→∞

f (t2n−1, v).

However it is in contradiction with (4.10).

Proof of Theorem 4.6 (⇒) Take an arbitrary v ∈ E and put x(t) ≡ v, t ∈ J. Since Ff x ∈ R(J, E), then (a) is
satis�ed.

Let us assume that the set Dv is uncountable. Since

Dv =
∞⋃
k=1

{
t ∈ J : ν(f t , v) >

1
k

}
then there exists such k ∈ N, that the set {t ∈ J : ν(f t , v) > 1

k } is uncountable. Let us put ε0 :=
1
k and choose

an arbitrary injective sequence {tn} ⊂ {t ∈ J : ν(f t , v) > 1
k }. Since ν(f tn , v) > ε0 for n = 1, 2, ... it follows
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that for each n ∈ N we can choose such vn ∈ E, that ‖f tn (v) − f tn (vn)‖ ≥ ε0 and ‖v − vn‖ ≤ 1
n . Choosing from

the sequence {tn} a subsequent (also denoted as {tn}) which converges from one side to some t ∈ J we have
vn → v and

‖f (tn , v) − f (tn , vn)‖ ≥ ε0, n = 1, 2, .... (4.11)

However then, by Lemma 4.7 operator Ff would not act from R(J, E) into R(J, E) which proves (b).
Analogically negating conditions (c) and (d) wewould have the existence of ε0 > 0, a sequence {tn} ⊂ Dv

for condition (c) or {tn} ⊂ J \ Dv for condition (d), convergent from one side to some t ∈ J, a vector v ∈ E and
a sequence {vn} ⊂ E, such that vn → v and (4.11) holds which, by Lemma 4.7 contradicts the hypothesis and
thereby prove conditions (c) and (d).
(⇐) Let us �x x ∈ R(J, E). To prove that Ff x ∈ R(J, E) we will show that for �xed t ∈ [a, b) there exists a limit
lim
s→t+

(Ff x)(s) (we omit the proof of the existence of left-hand side limit as similar to the following). Let us �x
such a sequence {tn} ⊂ (t, b], that tn → t+ and de�ne vn := x(tn). Since x ∈ R(J, E), then there exists a limit
v := lim

n→∞
vn. By (a) there exists also a limit lim

n→∞
f (tn , v). To prove the existence of the limit lim

s→t+
(Ff x)(s) it is

enough to show the existence of the limit lim
n→∞

f (tn , vn). Additionally we show that

lim
n→∞

f (tn , vn) = lim
n→∞

f (tn , v). (4.12)

Let us consider 3 cases:
Case (i): the sequence {tn}, outside a �nite number of terms is contained in J \ Dv.
Therefore, by (d), for each ε > 0 and for su�ciently large n we have ‖f (tn , vn) − f (tn , v)‖ ≤ ε. When n → ∞
we have

lim sup
n→∞

‖f (tn , vn) − lim
n→∞

f (tn , v)‖ ≤ ε

which considering that ε > 0 is arbitrary implies (4.12).
Case (ii): The sequence {tn}, outside a �nite number of terms is contained in Dv.
Let us �x ε > 0. By (b) and (c) there exists such n0 ∈ N and δ0 > 0, that for n ≥ n0 and for 0 < δ < δ0 we have
ν(f tn , v, δ) < ε, i.e. for large enough n we have ‖f (tn , vn) − f (tn , v)‖ ≤ ε. When n →∞using similar reasoning
as in case (i) we also get that (4.12) holds.
Case (iii): In�nitely many terms of the sequence {tn} is contained in Dv as well as in�nitely many terms of the
sequence {tn} is contained in J \ Dv.
Dividing the sequence {tn} into two adequate subsequences the case can be reduced to previous cases (i) and
(ii).

Remark 4.8. The above Theorems 4.4 and 4.6 improve some mistake contained in [13] (Theorem 5.1).

We now give a criterion of compactness for the superposition operator Ff .

Theorem 4.9. Let E be a separable Banach space and let the superposition operator Ff : R(J, E)→ R(J, E) be
continuous and compact (i.e. Ff transforms bounded sets in relatively compact sets). Then
(H1) there exists a function g ∈ R(J, E),
(H2) there exists a countable or �nite set T = {tn} ⊂ J,
(H3) there exist a countable or �nite sequence of functions hn : E → E, n = 1, 2, ... that are continuous, compact

and when it is in�nite
∀r>0 lim

n→∞
‖hn(BE(r))‖ = 0 (4.13)

such that

f (t, x) = g(t) +
∞∑
n=1

1tn (t)hn(x), t ∈ J, x ∈ E. (4.14)

Conversely, if the conditions (H1)-(H3) are satis�ed and E is a Banach space then the formula (4.14) gives such
a function f (t, x), that operator Ff : R(J, E)→ R(J, E) and it is continuous and compact.

Remark 4.10. Obviously the case when all hn functions in the previous theorem are equal to θ, that is when
f (t, x) = g(t), or only a �nite number of them is not equal to θ is also allowed.



1288 | L. Olszowy and T. Zając, Superposition operator in the space of regulated functions

The proof of the theoremwill be preceded by two lemmas. Before that however we will give a useful notation.
For each x ∈ R(J, E) we will put

supp x := {t ∈ J : x(t) ≠ θ}.

In contrast to standard de�nition of a support we do not require the closure.

Lemma 4.11. If Ff : R(J, E) → R(J, E) is compact, then for each x, y ∈ R(J, E) the set supp(Ff x − Ff y) is
countable or �nite and for each injective sequence {tn} ⊂ J, we have

lim
n→∞

f (tn , x(tn)) − f (tn , y(tn)) = θ. (4.15)

Proof. If the set supp(Ff x − Ff y) was uncountable or if (4.15) was not satis�ed, then there would exist a injec-
tive sequence {sn} ⊂ J and a number ε0 > 0, such that

‖f (sn , x(sn)) − f (sn , y(sn))‖ ≥ ε0, n = 1, 2, ...

Let us de�ne the sequence of functions un : J → E, n = 1, 2, ... by

un(t) :=
{
x(sn) for t = sn ,
y(t) for t ≠ sn .

Obviously un ∈ R(J, E). For n ≠ m we have sn ≠ sm and therefore

‖Ff un − Ff um‖∞ ≥ ‖(Ff un)(sn) − (Ff um)(sn)‖

= ‖f (sn , x(sn)) − f (sn , y(sn))‖ ≥ ε0

i.e. the sequence {Ff un} is ε0-separable, hence Ff is not compact, which ends the proof.

Lemma 4.12. If E is a separable Banach space and Ff : R(J, E) → R(J, E) is compact and continuous, then
there exists a countable or �nite set T = {tn} ⊂ J, such that

∀x∈E supp(Ff x̂ − Ff θ̂) ⊂ T . (4.16)

Proof. Let A = {an : n ∈ N} ⊂ E be a countable dense subset of E. Let us put T := ∪∞n=1supp(Ff ân − Ff θ̂). By
the previous Lemma 4.11, the set T is countable or �nite. If there existed x ∈ E such that (4.16) did not hold
then there would exist s ∈ J such that s ∈ supp(Ff x̂ − Ff θ̂) \ T. Thus ‖(Ff x̂ − Ff θ̂)(s)‖ = ε0 for some ε0 > 0 and
additionally (Ff ân − Ff θ̂)(s) = θ for n ∈ N. If we took such a subsequence {akn}, that akn → x in E we would
have

‖Ff x̂ − Ff âkn‖∞ ≥ ‖(Ff x̂ − Ff θ̂)(s) − (Ff âkn − Ff θ̂)(s)‖ = ε0

which is in contradiction with continuity Ff .

Proof. (Proof of Theorem 4.9)
Let us assume�rst that E is separable and Ff is compact and continuous. Let the set T = {tn} be like in Lemma
4.12. We de�ne the function g : J → E and the sequence of functions hn : E → E, n = 1, 2, ... by

g(t) := f (t, θ), t ∈ J,

hn(x) := f (tn , x) − f (tn , θ), x ∈ E, n ∈ N.

By Lemma 4.12, for each x ∈ E the mapping J 3 t → f (t, x) − f (t, θ) can be non-zero only on the set T and its
formula is given by

∞∑
n=1

1tn (t)hn(x). Therefore

f (t, x) = f (t, θ) + f (t, x) − f (t, θ) = g(t) +
∞∑
n=1

1tn (t)hn(x).
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Since Ff is continuous the functions hn must be continuous and since Ff is compact also the functions hn
must be compact. Moreover it results from Lemma 4.11 that lim

n→∞
f (tn , x) − f (tn , θ) = θ for x ∈ E i.e.

lim
n→∞

hn(x) = θ, x ∈ E. (4.17)

We have only (4.13) left to prove. Let us assume that it is not satis�ed. Then there would exist r > 0, a number
ε0 > 0 and such a subsequence of the sequence {hn}, (also denoted by {hn}), that

‖hn(BE(r))‖ ≥ ε0, n = 1, 2, ... (4.18)

Let k1 = 1. We choose x1 ∈ BE(r), such that ‖hk1 (x1)‖ ≥
ε0
2 . By (4.17) we know that there exists k2 ∈ N,

such that k2 > k1 i ‖hi(x1)‖ ≤ ε0
4 for i ≥ k2. By (4.18) we conclude that there exists x2 ∈ BE(r), such that

‖hk2 (x2)‖ ≥
ε0
2 . By (4.17) we know that there exists k3 ∈ N, such that k3 > k2 and ‖hi(x2)‖ ≤ ε0

4 for i ≥ k3.
Continuing this procedure we get an strictly increasing sequence {kn} ⊂ N and the sequence {xn} ⊂ BE(r)
such that

‖hkn (xn)‖ ≥
ε0
2 , n = 1, 2, ...

‖hi(xn)‖ ≤
ε0
4 , i ≥ kn+1, n = 1, 2, ...

Let n > m. Then we have
‖Ff x̂n − Ff x̂m‖∞ ≥ ‖(Ff x̂n)(tkn ) − (Ff x̂m)(tkn )‖

= ‖hkn (xn) − hkn (xm)‖ ≥ ‖hkn (xn)‖ − ‖hkn (xm)‖ ≥
ε0
2 −

ε0
4 = ε04

i.e. {Ff x̂n} is positively separated and Ff is not compact which contradicts the assumptions.
Let us assume now that the conditions (H1)-(H3) are satis�ed and the function f (t, x) is given by the

formula (4.14). First we prove that Ff : R(J, E) → R(J, E). Let us �x x ∈ R(J, E), t ∈ J and the sequence {t′j}
convergent to t from one side, e.g. t′j → t+. Since the sequence {x(t′j)} is bounded, then by (4.13) we have

lim
j→∞

∞∑
n=1

1tn (t′j)hn(x(t′j)) = θ and in virtue of (4.14) we get lim
j→∞

(Ff x)(t′j) = lim
j→∞

g(t′j) = g(t+) i.e. Ff x ∈ R(J, E).

Now we prove that the operator Ff is compact. Let us �x a bounded sequence {xn} ⊂ BR(J,E)(r), where
r > 0. Since the operator h1 is compact we are able to choose such a subsequence {xn,1} of a sequence
{xn} that the sequence {h1(xn,1(t1))} is convergent. Since the operator h2 is compact we are able to choose
such a subsequence {xn,2} of the sequence {xn,1} that the sequence {h2(xn,2(t2))} is convergent. Obviously
{h1(xn,2(t1))} is also convergent. Continuing this procedure we get a sequence of sequences {xn,i}∞n=1, i =
1, 2, ... whichhas aproperty that {xn,i+1}∞n=1 is a subsequence of the sequence {xn,i}∞n=1 and that there exists a
limit lim

n→∞
hj(xn,i(tj)) for i = 1, 2, ..., j = 1, 2, ..., i. Now, using a diagonal methodwe can de�ne the sequence

{yn} by yn := xn,n , n = 1, 2, .... Obviously {yn} is a subsequence of {xn}. Moreover the limit lim
n→∞

hi(yn(ti))
exists for each i = 1, 2, .... Thus as well as from the fact that (Ff yn)(t) = g(t) for t ∉ T we conclude that the
limit lim

n→∞
(Ff yn)(t) exists for each t ∈ J. We are able now to de�ne a function z : J → E by z(t) := lim

n→∞
(Ff yn)(t)

i.e.

z(t) =
{
g(t) for t ∈ J \ T,
g(ti) + lim

n→∞
hi(yn(ti)) for t = ti , i = 1, 2, ...

By (4.13) we have
‖z(ti) − g(ti)‖ = ‖ limn→∞

hi(yn(ti))‖ ≤ ‖hi(BE(r))‖ −→i→∞
0.

This means that z ∈ R(J, E). Using (4.14) we get

‖z − Ff yn‖∞ = sup
ti∈T
‖ lim
n→∞

hi(yn(ti)) − hi(yn(ti))‖. (4.19)

Let us �x ε > 0. By (4.13) there exists m ∈ N such that for i > m we have ‖hi(BE(r))‖ ≤ ε and therefore
sup
i>m
‖ lim
n→∞

hi(yn(ti))−hi(yn(ti))‖ ≤ 2ε. Since there exists limit lim
n→∞

hi(yn(ti)), i = 1, 2, ..., then there is n0 ∈ N

such that for n ≥ n0 and for i = 1, 2, ...,m we have

‖ lim
n→∞

hi(yn(ti)) − hi(yn(ti))‖ ≤ ε.
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Combining the above and (4.19) we get for n ≥ n0 the inequality ‖z− Ff yn‖∞ ≤ 2ε which proves that Ff yn → z
in R(J, E).

Continuity of the operator Ff is a consequence of condition (H3) - we omit a simple proof of this fact.

Corollary 4.13. Let Banach space E be separable. Then Ff (R(J, E)) ⊂ R(J, E) and the superposition operator
Ff : R(J, E) → R(J, E) is continuous and compact if and only if the conditions (H1)-(H3) of Theorem 4.9 are
satis�ed.

Problem 4.14. Are the conditions (H1)-(H3) of Theorem 4.9 necessary in case when the space E is not sepa-
rable?
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