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Abstract: Some inequalities connected to measures of noncompactness in the space of regulated function
R(J, E) were proved in the paper. The inequalities are analogous of well known estimations for Hausdorff
measure and the space of continuous functions. Moreover two sufficient and necessary conditions that super-
position operator (Nemytskii operator) can act from R(J, E) into R(J, E) are presented. Additionally, sufficient
and necessary conditions that superposition operator Fs : R(J, E) — R(J, E) was compact are given.
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1 Introduction

When studying solvability of various non-linear equations, it is significant to properly choose the space in
which the equation is considered. Knowledge about some properties of the space e.g. easy to calculate for-
mulas for measures of noncompactness or characteristic of superposition operator etc. combined with fixed
point theorems allow to obtain general conditions for solvability of studied equations.

The space of regulated functions R(J, E), where J = [a, b] C R and E is a Banach space, is one of such
spaces, recently intensively studied (see [1-14]). So far except stating general properties of this space [1, 5, 7-12]
it is also possible to use formulas for measures of noncompactness, conditions sufficient for the superpo-
sition operator Fy to act from R(J, E) into R(J, E), and conditions for continuity of this operator [2-6, 12-13].
However, so far non-trivial sufficient and necessary conditions for compactness of the superposition opera-
tor Fy : R(, E) — R(J, E) were not known. There was also lack of any estimations of such measures, so often
needed. This paper will try to fill these gaps.

In the third chapter several theorems dealing with various types of inequalities, integral, but not only
integral, that hold in the spaces of regulated functions and are expressed in terms of measures of noncom-
pactness, will be formulated. These inequalities are analogues of known and often used inequalities holding
in the class of continuous functions. In the fourth chapter two theorems (Theorem 4.4 and Theorem 4.6) that
give sufficient and necessary conditions that superposition operator acted from the space of regulated func-
tions into that space, will be presented. Known so far results in this area usually give only sufficient conditions
and the only known sufficient and necessary conditions are actually rather “tautological”. Moreover, suffi-
cient and necessary conditions that superposition operator is compact in the space of regulated functions
will be given (Theorem 4.9).
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2 Notation, definitions and auxiliary facts

This section is focuses on recalling some facts which will be used in our investigations.

Assume that E is a real Banach space with the norm ||-|| and the zero element 6. Denote by Bg(x, r) the closed
ball centered at x and with radius r. The ball Bz(6, r) will be denoted by Bg(r). We write X, ConvX to denote
the closure and the convex closure of a set X, respectively. The symbol || X|| will stand for the norm of the set
X C Ei.e., we have || X|| := sup{||x]| : x € X}. Furthermore, let 9tr denote the family of all nonempty and
bounded subsets of E and 91 its subfamily consisting of all relatively compact sets. We accept the following
definition of a measure of noncompactness [15].

Definition 2.1. A mapping u : Mg — R, = [0, oo) is said to be a measure of noncompactness in E if it satisfies
the following conditions:
1° The family kery := {X € Mg : u(X) = 0} is nonempty and kery C Ng.
2° XY= uX < u(y).
3% u(ConvX) = u(X).
4° pAX+ (1 -2Y) < AuX) + (1 - )u(Y) for A € [0, 1].
5° If (X,) is a sequence of closed sets from Mg such that X,,,1 € Xn (n =1, 2,...) and if nli_)n;y(X,,) =0, then
the intersection X := ﬁ Xy is nonempty.
n=1
Subsequently, we will use measures of noncompactness having some additional properties. Namely, a mea-
sure y is said to be sublinear if it satisfies the following two conditions:
6% u(AX) = AuX), AeR.
7° uX+Y) < uX) + ().

A sublinear measure of noncompactness y satisfying the condition (strong maximum property)
8% u(XuY)=max{uX),u¥)}

and such that keru = 9N is said to be regular.
Except condition 8° we can also consider the condition (weak maximum property)
9° u(Xu{y}) =puX), yekE.

For a given nonempty bounded subset X of E, we denote by B¢(X) the so-called Hausdorff measure of non-
compactness of X. This quantity is defined by formula

Be(X) := {r > 0 : X has a finite r-net in E}.

The function S is an example of regular measure of noncompactness in E.
Now we recall some facts concerning regulated functions.

Definition 2.2. A function x : [a, b] — E, where E is a topological vector space, is said to be a regulated
function if for every t € [a, b) the right-sided limit x(t*) := 1in‘tl x(s) exists and for every t € (a, b] the left-
s—t*

sided limit x(¢t7) := lim x(s) exists.
s—t

From now on, real Banach space will be denoted by E.

Denote by R(J, E) the space consisting of all regulated functions defined on the interval J = [a, b] with
values in a real Banach space E. Since every regulated function x € R(J, E) is bounded on the interval J, then
the space R(J, E) can be normed via the classical supremum norm

[1X]]oo := sup{||x(8)|] : t € J}.

It is easy to show that R(J, E) is a real Banach space. Moreover, every regulated function x : J] — E is Riemann
integrable.
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Now, we remind a criterion for relative compactness in the space R(J, E). To this end, we introduce the

concept of a equiregulated subset of the space R(J, E) (cf. [3, 9]).

Definition 2.3. We will say that the set X C R(J, E) is equiregulated on the interval J if the following two
conditions are satisfied:

Vte(a,b] Ve>0 3650 VxeX Vi, t,(t-8,0N[a,b] [[x(t2) - x(t1)]| < &,
Vtela,b) Ve>0 3650 Vxex Vi et t+6)nlab) [1X(E2) = x(t1)]] < €.

Theorem 2.4. [3-5, 9] A nonempty subset X C R(J, E) is relatively compact in R(J, E) if and only if X is equireg-
ulated on the interval J and the sets X(t) are relatively compact in E for t € J.

Now we are going to recall the construction of a measure of noncompactness in the space R(J, E). To this end,
let us take a set X € Mg, p). For x € X and € > 0 let us denote the following quantities:

w”(x, t, &) := sup{||x(tz) - x(t1)|| : t1, tr € (t—¢, ) "]}, te(a,bl,

w*(x, t, &) :=sup{||x(tz) - x(t1)|| : t1, t, € (t, t+)NJ}, tela,b).

The quantities w™(x, t, €) and w*(x, t, €) can be interpreted as left hand and right hand sided moduli of con-
vergence of the function x at the point t. Furthermore, let us put:

w (X, t,e) :==sup{w (x,t,) : x € X}, te(a,b],

w' (X, t, &) :=sup{w (X, t, &) : x € X}, tcla,b),

w (X,t):= lim w (X, t,€), te(a,b],

e—0*

w (X, t) := lim w' (X, ¢t, &), tela,b),
e—0"

w (X):= sup w(X,), w'X):= sup w'(X, 0.
te(a,b) tela,b)

Finally, let us define the following quantity

Um(X) = max{w (X), 0" (X)} + stlg) Be(X(1)). 2.1)

Theorem 2.5. [13] The function um given by formula (2.1) satisfies conditions 1°—7° and 9° in the space R(J, E).

Remark 2.6. Above construction of the measure (2.1) addresses inaccuracies existent in the construction of
measures given in [3, 4].

3 Inequalities including measures of noncompactness

This section we start with the proof of inequality which analogue for equicontinuous family of continuous
functions is often used in studying solvability of nonlinear equations.
For a fixed nonempty subset X C R(J, E), let us put

X(t):={x():xe X}, te],

b b

/X(t)dt = {/x(t)dt L x € X}

a a
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Theorem 3.1. Let X C R(J, E) be nonempty, bounded and equiregulated. Then the function ] > t — Br(X(t)) €
R, is regulated and the following inequality holds

b

b
Be( / X(0dt) = / BEX(®)d.

a
Proof. Let us fix € > 0. The condition of X being equiregulated implies that

Vselab) 35,50 @' (X,s,85) <& and (s,s +6s) C [a, b), 3.1

Vse(a,p) J6;50 @ (X5, 85) <& and (s - 65, s) C (a, b]. (3.2)

Since the family of intervals {[a, a + 84), (b - 8}, b], (s — 85, s + 85) : s € (a, b)} is an open cover of compact
interval J, then there is a finite subcover. Obviously it contains intervals [a, a + 8,) and (b - §}, b]. From this
finite subcover we can choose following subcover

[SOy So + 650)) (Sl - 6/51) S1+ 651)) (52 - 5/52) Sy + 652)9 ceey

vees (31 = 85, Sk1 + 8s,1), (Sk — 85,5 Sil (3.3)

suchthata = sg < s1 < ... < s; = b and additionally every two consecutive intervals from (3.3) have nonempty
intersection. Now we choose one point s} belonging to each of those k intersections, i.e. we have the sequence
of points

a=850<S1 <81 <8y<8)<...<Sp_q<S;<Sc=h.

For simplicity let us denote them by ¢;,i = O, ..., n where n = 2k i.e.
to = S0, t1 = Sll, tz =81, t3 = S/2, t4 =82, ey tn—l = S;{, tn = Sk.
From (3.1) and (3.2) we yield that

le,Tze(fiq,ti) VXGX ||X(T2) - X(TI)H <E&, i= 1, ey N (34)
Hence
VTI,TZG(ti—lyti) ‘ﬁE(X(TZ)) _ﬁE(X(Tl)N <€, l = 1’ ceey 1, (3'5)

which means that the function ] > t — Bg(X(t)) is regulated, thus Riemann integrable. Let us choose arbitrary
s; € (ti_1, t;),i=1,...,n. Then by (3.5) we have

b n n
| [ Bex(O)dt = >t~ t-0BeCxs)| £ D6 ti)e = (- e (6)
2 i-1 i-1

Foreachi =1, ..., n there exist v;: € E,j=1,...,m;, such that

X(s) © | B0, Bo(X(s) + ).

j=1

Hence and by (3.4) we have

m;
Vet tp X(0) C | JBWj, Be(X(s) + 2¢), i=1,...,n. (3.7)
j=1

Let us set functions y;,

.....

""" vi forte(tiq,t), i=1,..,n.

6 fort=t,i=0,1,...n,
yjl In(t) = i
Ji
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.....

b
3e(b - a)) -net for [ X(t)dt. Let x € X. Because of (3.7) there exists such a sequence ji, ..., jn, that
a

Ix(6) = Vi || < Be(X(s) + 2e, te (tig, t),i=1,...,n. (3.8)

Then, using (3.8) and (3.6) we have

b

| /b x(t)dt - / Vin,.ia (O

a

ti

-3 / (0 = v 1de = 3 - ti ) (Be(X(s1) + 2)
i-1

=l

n b
<>t~ t0Be(X(s) +26(b - ) = [ Bo(X(©O)de+3e(b - a),
i=1 2

which means that
b b

B / X(Odt)< / BE(X(©)dt + 3¢(b - a),

a

which for € — 0 proves the theorem. O

Without the assumption about X C R(J, E) being equiregulated, the function J > t — Bg(X(t)) does not have
to be measurable in Lebesgue sense. However, for countable subsets of the space R(J, E) we have (see [16]).

Theorem 3.2. If {xn : n € N} C R(J, E) and there exists Lebesgue integrable function g : ] — R. such that
Ixn(t)|| < g(t) fort € J, n € N, then the function ] > t — Bg({xn(t) : n € N}) is Lebesgue integrable on ] and

b

b
ﬁE({/xn(t)dt ‘ne N}) <2 /BE({xn(t) ne N})dt.

a

Remark 3.3. Above theorem is also true given weaker assumption that functions x» are strongly measurable
[16]. The example from [17] shows that factor 2 from the above theorem cannot be replaced by smaller even
for the sequence {xn} of regulated functions.

In some applications of measures of noncompactness the following lemma can be useful.

Lemma 3.4. [18] If E is a Banach then for each non-empty and bounded set X C E there exists such countable
set Xo C X, that Bg(X) < 2B5(Xo).

One can ask what can be an analogue of this lemma for measure u, and space R(J, E) ? The answer is given
in two following theorems.

Theorem 3.5. For each non-empty and bounded set X C R(J, E), where E is a finite dimensional Banach space,
there exists such countable set Xy C X that um(Xo) = um(X).

Proof. Without loss of generality we can assume that max{w™ (X), w*(X)} = w*(X). Let {tn} C J be such a

sequence that w*(X) = sup w*(X, tn). Let us arbitrarily fix n € N. Then for each i € N there exists such a
neN

function x}' € X that lim w*(x}, tx, %) = w*(X, tn). Denote Xo := {x] : i,n € N}. Then based on the above
1—oo

we have w*(Xo) = w*(X), w™ (Xo) £ w™(X) and hence um(Xo) = pm(X). O
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In the general case the assertion of the previous theorem has to be weakened.

Theorem 3.6. For each non-empty and bounded set X C R(J, E) and any € > 0, there exists such countable set
Xo C X, that um(X) < 2um(Xo) + €. In the above estimation factor 2 cannot be replaced by smaller (see Example
3.7).
Proof. Let X, be a countable set constructed the same way as in the proof of Theorem 3.5. Thus

max{w (X), w*(X)} = max{w” (Xo), " (Xo)}.

Let us arbitrarily fix € > 0. There exists such a number ¢, € J that
sup Be(X() < Bg(X(to)) + €. Using Lemma 3.4 we get that there exists such a sequence {xn} C X that
te]

Be(X(to)) < 2Be({xn(to) : n € N}).
Hence
stu?BE(X(t)) < 2Bp({xn(to) :n e N} +¢
€
<2supBp({xn(t) : n e N}) + €.
te]

Let X, := Xo U {xn : n € N}. Obviously X, is countable and

sup Be(X(8)) < 2 sup Be(Xo(D)) + &,
tej te]

max{w (X), w" (X)} = max{w™ (Xo), w* (Xo)}.

Hence
Um(X) = stu?ﬁE(X(t)) +max{w (X), " (X)}
c

<2 stu?ﬁE(Xo)(t)) +max{w (Xo), w" (Xo)} + € < 2um(Xo) + €.
€
O

By 1, we denote the indicator function of a subset A. When the subset A = {a} is singleton, we will write 1.
Additionally, for arbitrary u € E let u denotes the function ui : ] — E given by

ult)=u, te]. (3.9)

Example 3.7. Let E be a space consisting of all bounded functions x : R+ — R such that for each of them

there exists such countable set Tx C R+, that function x(t) tendstoOast — ccand t € R, \ Tx. We assume the

supremum norm in E. Now we can define a subset A C Eby A := {1; : t € R;} and next we define a subset

X CR(U,E)by X :={a: ac A} where a is defined in (3.9). Thus w™ (X) = w*(X) = 0, sup Be(X(t)) = Be(4) = 1
te]

which means that ym(X) = 1 and for any countable subset X, = {lAtn :n=1,2,...} ¢ Xwehave w (Xp) =
w*(Xo) = 0, sup Be(Xo(t) = Be({1s, : n=1,2,...}) = 3 because {1;, : n=1,2,...} € Bg(3 3" 14,, 3) which
te] n=1

means that um(Xo) = % and that proves that factor 2 from the above theorem cannot be replaced by smaller.

4 Superposition operator

Consider a function f : J x E — E. Then, to every function x : J — E, we may assign the function
(Fex)(t) := f(t,x(t)), t € J. Operator Ff defined in such way is said to be superposition (or Nemytskii) op-
erator generated by the function f (see [19-21]). In connection with the space R(J, E), the natural question
appears: what properties must the function f satisfy in order for operator Fy to map the space R(J, E) into
itself?

In the paper by Aziz [2] and Michalak [12] the following results were obtained.
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Theorem 4.1. [12] A superposition operator Fy maps R(J, E) into itself if and only if the function f has the
following properties:
(1) the limit lim ) f(s, v) exists for every (t, x) € (a, b] x E,

[a,)xES(s,v)—(t,x
(2) the limit f(s, v) exists for every (t, x) € [a, b) x E.

lim
(t,b]xE>(s,v)—(t,x)
Given the notation

gt(x) := f(s,v), tela,b),x €E, (4.0)

lim
(t,b]IxE>(s,v)—(t,x)

condition (2) of Theorem 4.1 can be written in an equivalent form using quantifiers

vXEEVtE[a,b)Elgt(X)GEV<€>0E|5>0E|T>OVVEBE()<,JS)VSE(t,tH')”gt(x) _f(S, V)” < E. (4-2)

Analogically condition (1) of Theorem 4.1 can be written - we omit the details.

Theorem 4.2. [2] Suppose that the function f(-, u) is regulated on [0, 1] for all u € E, and the function f(t, -)
is continuous on E, uniformly with respect to t € . Then the superposition operator Fy maps R(J, E) into itself
and is (norm) bounded.

Theorem 4.3. [12] A superposition operator Fy maps R(J, E) into itself is continuous if and only if a function
f:E>x— f(-,x) € RU, E) is continuous.

Let us denote by EF the linear space consisted of all, not necessarily continuous functions h : E — E. This

space will become a linear topological space when we introduce a topology of almost uniform convergence

through a family of pseudonorms {|| - ||} ke« given by ||h||g := sup ||h(x)|| for h € EE, where K is is a family
xeK

of all non-empty compact sets in E. So given family {hs}sc; C Ef the convergence {hs} to h € EF in this
topology with s — t € ] means uniform convergence hs to h on all compact subsets in E when s — t.
Furthermore given fixed function f : J x E — E we shall denote: for each t € J let

fi(x) := f(t,x), x € E.

Thus we have f, € EE for t € J.
Now we can formulate a theorem that gives (in terms of the function f,) necessary conditions for any
space E and sufficient ones when dim E < oo such that superposition operator Fr maps R(J, E) into itself.

Theorem 4.4. Let the superposition operator Fy maps R(J, E) into itself. Then the family of functions {felees C
EE satisfies the following conditions:
(@) The mapping] >t — f, € EE is a regulated function.
(b) The following limits of pointwise convergence exist and
(b1) SILHtI+ f is continuous in E for t € [a, b),

(b2) lirrt1 fs is continuous in E for t € (a, b].
S—U

Conversely, if additionally E is a finitely dimensional Banach space and conditions (a) and (b) are satisfied then
the superposition operator Fy maps R(J, E) into itself.

Proof. (=) Letus fix t € [a, b). Using condition (2) of Theorem 4.1 and based on notation (4.1) we have the
following equality
g:(x) = lim f,(x), x € E.
s—t*
First we prove (b1). Let us fix x € E and € > 0. Because of (4.2) we have the existence of § > 0 and 7 > 0 such

that
lge() - fsW|| <&, sel(tt+1),veBkx,?H).

Now going from s — t* we have ||g¢(x) - g¢(v)|| < & which proves continuity of g in x and thereby on E.
Analogically we can prove (b2).
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We will now prove (a) i.e. that f converges to g; almost uniformly on E when s — t*. Let us fix non-empty
and compact set K C E and € > 0. Then, because of (4.2) and already proven continuity of g;, we have that
for each x € K there exist 6x > 0, Tx > O such that concurrently

= &€
vSe(t,[+TX)VV€BE(X,6X) ”gt(X) _fs(V)H < 2 (4'3)

and
llge(x) - g: (V)| = ; v € Bg(x, 6x). (4.4)

Out of family {Bg(x, 6x)}xcx covering compact set K we choose a finite subcover {Bg(x;, 6x;)}1;. Let
T := min{t; : i = 1, ..., n}. Let us fix arbitrary v € K. Then there exists such i that v € Bg(x;, 6;). Thus for
s € (t, t + T) based on (4.3) and (4.4) we have the following estimation

< < £ €

Ige) = fs W] < lIge() - 8|l + lIgelxi) = W) < 5 + 5 =€

for any v € K, i.e. we have uniform convergence on K. Similarly we can prove the existence of the limit lintl fs
S—U

in the topology of almost uniform convergence.
(«=) Assume that E has a finite dimension and fix t € [a, b). Condition (a) assures the existence of the limit
8¢ = sli_}nt1+ fs which, based on (b) is continuous on E. Let us fix x € E and € > 0. Continuity of g; means that
for some r > 0 we have

Ige() - gl < 5, v e Bylx, 1. (4.5)

Moreover (a) implies that for a compact set Bg(x, r) there exists T > 0 such that
— 8 —
llg:w) - fs(V)|| < 55 VE Bp(x,1),s € (t, t +1).

When we combine it with (4.5), for v € Bg(x, r), s € (t, t + T) we have

&

g0 = £ls. V| < 1800 = eV + gl ~fls, V) < 5+ 5 = &

i.e. condition (4.2) is satisfied and thereby (2) in Theorem 4.1 holds. Similarly we can prove (1) in Theorem 4.1,
so actually Fy acts from R(J, E) into R(J, E). O

Corollary 4.5. IfE is a finitely dimensional Banach space then superposition operator Fy acts from R(J, E) into
R(, E) if and only if both conditions (a) and (b) in Theorem 4.4 are satisfied.

Now we give further sufficient and necessary conditions that superposition operator Fy acts from R(J, E) into
R(U, E).
To this end, let us recall so-called module of continuity of a mapping h : E — E at a point v € E given by

v(h, v, 8) := sup{||h(v) - h(W)|| : u € Bg(v, 6)}, 6>0. (4.6)
For a fixed mapping f : ] x E — E and v € E let us denote
Dy := {t € ] : the mapping f, is not continuous at v}. (4.7)
For any subset S C J, in the space R(J, E) we will use a pseudonorm || - ||s given by
[xls := sup{[|x(O]| : t € S}, x € RU, E).

Now we can give another sufficient and necessary criterion that superposition operator Fy acts from R(J, E)
into R(J, E).

Theorem 4.6. Superposition operator Fy acts from R(J, E) into R(J, E) if and only if the following four conditions
are satisfied:
(a) vVGE f('a V) S RU! E)-
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(b) Foreachv c E set Dy is finite or countable.
(c) Foreachv € E, ifthe set Dy = {t,} is infinite then

lim  v(f,,v,68)=0.
(1,6)—(c0,0") (Fyv: )

(d) ThemappingE > u — f(-, u) € R, E) is continuous in every point v € E in regard to pseudonorm || - || j\p, »
i.e. for each v € E and each sequence vn — v we have ||f(-, V) - f(:, va)|lp\p, — O whenn — oo,

Before we prove Theorem 4.6 we give technical lemma, necessary in the next part of the paper.

Lemma 4.7. Ifthere exist a number gy > 0, a sequence {tn} C ] convergent to a point t € ] from one side and
a sequence {vn} C E convergent to vector v € E, such that

f(tn, V) = f(tn, vn)ll = €0, n=1,2,... (4.8)

then superposition operator Fy does not act from R(J, E) into R(J, E).

Proof. We give a proof by contradiction. Let us assume that Fy acts from R(J, E) into R(J, E). Hence we have
Vveg f(,v) € RU, E). (4.9)

Let assume that {t,} is convergent to some ¢, € J from one side, for example t,, — t{;, and moreover {t,}
is strictly decreasing (we can have that choosing a proper subsequence). Let us put

6 fortela,ty]u(ty,b],
y(t) :=
vn forte (the1,tn], n=1,2,....

Obviously y € R(, E). Since Fy € R(J, E), then there exists a limit
lim (Ff)/)(t) = lim f(tn, vn).
t—t} n=roo
Moreover, by (4.9), there exists a limit nle f(tn, v). Hence, by (4.8) we get
[| im f(tn, va) - lim f(tn, v)|| 2 . (4.10)
n—oo n—oo

Now let us define next function z € R(J, E) as follows

6 fortela,tyu(ty,b],
Z(t) = v fort e (t2n, t2n—1]’ n=1,2,...,
vn fort e (tans1, tonl, n=1,2,....

Since Fyz € R(J, E) then there is a limit tlintl (F¢z)(t) which means that
—t3

lim f(ton, van) = lim f(tyn-1,v).
n—oo n—oo

However it is in contradiction with (4.10).
O
Proof of Theorem 4.6 (=) Take an arbitrary v € E and put x(t) = v, t € J. Since Fyx € R(J, E), then (a) is
satisfied.
Let us assume that the set D, is uncountable. Since

=)

DV=U{te]:v(ft,v)>%}

k=1

then there exists such k € N, that theset {t € J : v(ft, V) > %} is uncountable. Let us put &g := % and choose
an arbitrary injective sequence {tn} C {t € J : v(f,v) > }. Since v(f, ,v) > & forn = 1,2, ... it follows
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that for each n € N we can choose such vy € E, that ||f, (v) - f, ()|l 2 €0 and ||v - va|| < 1. Choosing from
the sequence {t,} a subsequent (also denoted as {t»}) which converges from one side to some t € ] we have
vn — vand

If(tns v) = f(tn, vn)|| 2 €0, N =1,2,.... (4.11)

However then, by Lemma 4.7 operator Fs would not act from R(J, E) into R(J, E) which proves (b).
Analogically negating conditions (c) and (d) we would have the existence of €5 > 0, a sequence {tn} C Dy

for condition (c) or {t,} C J\ Dy for condition (d), convergent from one side to some t € J, a vector v € E and

asequence {vn} C E, such that v, — v and (4.11) holds which, by Lemma 4.7 contradicts the hypothesis and

thereby prove conditions (c) and (d).

(<) Letus fix x € R(, E). To prove that Fyx € R(J, E) we will show that for fixed t € [a, b) there exists a limit

SILII;E (Ffx)(s) (we omit the proof of the existence of left-hand side limit as similar to the following). Let us fix

such a sequence {t,} C (¢, b], that t, — t* and define vy := x(tn). Since x € R(J, E), then there exists a limit
V= nle vn. By (@) there exists also a limit nle f(tn, v). To prove the existence of the limit lirrtl (Frx)(s) it is
oo o S—t+

enough to show the existence of the limit nle f(tn, vn). Additionally we show that
lim f(tn, va) = lim f(tn, v). (4.12)
n—oco n—oo

Let us consider 3 cases:

Case (i): the sequence {tn}, outside a finite number of terms is contained in J \ Dy.

Therefore, by (d), for each € > 0 and for sufficiently large n we have ||f(tn, vn) - f(tn, V)| < €. When n — oo
we have

limsup [|f(tn, va) = lim f(tn, V)| < €
Nn—oo n—oo

which considering that € > 0 is arbitrary implies (4.12).

Case (ii): The sequence {t,}, outside a finite number of terms is contained in D,.

Let us fix € > 0. By (b) and (c) there exists such ng € N and 8y > 0, that for n > ny and for 0 < § < §, we have
v(ftn, v, 8) < g, i.e. for large enough n we have ||f(tn, vn) - f(tn, V)| < £. When n — oo using similar reasoning
as in case (i) we also get that (4.12) holds.

Case (iii): Infinitely many terms of the sequence {t} is contained in Dy, as well as infinitely many terms of the
sequence {t,} is contained in J \ Dy.

Dividing the sequence {t, } into two adequate subsequences the case can be reduced to previous cases (i) and
(ii). O
Remark 4.8. The above Theorems 4.4 and 4.6 improve some mistake contained in [13] (Theorem 5.1).

We now give a criterion of compactness for the superposition operator Fy.

Theorem 4.9. Let E be a separable Banach space and let the superposition operator Fy : R(J, E) — R(J, E) be

continuous and compact (i.e. Fy transforms bounded sets in relatively compact sets). Then

(H1) there exists a function g € R(J, E),

(H2) there exists a countable or finite set T = {tn} C ],

(H3) there exist a countable or finite sequence of functions hy : E — E, n = 1, 2, ... that are continuous, compact
and when it is infinite

Yrs0 nlLrIgo lhn(Bg(r))|| =0 (4.13)

such that -
ft, 0 = gO + > 14,(Oha(x), te],x€E. (4.14)

n=1

Conversely, if the conditions (H1)-(H3) are satisfied and E is a Banach space then the formula (4.14) gives such
a function f(t, x), that operator F : R(J, E) — R(J, E) and it is continuous and compact.

Remark 4.10. Obviously the case when all h, functions in the previous theorem are equal to 6, that is when
f(t, x) = g(t), or only a finite number of them is not equal to 0 is also allowed.
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The proof of the theorem will be preceded by two lemmas. Before that however we will give a useful notation.
For each x € R(J, E) we will put
supp x := {t € J : x(t) # 6}.

In contrast to standard definition of a support we do not require the closure.

Lemma 4.11. If F; : R(, E) — R(, E) is compact, then for each x,y € R(J, E) the set supp(Fyx — Fyy) is
countable or finite and for each injective sequence {tn} C ], we have

Jim f(tn, x(62) = Fltn, y(t0)) = 0. (415)

Proof. If the set supp(Fsx - Fsy) was uncountable or if (4.15) was not satisfied, then there would exist a injec-
tive sequence {sn} C J and a number & > 0, such that

Hf(sn, x(sn)) - f(sn, Y(Sn))H >g9, N=1,2,...

Let us define the sequence of functionsu, : ] -+ E,n=1,2, ... by

) x(sn) fort=sn,
un(8) := { y(t) fort# sy.

Obviously un € R(J, E). For n # m we have s, # sm and therefore
|Feun = Frum||oo 2 ||(Ffun)(sn) — (Fgum)(sn)||

= [|f(sn, x(sn)) = f(sn, y(sn))|| = €0

i.e. the sequence {Fyun} is £o-separable, hence F is not compact, which ends the proof. O

Lemma 4.12. If E is a separable Banach space and Fy : R(J, E) — R(J, E) is compact and continuous, then
there exists a countable or finite set T = {tn} C ], such that

Vxek SUpp(Fgx - F, fﬁ) cT. (4.16)

Proof. Let A = {an : n € N} C E be a countable dense subset of E. Let us put T := U;‘;lsupp(FfEH - ng). By
the previous Lemma 4.11, the set T is countable or finite. If there existed x € E such that (4.16) did not hold
then there would exist s € J such that s € supp(Fsx - F f/G\) \T.Thus ||(Ffx-F fé)(s)H = go for some g9 > O and
additionally (F fEZ -F fg)(s) = 0 for n € N. If we took such a subsequence {a,_}, that a;, — x in E we would
have R

IEfX - Fyay, |loo = ||(F;X — Ff0)(s) - (Fyay, - Ff0)(s)| = eo

which is in contradiction with continuity Fy. O

Proof. (Proof of Theorem 4.9)
Let us assume first that E is separable and Fy is compact and continuous. Let the set T = {tn} be like in Lemma
4.12. We define the function g : ] — E and the sequence of functions hy, : E -+ E,n=1, 2, ... by

8(t):=f(t,0), te],

hn(x) := f(tn, X) - f(tn, 0), x € E,n € N.

By Lemma 4.12, for each x € E the mapping J > t — f(t, x) — f(t, ) can be non-zero only on the set T and its
formula is given by > 1, (£)hn(x). Therefore

n=1

(£, ) = £(t, 0) + f(t, ) - f(t, 6) = g() + Y _ 1, (D (0.

n=1
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Since Fy is continuous the functions hn, must be continuous and since Fy is compact also the functions hy
must be compact. Moreover it results from Lemma 4.11 that nle f(tn, x) = f(tn, 0) = 6 for x € E i.e.

lim hn,(x) =6, x €E. (4.17)
n—oo

We have only (4.13) left to prove. Let us assume that it is not satisfied. Then there would exist r > 0, a number
£o > 0 and such a subsequence of the sequence {hy}, (also denoted by {hy}), that

lhn(BE(N)|| 2 €9, n=1,2,... (4.18)

Let ky = 1. We choose x1 € Bg(r), such that ||hy, (x1)|| = £. By (4.17) we know that there exists k, € N,
such that k, > ky i ||hi(x1)|| < & fori > k,. By (4.18) we conclude that there exists x, € Bg(r), such that
A, (x2)|| = £ . By (4.17) we know that there exists k3 € N, such that k3 > k;, and ||h;(x,)|| < & fori = ks.
Continuing this procedure we get an strictly increasing sequence {k,} C N and the sequence {xn} C Bg(r)
such that
&o
Iy )l = 20 = 1,2,
& .
||h1(xn)|| < ZO’ 12 kn+1, n= 1’ 2’ oee
Let n > m. Then we have
| FyXn ~ Fyim o 2 | (Fya)(tx,) — (Fpm)(ty, )|
& & €
= [1Ax, Ocn) = g, Cem)l| > 1Py Ol = ([, Cem) | > 52 = 22 = 22

i.e. {FsXn} is positively separated and F; is not compact which contradicts the assumptions.

Let us assume now that the conditions (H1)-(H3) are satisfied and the function f(t, x) is given by the
formula (4.14). First we prove that Fy : R(J, E) — R(J, E). Let us fix x € R(J, E), t € J and the sequence {t}f}
convergent to t from one side, e.g. t]f — t*. Since the sequence {x(tJ’.)} is bounded, then by (4.13) we have

lim i ltn(t}’-)hn(x(t]’-)) = 0 and in virtue of (4.14) we get lim (fo)(tzl') = lim g(tl’-) = g(t")i.e. Fyx € R(U, E).
j—eo o1 j—roo j—roo

Now we prove that the operator Fy is compact. Let us fix a bounded sequence {xn} C Bg(; f)(r), where
r > 0. Since the operator h; is compact we are able to choose such a subsequence {x, 1} of a sequence
{xn} that the sequence {h;(x,,1(t1))} is convergent. Since the operator h; is compact we are able to choose
such a subsequence {x,,,} of the sequence {x,,;} that the sequence {h,(xy,,(t;))} is convergent. Obviously
{h1(xn,2(t1))} is also convergent. Continuing this procedure we get a sequence of sequences {x, ;}ne1, i =
1, 2, ... which has a property that {x, ;.1 } n-1 is a subsequence of the sequence {x, ;},,; and that there exists a
limit nango h)-(xn,i(t]-)) fori=1,2,...,j=1,2,...,i. Now, using a diagonal method we can define the sequence
{yn} BY ¥n := xpn,n = 1,2, .... Obviously {yn} is a subsequence of {x,}. Moreover the limit nango hi(yn(t;)
exists for each i = 1, 2, .... Thus as well as from the fact that (Fsyn)(t) = g(t) for t ¢ T we conclude that the
limit nﬁflo (Fryn)(t) exists for each t € J. We are able now to define a function z : ] — E by z(t) := nango (Fryn)(8)
ie.

gt forte J\ T,
Z(t) - { g(ti) + nh_)ngo h,'()/n(ti)) fort = ti, i= 1, 2,...

By (4.13) we have
ll2(t:) = g(t)ll = || im_h;(yn()]] < |hi(BE())| 20

This means that z € R(J, E). Using (4.14) we get
|z = Frynlleo = sup || im h;(yn(t;)) = hi(yn(t;))]]. (4.19)
tiET n—oo

Let us fix € > 0. By (4.13) there exists m € N such that for i > m we have || h;(Bg(r))|| < € and therefore
sup || nli_)m hi(yn(t;)) — hi(yn(t;))| < 2€. Since there exists limit nli_)m hi(yn(t;), i=1,2,...,thenthereisng € N

such that forn > ng and fori =1, 2, ..., m we have

[ nli_{r:g hi(yn(t;)) = hi(yn(t))]| < €.



1290 — L. Olszowy and T. Zajac, Superposition operator in the space of regulated functions DE GRUYTER

Combining the above and (4.19) we get for n > ng the inequality ||z Ffyn|| < 2 which proves that Fryn — z
inR(J, E).
Continuity of the operator Fy is a consequence of condition (H3) - we omit a simple proof of this fact. [J

Corollary 4.13. Let Banach space E be separable. Then F f(R(] , E)) ¢ R{, E) and the superposition operator
Fs : RU,E) — R(, E) is continuous and compact if and only if the conditions (H1)-(H3) of Theorem 4.9 are
satisfied.

Problem 4.14. Are the conditions (H1)-(H3) of Theorem 4.9 necessary in case when the space E is not sepa-
rable?
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