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Abstract: In this paper, we consider the following magnetic pseudo-relativistic Schrödinger equation√( ε
i∇ − A(x)

)2
+ m2u + V(x)u = f (|u|)u in RN ,

where ε > 0 is a parameter, m > 0, N ≥ 1, V : RN → R is a continuous scalar potential satis�es V(x) ≥
−V0 > −m for any x ∈ RN and f : RN → R is a continuous function. Under a local condition imposed on the
potential V, we discuss the number of nontrivial solutions with the topology of the set where the potential
attains its minimum. We proof our results via variational methods, penalization techniques and Ljusternik-
Schnirelmann theory.
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1 Introduction and statement of main results
In this paper, we consider the mean �eld limit of a quantum system with rest mass m > 0 in the presence of
a magnetic vector potential A(x) and an electric potential V(x). More precise, we focus our attention on the
following time-depend pseudo-relativistic magnetic Schrödinger equation

iε ∂ψ∂t =
(√( ε

i∇ − A(x)
)2

+ m2 − m
)
ψ + V(x)ψ − f (|ψ|)ψ in RN , (1.1)

where ε > 0 is a small positive constant, i is the imaginary unit, m > 0, N ≥ 1, ψ : RN × R → C is a wave
�eld, A : RN → RN is a continuous vector potential, V : RN → R is an external continuous scalar potential
and function f : RN → R. The magnetic relativistic Schrödinger operator relate to the classical relativistic
Hamiltonian symbol in Fourier variables√(

ξ − A(x)
)2 + m2 + V(x), (ξ , x) ∈ RN ×RN ,

which is the sum of the kinetic energy term. This operator is known as a spinless particle in electromagnetic
�elds where we ignore quantum �eld theoretic e�ect like particles creation and annihilation but should take
relativistic e�ect into consideration, see [1, 2].We should remark that there are three type of relativistic Hamil-
tonian depending on howwe quantize the kinetic energy symbol

√(
ξ − A(x)

)2 + m2. The �rst two quantized
operators de�ned by mean formulas, that is, for any function φ ∈ C∞0 (RN ,C),

H1
Aφ(x) := 1

4π2

∫
R2N

ei(x−y)·ξ
√(

ξ − A
( x + y

2

))
m2φ(y)dydξ
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and

H2
Aφ(x) := 1

4π2

∫
R2N

ei(x−y)·ξ

√√√√√
ξ − 1∫

0

A((1 − θ)x + θy)dθ

m2φ(y)dydξ .

We note that the Weyl pseudo-di�erential operatorH1
A is not covariant under gauge transformations, that is,

H1
A+∇ϕ ≠ eiϕH1

Ae−iϕ. The operator H2
A is a modi�cation of operator H1

A, which is gauge covariant, see [3].
The third quantizedH3

A is the square of the nonnegative selfadjoint operator
(
−i∇ − A(x)

)2 + m2, that is,

H3
A =

√(
−i∇ − A(x)

)2 + m2.

The operatorH3
A is gauge covariant and is used in the description of the stability of the matter in relativistic

quantummechanics, see for example [4, 5]. All three quantized operators are di�erent from one another (see
[1, 6]). As we know that they coincide if A(x) is linear, that is, A(x) = A · x, with A is a real symmetric constant
matrix, see [1]. Particularly, this holds for constant magnetic �eld when N = 3, that is, B = ∇ × A is constant.

A solution of the form ψ(x, t) = eiEt/εu(x) is called a solitary wave. Then ψ(x, t) is a solution of (1.1) if and
only if the function u satis�es√( ε

i∇ − A(x)
)2

+ m2u + V(x)u = f (|u|)u in RN , (1.2)

where we write V instead of V + (E − m) for simplicity.
Recently, Cingolani and Secchi in [7] studied the interwining solutions of magnetic relativistic Hartree

type equations, that is,√(
−i∇ − A(x)

)2 + m2u + V(x)u = (|x|α−N * |u|p)|u|p−2u in RN , (1.3)

where 2 ≤ p < 2N/(N − 1) and (N − 1)p − N < α < N. Their proofs are based on the variational methods
and Ca�arelli and Silvestre’s type extension (see [8]) for pseudo-relativistic magnetic Schrödinger operator√(
−i∇ − A(x)

)2 + m2 + V(x) when A(x) is uniformly bounded or linear in x. If N = 3 and α = p = 2, which
corresponds to the Coulomb kernel, equation (1.3) is often referred to a boson star in astrophysics, see for
example [9, 10]. If also assume A ≡ 0 and V(x) = −m, equation (1.3) is reduced to the classical pseudo-
relativistic Hartree equation which introduced by Lieb and Yau [11], see also [12–14] and references therein.

In the literature, the existence of standing waves solutions to nonlinear magnetic Schrödinger equation( ε
i∇ − A(x)

)2
+ V(x)u = f (x, u), in RN (1.4)

has been �rst studied by Lions and Esteban [15], for ε > 0 �xed and special classes of magnetic �elds. They
have found existence results by solving appropriate minimization problems and concentration-compactness
method for the corresponding energy functional in the cases N = 2 and 3. Lately, Kurata [16] studied the
existence of a least energy solution of (1.3) under a condition relating V(x) and A(x); Cingolani [17] and Alves
et al. [18] investigated themultiplicity results of (1.3) by applying the Ljusternik-Schnirelmann theory.We refer
readers to [17, 19–21] and references therein for other results about nonlinearmagnetic Schrödinger equation.

For the nonlocal magnetic Schrödinger equations have been investigated recently. The fractional mag-
netic Laplacian is de�ned by

(−∆)sAu(x) := lim
r→0

∫
Bcr (x)

u(x) − ei(x−y)·A( x+y
2 )u(y)

|x − y|N+2s dy, s ∈ (0, 1),

which is deduced from the magnetic operator H1
A for smooth functions u. In quantum mechanics, when

ε → 0, the existence and concentration of solution is of particular importance. The existence and concentra-
tion results for fractional magnetic Schrödinger equations were studied by Ambrosio and d’Avenia [22], Fis-
cella, Pinamonti and Vecchi [23], Zhang, Squassina and Xia [24], Mao and Xia [25]. We also refer to d’Avenia
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and Squassina [26] for the existence of ground states and other useful estimates. Lastly, for the existence
and multiplicity results of semilinear or quasilinear Schrödinger equations, we refer readers to [27–29] and
references therein.

Motivated by the about results, in this paper we deal with multiplicity and concentration results of the
more general class of pseudo-relativistic magnetic Schrödinger equation (1.2) . In what follows, on potentials
we assume that
(A) A : RN → R is a continuous functions and uniformly bounded.
(V1)V : RN → R is a continuous functions satis�es V + V0 ≥ 0 for some V0 ∈ (0,m) and every x ∈ RN .
(V2)There is a bounded open set O ⊂ RN such that

min
∂O

V > −V0,

and M = {x ∈ O : V(x) = −V0} ≠ ∅.

Also, we suppose continuous function f satisfying
(f1) f (s) = 0, for all s ≤ 0 and f (s) = o(s) as s → 0+.
(f2) There exists constants q, σ ∈ (2, 2]) where 2] := 2N

N−1 if N ≥ 2 and 2] := ∞ if N = 1, C0 > 0 such that
f (s) ≥ C0sq−2 for all s > 0 and

lim
s→+∞

f (s)
sσ−2 = 0.

(f3) There exists a constant θ ∈ (2, 2]) such that

0 < θF(s) := θ
s∫

0

f (τ)τdτ ≤ f (s)s2 for all s > 0.

(f4) The function f (s) is increasing in (0, +∞).

We shall establish a relation between the number of solutions of (1.2) and the topology of the set M. In order
to make a precise statement let us recall that, for any closed subset Y of a topological space X, the Ljusternik-
Schnirelmann category of Y in X, catX(Y), stands for the least number of closed and contractible sets in X
which cover Y.

The main result of this article is

Theorem 1.1. Assume that (A), (V1) − (V2) and (f1) − (f4) hold. Then for and δ > 0 such that

Mδ = {x ∈ RN : dist(x,M) ≤ δ} ⊂ O,

there exists εδ > 0 such that problem (1.2) has at least catMδ (M) solutions provides ε ∈ (0, εδ). Moreover, if uε
denotes one of these solutions and ηε ∈ RN its global maximum, then

lim
ε→0

V(ηε) = −V0.

It should be pointed out that we only assume the potential V(x) satis�es local conditions (V1) − (V2) and no
information on the behavior of the potential V(x) at in�nity, so we will use the penalization method intro-
duced by del Pino and Felmer [30] rather thanminimax theorem to prove our main results. It is worthwhile to
remark that in the arguments developed in [30], one of the key points is the existence of estimates involving
the L∞-bounds of themodi�ed problem. Here we obtain the desired L∞-bounds via Moser’s iterationmethod
(see [31]) instead of Kato’s inequality. Moreover, we get the multiplicity results by Ljusternik-Schnirelmann
theory (see [32]). As far aswe known, this is the �rst time that penalization scheme and topological arguments
are combined to get multiple solutions for magnetic pseudo-relativistic equations.

We also remark thatwe assume the nonlinearity term f is only continuous, sowe can not use the standard
arguments on the Nehari manifold. To overcome the non-di�erentiability for the Nehari manifold, we shall
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use some variants of critical point theorems from Szulkin andWeth [32]. This idea has been used extensively
for nonlocal elliptic problems, see for example [33, 34].

Our proof based on the Ca�arelli and Silvestre’s type extension (see [8]) for pseudo-relativistic magnetic
Schrödinger operator

√(
−i∇ − A(x)

)2 + m2 + V(x) when A(x) is uniformly bounded, which is prove by Cin-
golani andSecchi in [7]. However, somedi�culties appear since thenonlinearity is on the boundary. In partic-
ular, in order to obtain the L∞-bounds in Section 4 wewill establish an inverse Hölder inequality for γ(w) = u
and we my iterate the inequality for γ(w).

This paper is organized as follows. In section 2, we present the variational setting of the original and the
extended variables problems, and wemodify the original problem. We also prove the Palais-Smale condition
for themodi�ed functional and obtain some toolswhich are useful to establish amultiplicity result. In section
3, we study the autonomous problem associated which allow us to prove the modi�ed problem has multiple
solutions. Finally, we prove Theorem 1.1 via Morse iteration method.

2 Extension and modi�ed problem
In this paper, we will systematically consider spaces of complex-valued functions. Precisely, the L2(RN ,C)
space will be endowed with the real scalar product

〈v, w〉L2 = <
∫
RN

v(x)w(x)dx.

In what follows, we will write | · |p for the norm in Lp(RN) and ‖ · ‖p for the norm in Lp(RN+1
+ ). Moreover, for

any w ∈ H1(RN+1
+ ,C), we denote

‖w‖2
H1 =

∫
RN+1

+

(
|∇w|2 + |w|2

)
dxdy, for (x, y) ∈ RN ×R+.

Let Ã(x, y) = (A(x), 0) : RN+1
+ → RN+1 be the trivial lifting of a vector �eld A(x) : RN → RN for every

(x, y) ∈ RN+1
+ . Then, we de�ne the magnetic Sobolev spaces on the half-space H1

Ã(RN+1
+ ,C) as

H1
Ã(RN+1

+ ,C) :=
{
w ∈ L2(RN+1

+ ,C) :
(
∇
i − Ã

)
w ∈ L2(RN+1

+ )
}
,

which endowed with the norm

‖w‖H1
Ã

=

 ∫
RN+1

+

∣∣∣∣(∇i − Ã
)
w
∣∣∣∣2 dxdy + ‖w‖2

L2


1
2

(2.1)

and the scalar product
〈v, w〉H1

Ã
:= <

∫
RN+1

+

∇Ãv∇Ãw + vwdxdy,

where
∇Ã = ∇i − Ã. (2.2)

For simplicity, we will write H1
Ã(RN+1

+ ,C) and ‖w‖H1
Ã
as H1

A(RN+1
+ ,C) and ‖w‖H1

A
respectively.

Next, we recall the following result about trace in magnetic Sobolev space operator which proved in [7].

Proposition 2.1. Suppose that A is bounded. Then a surjective continuous linear map γ : H1
A(RN+1,C) →

H1/2
A (RN ,C) is de�ned so that γ(w) = w|RN×{0} for every w ∈ C1(RN+1,C), where

H1/2
A (RN ,C) =

u ∈ L2(RN ,C) : |u|2L2 +
∫
R2N

∣∣∣u(x) − ei(x−y)·A( x+y
2 )u(y)

∣∣∣2
|x − y|N+1 dxdy < +∞

 .
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This result allows us to generalized the well-known Dirichlet-to-Neumann extension for fractional Laplacian
to the magnetic pseudo-relativistic operator. Letting ∆Ã = −∇2

Ã = ∆A + ∂2

∂y2 where

∆A = ∆xu − 2iA(x) ·∇xu − idiv(A(x)) − |A(x)|2,

then Cingonali and Secchi in [7] showed that

Proposition 2.2. For u ∈ H1/2(RN ,C), then there exists one and only one function w ∈ H1
A(RN+1

+ ,C) such that{
−∆Ãw + m2w = 0 in RN+1

+ ,
w = u in RN = ∂RN+1

+ .
(2.3)

We remark that the key point of the proof of Proposition 2.2 is to show that magnetic Sobolev spaces
H1
A(RN+1

+ ,C) and H1/2
A (RN ,C) are equivalent to H1(RN+1

+ ,C) and H1/2(RN ,C) respectively when A(x) is
bounded. Therefore, the existence of trace operator follows immediately from the standard theory of Sobolev
traces in non-magnetic spaces. Hence, by Proposition 2.1, we deduce that the embeddings

H1
A(RN+1

+ ,C) ↪→ Lp(RN) for p ∈ [2, 2]] (2.4)

are continuous when A is uniformly bounded.
By Proposition 2.2, we know that every function w ∈ H1

A(RN+1
+ ,C) possesses a trace γ(w) ∈ H1/2(RN ,C).

Moreover, the following inequality holds

|γ(w)|pp ≤ p‖w‖p−1
2(p−1)

∥∥∥∥∂w∂y
∥∥∥∥

2
(2.5)

provides 2 ≤ p ≤ 2]. For the proofs of (2.5), one can �nd in [7].
It is easy to see that problem (1.2) is equivalent, after a change of variable, to the following one√(

−i∇ − Aε(x)
)2 + m2u + Vε(x)u = f (|u|)u in RN , (2.6)

where Aε(x) = A(εx) and Vε(x) = V(εx). Once we obtain a solution of (2.6), then the function ũε(x) = uε(x/ε)
is a solution of (1.2). Moreover, the maximum ζε of ũε is related to the maximum point zε of uε by ζε = εzε.

By applying Proposition 2.2, we are interested to the study of the relativistic magnetic nonlocal equation{
−∆Ãεw + m2w = 0 in RN+1

+ ,
− ∂w∂y = −Vε(x)w + f (|w|)w in RN = ∂RN+1

+ , (2.7)

where Ãε = (Aε , 0). We also observe that, for every m > 0, (2.5) implies that∫
RN

|γ(w)|2dx ≤ m
∫

RN+1
+

|w|2dxdy + 1
m

∫
RN+1

+

∣∣∣∣∂w∂y
∣∣∣∣2 dxdy

≤ m
∫

RN+1
+

|w|2dxdy + 1
m

∫
RN+1

+

(
|(−i∇x − Aε(x))w|2 +

∣∣∣∣∂w∂y
∣∣∣∣2
)
dxdy. (2.8)

Since there is no information about the in�nity of V(x), we adapt the penalization method introduced by
del Pino and Felmer [30] to establish the multiplicity results. Let K > 2V0

m−V0
, a > 0 such that f (a) = V0

K where
V0 given in (V1). De�ne

f̃ (s) =
{
f (s) if s ≤ a,
V0
K if s > a,

and
g(x, s) = χO(x)f (s) + (1 − χO(x))f̃ (s), (2.9)

where χO(x) is the characteristic of set O. By the assumptions (f1) − (f4), it is easy to check that g is a
Carathéodory function and satis�es
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(g1) lims→0+ g(x, s) = 0.
(g2) g(x, s) ≤ f (s) for all x ∈ RN , s > 0.
(g3) (i) 0 < θG(x, s) := θ

∫ s
0 g(x, τ)τdτ ≤ g(x, s)s2 for all x ∈ O, s > 0;

(ii) 0 ≤ 2G(x, s) < g(x, s)s2 ≤ V0
K s

2 for all x ∈ RN \ O and s > 0.
(g4)For each x ∈ O, the function s 7→ g(x, s) is increasing in (0, +∞), and for each x ∈ Oc, the function

s 7→ g(x, s) is increasing in (0, a).

Therefore, we study the auxiliary problem{
−∆Ãεw + m2w = 0 in RN+1

+ ,
− ∂w∂y = −Vε(x)w + gε(x, |w|)w in RN = ∂RN+1

+ , (2.10)

where gε(x, w) = g(εx, w). Note that solution of (2.10) with w(x) ≤ a for each x ∈ Oε are also the solution of
(2.7), where Oε = {x ∈ RN : εx ∈ O}.

Consider the Euler-Lagrange functional associated to (2.10) given by

Iε(w) = 1
2

∫
RN+1

+

(
|(−i∇x − Aε(x))w|2 +

∣∣∣∣∂w∂y
∣∣∣∣2 + m2w2

)
dxdy

+ 1
2

∫
RN

Vε(x)|γ(w)|2dx −
∫
RN

Gε(x, |γ(w)|)dx, (2.11)

which is C1 with Gataux derivative

〈I′ε(w), v〉 = <
∫

RN+1
+

∇Ãεw∇Ãε v + m2wv̄dxdy + <
∫
RN

Vε(x)γ(w)γ(v)dx

− <
∫
RN

gε(x, |γ(w)|)γ(w)γ(v)dx,

where∇Ãε is de�ned as (2.2).
Next, we de�ne the Nehari manifold Nε (see [35]) related to Iε. We say w ∈ Nε means w ∈ H1

Aε (R
N+1
+ ,C)

and satis�es ∫
RN+1

+

(
|(−i∇x − Aε(x))w|2 +

∣∣∣∣∂w∂y
∣∣∣∣2 + m2w2

)
dxdy +

∫
RN

Vε(x)|γ(w)|2dx

=
∫
RN

gε(x, |γ(w)|)|γ(w)|2dx.

We denote by H̃1
Aε (R

N+1
+ ,C) the open subset of H1

Aε (R
N+1
+ ,C) given by

H̃1
Aε (R

N+1
+ ,C) = {w ∈ H1

Aε (R
N+1
+ ,C) : |supp|γ(w)| ∩ Oε| > 0},

and S̃ε = Sε ∩ H̃1
Aε (R

N+1
+ ,C), where Sε is the unit sphere of H1

Aε (R
N+1
+ ,C). Note that S̃ε is a non-complete

C1,1-manifold of codimension 1, modeled on H1
Aε (R

N+1
+ ,C) and contained in the open H̃1

Aε (R
N+1
+ ,C) (see for

example [32]). Then, H1
Aε (R

N+1
+ ,C) = Tw S̃ε

⊕
Rw for each w ∈ S̃ε, where

Tw S̃ε = {v ∈ H1
Aε (R

N+1
+ ,C) : 〈w, v〉H1

Aε
= 0}.

We can check the functional Iε satis�es the Mountain pass geometry [35].

Lemma 2.3. The functional Iε satis�es the following conditions:
(i) There exist α, ρ > 0 such that Iε(w) ≥ α with ‖w‖H1

Aε
= ρ;
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(ii) There exists e ∈ H1
Aε (R

N+1
+ ,C) such that ‖e‖H1

Aε
> ρ and Iε(e) < 0.

Proof. (i) For any w ∈ H1
Aε (R

N+1
+ ,C) \ {0} and ε > 0 small, it follows from (g1)-(g2) that there exists Cε > 0

such that
|g(εx, s)| ≤ ε + Cεs2]−2 for all x ∈ RN , s ∈ R (2.12)

and
|G(εx, s)| ≤ ε2 s

2 + Cε
2]
s2]

for all x ∈ RN , s ∈ R. (2.13)

Next, by the Sobolev embedding (2.4), (V1), (2.8) and (2.13), we have

Iε(w) = 1
2

∫
RN+1

+

(
|(−i∇x − Aε(x))w|2 +

∣∣∣∣∂w∂y
∣∣∣∣2 + m2w2

)
dxdy

+ 1
2

∫
RN

(Vε(x) + V0)|γ(w)|2dx − V0
2

∫
RN

|γ(w)|2dx −
∫
RN

Gε(x, |γ(w)|)dx

≥ 1
2

∫
RN+1

+

(
|(−i∇x − Aε(x))w|2 +

∣∣∣∣∂w∂y
∣∣∣∣2 + m2w2

)
dxdy

− V0
2

m ∫
RN+1

+

|w|2dxdy + 1
m

∫
RN+1

+

(
|(−i∇x − Aε(x))w|2 +

∣∣∣∣∂w∂y
∣∣∣∣2
)
dxdy


− ε2

∫
RN

|γ(w)|2dx − Cε2]

∫
RN

|γ(w)|2
]

dx

≥ 1
2

(
1 − V0

m

) ∫
RN+1

+

(
|(−i∇x − Aε(x))w|2 +

∣∣∣∣∂w∂y
∣∣∣∣2
)
dxdy

+ m(m − V0)
2

∫
RN+1

+

|w|2dxdy − εC‖w‖2
H1
Aε
− CCε‖w‖2]

H1
Aε
. (2.14)

Therefore, we can choose α, ρ > 0 such that Iε(w) ≥ α with ‖w‖H1
Aε

= ρ since 0 < V0 < m.

(ii) For every w ∈ H̃1
Aε (R

N+1
+ ,C) and t > 0, we can obtain that

Iε(tw) ≤ t
2

2

∫
RN+1

+

(
|(−i∇x − Aε(x))w|2 +

∣∣∣∣∂w∂y
∣∣∣∣2 + m2w2

)
dxdy + t2

2

∫
RN

Vε(x)|γ(w)|2dx

−
∫
Oε

Gε(x, t|γ(w)|)dx

≤ t
2

2

∫
RN+1

+

(
|(−i∇x − Aε(x))w|2 +

∣∣∣∣∂w∂y
∣∣∣∣2 + m2w2

)
dxdy + t2

2

∫
RN

Vε(x)|γ(w)|2dx

− C1tθ
∫
Oε

|γ(w)|θdx + C2|supp|γ(w)| ∩ Oε|,

where we have used (g3) and the standard ODE computations. This and (2.4) imply the conclusion (ii) since
θ ∈ (2, 2]).

Sincewe only assume f is continuous, in order to overcome the non-di�erential ofNε and the in completeness
of S̃ε, we need the following two results.

Lemma 2.4. Assume that assumptions (A), (V1) − (V2) and (f1) − (f4) are satis�ed. Then the following prop-
erties hold:
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(a) For each w ∈ H̃1
Aε (R

N+1
+ ,C), let hw : R+ → R be de�ned as hw(s) = Iε(sw). Then there exists a unique

sw > 0 such that h′w(s) > 0 in (0, sw) and h′w(s) < 0 in (sw , ∞).
(b) There is a t > 0 independent of w such that sw > t for all w ∈ S̃ε. Moreover, for each compact set W ⊂ S̃ε,

there is CW > 0 such that sw ≤ CW for all w ∈W.
(c) Themap m̂ε : S̃ε → Nε given by m̂ε(w) = sww is continuous and mε := m̂ε|S̃ε is a homeomorphism between

S̃ε andNε. Moreover, m−1
ε (w) = w

‖w‖H1
Aε

.

(d) If there is a sequence {wn} ⊂ S̃ε such that dist(wn , ∂S̃ε)→ 0, then ‖mε(wn)‖H1
Aε
→ ∞ and Iε(mε(wn))→

∞.

Proof. (a) Observe from the proof of Lemma 2.3 that hw(0) = 0, hw(s) > 0 for s small and hw(s) < 0 for s large.
Thus maxs≥0 hw(s) is achieved at a s = sw > 0 satisfying h′w(sw) = 0 and sww ∈ Nε. On the other hand, we
know

h′w(s) = 0⇔ sw ∈ Nε

⇔
∫

RN+1
+

(
|(−i∇x − Aε(x))w|2 +

∣∣∣∣∂w∂y
∣∣∣∣2 + m2w2

)
dxdy +

∫
RN

Vε(x)|γ(w)|2dx

=
∫
RN

gε(x, s|γ(w)|)|γ(w)|2dx. (2.15)

By the de�nition of g, the right hand side is nondecreasing in s for s > 0. Therefore, maxs≥0 hw(s) is achieved
at a unique s = sw > 0 such that h′w(sw) = 0 and sww ∈ Nε.

(b) Assume that w ∈ S̃ε, then by (2.15), (2.8), (2.12) and a similar argument as (2.14), we can get that sw ≥ t
for some t > 0. Suppose by contradiction that there is {wn} ⊂ W with sn := swn → ∞. Since W is compact,
there exists a w ∈W such that wn → w in H̃1

Aε (R
N+1
+ ,C). Moreover Iε(snwn)→ −∞.

On the other hand, denote vn = snwn ∈ Nε and use (2.8) and property (g3), we have that

Iε(vn) = Iε(vn) − 1
µ 〈I

′
ε(vn), vn〉

=
(

1
2 −

1
µ

)( ∫
RN+1

+

(
|(−i∇x − Aε(x))vn|2 +

∣∣∣∣∂vn∂y
∣∣∣∣2 + m2v2

n

)
dxdy

+
∫
RN

Vε(x)|γ(vn)|2dx
)

+ 1
µ

∫
RN

(
gε(x, |γ(vn)|)|γ(vn)|2 − µGε(x, |γ(vn)|)

)
dx

≥
(

1
2 −

1
µ

)( ∫
RN+1

+

(
|(−i∇x − Aε(x))vn|2 +

∣∣∣∣∂vn∂y
∣∣∣∣2 + m2v2

n

)
dxdy

+
∫
RN

Vε(x)|γ(vn)|2dx
)
−
(

1
2 −

1
µ

)∫
RN

V0|γ(vn)|2
K dx

=
(

1
2 −

1
µ

) ∫
RN+1

+

(
|(−i∇x − Aε(x))vn|2 +

∣∣∣∣∂vn∂y
∣∣∣∣2 + m2v2

n

)
dxdy


+
(

1
2 −

1
µ

)∫
RN

(Vε(x) + V0)|γ(vn)|2dx −
(

1 + 1
K

)
V0

∫
RN

|γ(vn)|2dx



≥
(

1
2 −

1
µ

) ∫
RN+1

+

(
|(−i∇x − Aε(x))vn|2 +

∣∣∣∣∂vn∂y
∣∣∣∣2 + m2v2

n

)
dxdy


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−
(

1
2 −

1
µ

)(
1 + 1

K

)
V0

∫
RN

|γ(vn)|2dx

≥
(

1
2 −

1
µ

) ∫
RN+1

+

(
|(−i∇x − Aε(x))vn|2 +

∣∣∣∣∂vn∂y
∣∣∣∣2 + m2v2

n

)
dxdy


−
(

1
2 −

1
µ

)(
1 + 1

K

)
V0

 1
m

∫
RN+1

+

(
|(−i∇x − Aε(x))w|2 +

∣∣∣∣∂w∂y
∣∣∣∣2
 dxdy

+ m
∫

RN+1
+

|w|2dxdy
)

=
(

1
2 −

1
µ

)(
1 −
(

1 + 1
K

)
V0
m

) ∫
RN+1

+

(
|(−i∇x − Aε(x))2w|2 +

∣∣∣∣∂w∂y
∣∣∣∣2
)
dxdy

+
(

1
2 −

1
µ

)
m
(
m −

(
1 + 1

K

)
V0

) ∫
RN+1

+

|w|2dxdy (2.16)

Therefore, we can prove Iε(vn) > 0 since K > V0
m−V0

and µ > 2, which yields a contradiction.
(c) We �rst show that m̂ε, mε and m−1

ε are well de�ned. In fact, by (a), we know that for each w ∈
H̃1
Aε (R

N+1
+ ,C), there is a unique m̂ε(w) ∈ Nε. On the other hand, we claim that if w ∈ Nε, then w ∈

H̃1
Aε (R

N+1
+ ,C). Otherwise, we have |supp|γ(w)| ∩ Oε| = 0 and by (2.8) and (g3)-(ii), we have∫

RN+1
+

(
|(−i∇x − Aε(x))w|2 +

∣∣∣∣∂w∂y
∣∣∣∣2 + m2w2

)
dxdy

= −
∫
RN

Vε(x)|γ(w)|2dx +
∫
RN

gε(x, |γ(w)|)|γ(w)|2dx

= −
∫
RN

Vε(x)|γ(w)|2dx +
∫

RN\Oε

gε(x, |γ(w)|)|γ(w)|2dx

≤ −
∫
RN

Vε(x)|γ(w)|2dx + V0
K

∫
RN\Oε

|γ(w)|2dx

= −
∫
RN

(
Vε(x) + V0

)
|γ(w)|2dx +

(
1 + 1

K

)
V0

∫
RN

|γ(w)|2dx

≤
(

1 + 1
K

)
V0

∫
RN

|γ(w)|2dx

≤
(

1 + 1
K

)
V0

m ∫
RN+1

+

|w|2dxdy + 1
m

∫
RN+1

+

(
|(−i∇x − Aε(x))w|2 +

∣∣∣∣∂w∂y
∣∣∣∣2
)
dxdy

 . (2.17)

This implies that (
1 −
(

1 + 1
K

)
V0
m

) ∫
RN+1

+

(
|(−i∇x − Aε(x))w|2 +

∣∣∣∣∂w∂y
∣∣∣∣2
)
dxdy

+ m
(
m −

(
1 + 1

K

)
V0

) ∫
RN+1

+

|w|2dxdy

≤ 0, (2.18)
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which is impossible since K > V0
m−V0

and w ≢ 0. Therefore, m−1
ε (w) = w

‖w‖H1
Aε

∈ S̃ε is well de�ned and contin-

uous. Since
m−1
ε (mε(w)) = m−1

ε (sww) = sww
sw‖w‖H1

Aε

= w, for w ∈ S̃ε ,

we conclude that mε is a bijection. Next, we prove m̂ε : H̃1
Aε (R

N+1
+ ,C) → Nε is continuous. Let {wn} ⊂

H̃1
Aε (R

N+1
+ ,C) and w ∈ H̃1

Aε (R
N+1
+ ,C) such that wn → w in H1

Aε (R
N+1
+ ,C). By (b), there is a s0 > 0 such that

sn := swn → s0. Since snwn ∈ Nε, we have∫
RN+1

+

(
|(−i∇x − Aε(x))wn|2 +

∣∣∣∣∂wn∂y
∣∣∣∣2 + m2w2

n

)
dxdy +

∫
RN

Vε(x)|γ(wn)|2dx

=
∫
RN

gε(x, sn|γ(wn)|)|γ(wn)|2dx.

Then, by passing to the limit as n → +∞, we have∫
RN+1

+

(
|(−i∇x − Aε(x))w|2 +

∣∣∣∣∂w∂y
∣∣∣∣2 + m2w2

)
dxdy +

∫
RN

Vε(x)|γ(w)|2dx

=
∫
RN

gε(x, s0|γ(w)|)|γ(w)|2dx,

which means that s0w ∈ Nε and sw = s0. This implies m̂ε(wn) → m̂ε(w) in H̃1
Aε (R

N+1
+ ,C). So m̂ε and mε are

continuous functions.
(d) Let {wn} ⊂ S̃ε be a sequence such that dist(wn , ∂S̃ε)→ 0. Therefore, for each v ∈ ∂S̃ε and n ∈ N, we

have
|γ(wn)| ≤ |γ(wn) − γ(v)| a.e. in Oε .

Then by the Sobolev embedding, there exits constant Ct > 0 such that

|γ(wn)|Lt(Oε)

≤ inf
v∈∂S̃ε

|γ(wn) − γ(v)|Lt(Oε)

≤ Ct inf
v∈∂S̃ε

 ∫
RN+1

+

(
|(−i∇x − Aε(x))(wn − v)|2 +

∣∣∣∣∂(wn − v)
∂y

∣∣∣∣2 + (wn − v)2
)
dxdy


= Ctdist(wn , ∂S̃ε) (2.19)

for all m ∈ N and t ∈ [2, 2]]. By (g1)-(g2), (g3)-(ii) and (2.19), for s > 0, we have∫
RN

Gε(x, swn)dx ≤ C1s2
∫
Oε

|γ(wn)|2dx + C2s2]
∫
Oε

|γ(wn)|2
]

dx

+ s2 V0
K

∫
RN\Oε

|γ(wn)|2dx

≤ C3s2dist(wn , ∂S̃ε)2 + C4s2]

dist(wn , ∂S̃ε)2]

+ s2 V0
K

∫
RN\Oε

|γ(wn)|2dx.

On the other hand, from the de�nition of mε, for all s > 0, we have

lim inf
n→∞

Iε(mε(wn))
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≥ lim inf
n→∞

Iε(swn)

≥ lim inf
n→∞

s2

2

( ∫
RN+1

+

(
|(−i∇x − Aε(x))w|2 +

∣∣∣∣∂w∂y
∣∣∣∣2 + m2w2

)
dxdy

+
∫
RN

(Vε(x) + V0)|γ(w)|2dx
)
− lim sup

n→∞

(
s2V0

(
1
2 + 1

K

) ∫
RN\Oε

|γ(wn)|2dx

+ C3s2dist(wn , ∂S̃ε)2 + C4s2]

dist(wn , ∂S̃ε)2]

)

≥ lim inf
n→∞

s2
(

1
2 −

(
1
2 + 1

K

)
V0
m

) ∫
RN+1

+

(
|(−i∇x − Aε(x))w|2 +

∣∣∣∣∂w∂y
∣∣∣∣2 + m2w2

)
dxdy

+ lim inf
n→∞

s2
(
m2

2 −
(

1
2 + 1

K

)
mV0

) ∫
RN+1

+

w2dxdy

− lim sup
n→∞

(
C3s2dist(wn , ∂S̃ε)2 + C4s2]

dist(wn , ∂S̃ε)2]
)
, (2.20)

where we have used inequality (2.8). Thus, by the arbitrary of s > 0, we conclude Iε(mε(wn))→ ∞ by (2.20).
Similarly, we can get ‖mε(wn)‖H1

Aε
→∞ from (2.8).

Now we de�ne the function
Φ̂ε : H̃1

Aε (R
N+1
+ ,C)→ R

as
Φ̂ε(w) = Iε(m̂ε(w))

and denote by Φε := Φ̂ε|S̃ε . A direct conclusion of Lemma 2.4 is the following.

Proposition 2.5. Assume that assumptions (A), (V1) − (V2) and (f1) − (f4) are satis�ed. Then
(a) Φ̂ε ∈ C1(H̃1

Aε ,R) and Φε ∈ C1(S̃ε ,R).
(b) If {wn} is a (PS)c sequence of Φε, then {mε(wn)} is a (PS)c sequence of Iε. If {wn} ⊂ Nε is a bounded (PS)c

sequence of Iε, then {m−1
ε (wn)} is a (PS)c sequence of Φε.

(c) w is a critical point of Φε if and only if mε(w) is a critical point of Iε. Moreover, we have

inf
S̃ε
Φε = inf

Nε
Iε .

Proof. The details of the proof can be found in relevant material from Corollary 2.3 in [32], and we omit it
here.

As in [32], we have the following variational characterization of the in�mum of Iε underNε:

cε = inf
w∈Nε

Iε = inf
w∈H̃1

Aε

max
t>0

Iε(tw) = inf
w∈S̃ε

max
t>0

Iε(tw) > 0.

The main feature of the modi�ed functional is that it satis�es the local compactness condition, we will
show it as follows.

Lemma 2.6. Let c > 0 and {wn} be a (PS)c sequence for Iε, then {wn} is bounded H1
Aε (R

N+1
+ ,C).

Proof. Suppose {wn} is a (PS)c sequence for Iε, then Iε(wn) = c + on(1) and I′ε(wn) = on(1), where on(1)→ 0
as n →∞. Then, by a similar argument of (2.16), we can get the conclusion.
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Lemma 2.7. Let c > 0 and {wn} be a (PS)c sequence for Iε, then for each ζ > 0, there is a number R = R(ζ ) > 0
such that

lim sup
n→∞

∫
RN+1

+ \B+
R

|∇Ãεwn|
2 + m2w2

ndxdy +
∫

RN\BR

(Vε(x) + V0)|γ(wn)|2dx < ζ ,

where (x, y) ∈ B+
R := BR × {y > 0}.

Proof. For R > 0, let ηR ∈ C∞(RN+1
+ ) be such that ηR(x, y) = 0 if (x, y) ∈ B+

R/2 and ηR(x, y) = 1 if (x, y) ∈ ̸ B+
R,

with 0 ≤ ηR(x, y) ≤ 1, |∇ηR| ≤ C/R where C is constant independent on R. Since {ηRwn} is bounded in
H1
Aε (R

N+1
+ ,C), it follows that 〈I′ε(wn), ηRwn〉 = on(1). Therefore,

<
∫

RN+1
+

∇Ãεwn∇ÃεηRwn + m2wnηRwndxdy +
∫
RN

Vε(x)|γ(wn)|2ηRdx

=
∫
RN

gε(x, |γ(wn)|)|γ(wn)|2ηRdx + on(1).

Since∇ÃεηRwn = iwn∇ηR + ηR∇Ãεwn, then we have∫
RN+1

+

ηR
(
|∇Ãεwn|

2 + m2|wn|2
)
dxdy +

∫
RN

ηRVε(x)|γ(wn)|2dx

=
∫
RN

gε(x, |γ(wn)|)|γ(wn)|2ηRdx − <
∫

B+
R\B+

R/2

iwn∇ηR∇Ãεwndxdy + on(1).

Then, �xing R > 0 such that Oε ⊂ BR/2 and using (g3)-(ii) and Hölder inequality, we can get∫
RN+1

+

ηR
(
|∇Ãεwn|

2 + m2|wn|2
)
dxdy +

∫
RN

ηRVε(x)|γ(wn)|2dx

≤ V0
K

∫
RN

|γ(wn)|2ηRdx + C
R

 ∫
B+
R\B+

R/2

|∇Ãεwn|
2dxdy


1
2
 ∫
B+
R\B+

R/2

|wn|2dxdy


1
2

+ on(1)

By (2.8), we have∫
RN+1

+

ηR
(
|∇Ãεwn|

2 + m2|wn|2
)
dxdy +

∫
RN

ηR(Vε + V0)(x)|γ(wn)|2dx

≤
(

min
{(

1 −
(

1 + 1
K

)
V0
m

)
,m
(
m −

(
1 + 1

K

)
V0

)})−1(C
R ‖wn‖

2
H1
Aε

+ on(1)
)
.

We get the conclusion by choosing R large, using he boundedness of {wn} proved in Lemma 2.6 and passing
to the limit in the last inequality.

Lemma 2.8. The functional Iε satis�es the Palais-Smale condition for any level c ∈ R.

Proof. By Lemma 2.6, we know {wn} is bounded in H1
Aε (R

N+1
+ ,C) and thus we can suppose that wn ⇀ w

weakly in H1
Aε (R

N+1
+ ,C). In view of I′ε(wn) → 0, the local compactness of H1

Aε (R
N+1
+ ,C) and the subcritical

growth of g, one has I′ε(w) = 0, that is∫
RN+1

+

(
|∇Ãεw|

2 + m2|w|2
)
dxdy +

∫
RN

Vε(x)|γ(w)|2dx =
∫
RN

gε(x, |γ(w)|)|γ(w)|2dx. (2.21)
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On the other hand, using Lemma 2.7, we can prove that∫
RN

gε(x, |γ(wn)|)|γ(wn)|2dx →
∫
RN

gε(x, |γ(w)|)|γ(w)|2dx, (2.22)

∫
RN

(Vε(x) + V0)|γ(wn)|2dx →
∫
RN

(Vε(x) + V0)|γ(w)|2dx, (2.23)

∫
RN

V0|γ(wn)|2dx →
∫
RN

V0|γ(w)|2dx, (2.24)

as n →∞. Combining (2.21)-(2.24) and I′ε(wn)→ 0, we have wn → w strongly in H1
Aε (R

N+1
+ ,C).

We �nish this section by showing Φε satis�es the (PS)c condition.

Corollary 2.9. The functional Φε given in Proposition 2.5 satis�es the (PS)c condition on S̃ε for any level c ∈ R.

Proof. Let {wn} ⊂ S̃ε be a (PS)c sequence forΦε. Then,Φε(wn)→ c and ‖Φ′
ε(wn)‖* → 0, where ‖ ·‖* denotes

the norm in the dual space of
(
Twn S̃ε

)*
. By Proposition 2.5-(b),we know {mε(wn)} is a (PS)c sequence for Iε in

H1
Aε (R

N+1
+ ,C). Then, Lemma 2.8 implies that there is a w ∈ S̃ε such that mε(wn)→ mε(w) in H1

Aε (R
N+1
+ ,C) by

passing to a subsequence. FromLemma 2.4-(c), we conclude thatwn → w in S̃ε. This completes the proof.

3 Multiplicity result of the modi�ed problem
In this section, we prove a multiplicity result for problem (2.10). In what the follows we shall assume that
δ > 0 small such that Mδ ⊂ O, where O is given in (V2). We start by considering the limit problem related to
(2.10), that is, the following problem{

−∆w + m2w = 0 in RN+1
+ ,

− ∂w∂y = V0w + f (|w|)w in RN = ∂RN+1
+ . (3.1)

The solutions of equation (3.1) are critical points of the functional given as

I0(w) = 1
2

∫
RN+1

+

(
|∇xw|2 +

∣∣∣∣∂w∂y
∣∣∣∣2 + m2w2

)
dxdy

− 1
2

∫
RN

V0|γ(w)|2dx −
∫
RN

F(|γ(w)|)dx. (3.2)

Next, we de�ne the Nehari manifoldN0 related to I0. We say w ∈ N0 means w ∈ H1(RN+1
+ ) and satis�es∫

RN+1
+

(
|∇xw|2 +

∣∣∣∣∂w∂y
∣∣∣∣2 + m2w2

)
dxdy −

∫
RN

V0|γ(w)|2dx =
∫
RN

f (|γ(w)|)|γ(w)|2dx.

We denote by H̃1(RN+1
+ ) the open subset of H1(RN+1

+ ) given by

H̃1(RN+1
+ ) = {w ∈ H1(RN+1

+ ) : |supp|γ(w)|| > 0},

and S̃0 = S0 ∩ H̃1(RN+1
+ ), where S0 is the unit sphere of H1(RN+1

+ ). As in Section 2, S̃0 is a non-complete C1,1-
manifold of codimension 1, modeled on H1(RN+1

+ ) and contained in the open H̃1(RN+1
+ ). Then, H1(RN+1

+ ) =
Tw S̃0

⊕
Rw for each w ∈ S̃0, where

Tw S̃0 = {v ∈ H1(RN+1
+ ) : 〈w, v〉H1 = 0}.

In the sequel, we state without proof of the following Lemma 3.1 and Proposition 3.2. The proofs are
similar to those of Lemma 2.4 and Proposition 2.5.
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Lemma 3.1. Assume that (V1) and (f1) − (f4) are satis�ed. Then the following properties hold:
(a) For each w ∈ H̃1(RN+1

+ ), let hw : R+ → R be de�ned as hw(s) = I0(sw). Then there exists a unique sw > 0
such that h′w(s) > 0 in (0, sw) and h′w(s) < 0 in (sw , ∞).

(b) There is a t > 0 independent of w such that sw > t for all w ∈ S̃0. Moreover, for each compact setW ⊂ S̃0,
there is CW > 0 such that sw ≤ CW for all w ∈W.

(c) The map m̂ : S̃0 → N0 given by m̂(w) = sww is continuous and m := m̂|S̃ε is a homeomorphism between S̃0

andN0. Moreover, m−1(w) = w
‖w‖H1

.

(d) If there is a sequence {wn} ⊂ S̃0 such that dist(wn , ∂S̃0)→ 0, then ‖m(wn)‖H1 →∞ and I0(m(wn))→∞.

Proposition 3.2. Assume that assumptions (V1) and (f1) − (f4) are satis�ed. Then
(a) Φ̂0 ∈ C1(H̃1,R) and Φ0 ∈ C1(S̃0,R).
(b) If {wn} is a (PS)c sequence of Φ0, then {m(wn)} is a (PS)c sequence of I0. If {wn} ⊂ N0 is a bounded (PS)c

sequence of I0, then {m−1(wn)} is a (PS)c sequence of Φ0.
(c) w is a critical point of Φ0 if and only if m(w) is a critical point of I0. Moreover, we have

inf
S̃0

Φ0 = inf
N0

I0.

As in the previous section, we have the following variational characterization of the in�mum of I0 underN0:

c0 = inf
w∈N0

I0 = inf
w∈H̃1

max
t>0

I0(tw) = inf
w∈S̃0

max
t>0

I0(tw) > 0. (3.3)

The next lemma allows us to assume the weak limit of a (PS)c sequence is nontrivial.

Lemma 3.3. Let {wn} ⊂ H1(RN+1
+ ) be a (PS)c sequence for I0 for any level c ∈ R and such that wn ⇀ 0 weakly

in H1(RN+1
+ ). Then, one of the following alternatives holds.

(a) wn → 0 strongly in H1(RN+1
+ ),or

(b) there exists a sequence {zn} ⊂ RN and constants R > 0 and β > 0 such that

lim inf
n→∞

∫
BR(zn)

|γ(wn)|2dx ≥ β > 0.

Proof. Suppose the case (b) doesn’t true. It follows that for all R > 0, we have

lim
n→∞

sup
z∈RN

∫
BR(z)

|γ(wn)|2dx = 0.

Due to Lions’ Lemma (see for example [36]), we have

γ(wn)→ 0 in Lq(RN) for 2 < q < 2].

Therefore, by (f1)-(f2), we have ∫
RN

f (|γ(wn)|)|γ(wn)|2dx → 0.

Since 〈I′0(wn), wn〉 → 0 as n →∞, that is,∫
RN+1

+

(
|∇xwn|2 +

∣∣∣∣∂wn∂y
∣∣∣∣2 + m2w2

n

)
dxdy =

∫
RN

V0|γ(wn)|2dx + on(1).

Combining this equality and (2.8), we have(
1 − V0

m

) ∫
RN+1

+

(
|∇xwn|2 +

∣∣∣∣∂wn∂y
∣∣∣∣2
)
dxdy + m(m − V0)

∫
RN+1

+

w2
ndxdy = on(1),

which implies that ‖wn‖H1 → 0 strongly and this lemma proved.
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Next, we can obtain a nontrivial ground state solution of equation (3.1).

Theorem 3.4. Let {wn} ⊂ H1(RN+1
+ ) be a (PS)c sequence for I0 for any level c ∈ R. Then problem (3.1) has a

nontrivial ground state solution.

Proof. By Lemma 2.6, we know that {wn} is bounded in H1(RN+1
+ ). Then, up to a subsequence, wn ⇀ w

weakly in H1(RN+1
+ ) and γ(wn)→ γ(w) in Lploc(R

N) and γ(wn)→ γ(w) a.e. inRN . By Lemma 3.3, we know that
problem (3.1) has a nontrivial ground state.

The next result is a compactness result of problem (3.1) which will be used later.

Lemma 3.5. Let {wn} ⊂ N0 be such that I0(wn)→ c0. Then {wn} has a convergent subsequence in H1(RN+1
+ ).

Proof. Since {wn} ⊂ N0, it follows from Lemma 3.1-(c), Proposition 3.2-(c) and the de�nition of c0 in (3.3)
that

vn = m−1(wn) = wn
‖wn‖H1

∈ S̃0, n ∈ N,

and
Φ0(vn) = I0(wn)→ c0 = inf

w∈S̃0

Φ0(w).

Although S̃0 is not complete, by Lemma 3.1-(d) we can still use the Ekeland’s variational principle [37] to the
functional E0 : H → R ∪ {∞}, given as E0(w) := Φ̂0(w) if w ∈ S̃0 and E0(w) := ∞ if w ∈ ∂S̃0, where
H = S̃0 is the complete metric space equipped with the metric d(w, v) := ‖w − v‖H1 . In fact, by Lemma 3.1-(d),
E0 ∈ C(H,R ∪ {∞}) and E0 is bounded below by Proposition 3.2-(c). Therefore, we can conclude that there
is a sequence {ṽn} ⊂ S̃0 such that {ṽn} is a (PS)c0 sequence for Φ0 on S̃0 and

‖wn − ṽn‖H1 → 0 as n →∞. (3.4)

We conclude the result by applying Proposition 3.2, Theorem 3.4 and processing a similar argument as the
proof of Corollary 2.9.

In the following, we will relate the number of nontrivial solution of (2.10). So we consider δ > 0 such that
Mδ ⊂ O and choose η ∈ C∞0 (R+, [0, 1]) satisfying η ≡ 1 in [0, δ2 ] and η ≡ 0 in [δ, ∞).

For any z ∈ M, we de�ne

Ψε,z(x, y) := η(|(εx − z, y)|)w
( εx − z

ε , y
)

exp
(
iτz
( εx − z

ε , y
))

,

where

τz(x, y) = Ã(x, y) · (x, y) = (A(x), 0) · (x, y) =
N∑
j=1

Aj(x)xj ,

and sε > 0 such that
max
s≥0

Iε(sΨε,z) = Iε(sεΨε,z)

where w is a solution of (3.1) from Theorem 3.4 satisfying I0(w) = c0.
Let Θε : M → Nε be as

Θε(z) = sεΨε,z .

The energy of the above function has the following behavior:

Lemma 3.6. Uniformly for z ∈ M, we have

lim
ε→0

Iε(Θε(z)) = c0.
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Proof. We prove the lemma by contradiction arguments and assume that there is some δ0 > 0, {zn} ⊂ M and
εn → 0 such that

|Iεn (Θεn (zn)) − c0| ≥ δ0. (3.5)

Observe that for each n ∈ N and for all x′ ∈ Bδ/εn (0), we have εnx′ ∈ Bδ(0). Then, we have

εnx′ + zn ∈ Bδ(zn) ⊂ Mδ ⊂ O.

By using the change of variable x′ := (εnx − zn)/εn, we can write

Iεn (Θεn (zn)) = s2
εn
2

( ∫
RN+1

+

(
|∇xΨεn ,zn |2 +

∣∣∣∣∂Ψεn ,zn∂y

∣∣∣∣2 + m2Ψ2
εn ,zn

)
dxdy

+
∫
RN

Vεn |γ(Ψεn ,zn )|2dx
)
−
∫
RN

Gεn (x, sεn |γ(Ψεn ,zn )|)dx

= s2
εn
2

( ∫
RN+1

+

(
|∇xΨεn ,zn |2 +

∣∣∣∣∂Ψεn ,zn∂y

∣∣∣∣2 + m2Ψ2
εn ,zn

)
dxdy

+
∫
RN

Vεn |γ(Ψεn ,zn )|2dx
)
−
∫
RN

F(sεn |γ(η(|(εnx′, 0)|)w(x′, 0))|)dx′. (3.6)

Since Θεn (zn) ∈ Nε and g = f in O, we have

s2
εn

 ∫
RN+1

+

(
|∇xΨεn ,zn |2 +

∣∣∣∣∂Ψεn ,zn∂y

∣∣∣∣2 + m2Ψ2
εn ,zn

)
dxdy +

∫
RN

Vεn |γ(Ψεn ,zn )|2dx


=
∫
RN

gεn (x, sεn |γ(Ψεn ,zn )|)|sεn γ(Ψεn ,zn )|2dx

=
∫
RN

f (sεn |γ(η(|(εnx′, 0)|)w(x′, 0))|)|sεn γ(η(|(εnx′, 0)|)w(x′, 0))|2dx′,

that is, ∫
RN+1

+

(
|∇xΨεn ,zn |2 +

∣∣∣∣∂Ψεn ,zn∂y

∣∣∣∣2 + m2Ψ2
εn ,zn

)
dxdy +

∫
RN

Vεn |γ(Ψεn ,zn )|2dx

=
∫
RN

f (sεn |γ(η(|(εnx′, 0)|)w(x′, 0))|)|γ(η(|(εnx′, 0)|)w(x′, 0))|2dx′. (3.7)

If sεn →∞, by the boundedness of the Ψεn ,zn and (f4), we have∫
RN+1

+

(
|∇xΨεn ,zn |2 +

∣∣∣∣∂Ψεn ,zn∂y

∣∣∣∣2 + m2Ψ2
εn ,zn

)
dxdy +

∫
RN

Vεn |γ(Ψεn ,zn )|2dx

=
∫
RN

f (sεn |γ(η(|(εnx′, 0)|)w(x′, 0))|)|γ(η(|(εnx′, 0)|)w(x′, 0))|2dx′

≥
∫

Bδ/2(0)

f (sεn |γ(w(x′, 0))|)|γ(w(x′, 0))|2dx′

≥ f (sεna)
∫

Bδ/2(0)

|γ(w(x′, 0))|2dx′ →∞



Aliang Xia, Multiplicity and concentration results for magnetic relativistic Schrödinger equations | 1177

as n →∞, where a = infx∈Bδ/2(0) |γ(w(x′, 0))|. This yields a contradiction. Therefore, sεn → s0 ≥ 0.
By (3.7), (2.8) and (f1), we can get s0 > 0. Next, we claim that s0 = 1. Indeed, by applying the Dominated

Convergence Theorem and taking a similar argument as Lemma 3.2 in [17], we have∫
RN+1

+

(
|∇xΨεn ,zn |2 +

∣∣∣∣∂Ψεn ,zn∂y

∣∣∣∣2 + m2Ψ2
εn ,zn

)
dxdy

→
∫

RN+1
+

(
|∇xw|2 +

∣∣∣∣∂w∂y
∣∣∣∣2 + m2w2

)
dxdy, (3.8)

∫
RN

Vεn |γ(Ψεn ,zn )|2dx → −V0

∫
RN

|γ(w)|2dx, (3.9)

∫
RN

f (|γ(Ψεn ,zn )|)|Ψεn ,zn |2dx →
∫
RN

f (|γ(w)|)|γ(w)|2dx. (3.10)

Therefore, by passing the limit in (3.7), we can obtain that∫
RN+1

+

(
|∇xw|2 +

∣∣∣∣∂w∂y
∣∣∣∣2 + m2w2

)
dxdy − V0

∫
RN

|γ(w)|2dx =
∫
RN

f (s0|γ(w)|)|γ(w)|2dx. (3.11)

On the other hand, since w is a solution of (3.1), we have∫
RN+1

+

(
|∇xw|2 +

∣∣∣∣∂w∂y
∣∣∣∣2 + m2w2

)
dxdy − V0

∫
RN

|γ(w)|2dx =
∫
RN

f (|γ(w)|)|γ(w)|2dx. (3.12)

Combining (3.11)-(3.12), we have ∫
RN

[f (s0|γ(w)|) − f (|γ(w)|)]|γ(w)|2dx = 0. (3.13)

By (f4), we know s0 = 1 and the claim is proved.
Finally, let n →∞ in (3.6), we have

lim
n→∞

Iεn (Θεn (zn)) = I0(w) = c0,

which contradicts to (3.5). This completes the proof.

For the δ > 0 given before Lemma 3.6, choose ρ = ρ(δ) > 0 such that Mδ ⊂ Bρ(0). De�ne χ : RN → RN as
χ(x) = x if |x| ≤ ρ and χ(x) = ρ x

|x| if |x| ≥ ρ. Then let us consider the barycenter map βε : Nε → RN given by

βε(w) =
∫
RN χ(εx)|γ(w)|2dx∫

RN |γ(w)|2dx
.

Since O ⊂ Bρ(0), by the de�nition of χ and Lebesgue’s Theorem, we conclude that

lim
ε→0

βε(Θε(z)) = z uniformly in z ∈ O. (3.14)

The next compactness result is fundamental for proving that the solutions of the modi�ed problem are
solution of the original problem.

Proposition 3.7. Let εn → 0 and {wn} ⊂ Nεn be such that Iεn (wn)→ c0. Then there exists a sequence {z̃n} ⊂
RN such that vn(x) = wn(x + z̃n) has a convergent subsequence in H1(RN+1

+ ). Moreover, up to a subsequence,
zn := εn z̃n → z0 ∈ O.
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Proof. By Lemma 2.6, we know that ‖wn‖H1
Aεn
≤ C for n ∈ N. Note that c0 > 0, and since ‖wn‖H1

Aεn
→ 0 would

imply Iεn (wn) → 0, we can argue as in Lemma 3.3 to get a subsequence {z̃n} ⊂ RN and constants R, β > 0
such that

lim inf
n→∞

∫
BR(z̃n)

|γ(wn)|2dx ≥ β > 0.

Let vn(x) = wn(x + z̃n), then {vn} is also bounded and therefore, along a subsequence, we have vn ⇀ v ≡ ̸ 0
weakly in H1(RN+1

+ ). Take tn > 0 such that ṽn := tnvn ∈ N0, and set zn = εn z̃n. Since wn ∈ Nεn , we have

c0 ≤ I0(ṽn) ≤ 1
2

∫
RN+1

+

(
|∇x ṽn|2 +

∣∣∣∣∂ṽn∂y
∣∣∣∣2 + m2 ṽ2

n

)
dxdy

+ 1
2

∫
RN

V(εnx + zn)|γ(ṽn)|2dx −
∫
RN

F(|γ(ṽn)|)dx

≤ t
2
n

2

∫
RN+1

+

(
|∇xwn|2 +

∣∣∣∣∂wn∂y
∣∣∣∣2 + m2w2

n

)
dxdy

+ t2n
2

∫
RN

V(εnx)|γ(wn)|2dx −
∫
RN

G(εnx, tn|γ(wn)|)dx

= Iεn (tnwn)
≤ Iεn (wn) = c0 + on(1), (3.15)

where implies limn→∞ I0(ṽn) = c0. Moreover, {ṽn} is bounded in H1(RN+1
+ ) and ṽn ⇀ ṽ. We may assume

that tn → t* > 0. By the uniqueness of the weak limit, we have that ṽ = t*v ≢ 0. By Lemma 3.5, ṽn → ṽ in
H1(RN+1

+ ), and thus vn → v in H1(RN+1
+ ). Moreover,

I0(ṽ) = c0 and 〈I′0(ṽ), ṽ〉 = 0.

Next, we prove that {zn} has a bounded subsequence. In fact, suppose by contradiction that |zn| → ∞.
Choose R > 0 such that O ⊂ BR(0). Then for n large enough, we have |zn| > 2R and for each x ∈ BR/εn (0) we
have

|εnx + zn| ≥ |zn| − |εnx| ≥ 2R − R = R.

Therefore, by vn → v in H1(RN+1
+ ), the above expression, the de�nition of g and Lebesgue’s theorem, we can

get ∫
RN+1

+

(
|∇xvn|2 +

∣∣∣∣∂vn∂y
∣∣∣∣2 + m2v2

n

)
dxdy −

∫
RN

V0|γ(vn)|2dx

≤
∫
RN

g(εnx + zn , |γ(vn)|)|γ(vn)|2dx

=
∫

BR/εn (0)

f̃ (|γ(vn)|)|γ(vn)|2dx +
∫

RN\BR/εn (0)

g(εnx + zn , |γ(vn)|)|γ(vn)|2dx

≤
∫

BR/εn (0)

f̃ (|γ(vn)|)|γ(vn)|2dx +
∫

RN\BR/εn (0)

f (|γ(vn)|)|γ(vn)|2dx

≤ V0
K

∫
RN

|γ(vn)|2dx + on(1). (3.16)

Together (3.16) and (2.8), we have(
1 −
(

1 + 1
K

)
V0
m

) ∫
RN+1

+

(
|∇xvn|2 +

∣∣∣∣∂vn∂y
∣∣∣∣2
)
dxdy
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+ m
(
m −

(
1 + 1

K

)
V0

) ∫
RN+1

+

|vn|2dxdy

≤ on(1). (3.17)

Then, we have vn → 0 in H1(RN+1
+ ), which contradicts with v ≢ 0. So {zn} is bounded and we can assume

that zn → z0 ∈ RN . If z0 ∉ O, we can proceed as above to conclude that vn → 0. Then, we have that z0 ∈ O.
Finally, we show that V(z0) = −V0, we can suppose by contradiction that −V0 < V(z0). Then, by ṽn → ṽ

in H1(RN+1
+ ), Fatou’s Lemma and the invariance of RN by translation, we have

c0 = I0(ṽ) < 1
2

∫
RN+1

+

(
|∇x ṽ|2 +

∣∣∣∣ ∂ṽ∂y
∣∣∣∣2 + m2 ṽ2

)
dxdy

+ 1
2

∫
RN

V(z0)|γ(ṽ)|2dx −
∫
RN

F(|γ(ṽ)|)dx

= 1
2

∫
RN+1

+

(
|∇x ṽ|2 +

∣∣∣∣ ∂ṽ∂y
∣∣∣∣2 + m2 ṽ2

)
dxdy

+ 1
2

∫
RN

(V(z0) + V0)|γ(ṽ)|2dx − 1
2

∫
RN

V0|γ(ṽ)|2dx −
∫
RN

F(|γ(ṽ)|)dx

≤ lim inf
n→∞

{
1
2

∫
RN+1

+

(
|∇x ṽn|2 +

∣∣∣∣∂ṽn∂y
∣∣∣∣2 + m2 ṽ2

n

)
dxdy

+ 1
2

∫
RN

V(εnx + zn)|γ(ṽn)|2dx −
∫
RN

F(|γ(ṽn)|)dx
}

= lim inf
n→∞

{
t2n
2

∫
RN+1

+

(
|∇xwn|2 +

∣∣∣∣∂wn∂y
∣∣∣∣2 + m2w2

n

)
dxdy

+ t2n
2

∫
RN

V(εnx)|γ(wn)|2dx −
∫
RN

G(εnx, tn|γ(ṽn)|)dx
}

≤ lim inf
n→∞

Iεn (tnwn)

≤ lim inf
n→∞

Iεn (wn) = c0,

which yields a contradiction. Therefore, V(z0) = −V0 and z ∈ M. The condition (V2) implies that z0 ∈ ̸ ∂M
and thus z0 ∈ M. This completes the proof.

Now, we consider the following subset of the Nehari manifold

Ñε = {w ∈ Nε : Iε(w) ≤ c0 + h(ε)},

where h : R+ → R+ is such that h(ε) → 0+ if ε → 0+. Given z ∈ M, we can use Lemma 3.6 to get that
h(ε) = |Iε(Θε(z)) − c0| is such that h(ε)→ 0 as ε → 0+. Therefore, Θε(z) ∈ Ñε and Ñε ≠ ∅ for any ε > 0.

We present below an interesting relation between Ñε and the barycenter map.

Lemma 3.8. For each δ > 0, there holds that

lim
ε→0

sup
w∈Ñε

dist(βε(w),Mδ) = 0.

Proof. Let {εn} ⊂ R+ be such that εn → 0, then there exists {wn} ⊂ Ñε such that

dist(βε(wn),Mδ) = lim
ε→0

sup
w∈Ñε

dist(βε(w),Mδ) + on(1).
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So it su�ces to �nd a sequence {zn} ⊂ Mδ such that

|βε(wn) − zn| = on(1). (3.18)

Since I0(twn) ≤ Iε(twn) for all t ≥ 0 and {wn} ⊂ Ñεn ⊂ Nεn , we have

c0 ≤ cεn ≤ Iεn (wn) ≤ c0 + h(εn).

Then, we can obtain that Iεn (wn) → c0. So we can invoke Proposition 3.7 to obtain a sequence {z̃n} ⊂ RN

such that zn = εn z̃n ∈ Mδ and zn → z0 ∈ M. Therefore,

βεn (wn) =
∫
RN χ(εnx)|γ(wn)|2dx∫

RN |γ(wn)|2dx

=
∫
RN χ(εnx + zn)|γ(wn)|2dx∫

RN |γ(wn)|2dx

= zn +
∫
RN (χ(εnx + zn) − zn)|γ(wn)|2dx∫

RN |γ(wn)|2dx
.

Since εnx + zn → z0 ∈ Mδ, we see that βεn (wn) = zn + on(1) and thus the sequence {zn} satis�es (3.18) and
the lemma is proved.

We �nish this section by presenting a relation between the topology ofM and the number of solutions of the
modi�ed equation (2.10). Since S̃ε is not a complete metric space, we will invoke the abstract category result
in [32].

Theorem 3.9. Assume that (A), (V1) − (V2) and (f1) − (f4) hold. Then for any δ > 0, there exists ε̂δ > 0 such
that problem (2.10) has at least catMδ (M) solutions provides ε ∈ (0, ε̂δ).

Proof. For each ε > 0, we de�ne the function πε : M → S̃ε by

πε(z) = m−1
ε (Θε(z)), for any z ∈ M.

By Lemma 3.6 and Proposition 2.5-(c), we have

lim
ε→0

Φε(πε(z)) = lim
ε→0

Iε(Θε(z)) = c0, uniformly in z ∈ M.

Therefore, there is number ε̂ > 0 such that the set̂̃Sε = {w ∈ S̃ε : Φε(w) ≤ c0 + h(ε)}

is nonempty for all ε ∈ (0, ε̂) since πε(M) ⊂ ̂̃Sε. Here h is given in the de�nition of Ñε.
From the above considerations, together with Lemma 3.6, Lemma 2.4-(c), (3.14) and Lemma 3.8, we see

that there exists a ε̂ = ε̂δ > 0 such that thediagramof continuousmappingsbelow iswell-de�ned for ε ∈ (0, ε̂)

M Θε−−→ Θε(M) m−1
ε−−→ πε(M) mε−−→ Θε(M) βε−→ Mδ .

From (3.14), we can choose a function τ(ε, z) with |τ(ε, z)| < δ/2 uniformly in z ∈ M for all ε ∈ (0, ε̂), such
that βε(Θε(z)) = z + τ(ε, z) for all z ∈ M. De�ne H(t, z) = z + (1 − t)τ(ε, z). Then H : [0, 1] × M → Mδ is
continous. Observe that H(0, z) = βε(Θε(z)), H(1, z) = z for all z ∈ M. So H(t, z) is a homotopy between
βε ◦ Θε = (βε ◦ mε) ◦ πε and the inclusion map id : M → Mδ. Therefore, we have

catπε(M)πε(M) ≥ catMδ (M). (3.19)

It follows from Corollary 2.9 and the category abstract theorem (see [32], Corollary 2.8) that Φε has at least
catπε(M)πε(M) critical points on ̂̃Sε provides c = cε ≤ c0 +h(ε) = d and K = ϕε(M). Then, by Proposition 2.5-(c)
and (3.19), we conclude that Iε admits at least catMδ (M) critical points in Ñε. Finally, we know (2.10) has at
least catMδ (M) solutions.



Aliang Xia, Multiplicity and concentration results for magnetic relativistic Schrödinger equations | 1181

4 Proof of the main results
In this section, wewill prove ofmain results. The idea is to show the solutions obtained in Theorem 3.9 satisfy
the estimate wε(x) ≤ a for any x ∈ Ocε as ε is small. This fact implies that these solutions are indeed solutions
of the original problem (2.7). The following lemma plays an important role in the study of behavior of the
maximum points of the solutions, whose proof is related to the Morse iterative method [31] (see also [18, 33,
38]).

Lemma 4.1. Let εn → 0+ and wn ∈ Ñεn be s solution of (2.10) with ε = εn. Then Iεn (wn) → c0 and vn(x, y) =
wn(x + z̃n , y) satis�es γ(vn) ∈ L∞(RN). Moreover,

lim
|x|→∞

γ(vn) = 0.

Proof. Since Iεn (wn) ≤ c0 + h(εn) with limn→∞ h(εn) = 0, we can argue as in the proof of equation (3.15) to
conclude that Iεn (wn)→ c0.

Set
vL,n(x, y) := min{|vn(x, y)|, L}, φL,n := v2(β−1)

L,n vn .

with β > 1 to be determined later.
Since

∇ÃεnφL,n = v2(β−1)
L,n ∇Ãεn vn + 2(β − 1)v2(β−1)−1

L,n ∇|vn|χ{|vn|<L}vn

= v2(β−1)
L,n ∇Ãεn vn + 2(β − 1)v2(β−1)−1

L,n ∇vL,nvn ,

then

∇Ãεn vn∇ÃεnφL,n = w2(β−1)
L,n |∇Ãεn vn|

2 + 2(β − 1)v2(β−1)−1
L,n vn∇vL,n∇Ãεn vn .

By a direct computation (see for example [20]), we have

<
(
vn∇Ãεn vn

)
= |vn|∇|vn|.

Therefore, by the diamagnetic inequality, we obtain

<
(
∇Ãεn vn∇ÃεnφL,n

)
≥ v2(β−1)

L,n |∇|vn||2 + 2(β − 1)v2(β−1)−1
L,n |vn|∇vL,n∇|vn|

= v2(β−1)
L,n |∇|vn||2 + 2(β − 1)v2(β−1)

L,n |∇vL,n|2.

This inequality, by the de�nition of φL,n and 〈I′εn (vn), φL,n〉 = 0 imply that∫
RN+1

+

v2(β−1)
L,n |∇|vn||2dxdy + 2(β − 1)

∫
RN+1

+

v2(β−1)
L,n |∇vL,n|2dxdy

≤
∫
RN

(
gεn (x, |γ(vn)|) − Vεn (x)

)
|γ(vL,n)|2(β−1)|γ(vn)|2dx

− m2
∫

RN+1
+

v2(β−1)
L,n v2

ndxdy

≤
∫
RN

(
gεn (x, |γ(vn)|) + V0(x)

)
|γ(vL,n)|2(β−1)|γ(vn)|2dx, (4.1)

here we use the fact V + V0 ≥ 0 for all x ∈ Rn in the last inequality.
By (2.12), then from (4.1) we have∫

RN+1
+

v2(β−1)
L,n |∇|vn||2dxdy + 2(β − 1)

∫
RN+1

+

v2(β−1)
L,n |∇vL,n|2dxdy
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≤ (ε + V0)
∫
RN

|γ(vL,n)|2(β−1)|γ(vn)|2dx + Cε
∫
RN

|γ(vL,n)|2(β−1)|γ(vn)|2
]

dx, (4.2)

for some ε > 0.
On the other hand, let ωL,n = vβ−1

L,n |vn| and then

∇ωL,n = vβ−1
L,n∇|vn| + (β − 1)vβ−2

L,n |vn|∇vL,n . (4.3)

We deduce from (4.2) and (4.3) that∫
RN+1

+

|∇ωL,n|2dxdy

≤ Cβ

 ∫
RN+1

+

v2(β−1)
L,n |∇|vn||2dxdy + 2(β − 1)

∫
RN+1

+

v2(β−1)
L,n |∇vL,n|2dxdy


≤ Cβ

(ε + V0)
∫
RN

|γ(vL,n)|2(β−1)|γ(vn)|2dx + Cε
∫
RN

|γ(vL,n)|2(β−1)|γ(vn)|2
]

dx

 , (4.4)

for positive constant C. By the Sobolev embedding, we have∫
RN

|γ(ωL,n)|2
]

 2
2]

≤ C
∫

RN+1
+

|∇ωL,n|2dxdy, (4.5)

where constant C > 0, see for example [39]. So combining (4.4) and (4.5), we have∫
RN

|γ(vβ−1
L,n |vn|)|

2]

 2
2]

≤ Cβ

(ε + V0)
∫
RN

|γ(vL,n)|2(β−1)|γ(vn)|2dx + Cε
∫
RN

|γ(vL,n)|2(β−1)|γ(vn)|2
]

dx

 , (4.6)

for constant C > 0.
Next, we claim |γ(|vn|)| ∈ L

(2])2
2 (RN). In fact, choosing β = 2]

2 in (4.6) and using Hölder inequality, we
have ∫

RN

|γ(v
2]−2

2
L,n |vn|)|

2]

dx

 2
2]

≤ Cβ

(ε + V0)
∫
RN

|γ(vL,n)|2
]−2|γ(vn)|2dx + Cε

∫
RN

|γ(vL,n)|2
]−2|γ(vn)|2

]

dx


≤ Cβ(ε + V0)

∫
RN

|γ(vL,n)|2
]−2|γ(vn)|2dx

+ CCεβ

∫
RN

(
|γ(vL,n)|

2]−2
2 |γ(vn)|

)2]

dx

 2
2]
∫
RN

(
|γ(vn)|

)2]

dx

 2]−2
2]

.

Choosing proper ε > 0, we can obtain∫
RN

|γ(v
2]−2

2
L,n |vn|)|

2]

dx

 2
2]

≤ C
∫
RN

|γ(vL,n)|2
]−2|γ(vn)|2dx,
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for positive constant C. Let L → +∞, it yields∫
RN

|γ(|vn|)|
(2])2

2 dx

 2
2]

≤ C
∫
RN

|γ(vn)|2
]

dx < +∞. (4.7)

Now we let
t = (2])2

2(2] − 2) ,

it follows that 2t/(t − 1) < 2]. We estimate the right-and side of (4.6). By Hölder inequality

∫
RN

|γ(vL,n)|2(β−1)|γ(vn)|2
]

dx ≤

∫
RN

|γ(vn)|(2
]−2)tdx

 1
t
∫
RN

|γ(vn)|
2βt
t−1 dx

 t−1
t

≤ C

∫
RN

|γ(vn)|
2βt
t−1 dx

 t−1
t

. (4.8)

On the other hand, set a = 2](2]−1)
2(β−1) and b = 2β − a, we see that a, b ∈ (0, 2]).Then by Young’s inequality, we

have ∫
RN

|γ(vn)|2βdx ≤ a
2]

∫
RN

|γ(vn)|2
]

dx + 2] − a
2]

∫
RN

|γ(vn)|
2]b

2]−a dx

≤ C

∫
RN

|γ(vn)|2
]

dx +
∫
RN

|γ(vn)|2β−2+2]

dx

 , (4.9)

for C > 0.
Combining (4.6), (4.8) and (4.9), we have∫

RN

|γ(vβ−1
L,n |vn|)|

2]

 2
2]

≤ Cβ2

∫
RN

|γ(vn)|
2βt
t−1 dx

 t−1
t

,

namely, ∫
RN

|γ(|vn|)|β2]

 1
β

≤ C
2]
2β β

2]
β

∫
RN

|γ(vn)|
2βt
t−1 dx


(t−1)2]

2tβ

. (4.10)

For i ≥ 0, we de�ne βi+1 inductively so that

2βi+1t
t − 1 = βi2],

that is,

βi+1 = 2](t − 1)
2t βi ,

and β1 = 2]/2. Therefore, we have∫
RN

|γ(|vn|)|βi+12]

 1
βi+1

≤ C
2]

2βi+1 β
2]
βi+1
i+1

∫
RN

|γ(vn)|βi2
]

dx

βi

. (4.11)

Let

Ai =

∫
RN

|γ(vn)|βi2
]

dx

βi

.
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Iterating by (4.11), w obtain

Ai+1 ≤ Π i+1
m=2C

2]
2βm β

2]
βm
m A1 ≤ C0A1.

This implies that
‖γ(|vn|)‖L∞(RN ) ≤ C0A1.

We complete the proof by using the fact

A1 =

∫
RN

|γ(vn)|
(2])2

2 dx

 2
2]

< ∞.

By a standard arguments as Proposition 2.5 in [20] and Theorem 7.1 in [40], we can prove that γ(vn) is
exponential decay and we omit the details here.

We are now ready to prove the main result of this paper.

Proof of Theorem 1.1. We �x a small δ > 0 such thatMδ ⊂ O. We �rst claim that there exists some ε̃δ > 0 such
that for any ε ∈ (0, ε̃δ) and any solution wε ∈ Ñε of problem (2.10), there holds

‖γ(wε)‖L∞(RN\Oε) < a. (4.12)

We prove this claim by a contradiction argument and suppose that, there exists subsequence εn → 0+, wn :=
wεn ∈ Ñεn such that I′εn (wn) = 0 and

‖γ(wn)‖L∞(RN\Oεn ) ≥ a. (4.13)

By Lemma 4.1, we know Iεn (wn) → c0 and thus we can invoke Proposition 3.7 to obtain a sequence z̃n ⊂ RN

such that εn z̃n → z0 ∈ M.
If we take r > 0 such that Br(z0) ⊂ B2r(z0) ⊂ O we have

Br/εn (z0/εn) = 1
εn
Br(z0) ⊂ Oεn .

Moreover, for any z ∈ Br/εn (z̃n), there holds∣∣∣z − z0
εn

∣∣∣ ≤ |z − z̃n| + ∣∣∣z̃n − z0
εn

∣∣∣ < 1
εn

(r + on(1)) < 2r
εn

,

for n large. For this values of n we have that Br/εn (z̃n) ⊂ Oεn or ,equivalently, RN \ Oεn ⊂ RN \ Br/εn (z̃n).
On the other hand, it follows from Lemma 4.1, there is a R > 0 such that

γ(wn) < a, for |x| ≥ R and ∀n ∈ N,

for where it follows that
γ(wn(x, ·)) = γ(vn(x − z̃n , ·)) = γ(wn(x − z̃n , ·)) < a

for x ∈ BcR(z̃n) and n ∈ N. Since there exists n0 ∈ N such that for any n ≥ n0 and r/εn > R, there holds

RN \ Oεn ⊂ RN \ Br/εn (z̃n) ⊂ RN \ BR(z̃n).

Therefore, there holds
γ(wn) < a, ∀ RN \ Oεn , (4.14)

which contradicts to (4.13) and the claim holds true.
Let ε̂δ given by Theorem 3.9 and let εδ := min{ε̂δ , ε̃δ}. We will prove the theorem for this choice of εδ.

Let ε ∈ (0, εδ) be �xed. By using Theorem 3.9 we can get catMδ (M) nontrivial solutions of (2.10). If w ∈
H1
Aε (R

N+1
+ ,C) is one of these solutions, we have that w ∈ Ñε and we can use (4.14) and the de�nition of g to

conclude that g(·, |γ(w)|) = f (|γ(w)|). Hence, u(x) = γ(w(x, y)) is also a solution of problem (2.6). By an easy
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calculation we see that v(x) := u(x/ε) is a solution of the original problem (1.2). Then problem (1.2) has at
least catMδ (M) nontrivial solutions.

Now we consider εn → 0+ and take a sequence wn ∈ H1
Aεn (RN+1

+ ,C) of solutions of problem (2.10) as
above. In order to study the behavior of themaximumpoints of un = γ(wn), we �rst note that, by the de�nition
of g and (f1) − (f2), there exists 0 < τ < a small such that

g(εnx, s)s2 = f (s)s2 ≤ V0
K s2 (4.15)

for all x ∈ RN and s ≤ τ.
Using a similar argument as above, we can take R > 0 such that

‖un‖L∞(BcR(z̃n)) < τ. (4.16)

Up to subsequence, we may also assume that

‖un‖L∞(BR(z̃n)) > τ. (4.17)

Otherwise, if this is not the case, we have

‖un‖L∞(BR(z̃n)) ≤ τ,

and so it follows from I′εn (wn) = 0, (4.15) and take a same calculation as (2.17)-(2.18), we can get a contradic-
tion. Therefore, (4.17) holds.

By observing (4.16) and (4.17), we see that the maximum points pn ∈ RN of un belongs to BR(z̃n)) . Hence
pn = z̃n+qn for some qn ∈ BR(0). Recalling that the associated solution of (1.2) is of the form vn(x) := un(x/εn),
we conclude that the maximum point ηεn of vn is ηεn := εn z̃n + εnqn. Since {qn} ⊂ BR(0) is bounded and
εn z̃n → z0 ∈ M (according Proposition 3.7), we obtain

lim
n→∞

V(ηεn ) = V(z0) = −V0.
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