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Abstract: In this paper, we consider the following magnetic pseudo-relativistic Schrédinger equation

\/(?V —A(x))2 +m2u+V(u = f(u)u inRY,

where € > 0 is a parameter, m > O, N > 1, V : RY s Ris a continuous scalar potential satisfies V(x) >
~Vo > -mforany x € R¥ and f : RY — R is a continuous function. Under a local condition imposed on the
potential V, we discuss the number of nontrivial solutions with the topology of the set where the potential
attains its minimum. We proof our results via variational methods, penalization techniques and Ljusternik-
Schnirelmann theory.
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1 Introduction and statement of main results

In this paper, we consider the mean field limit of a quantum system with rest mass m > 0 in the presence of
a magnetic vector potential A(x) and an electric potential V(x). More precise, we focus our attention on the
following time-depend pseudo-relativistic magnetic Schrédinger equation

1.8% = <\/(fv —A(X))Z +m?2 - m) Y+ VY - f(yphy in RN, 1)

where € > 0 is a small positive constant, i is the imaginary unit, m > O, N = 1, ¢ : RY xR — C is a wave
field, A : RY — RY is a continuous vector potential, V : RN _ Ris an external continuous scalar potential
and function f : RV — R. The magnetic relativistic Schrédinger operator relate to the classical relativistic
Hamiltonian symbol in Fourier variables

(£-AM) +m2+V(0), (£ x) eRYxRY,

which is the sum of the kinetic energy term. This operator is known as a spinless particle in electromagnetic
fields where we ignore quantum field theoretic effect like particles creation and annihilation but should take
relativistic effect into consideration, see [1, 2]. We should remark that there are three type of relativistic Hamil-

tonian depending on how we quantize the kinetic energy symbol (f - A(x)) %+ m2. The first two quantized
operators defined by mean formulas, that is, for any function ¢ € C7 RN, ©),
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1
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R2N 0
We note that the Weyl pseudo-differential operator ﬂ-(}l is not covariant under gauge transformations, that is,
Hyvg # €?H4e®. The operator 3(} is a modification of operator 3}, which is gauge covariant, see [3].

The third quantized J{i is the square of the nonnegative selfadjoint operator (-iV - A(x)) . m?, that s,

1 = \/(—iv —A(x))2 +m2.

The operator in} is gauge covariant and is used in the description of the stability of the matter in relativistic
quantum mechanics, see for example [4, 5]. All three quantized operators are different from one another (see
[1, 6]). As we know that they coincide if A(x) is linear, that is, A(x) = A - x, with A is a real symmetric constant
matrix, see [1]. Particularly, this holds for constant magnetic field when N = 3, thatis, B = V x A is constant.

A solution of the form ¥ (x, t) = e'Et/ey(x) is called a solitary wave. Then y(x, t) is a solution of (1.1) if and
only if the function u satisfies

\/(%V —A(x))2 +m2u+V(u = f(u)u in RV, (1.2)

where we write V instead of V + (E - m) for simplicity.
Recently, Cingolani and Secchi in [7] studied the interwining solutions of magnetic relativistic Hartree
type equations, that is,

\/(—iV —A(x))2 +m2u+V0ou = (x|* N * uP)ulP?u in RY, (1.3)

where 2 < p < 2N/(N-1)and (N - 1)p - N < a < N. Their proofs are based on the variational methods
and Caffarelli and Silvestre’s type extension (see [8]) for pseudo-relativistic magnetic Schrédinger operator
\/ (—iV - A(x))2 + m? + V(x) when A(x) is uniformly bounded or linear in x. If N = 3 and @ = p = 2, which
corresponds to the Coulomb kernel, equation (1.3) is often referred to a boson star in astrophysics, see for
example [9, 10]. If also assume A = 0 and V(x) = -m, equation (1.3) is reduced to the classical pseudo-
relativistic Hartree equation which introduced by Lieb and Yau [11], see also [12-14] and references therein.
In the literature, the existence of standing waves solutions to nonlinear magnetic Schréodinger equation

(?V —A(x))2 +VOu = f(x,u), inRY (1.4)

has been first studied by Lions and Esteban [15], for € > O fixed and special classes of magnetic fields. They
have found existence results by solving appropriate minimization problems and concentration-compactness
method for the corresponding energy functional in the cases N = 2 and 3. Lately, Kurata [16] studied the
existence of a least energy solution of (1.3) under a condition relating V(x) and A(x); Cingolani [17] and Alves
etal. [18] investigated the multiplicity results of (1.3) by applying the Ljusternik-Schnirelmann theory. We refer
readers to [17, 19-21] and references therein for other results about nonlinear magnetic Schrédinger equation.

For the nonlocal magnetic Schrédinger equations have been investigated recently. The fractional mag-
netic Laplacian is defined by

i(x-y)-A(5Y)
a0 o= tim [ HOZEE Mgy, e 0,0,
Be(x)

which is deduced from the magnetic operator 3} for smooth functions u. In quantum mechanics, when
€ — 0, the existence and concentration of solution is of particular importance. The existence and concentra-
tion results for fractional magnetic Schrédinger equations were studied by Ambrosio and d’Avenia [22], Fis-
cella, Pinamonti and Vecchi [23], Zhang, Squassina and Xia [24], Mao and Xia [25]. We also refer to d’Avenia



DE GRUYTER Aliang Xia, Multiplicity and concentration results for magnetic relativistic Schrédinger equations =— 1163

and Squassina [26] for the existence of ground states and other useful estimates. Lastly, for the existence
and multiplicity results of semilinear or quasilinear Schrodinger equations, we refer readers to [27-29] and
references therein.

Motivated by the about results, in this paper we deal with multiplicity and concentration results of the
more general class of pseudo-relativistic magnetic Schrédinger equation (1.2) . In what follows, on potentials
we assume that
(A) A: RN - Ris a continuous functions and uniformly bounded.

(V1) V : RY — R is a continuous functions satisfies V + V = 0 for some V, € (0, m) and every x € RV,
(V2)There is a bounded open set © ¢ RY such that

minV > -V,
00

andM={xe€0: V(x)=-Vo} #0.

Also, we suppose continuous function f satisfying
(f1) f(s) =0, forall s < 0 and f(s) = o(s) as s — O*.
(f2) There exists constants g, o € (2, 2¥) where 27 := 1\%\’1 if N 2 2and 2! := o if N = 1, Cy > O such that
f(s) = Cos972 forall s > 0 and
lim f(s) =0.

§—+oo §0-2

(f3) There exists a constant 0 € (2, 2%) such that

0 < OF(s) := G/f(r)‘rd‘r < f(s)s®> forall s> 0.
0

(f4) The function f(s) is increasing in (0, +o0).

We shall establish a relation between the number of solutions of (1.2) and the topology of the set M. In order
to make a precise statement let us recall that, for any closed subset Y of a topological space X, the Ljusternik-
Schnirelmann category of Y in X, catx(Y), stands for the least number of closed and contractible sets in X
which cover Y.

The main result of this article is

Theorem 1.1. Assume that (A), (V1) - (V2) and (f1) - (f4) hold. Then for and 6 > O such that
Mgs={x e RN : dist(x, M) <6} C O,

there exists €5 > O such that problem (1.2) has at least caty, (M) solutions provides € € (0, £5). Moreover, if ue
denotes one of these solutions and n¢ € RY its global maximum, then

lim V(ne) = -Vo.
e—0

It should be pointed out that we only assume the potential V(x) satisfies local conditions (V1) - (V2) and no
information on the behavior of the potential V(x) at infinity, so we will use the penalization method intro-
duced by del Pino and Felmer [30] rather than minimax theorem to prove our main results. It is worthwhile to
remark that in the arguments developed in [30], one of the key points is the existence of estimates involving
the L*°-bounds of the modified problem. Here we obtain the desired L*-bounds via Moser’s iteration method
(see [31]) instead of Kato’s inequality. Moreover, we get the multiplicity results by Ljusternik-Schnirelmann
theory (see [32]). As far as we known, this is the first time that penalization scheme and topological arguments
are combined to get multiple solutions for magnetic pseudo-relativistic equations.

We also remark that we assume the nonlinearity term f is only continuous, so we can not use the standard
arguments on the Nehari manifold. To overcome the non-differentiability for the Nehari manifold, we shall
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use some variants of critical point theorems from Szulkin and Weth [32]. This idea has been used extensively
for nonlocal elliptic problems, see for example [33, 34].
Our proof based on the Caffarelli and Silvestre’s type extension (see [8]) for pseudo-relativistic magnetic

Schrédinger operator \/ (—iV - A(x))2 + m?2 + V(x) when A(x) is uniformly bounded, which is prove by Cin-
golani and Secchi in [7]. However, some difficulties appear since the nonlinearity is on the boundary. In partic-
ular, in order to obtain the L*-bounds in Section 4 we will establish an inverse Holder inequality for y(w) = u
and we my iterate the inequality for y(w).

This paper is organized as follows. In section 2, we present the variational setting of the original and the
extended variables problems, and we modify the original problem. We also prove the Palais-Smale condition
for the modified functional and obtain some tools which are useful to establish a multiplicity result. In section
3, we study the autonomous problem associated which allow us to prove the modified problem has multiple
solutions. Finally, we prove Theorem 1.1 via Morse iteration method.

2 Extension and modified problem

In this paper, we will systematically consider spaces of complex-valued functions. Precisely, the L?(R", C)
space will be endowed with the real scalar product

v, Wy =R [ vO)w(x)dx.
/

In what follows, we will write | - |, for the norm in L?(RY) and || - ||, for the norm in LP(R¥*1). Moreover, for
any w € HY(RY*1, C), we denote

W = / (19w + w?) dxdy, for (x,) € BY ..
]RQ’*I

Let A(x,y) = (A(x),0) : R¥*1 — RN*! be the trivial lifting of a vector field A(x) : RN — RY for every
(x,y) € RY+1 Then, we define the magnetic Sobolev spaces on the half-space H}l (RNM*1 C) as

H%RTECL={WGL%RT%CM (%—A)WGL%RTH},
which endowed with the norm

iy = | [ |(F-4)w

N+1
+

2
dxdy + |wl|% (2.1)

and the scalar product
(v, W)H}4 =R / VivViw + vwdxdy,
]le*l
where
-V _j

Vi=t A 22

For simplicity, we will write H} (RY*!, C) and ||w||: as Hy(RY**, C) and ||w|| 1 Tespectively.
A
Next, we recall the following result about trace in magnetic Sobolev space operator which proved in [7].

Proposition 2.1. Suppose that A is bounded. Then a surjective continuous linear map y : Hj RN, C) —
H};/Z(RN, C) is defined so that y(w) = Wgn, (o for every w € CYRN*1 (), where

u(x) - VA )y ()|

x —y|N+1

HY2®RY,0) = ueL%RNAD:u§+ /‘ dxdy < +oo
RZN
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This result allows us to generalized the well-known Dirichlet-to-Neumann extension for fractional Laplacian
to the magnetic pseudo-relativistic operator. Letting A ; = —V% =Ay+ a"—yzz where

Ay = Axu - 2iA(X) - Vu - idiv(A(x)) - |A(x)|?,

then Cingonali and Secchi in [7] showed that

Proposition 2.2. Foru € H'/?(RY, C), then there exists one and only one function w € H5(RY*, C) such that

23
w=u in RN = oRN+1, 23)

{ ~Azw+m*w=0 inRY*Y
We remark that the key point of the proof of Proposition 2.2 is to show that magnetic Sobolev spaces
H(RY*1,C) and H};/ 2(RN, C) are equivalent to HY(RY*!, C) and H/2(RY, C) respectively when A(x) is
bounded. Therefore, the existence of trace operator follows immediately from the standard theory of Sobolev
traces in non-magnetic spaces. Hence, by Proposition 2.1, we deduce that the embeddings

Hi®RY, C) = IP(RY) for p € [2, 2] (2.4)

are continuous when A is uniformly bounded.
By Proposition 2.2, we know that every function w € H}1 (RY*1, C) possesses a trace y(w) € H 2(RN ).
Moreover, the following inequality holds

p p-l aW
yonts < piwity | S| @5)
provides 2 < p < 2%, For the proofs of (2.5), one can find in [7].
It is easy to see that problem (1.2) is equivalent, after a change of variable, to the following one
\/(—iv _Ag(X)>2 +m2u+ Ve(u = f(lu)u in RY, (2.6)

where A:(x) = A(ex) and V<(x) = V(ex). Once we obtain a solution of (2.6), then the function #1¢(x) = us(x/¢€)
is a solution of (1.2). Moreover, the maximum {; of i, is related to the maximum point z, of u¢ by ¢ = €z,.
By applying Proposition 2.2, we are interested to the study of the relativistic magnetic nonlocal equation

~Az w+m*w =0 in RV+1,
ow’ : N N+1 (2'7)
-5 = “Ve@w+ f(lw))w in RY = Ry,
where A; = (Ae, 0). We also observe that, for every m > 0, (2.5) implies that
2
2 2 1 ow
/|y(w)| dx sm / |w|“dxdy + - / ‘ay dxdy
RN RQ’*I Rﬁl*l
1 ow |2
<m / |w|?dxdy + - / <|(—iVx — A())w|? + o ) dxdy. (2.8)

N+1 N+1
RN+ RN+

Since there is no information about the infinity of V(x), we adapt the penalization method introduced by
del Pino and Felmer [30] to establish the multiplicity results. Let K > nf_vgo, a > 0 such that f(a) = % where
Vo given in (V1). Define

f(s)={ jzos) if s<a,

7 if s>a,

and
g(x, ) = xo COf(s) + (1 - xo () (s), .9)

where xo(x) is the characteristic of set O. By the assumptions (f1) — (f4), it is easy to check that g is a
Carathéodory function and satisfies



1166 —— Aliang Xia, Multiplicity and concentration results for magnetic relativistic Schrédinger equations DE GRUYTER

(g1) lims_,0+ g(x, s) = 0.

(g2)g(x,s) < f(s)forallx e RN, s > 0.

(83)(1) 0 < 6G(x, s) := 0 [; g(x, T)7dT < glx,5)s> forallx € O, s> 05
(i) 0 < 2G(x, s) < g(x, s)s? < Yos? forallx e RV \ O and s > 0.

(g4)For each x € O, the function s — g(x, s) is increasing in (0, +oc), and for each x € OF, the function
s — g(x, s) is increasing in (0, a).

Therefore, we study the auxiliary problem

-A; w+m?w=0 in RM+1,
bws . N N+1 (2.10)
-5 = —Ve()w + ge(x, [Ww)w in RY = oRY*™,

where g¢(x, w) = g(ex, w). Note that solution of (2.10) with w(x) < a for each x € O, are also the solution of
(2.7), where O, = {x e RN : ex € O}.
Consider the Euler-Lagrange functional associated to (2.10) given by

2
Te(w) = % / <|(—ivx - A:(O))w|* + ow\" mzwz) dxdy

oy
]Ri\“l
+%/V£(x)\y(w)|2dx—/Gg(x, ly(w)dx, (2.11)
RN RN

which is C! with Gataux derivative

(Te(w), v) =R / VAEWW + m2widxdy + §R/ Ve(x)yw)y(v)dx
Ry*l RN
R / 2:0x, [y W)Dywly(dx,
RN

where V 4, is defined as (2.2).
Next, we define the Nehari manifold N¢ (see [35]) related to J.. We say w € N means w € H}ls (RM*1 Q)

and satisfies
ow |2
/ <|(—ivx _AE(X))W|2 + W
Ry+1

+ m2W2> dxdy + / Ve()|y(w)|*dx

RN

= /gg(x, \y(w)|)|y(w)\2dx.

]RN
We denote by fl}ls(M *1, C) the open subset of H} (RY*!, C) given by
Hi, RY™,0) = {we Hi ®RY™,C) : [supply(w)| N O] >0},

and S; = Se¢ N ﬁ}lg(Rﬁ] *1,C), where S¢ is the unit sphere of H};S(Rﬁ“l, C). Note that S is a non-complete
C"!-manifold of codimension 1, modeled on H} (RY*!, C) and contained in the open H} (RY*!, C) (see for
example [32]). Then, H} (RY*!,C) = TwSe @ Rw for each w € S¢, where

TwSe = {ve H}ls(RiV”, C): (w, v)H}4 =0}.
We can check the functional J, satisfies the Mountain pass geometry [35].

Lemma 2.3. The functional J: satisfies the following conditions:
(i) There exist a, p > O such that Jo(w) = a with Wl =ps
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(ii) There exists e € Hy (RN*, C) such that ||e||;;: > p and Je(e) < O.
A HY,

Proof. (i) For any w € H}XS(RIE *1,C)\ {0} and & > 0 small, it follows from (g1)-(g2) that there exists C > 0
such that

lg(ex, s)| < €+ Ces¥ 2 forallxeRY, seR (2.12)
and C.
|G(ex, s)| < %sz + 2—352 forall x e RN, s e R. (2.13)

Next, by the Sobolev embedding (2.4), (V1), (2.8) and (2.13), we have

Jg(w)=% / <|(—iVX—Ag(X))W|2+ ‘Zlyv

2
+ m2w2> dxdy
RQ’”

+ 3 [ ek0+ Volywax =22 [ lyonax- [ Getx, lywdx
RN RN RN

1 . ow|?
25/ <|(—IVX—A5(X))W2+ a—‘;/v +m2w2> dxdy
R{y*l
V. 1 owl?
_70 m / |W‘2dxdy+a / <|(—iVx—Ag(x))w2+ a—y )dxdy
Rf_‘“l Rﬁhl

C :
- [wopax- 5 [ o ax
RN RN

10-2) ] (omsam

Rf’*l

ow|?
by‘ )dxdy

+M / jw|dxdy - £Cl|wl[3 —CCgHwaj};. (2.14)

Rﬁ“l
Therefore, we can choose a, p > 0 such that J:(w) = a with ||w|| H =P since 0 < Vg < m.

(ii) For every w € H (RN*!, C) and ¢ > 0, we can obtain that
A

Jg(tw)sg / <|(—iVX—AE(x))w|2+ ow

2 2
+ mzwz) dxdy + % / Ve(X)[y(w)|*dx

oy
RN+1 RN
—/Gg(x, tly(w)dx
Oe
tz . 2 ow 2 2.2 t2 2
< = [(=iVx — Ac(X))w|” + dy +mw dxdy+5/Vg(x)|y(w)| dx
Ri\hl RN

~at? [ 1y dx-+ Calsupplyw)| 1 Ocl,
Oe
where we have used (g3) and the standard ODE computations. This and (2.4) imply the conclusion (ii) since
0 c(2,2%. O

Since we only assume f is continuous, in order to overcome the non-differential of N, and the in completeness
of S¢, we need the following two results.

Lemma 2.4. Assume that assumptions (A), (V1) - (V2) and (f1) - (f4) are satisfied. Then the following prop-
erties hold:
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(a) Foreachw € ﬁjg(Ri\”l, Q), let hy : R* — R be defined as hy(s) = J:(sw). Then there exists a unique
sw > 0 such that h,(s) > 0in (0, sw) and hl,(s) < 0 in (sy, o).

(b) Thereis at > 0 independent of w such that sw > t for allw € Se. Moreover, for each compact set W C Se,
there is Cvy > O such that sy < Cy forallw € 'W.

(c) Themap mg : Se — Ne given by mg(w) = sww is continuous and mg := me ‘55 is a homeomorphism between

w

Se and N¢. Moreover, mzt(w) = T
H
Ag

(d) Ifthere is a sequence {wn} C Se such that dist(wn, 3Se) — 0, then ||mg(wn)||H/14 — oo and Je(me(wn)) —

oo,

Proof. (a) Observe from the proof of Lemma 2.3 that hy(0) = 0, hy(s) > 0 for s small and hy(s) < O for s large.
Thus maxso hw(s) is achieved at a s = sy > O satisfying h;,(sw) = 0 and syw € Ne. On the other hand, we
know

hi(s) =0 < swe N;

2
=N / <|(—ivx — A:())w|? + g—‘;’v +m2wz> dxdy+/Vg(x)|y(w)|2dX
Rﬁl*l RN
= / ge(x, slyw)Dly(w)|*dx. (2.15)
RN

By the definition of g, the right hand side is nondecreasing in s for s > 0. Therefore, maxs.q hw(s) is achieved
at a unique s = sy > 0 such that hj,(syw) = 0 and syw € N¢.

(b) Assume that w € S, then by (2.15), (2.8), (2.12) and a similar argument as (2.14), we can get that sy > t
for some t > 0. Suppose by contradiction that there is {w,} € W with s, := sw, — oo. Since W is compact,
there exists a w € W such that w, — win FI}XS(RQ’“, C). Moreover Je(Snwn) — —oo.

On the other hand, denote v, = spwn € N¢ and use (2.8) and property (g3), we have that

Je(vn) = Je(vn) - %(J{a(vn), Vn)

= (1 - 3) ( (I(—iv — A2 + |07 2 +m2v2> dxdy
2 X & n a n
v )
+/V3(X)|)’(Vn)|2dx> +%/(gs(x, YV)DlyWa)” - uGe(x, Iy(vn)\)) dx
RN R¥N
> (1 - 3) ( (I(—iv — A COWal + | 2 2 +m2v2> dxdy
2 2 X & n a n
v y
2
+/V5(X)|y(Vn)|2dX> - (% - %) /Wd}(
R¥ RY
2
- (% - %) / <|(—iVX—Ae(X))Vn|2 + "avy” +m2v%) dxdy

R (% - %) e+ voywax- (1 . %) o | y(vn)|2dx>
N RN
> (% - %) / ('(‘ivx ~ A (Q)vnl* +

N+1
+

oVn
oy

2
+ mzvf,> dxdy
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_ G%) <1+%> Vo / y(va)Pdx
RN
1 1 .
, (z ; ﬁ) / ((_lvx ~ Ac()val? +

N+1
+

oVn
oy

2
+ mzv%) dxdy

2

(1 1 1 1 o 2 |ow

<§ ﬁ) <1+f) Vo H/ (( iVx—AcsO)W|” + oy dxdy
R‘IFV+1

+m / |w|2dxdy>
]Rnyl

(1 N[ (L 1\ Vo o 2o |owl]?

= (5 ﬁ) (1 (1+R) H) / (|( iVx—Ae(X)) w|” + ay‘ )dxdy
Rﬁhl

11 (1+1 2
+ <§ y) m <m (1 + K) V0> / |w|“dxdy (2.16)
]Ri’*l

Therefore, we can prove J¢(vn) > 0 since K > m‘f‘;,o and u > 2, which yields a contradiction.

(c) We first show that e, me and mz' are well defined. In fact, by (a), we know that for each w ¢
H}lg(RiV”, C), there is a unique mg(w) € Ng. On the other hand, we claim that if w € Ng, then w ¢
H;_(RY*1, C). Otherwise, we have [supply(w)| N O¢| = 0 and by (2.8) and (g3)-(ii), we have

/ <|(—ivx AGOW + Z—Vy”

2
+ m2w2> dxdy
R{rw—l

- / Ve (0 ly(w) 2dx + / ge(x, [y(w)))|y(w) 2dx

RN RN
—- / Ve()lyw)2dx + / e, [yw)Dly(w)|2dx

RN RN\O,
s—/Vg(x)\y(w)|2dx+% / ly(w)|*dx

RN RN\ O,

2 1 2

-~ [ (Ve Vo) pwax+ (1+ 1) Vo [ owPax

RN RN

IN

(1%) Vo / Iy(w)2dx
RN

< (1 + %) Vol m / |W|2dxdy+% / <|(—ivx —Ag(X))W|2 +
Rﬁhl ]Ri\lﬂ

This implies that

oy

owl?
— dxdy | . (2.17)

owl?
ay‘ )dxdy

(1-(1+2) %) / (<—ivx—As<x»wiz +

]Ri’*l

+m (m - (1 + %) Vo) / |w|?dxdy
RQ’”

<0, (2.18)
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tw) =

€ S¢ is well defined and contin-

\WH
uous. Since

Sww

mg* (me(w)) = mg* (sww) = S =w, forwesSe,

wiWlla

we conclude that m, is a bijection. Next, we prove m; : fljg(Rﬁ”l, C) — Ng is continuous. Let {wn} C
H; (RY*!,C)and w € Hj (RY*!, C) such that w, — w in H; (RY*!, C). By (b), there is a so > 0 such that
Sn := Sw, — So. Since spwn € N¢, we have

ownp

oy

/ ((—ivx - Ae(X))Wn|2 +
RN+1

2
+m wn) dxdy+/Vs(X)|y(Wn)|2dX
]RN

= /ge(x,sn\y(wn)l)ly(wn)lzdx.

RN

Then, by passing to the limit as n — +oo, we have

2
/ (|(—ivx Aoy + |2V

N+1
RY

+ mzwz) dxdy+/Vg(X)|y(W)|2dX

RN

= /gs(x, solyw)D|y(w)|*dx,

RN

which means that sow € N¢ and sy = sq. This implies fiie(Wn) — Me(w) in FI}XS(]RL\’”, C). So mg and mg are
continuous functions.
(d) Let {wn} C Sebea sequence such that dist(wn, 9S¢) — 0. Therefore, for each v € 39S, and n € N, we
have
lywn)| < [y(wn) - y(v)| a.e.in Oe.

Then by the Sobolev embedding, there exits constant C; > 0 such that

|y(Wn)‘Lf(O£)

< 1nf |y(Wn) YWlo,)
vED

< C¢ inf / |(=iVx = A (O))(Wn - V)|* + own =) [* +(wn —v)? | dxdy
Veasg N+1 ay
= Cidist(wn, 0S¢) (2.19)

forallm € Nand t € [2, 2f]. By (g1)-(g2), (g3)-(ii) and (2.19), for s > 0, we have

/Gg(x swp)dx < C;8° /|y(wn)\ dx + Cys? /\y(wn)| dx
RN O

V
+ 52?O / ly(wn)|>dx

RM\O,
< C3s*dist(wn, 0Se)? + Cqszﬁdist(wn, c):S/g)zn

V
+ 5270 / ly(wn)|dx.

RMO,

On the other hand, from the definition of m., for all s > 0, we have

lim inf J.(me(wn))
n—oo
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> liminf J:(swy)
n—oo

2
> lim infs7 < / <|(—iVX - Ag(X))W'Z + ow

oy

n—oo

2
+ m2w2> dxdy

N+1
R

+ /(Vg(x) + Vo)y(w)|2dx> —li?jgp (szVo (% + %) / |y(wn)\2dx
RN

RM\ O

+ C3Szdi5t(Wn, afs'g)z + C4szudist(wn, afs'g)z”)

. 2 (1 _ 1 1 VO ) _ 2 ow 2
zhg{gfs <§ (§+R) H) / (|( iVx —A:())w|” +
Rgﬂ

oy
+liminf s? —mz (1 + 1 mV, w?dxd
n—oo 2 2 K 0 y

N+1
RY

+ m2W2> dxdy

- lim sup (C3szdist(wn, 0S¢)? + Cqszﬁdist(wn, 058)2”) , (2.20)
n—oo

where we have used inequality (2.8). Thus, by the arbitrary of s > 0, we conclude J¢(me(wn)) — oo by (2.20).

Similarly, we can get ||me(wn)|| HL 7 from (2.8). O

Now we define the function
@ : Hy (RY,C) - R

as R
De(w) = Je(me(w))

and denote by @ := ®¢| . A direct conclusion of Lemma 2.4 is the following.

5.

Proposition 2.5. Assume that assumptions (A), (V1) - (V2) and (f1) — (f4) are satisfied. Then

(@) @ € C}(H} ,R) and ®¢ € C'(S¢, R).

(b) If{wn} is a (PS). sequence of ®¢, then {m¢(wn)} is a (PS) sequence of J¢. If {wn} C N¢ is a bounded (PS)¢
sequence of J¢, then {m;'(wn)} is a (PS)c sequence of ®s.

(c) wis a critical point of @¢ if and only if m¢(w) is a critical point of Jc. Moreover, we have

inf @, = inf J;.
Se Ne

Proof. The details of the proof can be found in relevant material from Corollary 2.3 in [32], and we omit it
here. O

As in [32], we have the following variational characterization of the infimum of J; under N¢:

ce = inf Je = inf maxJ:(tw) = inf maxJc(tw) > O.
wEeNe weH, 0 wes, 00

The main feature of the modified functional is that it satisfies the local compactness condition, we will
show it as follows.

Lemma 2.6. Let ¢ > 0 and {wn} be a (PS). sequence for Je, then {wn} is bounded H}_(RY**, C).

Proof. Suppose {wn} is a (PS). sequence for J¢, then J¢(wn) = ¢ + 0n(1) and Jz(wn) = on(1), where 0,(1) — 0
as n — oo, Then, by a similar argument of (2.16), we can get the conclusion. O
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Lemma 2.7. Let ¢ > 0 and {wn} be a (PS). sequence for J¢, then for each { > 0O, there is a number R = R({) > 0
such that
lim sup / |VAEWH|2 +m>widxdy + / (Velx) + V0)|y(wn)|2dx <,

n—oo
RN\B, RM\Bg

where (x, y) € B := Bg x {y > 0}.

Proof. ForR > 0, letng € C*=(RY*1) pe such that nr(x,y) =0if(x,y) € Bﬁ/z and ngr(x,y) = 1if (x,y) ¢ By,
with 0 < ngr(x,y) < 1, |[Vng| < C/R where C is constant independent on R. Since {ngwn} is bounded in
Hy (RY*1, ©), it follows that (Jz(wn), ngwn) = 0n(1). Therefore,

R / VASWHVAEann+m2wnr1andxdy+/Vg(x)|y(wn)|2anx
Ri’*l RN

- / e, [y(wn) Dy (wn) Prigdx + 0n(2).
RN

Since V3 nrwn = iWnV1g + 1RV ; Wn, then we have

/ nR (|VAEW,,|2 + mz\wn\z) dxdy+/nRVg(x)\y(wn)\2dx
RN

RQ’”
- /gg(x, lywWn))[y(wn)|*nrdx - R / iWn VRV Wndxdy + on(1).
RN BE\B;}/Z

Then, fixing R > 0 such that O C Bg,, and using (g3)-(ii) and Holder inequality, we can get

/ nr (|V/~1£wn|2 + mz\wn\z) dxdy+/nRVg(x)\y(wn)|2dx
RN

N+1
RN+

NI
[N

V
22 [wwlmedcr g | [ wawiiaxay | | [ sy | sou)
RN

2 \Br/2 2 \Br/2
By (2.8), we have

[ e (193, a2+ mPwa) dxdy + [ na(Ve+ Vo)00lywn)*dx
RN

N+1
RY

({1 ) 1)) (o o)

We get the conclusion by choosing R large, using he boundedness of {wy } proved in Lemma 2.6 and passing
to the limit in the last inequality. O

Lemma 2.8. The functional J¢ satisfies the Palais-Smale condition for any level c € R.

Proof. By Lemma 2.6, we know {wy} is bounded in H,ﬁe(le *1.C) and thus we can suppose that w, — w
weakly in H} (RY*!, C). In view of Jz(wx) — O, the local compactness of H; (RY*?, C) and the subcritical
growth of g, one has J.(w) = 0, that is

/ <|VASW|2+m2\w|2) dxdy+/V€(x)|y(w)\2dx=/gg(x, lyw)))ly(w)|*dx. (2.21)

RN+1 RN RN
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On the other hand, using Lemma 2.7, we can prove that

/ g2 (6, [ywa) Dy (wn) 2dx — / ge(x, yw)Dlyw)|2dx, 2.22)
RN RN
/ (Ve(x) + Vo) y(wn)Pdx — / (Ve(x) + Vo)ly(w)|dx, 2.23)
RN RN
/ Voly(wa) Pdx — / Volyw)2dx, (2.24)
RN RN

as n — oo. Combining (2.21)-(2.24) and J%(wn) — 0, we have w,, — w strongly in H}lg(Rﬂy *1.0). O

We finish this section by showing @, satisfies the (PS). condition.
Corollary 2.9. The functional @, given in Proposition 2.5 satisfies the (PS). condition on Se foranylevel c € R.

Proof. Let{wn} C Sebea (PS). sequence for @. Then, @¢(wn) — ¢ and | @z (wn)||« — 0, where || - ||« denotes
the norm in the dual space of (TWH Eg) . By Proposition 2.5-(b), we know {m.(wn)} is a (PS). sequence for J in

Hj (RY*?, C). Then, Lemma 2.8 implies that thereisa w € Se such that me(wn) — me(w) in Hy (RY*?, C) by
passing to a subsequence. From Lemma 2.4-(c), we conclude that w, — win gg. This completes the proof. [

3 Multiplicity result of the modified problem

In this section, we prove a multiplicity result for problem (2.10). In what the follows we shall assume that
6 > 0 small such that Mg C O, where O is given in (V2). We start by considering the limit problem related to
(2.10), that is, the following problem

-Aw+m?w=0 in RN+, 31)
—%—V; = Vow+f(jw)w in RN = oRN*1, )
The solutions of equation (3.1) are critical points of the functional given as
2
_1 2 |ow 2.2
Jo(w) = 3 / (wa| + oy +mw ) dxdy
R1+V+1
1
-3 [ vobiwax- [ Fiytwar. (2
RN RN

Next, we define the Nehari manifold Ny, related to Jo. We say w € No means w € H*(RY*!) and satisfies

2
/ <|VXW|2 + ow

oy
Ry*l

N m2w2> dxdy - / Voly(w)2dx = /f(ly(W)I)Iy(W)Ide-
RN RN

We denote by HX(RY*1) the open subset of H:(RY*1) given by
H'®RY*™) = {w e H'®RY*Y) : |supply(w)|| > 0},

and So = So N HY(RY*1), where S, is the unit sphere of H}(RY*1). As in Section 2, Sy is a non-complete C11-
manifold of codimension 1, modeled on H*(RY¥*!) and contained in the open H'(RY*'). Then, H'(RY*1) =
TwSo €@ Rw for each w € Sp, where

TwSo = {ve H*®Y'Y) : (w,v)y = 0}.

In the sequel, we state without proof of the following Lemma 3.1 and Proposition 3.2. The proofs are
similar to those of Lemma 2.4 and Proposition 2.5.
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Lemma 3.1. Assume that (V1) and (f1) — (f4) are satisfied. Then the following properties hold:

(a) Foreachw ¢ H(RN*Y), let hy : R* — R be defined as hy(s) = Jo(sw). Then there exists a unique sy > 0
such that hl,(s) > 0in (0, sw) and h},(s) < 0 in (sw, o).

(b) Thereisat > 0 independent of w such that sy > t for all w € §0. Moreover, for each compact set W C 50,
there is Cvy > O such that sy < Cyy forallw € 'W.

(c) Themapm : §0 — Ny given by m(w) = syw is continuous and m := ﬁl|§£ is a homeomorphism between §0
and No. Moreover, m™1(w) = W

(d) Ifthereis a sequence {wn} C SO such that dist(wn, a§0) — 0, then ||m(wn)||;r — oo and Jo(m(wn)) — oo.

Proposition 3.2. Assume that assumptions (V1) and (f1) - (f4) are satisfied. Then

(@) @y € CH(H',R) and @, € C'(So, R).

(b) If {wn} is a (PS). sequence of @y, then {m(wn)} is a (PS). sequence of Jo. If {wn} C No is a bounded (PS).
sequence of Jo, then {m™(w)} is a (PS). sequence of @y.

(c) wis a critical point of @ if and only if m(w) is a critical point of Jy. Moreover, we have

inf @y = inf Jy.
B o =11t Jo
As in the previous section, we have the following variational characterization of the infimum of Jo under Ny:

co = inf Jg = inf maxJo(tw) = inf maxJo(tw) > 0. (3.3)
weENo weHt PO wes, 0

The next lemma allows us to assume the weak limit of a (PS). sequence is nontrivial.

Lemma 3.3. Let {wy} ¢ H'(RY*1) be a (PS). sequence for I, for any level c € R and such that w, — 0 weakly
in HY(RY*1). Then, one of the following alternatives holds.

(a) wn — 0 strongly in H*(RY*1),or

(b) there exists a sequence {zn} C RN and constants R > 0 and > 0 such that

lim inf / yw)2dx = B > 0.

BR(Zn)

Proof. Suppose the case (b) doesn’t true. It follows that for all R > 0, we have

Due to Lions’ Lemma (see for example [36]), we have
y(wn) — 0 in LIRY) for 2 < q< 2t

Therefore, by (f1)-(f2), we have
[ FiyenaiytnPdx - o.

Since (J5(wn), wn) — 0 as n — oo, that is,

/ <|wan|2 +
R}:Hl

Combining this equality and (2.8), we have

<1 - %) / (vawn2 +

N+1
R+

Wn

oy

2
+m W,,) dxdy = /V0|y(wn)\2dx+on(1).
]RN

oWn 2
oy

) dxdy + m(m - Vy) / w%dxdy = o0n(1),

N+1
RN+

which implies that || wn||;n — 0 strongly and this lemma proved. O
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Next, we can obtain a nontrivial ground state solution of equation (3.1).

Theorem 3.4. Let {wn} C H LRN*Y) be a (PS). sequence for I, for any level ¢ € R. Then problem (3.1) has a
nontrivial ground state solution.

Proof. By Lemma 2.6, we know that {wy,} is bounded in H L(R¥+1). Then, up to a subsequence, wp, — w
weakly in H*(RY*1) and y(wn) — y(w) in L’;O C(]RN )and y(wn) — y(w) a.e. in RV, By Lemma 3.3, we know that
problem (3.1) has a nontrivial ground state. O

The next result is a compactness result of problem (3.1) which will be used later.
Lemma 3.5. Let {wn} C N be such that Jo(wn) — co. Then {wn} has a convergent subsequence in H'(RY*1).

Proof. Since {wn} C Np, it follows from Lemma 3.1-(c), Proposition 3.2-(c) and the definition of ¢ in (3.3)
that
Wn

€Sy, neN
[Wallgr —°% ’

Vn=m t(wn) =

and
@o(vn) = Jo(Wn) — co = inf Do(w).
wESo

Although 50 is not complete, by Lemma 3.1-(d) we can still use the Ekeland’s variational principle [37] to the
functional & : H — R U {eo}, given as &o(w) := Do(w) if w € Sp and Eo(w) := oo if w € Sy, where
H= §0 is the complete metric space equipped with the metric d(w, v) := ||w - v||in. In fact, by Lemma 3.1-(d),
&o € C(H,R U {oo}) and & is bounded below by Proposition 3.2-(c). Therefore, we can conclude that there
is a sequence {vp} C So such that {vn} is a (PS), sequence for @, on So and

Wn—Vnllgjn — 0 asn— oo, (3.4)
H

We conclude the result by applying Proposition 3.2, Theorem 3.4 and processing a similar argument as the
proof of Corollary 2.9. O

In the following, we will relate the number of nontrivial solution of (2.10). So we consider § > 0 such that
M;s C 0 and choose n € C3’(R*, [0, 1]) satisfying n = 1 in [0, g] and n = 0in [, o0).
For any z € M, we define

Ve 2(x,y) :=n(|(ex - z,y))w (sxg— z y) exp (iTz (SXE_ zZ y)) ,

where
N

206,y) = A(, ) - (,y) = (A, 0) - (x,y) = ZA]'(X)X]"
j=1

and s¢ > 0 such that
max Je(sWe,z) = Je(Se We,z)

where w is a solution of (3.1) from Theorem 3.4 satisfying Jo(w) = co.
Let O : M — N¢ be as
O¢(2) = SeWe,z.

The energy of the above function has the following behavior:
Lemma 3.6. Uniformly for z € M, we have

lim J:(O¢(2)) = co.
e—0
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Proof. We prove the lemma by contradiction arguments and assume that there is some 6§y > 0, {zn} € M and
&n — 0 such that
|Te, (B¢, (zn)) - co| = 8o. (3.5

Observe that for each n € N and for all x’ € By /e, (0), we have enx" € Bg(0). Then, we have
enx’ +zn € Bg(zn) C Mg C O.

By using the change of variable x := (enXx — zn)/&n, we can write

s2 oV,
jsn(esn(zn)) = ;n / |Vxlpsn,zn|2 + ';;’z"

2
+ mzllfgzn,zn> dxdy

N+1
RN+

+/V£,,|J/(lp£,,,zn)|2dx> —/ng(X, Sen‘J/('lvs,,,zn)DdX

RN RN

s2 Y, 2
- ;'I(/ <|Vx‘f’gn,z"|2+'a€)"/’z" +m2¥’§n,zn dxdy
Ry*l
+/V£,,|J/(lpe,,,zn)|2dx> —/F(Se,, ly(n(|(enx’, 0)Pw(x’, 0)))dx’. 3.6)
RN RN

Since O¢,(zn) € N¢ and g = f in O, we have

oY,
Sgn / <|qu/5n,zn|2 + — i

N+1
¥

2
+ mprgn,Zn) dxdy + / Ve, |y(We,.z,)|>dx
]RN

= / 8, (X, S, [V (Wern,z))[Sen Y (Wen, 2|2 dX
RN

= /f(ssn ly(n(|(enx’, 0)DW(X', 0))])|se, y((|(€nX, O)IW (X', 0))|*dxX’,
RN

that is,
0¥, » |?
/ <|le[Igmzn|2 + ’5"2" +m2‘I’£2n,zn) dxdy + /Vgn|y(‘l’gn,zn)\2dx
RN+1 RN
= / F(sely(m((enx’, 0))W(X’, Oy ((|(enx’, O)PW(X’, 0))[*dx’. (B7)
RN

If s¢, — oo, by the boundedness of the ¥, ., and (f4), we have

aqlgn’zn
0

/ <|lePngn|2 +

N+1
RN+

= / F(sely(m((enx’, O))wX’, ONNIy((|(enx’, 0)IW(X’, 0))|* dx’
RN

2
+m2‘I’£2n,zn) dxdy + /Vgn|y(‘l’gn,zn)\2dx
RN

2 / f(se, [y(w(x', 0)Dy(w(x', 0))|*dx’
Bs/2(0)
> f(se,a) / ly(w(x', 0))]>dx’ — oo

Bjs12(0)
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asn — oo, where a = inf,.p, 12(0) [y(w(x’, 0))|. This yields a contradiction. Therefore, s¢, — s = 0.
By (3.7), (2.8) and (f1), we can get so > 0. Next, we claim that s = 1. Indeed, by applying the Dominated
Convergence Theorem and taking a similar argument as Lemma 3.2 in [17], we have

2
/ <|VXIIIgn’zn2+ % +m2‘P§mzn> dxdy
Rﬁl*l y
ow |?
— / <|VXW2+ S +m2w2> dxdy, (3.8
Ri\“l y
/Vg"|y(‘i’g",z")\2dx—>—Vo/|y(w)|2dx, (3.9)
RN RN
[ FO e Do Px — [ Pyl (310)
RN RN

Therefore, by passing the limit in (3.7), we can obtain that

2
/ <|va2 A

oy
Ri\“l

+ m2w2> dxdy - Vy / ly(w)|?dx = /f(so|y(w)\)\y(w)|2dx. 3.1
RN RN

On the other hand, since w is a solution of (3.1), we have

\Y 2+"W2+“dd—v w)2dx = | FQyw))ly(w)*d (.12)
/ Vawi | ) e miw? ) dxdy 0/\YW| x—/ yw)Dly(w) dx. .
RN+1 RN RN
Combining (3.11)-(3.12), we have
/ [F(solyw)]) - F(yw) iy 2dx = 0. G.13)
RN

By (f4), we know sg = 1 and the claim is proved.
Finally, let n — oo in (3.6), we have

hm jg" (@g" (Zn)) = jO(W) = Co,
n—oo

which contradicts to (3.5). This completes the proof. O

For the § > 0 given before Lemma 3.6, choose p = p(6) > 0 such that M5 c B,(0). Define y : RY — RY as
X)) = xif |x| < p and y(x) = pﬁ if |x| > p. Then let us consider the barycenter map ¢ : Ne — RY given by

Jan X(€X)y(w)|? dx
fRN ly(w)|2dx

BE(W) =

Since O C B,(0), by the definition of y and Lebesgue’s Theorem, we conclude that
lir% Be(0¢(2)) =z uniformlyin z € 0. (3.14)
E—

The next compactness result is fundamental for proving that the solutions of the modified problem are
solution of the original problem.

Proposition 3.7. Let e, — 0 and {wn} C N, be such that J¢,(wn) — co. Then there exists a sequence {Z,} C
RN such that vn(x) = wn(x + 2,) has a convergent subsequence in H*(RY*1). Moreover, up to a subsequence,
Zn = EnZn — 2o € O.
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Proof. By Lemma 2.6, we know that ||wn|| H < C for n € N. Note that ¢ > 0, and since ||wy|| m —0 would

imply J¢,(wn) — O, we can argue as in Lemma 3.3 to get a subsequence {Z,} ¢ R and constants R, > 0
such that
.. 2
h,{ilj.}f / ly(wn)|“dx = > 0.
BR(zn)
Let vn(x) = wn(x + Zp), then {v,} is also bounded and therefore, along a subsequence, we have v, — v # 0
weakly in H L(RN*1). Take tn > O such that ¥ := tnvn € No, and set zn = €r2xn. Since wy € Ne,, we have

- 1 -
co < Jo(Vn) < 3 / <|van2 +
Ri\“l

+%/V(enx+zn)\y(f/n)|2dx—/F(|y(f/n)|)dx

RN RN

OV |2
oy

+ mzf/ﬁ> dxdy

Wn

2 n
s %n ('vanz ’ aay
Rﬁhl

+ mzwf,> dxdy

2
RN

= jan (thn)
< Je, (Wn) = co + 0n(1), (3.15)

tZ
+ 2 [ V(enx)|y(wn)>dx - / G(enx, tn|y(wn)|)dx
RN

where implies limy—e0 Jo(¥n) = co. Moreover, {¥,} is bounded in H YRYY and 7, — 7. We may assume
that t, — t* > 0. By the uniqueness of the weak limit, we have that 7 = t'v = 0. By Lemma 3.5, 7, — ¥ in
HY(RM1), and thus vi — vin HY(RY*1). Moreover,

Jo@ =co and (J(¥), V) =0.

Next, we prove that {z,} has a bounded subsequence. In fact, suppose by contradiction that |zn| — oo.
Choose R > 0 such that O c Bg(0). Then for n large enough, we have |z»| > 2R and for each x € Bg/,, (0) we
have

|enXx + zn| 2 |zn| — |€nx| 2 2R - R = R.

Therefore, by v, — v in H'(RY*1), the above expression, the definition of g and Lebesgue’s theorem, we can

get
/ <|Van|2 +

N+1
IR-+—

v’
oy

+ mzvﬁ> dxdy - / Voly(vn)2dx
RN

< / glenx + zn, lyn)ly(va) 2dx
]RN

- / Flya)Dlyn)Pdx + / glEnx + zn, [y )y(va) 2l

Bge, (0) RN\Bg/,,, (0)
< / FUywmDlyn)Pdx + / FUy@mDly(va) 2dx
BR/sn (0) RN\BR/sn (O)
V
< I—<O / ly(va)|>dx + on(1). (3.16)
]RN

Together (3.16) and (2.8), we have

(1-(1+1) %) [ (Mu

N+1
RN+

oVn
oy

2
) dxdy
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+m <m - (1 + %) Vo> / |vn|?dxdy

]RI+\1+1
< on(1). (3.17)

Then, we have v, — 0 in H*(R¥*1), which contradicts with v = 0. So {zn} is bounded and we can assume
that zn — zo € RN.If 2z ¢ O, we can proceed as above to conclude that v, — 0. Then, we have that z, € O.

Finally, we show that V(zg) = -V, we can suppose by contradiction that -V < V(zo). Then, by ¥, — ¥
in H*(RY*1), Fatou’s Lemma and the invariance of RY by translation, we have

2
22
+m°v° | dxd
y ) Y

- 1 - 0
co = Jo(¥) < 5 / <|V><V2 + av

Ry*l

+5 [ Vey@Pdc- [ FQy@pax

RN RN

1 . ov
-2/ (va|2+ v

N+1
]R+

2
2:2
oy +m°v > dxdy

+3 [ e+ Voy@Pax-5 [ VoyRax- [ Fiyax
RN

2
RV RN
.. 1 ~ 2, |0Vn
sllrglgf{z / (IVXVnI + Sy
]R{rwl

2
+ m2173,> dxdy

+;/V(snx+zn)|y(17n)|2dx—/F(|y(f/n)|)dx}

RN RN
2 2
= li,ﬂ)Ef{gl / (wan|2 + ag;’/" +m2w%) dxdy
]Rﬁ“l

+ﬁ V(enx)|y(wn)|2dx—/G(enx tnly(¥ )|)dx}
2 s tn n

RN RN
< liminfJg, (tawn)
n—oo

< liminf Jg, (wn) = co,
n—oo

which yields a contradiction. Therefore, V(z9) = -V, and z € M. The condition (V2) implies that zy ¢ oM
and thus zg € M. This completes the proof. O

Now, we consider the following subset of the Nehari manifold
Ne = {w e Ne: Je(w) < co + h(e)},
where h : R* — R* is such that h(¢) — 0" if ¢ — 0*. Given z € M, we can use Lemma 3.6 to get that
h(e) = |7¢(O¢(2)) — co| is such that h(e) — 0 as € — 0*. Therefore, O.(z) € N¢ and N¢ # () for any € > 0.
We present below an interesting relation between N¢ and the barycenter map.

Lemma 3.8. Foreach 6§ > 0, there holds that

lim sup dist(B:(w), Mg) = 0.

e—0 ~

weN,

Proof. Let {en} C R* be such that &, — 0, then there exists {wn} C Ne such that

dist(Be(wn), Ms) = lim sup dist(Be(w), Ms) + on(1).
s_)oweifz
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So it suffices to find a sequence {zn} C My such that
|Be(Wn) — zn| = 0n(1). (3.18)
Since Jo(twr) < Je(twy) forall t = 0 and {wn} C Nen C Ng,, we have
Co £ Ce, < Je,(Wn) £ co + h(en).

Then, we can obtain that Je, (Wn) — co. So we can invoke Proposition 3.7 to obtain a sequence {Z,} c RV
such that zy = enZn € Mg and zn — zg € M. Therefore,

Jaw X(EnX)|y(wn)|*dx
Sz [y(wn)|?dx
S X(EnX + zn) [y(wn)|? dx
T L YwPdx
Jan&(enx + zn) = zn)|y(wn)|*dx
Jan ly(wn)|2dx

Since enx + zn — zo € Mg, we see that B¢, (Wn) = zn + 0n(1) and thus the sequence {z,} satisfies (3.18) and
the lemma is proved. O

Be,(wn) =

=Zn+

We finish this section by presenting a relation between the topology of M and the number of solutions of the
modified equation (2.10). Since S; is not a complete metric space, we will invoke the abstract category result
in [32].

Theorem 3.9. Assume that (A), (V1) — (V2) and (f1) - (f4) hold. Then for any § > 0, there exists &g > O such
that problem (2.10) has at least cat (M) solutions provides € € (0, £g).

Proof. For each € > 0, we define the function 1 : M — §g by
me(z) = mz1(0:(2)), forany z € M.
By Lemma 3.6 and Proposition 2.5-(c), we have
Sli_r}ra D:(1:(2)) = Sh_r)r(l) Je(Oe(2)) = 9, uniformlyin z € M.
Therefore, there is number & > 0 such that the set
§s ={weSe: D:(w) <o+ h(e)}

is nonempty for all € € (0, &) since m:(M) C Se. Here his given in the definition of N;.
From the above considerations, together with Lemma 3.6, Lemma 2.4-(c), (3.14) and Lemma 3.8, we see
that there existsa & = €5 > 0 such that the diagram of continuous mappings below is well-defined for € € (0, &)

M 5 0.M) " (M) s 00(M) £ M.

From (3.14), we can choose a function 7(g, z) with |t(¢, )| < /2 uniformly in z € M for all € € (0, &), such
that B(0(2)) = z + 1(¢g, 2) for all z €¢ M. Define H(t,z) = z+ (1 - t)t(e,2z). Then H : [0,1] x M — My is
continous. Observe that H(0, z) = B:(0:(2)), H(1,z) = z for all z € M. So H(t, z) is a homotopy between
Be 0 O¢ = (B 0 m¢) o 1 and the inclusion map id : M — Mg. Therefore, we have

caty anme(M) = caty, (M). (3.19)

It follows from Corollary 2.9 andAthe category abstract theorem (see [32], Corollary 2.8) that @, has at least
cat,_nme(M) critical points on Se provides ¢ = ¢¢ < co+h(e) = dand K = ¢p-(M). Then, by Proposition 2.5-(c)
and (3.19), we conclude that J. admits at least caty, (M) critical points in Ne. Finally, we know (2.10) has at
least caty;, (M) solutions. O
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4 Proof of the main results

In this section, we will prove of main results. The idea is to show the solutions obtained in Theorem 3.9 satisfy
the estimate w¢(x) < a for any x € Og as ¢ is small. This fact implies that these solutions are indeed solutions
of the original problem (2.7). The following lemma plays an important role in the study of behavior of the
maximum points of the solutions, whose proof is related to the Morse iterative method [31] (see also [18, 33,
38]).

Lemma 4.1. Let en — 0" and wn € N, be s solution of (2.10) with € = en. Then Je,(Wn) — Co and va(x, y) =
Wn(X + 2n, y) satisfies y(vn) € L=(RN). Moreover,

lim y(vn) =

X[ —ee

Proof. Since Je,(Wn) < co + h(en) with limp—,. h(€n) = 0, we can argue as in the proof of equation (3.15) to
conclude that J¢,(wn) — co.

Set

V(G y) = min{vaCuy)l, L}, @ = vie Dva

with > 1 to be determined later.
Since

—PLn = Vi OV v+ 28 - DV STV val gy, ey V0
= vL(ﬁ DVA vn+2(B-1 vi(ﬁ v- 1VVL’,,W,
then
Vi, vnVA Qrn= wz(ﬂ 1)|VA val? +2(B - 1)v2(ﬁ - 1vanL,,,VA€" Vn.
By a direct computation (see for example [20]), we have
R (ﬁv;&gnvn) = |Va|V|Val.
Therefore, by the diamagnetic inequality, we obtain
§R (VAEHVnVAen(pL’n) > VL(ﬁ 1)‘V|V H + Z(ﬂ 1)]/2(/g 1)- 1|Vn|vVL’nv|Vn‘
VEED|G vl 2 + 208 - VEE D Ty )2
This inequality, by the definition of ¢; , and (J%, (va), @ ) = 0 imply that
vifﬁ_1)|V|vn||2dxdy +2(B-1) / vifﬁ_1)|VvL,,,|2dxdy
RQ’H Ri\Hl

< / (g6 06, [Y)]) = Ve, () v, ) P8 y(va) 2 dx
RN
2(B-1) V2
-m? Vi Vpdxdy
/
< / (8ex (s [Y@n)D) + Vo) () P8 y(va) 2dx, 1)
RN

here we use the fact V + Vj > 0 for all x € R" in the last inequality.
By (2.12), then from (4.1) we have

/ V2601, Pdxdy + 2(8 - 1)/ v2ED19y, L Pdxdy

N+1 N+1
RN+ RN+
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< (e + Vo) / ) PE Dy (vn)2dx + Ce / YLVl dx, (4.2)
N N

for some € > 0.
On the other hand, let w; ,, = vﬁ’r} |vn| and then

VWi = vlL;::V|vn| +(B- 1)v€:rf|vn\VvL,n. (4.3)
We deduce from (4.2) and (4.3) that

/ |VwL,n\2dxdy

N+1
R+

< CB /vifﬁ‘“|V|vn||2dxdy+z(ﬁ—1)/ Vi Dy, 2 dxdy

N+1 N+1
+ R+

< CB ((s+ Vo) / @) PV y(vn)2dx + Ce / y(vL,nnz‘ﬁ1>|y(Vn)|2“dx) : (4.4)
RN RN

for positive constant C. By the Sobolev embedding, we have

2
of
t
(R |y(wL,n)|2> <C / |V, q|*dxdy, (4.5)
N

N+1
RY

where constant C > 0, see for example [39]. So combining (4.4) and (4.5), we have

(R y(vs val)P? )
<CP ((e+ Vo) / YL )PE P yva)Pdx + Ce / |y(vL,n)|2<ﬂ”|y(vn)|2”dx) , (4.6)
RN RN

for constant C > 0. .
2
Next, we claim |y(|va])| € L% (RY). In fact, choosing B = % in (4.6) and using Holder inequality, we

have
2
Sy " off
/ iy 2 va) dx
N

< Cp ((e + Vo) / Y22y 2dx + Ce / |y(vL,n)|2"‘2y(vn)|z”dx)
RN RN

< CBle + Vo) / Y1 2 y(va) 2dx
2 22

2t 2f o
+CCep (@/ (|y(vL,n)|Z”T’2|y(vn)\) dx) (@/ (y(vnn)z”dx) :

Choosing proper € > 0, we can obtain

2

2f
({R \y(vL )2 dX) <C/|y(vL D122y vn)Pdx,
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for positive constant C. Let L — +o0, it yields

AN

/ (v 7 dx) <c / ) dx < 4o, 47)
Now we let
fo @)
S 2028-2)

it follows that 2¢/(t — 1) < 2. We estimate the right-and side of (4.6). By Holder inequality

_ 2t
[ ooty axs | [ o ”td") [ dx)
RN N N

<C / |y(vn)|‘mltdx> : (4.8)
N

and b = 28 - a, we see that a, b € (0, 2¥).Then by Young’s inequality, we

~l

IPLICLESY)
On the other hand, set a = 1=
have

2 2%
[t & [y ax+ 222 [lywo#ax
RN RN RN

cc| [woniaxs [ y(vn)ﬁﬁ-“”dx) , (49)
N RN

for C > 0.
Combining (4.6), (4.8) and (4.9), we have

_ # 2Bt
/ Yy val)l? ) < Cp? / yvn)erdx |,
N N
namely, u
(r—zltz’;

/ y(|vn|)|’*2”) chp / ()| udx) . (4.10)

Fori > O, we define ﬂi+1 inductively so that
ZB + t

1 1 ﬁl zﬁ ,

that iS,

_25(t-1)
ﬁi+1 = Tﬁi,

and f; = 2t/2. Therefore, we have

1

ﬂi+1
. t
/ y(vaD[Pri2 )
N

Bi
<C2ﬁ,+1ﬁﬂ”1 /\y(v )Pz dx) . (4.11)

Let

Bi
/ yn)? izndx) '
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Iterating by (4.11), w obtain
; i 2h
Ajq <IN C%n BEm Ay < CoAy.
This implies that
Y([vaDl =@y) < CoAx.

We complete the proof by using the fact

2

2f

eh?
A= /|y(vn)| 7 dx < oo,
N

By a standard arguments as Proposition 2.5 in [20] and Theorem 7.1 in [40], we can prove that y(vy) is
exponential decay and we omit the details here. O

We are now ready to prove the main result of this paper.

Proof of Theorem 1.1. We fix a small § > O such that M5 C O. We first claim that there exists some &5 > 0 such
that for any € € (0, &) and any solution w, € N¢ of problem (2.10), there holds

lywe)ll =m0, < a- (4.12)

We prove this claim by a contradiction argument and suppose that, there exists subsequence €, — 0%, wy :=
We, € Ng, such that J;, (wn) = 0 and
Hy(Wn) HLN(RN\OEH) 2d. (413)

By Lemma 4.1, we know J¢, (Wn) — ¢ and thus we can invoke Proposition 3.7 to obtain a sequence Z, C RN
such that enzn — z9 € M.
If we take r > O such that B,(zo) C By,(zo) C O we have

1
Br/gn(zo/gn) = aBr(ZO) C Ogn.

Moreover, for any z € B,/ (2n), there holds

Zn - 2—0’ < L(r+on(1) < ?
n

<|z-Zn|+ e .

Z
-
En

for n large. For this values of n we have that B, (2n) C O, or ,equivalently, RN\ Og, c RN\ By /e, (Zn).
On the other hand, it follows from Lemma 4.1, there is a R > 0 such that

y(wn) <a, for|x|2R andVneN,
for where it follows that
ywn(x, ) = y(va(x = 2n,)) = y(Wn(x = 2n,)) < a

for x € B4(2n) and n € N. Since there exists no € N such that for any n = ng and r/e, > R, there holds
RY\ Og, € RV \ B, (2n) C RV \ By(2n).

Therefore, there holds
y(wn) <a, YRY\O, (4.14)

which contradicts to (4.13) and the claim holds true.

Let &5 given by Theorem 3.9 and let €5 := min{&g, &5}. We will prove the theorem for this choice of ¢5.
Let € € (0, £5) be fixed. By using Theorem 3.9 we can get caty, (M) nontrivial solutions of (2.10). If w €
H}xg(M *1 () is one of these solutions, we have that w € N and we can use (4.14) and the definition of gto
conclude that g(-, [y(w)]) = f(Jy(w)|). Hence, u(x) = y(w(x, y)) is also a solution of problem (2.6). By an easy
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calculation we see that v(x) := u(x/e) is a solution of the original problem (1.2). Then problem (1.2) has at
least cat), (M) nontrivial solutions.

Now we consider £, — 0* and take a sequence wy € H};g'1 (RY*1, C) of solutions of problem (2.10) as
above. In order to study the behavior of the maximum points of u, = y(wn), we first note that, by the definition
of g and (f1) - (f2), there exists O < T < a small such that

g(enx, s)s? = f(s)s? < %sz (4.15)
forall x € RY and s < 1.
Using a similar argument as above, we can take R > 0 such that

[unll=Bgz,) < T- (4.16)

Up to subsequence, we may also assume that

lun|lL=az,) > T (4.17)

Otherwise, if this is not the case, we have

lunllz=(Byz,) < T>

and so it follows from J;, (wy) = 0, (4.15) and take a same calculation as (2.17)-(2.18), we can get a contradic-
tion. Therefore, (4.17) holds.

By observing (4.16) and (4.17), we see that the maximum points p, € RN of u, belongs to Bg(2n)) . Hence
Pn = Zn+qn forsome g, € Br(0). Recalling that the associated solution of (1.2) is of the form v, (x) := un(x/en),
we conclude that the maximum point ne, of vy iS Ne, := €nZn + €ngn. Since {gn} C Bg(0) is bounded and
&nZn — zo € M (according Proposition 3.7), we obtain

lim V(ne,) = V(zo) = -Vo.
n—oo

O
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