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Abstract: In this paper, we consider the nonlinear eigenvalue problem:∆(|∆u|p(x)−2∆u) = λ
|u|q(x)−2u
δ(x)2q(x)

in Ω,

u ∈ W2,p(x)
0 (Ω),

where Ω is a regular bounded domain ofRN , δ(x) = dist(x, ∂Ω) the distance function from the boundary ∂Ω,
λ is a positive real number, and functions p(·), q(·) are supposed to be continuous on Ω satisfying

1 < min
Ω

q ≤ max
Ω

q < min
Ω

p ≤ max
Ω

p < N2 and max
Ω

q < p*2 :=
Np(x)

N − 2p(x)

for any x ∈ Ω. We prove the existence of at least one non-decreasing sequence of positive eigenvalues. More-
over, we prove that supΛ = +∞, where Λ is the spectrum of the problem. Furthermore, we give a proof of
positivity of inf Λ > 0 provided that Hardy-Rellich inequality holds.

Keywords: p(x)-biharmonic operator; nonlinear eigenvalue problems; variational methods; Ljusternik-
Schnirelman; Hardy-Rellich inequality

MSC: 58E05, 35J35, 35J60, 47J10.

1 Introduction
During the last two decades the �eld of variable exponent Lebesgue spaces Lp(.) or Sobolev Wm,p(.) have
received a strong deal of attention by exploiting the well-known techniques of Orlicz spaces dated back to the
work of Orlicz [13] in 1931. Motivated by large applications involving partial di�erential equations governed
by operators may vary with respect to the spacial variable x itself, this �led becomes today a research area
called variable exponent analysis. This area is necessary in nonlinear electrorheological �uids and elastic
mechanics. In that context, we refer the reader to Ruzicka [18], Zhikov [23] and the references therein. Our
results in the present paper are partially inspired from the work of Harjulehto et al. [9] where the authors
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surveyed the di�erential equations governed by p(.)-Lapalcian with non-standard growth and compared the
results on the existence and the regularity.

In particular, the equations treated here contain alsoHardy potential term,whichmake the analysismore
delicate and quite interesting. Namely, will deal with the following nonlinear eigenvalue problem involving
the p(x)-Biharmonic and Hardy type potential:∆(|∆u|p(x)−2∆u) = λ

|u|q(x)−2u
δ(x)2q(x)

in Ω,

u ∈ W2,p(x)
0 (Ω),

(1.1)

whereΩ is a regular bounded domain inRN , we denote by δ(x) := dist(x, ∂Ω) the distance from the boundary
∂Ω, λ is a positive real number playing the role of an eigenvalue, and the exponent functions p(·), q(·) are
continuous on Ω, ∆2p(x)u := ∆(|∆u|

p(x)−2∆u) is the fourth order p(x)-biharmonic operator.
Recently, El Khalil et al. proved the existence of a sequence of positive eigenvalues for problem (1.1) only

for the constant case q(x) = p(x) = p in [6].
As far as we are aware, nonlinear eigenvalue problems like (1.1) involving the nonhomogenous Hardy

inequality in variable exponent Sobolev space have not yet been studied. That is why, at our best knowledge,
the present paper is a �rst contribution in this direction.

In this way, inspired by the works of [12, 15, 16], we attempt to expend the results of [6] to the space
of variable exponent. More precisely, we establish the existence of at least one non-decreasing sequence of
nonnegative eigenvalues of this problem such that supΛ = ∞, where Λ is the spectrum of (1.1). We prove that
inf Λ > 0 when the q(.)-Hardy-Rellich inequality holds, as a characterization of the positivity of the principal
eigenvalue of problem (1.1).

In this paper we assume the following conditions:

H(p,q) 1 < q− ≤ q+ < p− ≤ p+ < N
2 and q+ < p*2(x), for any x ∈ Ω,

where
q− := min

Ω
q, q+ := max

Ω
q and p*2(x) :=

Np(x)
N − 2p(x) , for any x ∈ Ω

The rest of this paper is structured as follows. Section 2 states somepreliminary properties to establish our
results presented in Section 4. Section 3we establish andprove anaxillary inequality ofHardy type in variable
exponent Lebesgue spaces, and give a necessary and su�cient condition for Hardy’s inequality to be true.
In Section 4 we prove the existence of at least one non-decreasing sequence of nonnegative eigenvalues to
problem (1.1) under appropriate hypotheses. Section 5 discusses the positivity of the in�mumof the spectrum
of our eigenvalue problem.

2 SpaceW2,p(·)(Ω) and useful results
We introduce some basic properties of Lebesgue-Sobolev spaces with variable exponent Lp(·)(Ω) and
Wm,p(·)(Ω). For details, we refer to the book [4] and the references therein. To handle better theses spaces
we de�ne �rst, for each �xed exponent function p(.), the modular functional ρp(x) de�ned on Lp(·)(Ω) by

ρp(x)(u) :=
∫
Ω

|u|p(x) dx.

Set
C+1(Ω) := {h : h ∈ C(Ω) and h(x) > 1, ∀x ∈ Ω}

The generalized Lebesgue space is de�ned as

Lp(·)(Ω) =
{
u : Ω → Rmeasurable and ρp(x)(u) < ∞

}
.
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We endow it with the Luxemburg norm

‖u‖p(·) = inf
{
µ > 0 : ρp(x)(

u
µ ) ≤ 1

}
.

The following proposition assembles the most important topological features of our variable exponent space
setting that we need to overcome most of di�culties related to our objectives.

Proposition 2.1 ([21]). The space (Lp(.)(Ω), | · |p(.)) is separable, uniformly convex, re�exive and its conjugate
dual space is Lp

′(·)(Ω) where p′(·) is the conjugate function of p(·), i.e.,

p′(x) = p(x)
p(x) − 1 for all x ∈ Ω.

For u ∈ Lp(·)(Ω) and v ∈ Lp
′(·)(Ω) we have the "equivalent" Hölder’s inequality∣∣∣ ∫
Ω

u(x)v(x) dx
∣∣∣ ≤ ( 1

p− +
1
p′−
)
|u|p(·)|v|p′(·) ≤ 2|u|p(·)|v|p′(·).

The Sobolev space with variable exponentWm,p(·)(Ω) is de�ned as

Wm,p(·)(Ω) =
{
u ∈ Lp(·)(Ω) : Dαu ∈ Lp(·)(Ω), |α| ≤ m

}
.

Equipped with the norm
‖u‖m,p(x) =

∑
|α|≤m

|Dαu|p(x)

Wm,p(·)(Ω) has the same topological features as Lp(·)(Ω). For more details, we refer the reader to [7, 8, 11] and
[20]. We denote byWm,p(·)

0 (Ω) the closure of C∞0 (Ω) inWm,p(·)(Ω).
We de�ne also the functional space

L
p(·)
÷ (Ω) =

{
u : Ω → R is measurable and

∫
Ω

1
p(x) |u(x)|

p(x)dx < ∞
}

and we equip it with the norm

|u|p(.) = inf
{
µ > 0 :

∫
Ω

1
p(x)

∣∣∣u(x)µ ∣∣∣p(x) dx ≤ 1}

so thatLp(·)÷ (Ω) is aBanach spacehaving similar topological properties to those of variable exponent Lebesgue
spaces.

Proposition 2.2 ([8, Theorem 1.3]). Let un , u ∈ Lp(·), we have
(1) |u|p(·) = a ⇔ ρp(x)( ua ) = 1 for u ≠ 0 and a > 0.
(2) |u|p(·) < (=; > 1)⇔ ρp(x)(u) < (=; > 1).
(3) |un| → 0(resp → +∞)⇔ ρp(x)(un)→ 0, (resp → +∞).
(4) the following statements are equivalent.

4(i) limn→+∞|un − u|p(·) = 0,
4(ii)limn→+∞ρp(x)(un − u) = 0,
4(iii)un → u in measure in Ω and limn→+∞ρp(x)(un) = ρp(x)(u).

Return back to our problem (1.1), solutions are considered in weak sense, namely inW2,p(·)
0 (Ω) endowed with

the norm
‖u‖ := inf

{
µ > 0 : ρp(x)(

∆u(x)
µ ) ≤ 1

}
.
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Remark 2.3. According to [21] the norm ‖.‖2,p(·) is equivalent to the norm ‖∆.‖p(·) in the spaceW2,p(·)
0 (Ω), for the

Lipschitz boundary and the exponent p(·) is in a class functions for which 1
p(·) is globally log-Hölder continuous.

Consequently, the norms ‖.‖2,p(·), ‖.‖ and ‖∆.‖p(·) are equivalent. See also [2].

Remark 2.4. In view of Proposition 2.2, for every u ∈ Lp(.)(Ω), then

min
{
‖u‖p

+
, ‖u‖p

−}
≤
∫
Ω

|∆u|p(x) dx ≤ max
{
‖u‖p

+
, ‖u‖p

−}
. (2.1)

Theorem 2.5 ([1, Theorem 3.2]). Let p, q ∈ C+1(Ω). Assume p(x) < N
2 and q(x) < p*2(x). Then there is a contin-

uous and compact embedding of W2,p(x)
0 (Ω) into Lq(x)(Ω).

De�nition 2.6. A function u ∈ W2,p(·)
0 (Ω) is said to be a weak solution of (1.1) if∫

Ω

|∆u(x)|p(x)−2∆u(x)∆v(x) dx = λ
∫
Ω

|u(x)|q(x)−2u(x)
δ(x)2q(x)

v(x) dx for all v ∈ W2,p(·)
0 (Ω).

We point out that in the case u is nontrivial we say that λ is an eigenvalue of (1.1) corresponding to the eigen-
function u.

We give a direct characterization of λk involving a mini-max argument over sets of genus greater than k. We
set

λ1 = inf
{∫
Ω

1
p(x) |∆u|

p(x) dx, subject to
∫
Ω

1
q(x)

|u|q(x)

δ(x)2q(x)
dx = 1

}
. (2.2)

The value de�ned in (2.2) can be written as the Rayleigh quotient

λ1 = inf
∫
Ω

1
p(x) |∆u|

p(x)dx∫
Ω

1
q(x)

|u|q(x)
δ(x)2q(x)

dx
, (2.3)

where the in�mum is taken overW2,p(·)
0 (Ω) \ {0}.

3 Improved q(.)-Hardy-Rellich inequality
Famous Hardy-Rellich inequality states that for all u in the usual Hilbert space H2

0(Ω),∫
Ω

|∆u|2 dx ≥ N
2(N − 4)2
16

∫
Ω

|u|2
δ(x)4 dx, N ≥ 5. (3.1)

The constant N
2(N−4)2
16 is optimal, but it is never achieved in any domain Ω ∈ RN . This inequality was �rst

proved by Rellich [17] in H2
0(Ω) and it was extended to functions in H2(Ω) ∩ H1

0(Ω) by Doled et al [5]. Davis
and Hinz [3] generalized (3.1) and proved that for any p ∈ (1, N2 ),∫

Ω

|∆u|p dx ≥
(N(p − 1)(N − 2p)

p2
)p∫
Ω

|u|p
δ(x)2p dx, (3.2)

whenever u ∈ C∞c (Ω). The inequality (3.2) was proved in [10], for all u ∈ W2,p(Ω) ∩ W1,p
0 (Ω) for 1 < p < N

2 ,
where p is constant. Owen [14] proved for p = 2 and Ω is bounded convex open set that∫

Ω

|∆u|2 dx ≥ 9
16

∫
Ω

|u|2
δ(x)4 dx,

whenever u ∈ C∞c (Ω).
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Lemma 3.1. Assume thatH(p,q) holds. Then there exists a positive constant C such that the q(.)-Hardy-Rellich
inequality ∫

Ω

1
p(x) |∆u|

p(x) dx ≥ C
∫
Ω

1
q(x)

|u|q(x)

δ(x)2q(x)
dx (3.3)

holds for all u ∈ W2,p(·)
0 (Ω) in one of the following cases:

(a) |u| ≤ δ(x)2 and |4u| ≥ 1;
(b) |u| ≥ δ(x)2 and |4u| ≤ 1.

Proof. Let u ∈ W2,p(·)
0 (Ω) such that 1 < q− ≤ q+ < p− ≤ p+ < N

2 .
From (a) we have |4u| ≥ 1. Thus ∫

Ω

p+
p(x) |∆u|

p(x) dx ≥
∫
Ω

|∆u|q
−
dx. (3.4)

In view of (3.2), we deduce that ∫
Ω

|∆u|q
−
dx ≥ C−

∫
Ω

|u|q
−

δ(x)2q− dx,

where C− =
(N(q−−1)(N−2q−)

(q−)2
)q− . This and (3.4) permit us to write∫

Ω

p+
p(x) |∆u|

p(x) dx ≥ q−C−
∫
Ω

1
q−
|u|q

−

δ(x)2q− dx.

Since |u| ≤ δ(x)2, we obtain ( |u|
δ(x)2

)q−
≥
( |u|
δ(x)2

)q(x)
.

Therefore
q−C−

∫
Ω

1
q−
( |u|
δ(x)2

)q−
dx ≥ q−C−

∫
Ω

1
q(x)

( |u|
δ(x)2

)q(x)
dx.

Therefore ∫
Ω

p+
p(x) |∆u|

p(x) dx ≥ q−C−
∫
Ω

1
q(x)

( |u|
δ(x)2

)q(x)
dx.

That is ∫
Ω

1
p(x) |∆u|

p(x) dx ≥ q
−

p+ C
−
∫
Ω

1
q(x)

|u|q(x)

δ(x)2q(x)
dx.

Hence we conclude that ∫
Ω

1
p(x) |∆u|

p(x) dx ≥ C1
∫
Ω

1
q(x)

|u|q(x)

δ(x)2q(x)
dx,

where C1 = q−
p+ C

−.
From (b) w have |4u| ≤ 1. Thus in this case∫

Ω

p+
p(x) |∆u|

p(x) dx ≥
∫
Ω

|∆u|p
+
dx. (3.5)

Using again (3.2), we have ∫
Ω

|∆u|p
+
dx ≥ C+

∫
Ω

|u|p
+

δ(x)2p+ dx,

where C+ =
(N(p+−1)(N−2p+)

(p+)2
)p+ . This and (3.5) give∫

Ω

p+
p(x) |∆u|

p(x) dx ≥ q−C+
∫
Ω

1
q−
|u|p

+

δ(x)2p+ dx.
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Since |u| ≥ δ(x)2, we get ( |u|
δ(x)2

)p+
≥
( |u|
δ(x)2

)q(x)
.

Thus
q−C+

∫
Ω

1
q−
( |u|
δ(x)2

)p+
dx ≥ q−C+

∫
Ω

1
q(x)

( |u|
δ(x)2

)q(x)
dx.

Therefore ∫
Ω

p+
p(x) |∆u|

p(x) dx ≥ q−C+
∫
Ω

1
q(x)

( |u|
δ(x)2

)q(x)
dx.

Then ∫
Ω

1
p(x) |∆u|

p(x) dx ≥ q
−

p+ C
+
∫
Ω

1
q(x)

|u|q(x)

δ(x)2q(x)
dx.

Hence we deduce that ∫
Ω

1
p(x) |∆u|

p(x) dx ≥ C2
∫
Ω

1
q(x)

|u|q(x)

δ(x)2q(x)
dx,

where C2 = q−
p+ C

+. The result follows.

Remark 3.2. In view of (3.3), λ1 > 0 if and only if the q(.)-Hardy-Rellich inequality holds in Ω. Moreover, λ1 is
exactly the best constant in the inequality (3.3). This makes our problem (1.1) naturally well de�ned.

De�nition 3.3. Let X be a real re�exive Banach space and let X* stand for its dual with respect to the pairing
〈·, ·〉. We shall deal with mappings T acting from X into X*. The strong convergence in X (and in X*) is denoted
by→ and the weak convergence by⇀. T is said to belong to the class (S+) if for any sequence un in X converging
weakly to u ∈ X and lim supn→+∞〈Tun , un − u〉 ≤ 0, un converges strongly to u in X. We write T ∈ (S+).

De�ne Φ(u), φ(u) :W2,p(·)
0 (Ω)→ R by

Φ(u) =
∫
Ω

1
p(x) |∆u|

p(x) dx and φ(u) =
∫
Ω

1
q(x)

|u|q(x)

δ(x)2q(x)
dx,

and setH = {u ∈ W2,p(·)
0 (Ω); φ(u) = 1}.

Lemma 3.4. We have the following statements:
(i) Φ and φ are even, and of class C1 on W2,p(·)

0 (Ω).
(ii) H is a closed C1-manifold.

Proof. It is clear that φ and Φ are even and of class C1 on W2,p(·)
0 (Ω) and H = φ−1{1}. In view of (3.3) H is

closed. The derivative operator φ′ satis�es φ′(u) ≠ 0 ∀u ∈ H (i.e., φ′(u) is onto for all u ∈ H). Hence φ is a
submersion, which proves thatH is a C1-manifold.

The operator T := Φ′ : W2,p(·)
0 (Ω)→ W−2,p′(·)(Ω) de�ned as

〈T(u), v〉 =
∫
Ω

|∆u|p(x)−2∆u∆v dx for any u, v ∈ W2,p(·)
0 (Ω)

satis�es the assertions of the following lemma.

Lemma 3.5. The following statements hold:
(1) T is continuous, bounded and strictly monotone.
(2) T is of (S+) type.
(3) T is a homeomorphism.
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Proof. (1) Since T is the Fréchet derivative of Φ, it follows that T is continuous and bounded.
Using the following elementary inequalities, which hold for any three real x, y and γ.

|x − y|γ ≤ 2γ(|x|γ−2x − |y|γ−2y)(x − y) if γ ≥ 2,

|x − y|2 ≤ 1
(γ − 1) (|x| + |y|)

2−γ(|x|γ−2x − |y|γ−2y)(x − y) if 1 < γ < 2,

we obtain for all u, v ∈ W2,p(·)
0 (Ω) such that u ≠ v,

〈T(u) − T(v), u − v〉 > 0,

which means that T is strictly monotone.
(2) Let (un)n be a sequence ofW2,p(·)

0 (Ω) such that

un ⇀ u weakly inW2,p(·)
0 (Ω) and lim sup

n→+∞
〈T(un), un − u〉 ≤ 0.

In view of the monotonicity of T, we have

〈T(un) − T(u), un − u〉 ≥ 0, (3.6)

and since un ⇀ u weakly inW2,p(·)
0 (Ω), it follows that

lim sup
n→+∞

〈T(un) − T(u), un − u〉 = 0. (3.7)

Thanks to the above inequalities,

∫
{x∈Ω:p(x)≥2}

|∆un − ∆u|p(x) dx ≤ 2(p
−−2)
∫
Ω

A(un , u) dx,

∫
{x∈Ω:1<p(x)<2}

|∆un − ∆u|p(x)dx ≤ (p+ − 1)
∫
Ω

(A(un , u))
p(x)
2 (B(un , u))(2−p(x))

p(x)
2 dx,

where {
A(un , u) = (|∆un|p(x)−2∆un − |∆u|p(x)−2∆u)(∆un − ∆u),

B(un , u) = (|∆un| + |∆u|)2−p(x).∫
Ω

A(un , u) dx = 〈T(un) − T(u), un − u〉,

we can consider
0 ≤

∫
Ω

A(un , u) dx < 1

and we distinguish two cases.
First, if

∫
Ω A(un , u) dx = 0, then A(un , u) = 0, since A(un , u) ≥ 0 a.e. in Ω.

Second, if 0 <
∫
Ω A(un , u) dx < 1, then

tp(x) :=
( ∫
{x∈Ω:1<p(x)<2}

A(un , u) dx
)−1

is positive and by applying Young’s inequality we deduce that∫
{x∈Ω:1<p(x)<2}

[
t(A(un , u))

p(x)
2
]
(B(un , u))(2−p(x))

p(x)
2 dx

≤
∫

{x∈Ω:1<p(x)<2}

(
A(un , u)(t)

2
p(x) + (B(un , u))p(x)

)
dx.
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Now, by the fact that 2
p(x) < 2, we have∫

{x∈Ω:1<p(x)<2}

(
A(un , u)(t)

2
p(x) + (B(un , u))p(x)

)
dx ≤

∫
{x∈Ω:1<p(x)<2}

(
A(un , u)t2 + (B(un , u))p(x)

)
dx

≤ 1 +
∫

{x∈Ω:1<p(x)<2}

(B(un , u))p(x) dx.

Hence ∫
{x∈Ω:1<p(x)<2}

|∆un − ∆u|p(x)dx ≤
( ∫
{x∈Ω:1<p(x)<2}

A(un , u) dx
) 1

2
(
1 +
∫
Ω

(B(un , u))p(x) dx
)
.

Since
∫
Ω(B(un , u))

p(x) dx is bounded, we have∫
{x∈Ω:1<p(x)<2}

|∆un − ∆u|p(x)dx → 0 as n →∞.

(3) Note that the strict monotonicity of T implies that T is into an operator.
Moreover, T is a coercive operator. Indeed, from (2.1) and since p− − 1 > 0, for each u ∈ W2,p(·)

0 (Ω) such
that ‖u‖ ≥ 1, we have

〈T(u), u〉
‖u‖ = Φ

′(u)
‖u‖ ≥ ‖u‖p

−−1 →∞ as ‖u‖ →∞.

Finally, thanks to the Minty-Browder Theorem [22], the operator T is surjective and admits an inverse map-
ping.

To complete the proof of (3), it su�ces then to show the continuity of T−1. Indeed, let (fn)n be a sequence
ofW−2,p′(·)(Ω) such that fn → f inW−2,p′(·)(Ω). Let un and u inW2,p(·)

0 (Ω) such that

T−1(fn) = un and T−1(f ) = u.

By the coercivity of T, we deduce that the sequence (un)n is bounded in the re�exive space W2,p(·)
0 (Ω). For a

subsequence, if necessary, we have un ⇀ û inW2,p(·)
0 (Ω) for a some û. Then

lim
n→+∞

〈T(un) − T(u), un − û〉 = lim
n→+∞

〈fn − f , un − û〉 = 0.

It follows by the assertion (2) and the continuity of T that

un → û inW2,p(x)
0 (Ω) and T(un)→ T(û) = T(u) inW−2,p′(x)(Ω).

Further, since T is an into operator, we conclude that u ≡ û.

We shall use The following results to prove our theorem related to the existence.

Lemma 3.6. We have the following statements:
(i) φ′ is completely continuous.
(ii) The functional Φ satis�es the Palais-Smale condition onH, i.e., for {un} ⊂ H, if

{
Φ(un)

}
n is bounded and

αn = Φ′(un) − βnφ′(un)→ 0 as n → +∞, (3.8)

where
βn =

〈Φ′(un), un〉
〈φ′(un), un〉

,

then {un}n≥1 has a convergent subsequence in W2,p(·)
0 (Ω).
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Proof. (i) First let us prove that φ′ is well de�ned. Let u, v ∈ W2,p(·)
0 (Ω). We have

〈φ′(u), v〉 =
∫
Ω

|u|q(x)−2u
δ(x)2q(x)

v dx.

Thus
|〈φ′(u), v〉| ≤

∫
{x∈Ω:δ(x)>1}

|u|q(x)−1

δ(x)2q(x)
v dx +

∫
{x∈Ω:δ(x)≤1}

|u|q(x)−1

δ(x)2q(x)
v dx.

Therefore
|〈φ′(u), v〉| ≤

∫
{x∈Ω:δ(x)>1}

|u|q(x)−1v dx +
∫

{x∈Ω:δ(x)≤1}

1
δ(x)2

|u|q(x)−1

δ(x)2(q(x)−1)
v dx.

By applying Hölder’s inequality, we obtain

|〈φ′(u), v〉| ≤ 2
(
|u|q(x)−1r(x) |v|q(x) +

∣∣∣∣ u
δ(x)2

∣∣∣∣q(x)−1
r(x)

∣∣∣∣ v
δ(x)2

∣∣∣∣
q(x)

)
.

where r(x) = q(x)
q(x)−1 .

This and (3.3) yield

|〈φ′(u), v〉| ≤ 2
(
|u|q(x)−1r(x) |v|q(x) +

1
C2 |∆u|

q(x)−1
r(x) |∆v|q(x)

)
.

Then
|〈φ′(u), v〉| ≤ 2

(
k1‖u‖q(x)−1‖v‖ +

k2
C2 ‖u‖

q(x)−1‖v‖
)
,

where k1 is a constant given by the embedding ofW2,p(·)
0 (Ω) in Lq(·)(Ω) and k2 is given by the equivalence of

the norm |∆.|p(·) and ‖.‖. Hence

‖φ′(u)‖* ≤ 2
(
k1 +

k2
C2

)
‖u‖q(x)−1,

where ‖ · ‖* is the dual norm associated with ‖.‖.
For the complete continuity of φ′, we argue as follow. Let (un)n ⊂ W2,p(·)

0 (Ω) be a bounded sequence and
un ⇀ u (weakly) inW2,p(·)

0 (Ω). Due to the q(·)-Hardy inequality (3.3) un ⇀ u in Lq(·)(Ω; 1
q(·) ) and due to the fact

that the embedding W2,p(·)
0 (Ω) ↪→ Lq(·)(Ω) is compact, un converges strongly to u in Lq(·)(Ω). Consequently,

there exists a positive function g ∈ Lq(·)(Ω) such that

| u |≤ g a.e. in Ω.

Since g ∈ Lq(·)−1(Ω), it follows from the Dominated Convergence Theorem that

| un |q(x)−2 un →| u |q(x)−2 u in Lq
′(·)(Ω).

That is,
φ′(un)→ φ′(u) in Lq

′(·)(Ω).

Recall that the embedding
Lq

′(·)(Ω) ↪→ W−2,p′(·)(Ω)

is compact. Thus
φ′(un)→ φ′(u) in W−2,p′(·)(Ω).

This proves the assertion (i).
(ii) By the de�nition of Φ we have that ρp(x)(∆un) is bounded in R. Thus, without loss of generality, we

can assume that un converges weakly in W2,p(·)
0 (Ω) for some functions u ∈ W2,p(·)

0 (Ω) and ρp(x)(∆un) → `.
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For the rest we distinguish two cases. If ` = 0, then un converges strongly to 0 inW2,p(·)
0 (Ω). Otherwise, let us

prove that
lim sup
n→∞

〈∆2p(·)un , un − u〉 ≤ 0.

Indeed, notice that
〈∆2p(·)un , un − u〉 = ρp(x)(∆un) − 〈∆

2
p(·)un , u〉.

Applying αn of (3.8) to u, we deduce that

θn = 〈∆2p(·)un , u〉 − βn〈φ
′(un), u〉 → 0 as n →∞.

Therefore
〈∆2p(·)un , un − u〉 = ρp(x)(∆un) − θn −

( 〈Φ′(un), un〉
〈φ′(un), un〉

)
〈φ′(un), u〉.

That is,

〈∆2p(·)un , un − u〉 =
ρp(x)(∆un)
〈φ′(un), un〉

(
〈φ′(un), un〉 − 〈φ′(un), u〉

)
− θn .

On the other hand, from Lemma 3.6, φ′ is completely continuous. Thus

φ′(un)→ φ′(u) and 〈φ′(un), un〉 → 〈φ′(u), u〉.

Then
|〈φ′(un), un〉 − 〈φ′(un), u〉| ≤ |〈φ′(un), un〉 − 〈φ′(u), u〉| + |〈φ′(un), u〉 − 〈φ′(u), u〉|.

It follows that

|〈φ′(un), un〉 − 〈φ′(un), u〉| ≤ |〈φ′(un), un〉 − 〈φ′(u), u〉| + ‖φ′(un) − φ′(u)‖*‖u‖.

This implies that
〈φ′(un), un〉 − 〈φ′(un), u〉 → 0 as n →∞. (3.9)

Combining with the above equalities, we obtain

lim sup
n→+∞

〈∆2p(·)un , un − u〉 ≤
`

〈φ′(u), u〉 lim sup
n→∞

(〈φ′(un), un〉 − 〈φ′(un), u〉).

We deduce
lim sup
n→∞

〈∆2p(·)un , un − u〉 ≤ 0. (3.10)

On the other hand,
〈Φ′(un), un − u〉 = 〈∆2p(·)un , un − u〉.

According to (3.10), we conclude that

lim sup
n→∞

〈Φ′(un), un − u〉 ≤ 0. (3.11)

In view of Lemma 3.5, un → u strongly inW2,p(·)
0 (Ω). This achieves the proof of Lemma 3.6.

4 Existence of in�nitely many eigenvalue sequences
Set

Γj =
{
K ⊂ H : K is symmetric, compact and γ(K) ≥ j

}
,

where γ(K) = j is the Krasnoselskii genus of the set K, i.e., the smallest integer j, such that there exists an odd
continuous map from K to Rj \ {0}.

Now, let us establish some useful properties of the Krasnoselskii genus proved by Szulkin [19].
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Lemma 4.1. Let X be a real Banach space and A, B be symmetric subsets of X \{0}which are closed in X. Then
(a) If there exists an odd continuous mapping f : A → B, then γ(A) ≤ γ(B).
(b) If A ⊂ B, then γ(A) ≤ γ(B).
(c) γ(A ∪ B) ≤ γ(A) + γ(B).
(d) If γ(B) < +∞, then γ(A − B) ≥ γ(A) − γ(B).
(e) If A is compact, then γ(A) < +∞ and there exists a neighborhood N of A, N is a symmetric subset of X \ {0},

closed in X such that γ(N) = γ(A).
(f) If N is a symmetric and bounded neighborhood of the origin inRk and if A is homeomorphic to the boundary

of N by an odd homeomorphism, then γ(A) = k.
(g) If X0 is a subspace of X of codimension k and if γ(A) > k then A ∩ X0 ≠ ϕ.

We now state our �rst main theorem of this paper using the Ljusternik-Schnirelmann theory.

Theorem 4.2. For any integer j ∈ N*,
λj = inf

K∈Γj
max
u∈K

Φ(u)

is a critical value of Φ restricted onH. More precisely, there exists uj ∈ K such that

λj = Φ(uj) = sup
u∈K

Φ(u),

and uj is a solution of (2.6) associated to the positive eigenvalue λj. Moreover,

λj →∞, as j →∞.

Proof. We only need to prove that for any j ∈ N*, Γj ≠ ∅ and the last assertion. Indeed, let j ∈ N be given and
let x1 ∈ Ω and r1 > 0 be small enough such that B(x1, r1) ⊂ Ω and meas(B(x1, r1)) < meas(Ω)

2 . First, we take
u1 ∈ C∞0 (Ω) with supp(u1) = B(x1, r1). Put B1 := Ω \ B(x1, r1), then meas(B1) > meas(Ω)

2 . Let x2 ∈ B1 and
r2 > 0 such that B(x2, r2) ⊂ B1 and meas(B(x1, r1)) < meas(B1)

2 .
Next, we take u2 ∈ C∞0 (Ω) with supp(u2) = B(x2, r2).

Continuing the process described above we can construct by recurrence a sequence of functions
u1, u2, ...., uj ∈ C∞0 (Ω) such that supp(ui) ∩ supp(uj) = ∅ if i ≠ j and meas(supp(ui)) > 0 for i ∈
{1, 2, ..., j}.
Let Ej = Span{u1, u2, ..., uj} be the vector subspace of C∞0 (Ω) Spanned by {u1, u2, ..., uj}. Then, dim Ej =
j and note that the map

w 7→ |w| :=
{
α > 0 :

∫
Ω

∣∣∣w(x)α ∣∣∣p(x) dx},
de�nes a norm on Ej. Putting Sj := {Ej : |v| = 1} the unit sphere of Ej. Let us introduce the functional
g : R+ × Ej −→ R by g(s, u) = φ(su). It is clear that g(0, u) = 0 and g(s, u) is non decreasing with respect to
s. More, for s > 1 we have

g(s, u) ≥ sq
−
φ(u),

and so lims→+∞ g(s, u) = +∞. Therefore, for every u ∈ Sj �xed, there is a unique value s = s(u) > 0 such that
g(s(u), u) = 1.
On the other hand, since

∂g
∂s (s(u), u) =

∫
Ω

(s(u))q(x)−1 |u|
q(x)

δ2q(x)
dx ≥ q−

s(u) g(s(u), u) =
q−
s(u) > 0.

The implicit function theorem implies that the map u 7→ s(u) is continuous and even by uniqueness.
Now, take the compact Kj := H ∩ Ej. Since the map h : Sj −→ Kj de�ned by h(u) = s(u).u is continuous
and odd, it follows by the property of genus that γ(Kj) ≥ j. This completes the proof of �rst part of the theorem.
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Now, we claim that
λj →∞ as j →∞.

Since W2,p(·)
0 (Ω) is separable, there exists (ek , e*n)k,n a bi-orthogonal system such that ek ∈ W2,p(·)

0 (Ω) and
e*n ∈ W−2,p′(·)(Ω), the (ek)k are linearly dense in W2,p(·)

0 (Ω) and the (e*n)n are total for the dual W−2,p′(·)(Ω)).
For k ∈ N*, set

Fk = span{e1, . . . , ek} and F⊥k = span{ek+1, ek+2, . . . }.

By (g) of Lemma 4.1, we have for any K ∈ Γk , K ∩ F⊥k−1 ≠ ∅. Thus

tk = inf
K∈Γk

sup
u∈K∩F⊥k−1

Φ(u)→∞ as k →∞.

Indeed, if not, for large k there exists uk ∈ F⊥k−1 with ‖uk‖p(·) = 1 such that tk ≤ Φ(uk) ≤ M for some M > 0
independent of k. Thus ‖∆uk‖p(·) ≤ M. This implies that (uk)k is bounded in W2,p(·)

0 (Ω). For a subsequence
of {uk} if necessary, we can assume that {uk} converges weakly inW2,p(·)

0 (Ω) and strongly in Lp(·)(Ω). By our
choice of F⊥k−1, we have uk ⇀ 0 weakly inW2,p(·)

0 (Ω) because 〈e*n , ek〉 = 0, for any k > n. This contradicts the
fact that ‖uk‖p(·) = 1 for all k. Since λk ≥ tk, the claim is proved.

5 The in�mum of the eigenvalues
Now, we give the following lemma which will be used in Theorem 5.2 which is the second main result of this
paper.

Lemma 5.1. λ1 = 0⇔ R(u) = 0, where

R(u) = Rp(·)(u) = inf
u∈W2,p(·)

0 (Ω),u≢0

∫
Ω |∆u|

p(x)dx∫
Ω
|u|q(x)
δ(x)2q(x)

dx
.

Proof. It is clear that we have the bounds

q−
p+ R(u) ≤ λ1 ≤

p+
q− R(u),

then from this it follows that λ1 = 0⇔ R(u) = 0.

Theorem 5.2. If there are an open subset U ⊂ Ω and a point x0 ∈ Ω such that p(x0) < ( or >)p(x) for all
x ∈ ∂U, then λ1 = 0.

Proof. We only deal with the case that p(x0) < p(x). The proof of the case that p(x0) > p(x) is similar. Denote
for O ⊂ Ω and δ > 0, B(O; δ) = {x ∈ RN : dist(x;O) < δ}. Without loss of generality, we may assume that
U ⊂ Ω, then there is ε0 > 0 such that

p(x0) < p(x) − 4ε0 for all x ∈ ∂U,

and there is ε1 > 0 such that

p(x0) < p(x) − 2ε0 for all x ∈ B(∂U, ε1), (5.1)

where B(∂U, ε1) = {x : ∃y ∈ ∂U such that |x − y| < ε1} ⊂ Ω, and there is ε2 > 0 such that B(x0, ε2) ⊂
U \ B(∂U, ε1), and

|p(x0) − p(x)| < ε0 for all x ∈ B(x0, ε2). (5.2)
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We can �nd a function u0 ∈ C∞0 (Ω) such that |∆(u0(x))| ≤ C, 0 ≤ u0 ≤ 1 and

u0(x) =
{
1 if x ∈ U \ B(∂U, ε1),
0 if x ∉ U ∪ B(∂U, ε1).

Then, for t > 0 small enough such that ∫
Ω
|tu0|p(x)

δ(x)2p(x)
dx∫

Ω
|tu0|q(x)
δ(x)2q(x)

dx
< 1.

Thus

R(tu0) =
∫
Ω |∆(tu0(x))|

p(x) dx∫
Ω
|tu0|q(x)
δ(x)2q(x)

dx
=
(∫

Ω |∆(tu0(x))|
p(x) dx∫

Ω
|tu0|p(x)
δ(x)2p(x)

dx

)(∫
Ω
|tu0|p(x)

δ(x)2p(x)
dx∫

Ω
|tu0|q(x)
δ(x)2q(x)

dx

)

≤
∫
B(x0 ,ε2) |∆(tu0(x))|

p(x) dx∫
B(x0 ,ε2)

|tu0|p(x)
δ(x)2p(x)

dx

≤ C1C2
tp(ξ1)−p(ξ2),

where C1 =
∫
B(∂U,ε1) |∆u0(x)|

p(x) dx and C2 =
∫
B(x0 ,ε2)

|u0|p(x)

δ(x)2p(x)
dx are positive constants independent of t

with ξ1 ∈ B(∂U, ε1) and ξ2 ∈ B(x0, ε2).
Using (5.1) and (5.2), we get |p(ξ1) − p(ξ2)| > ε0. Therefore,

R(tu0) ≤
C1
C2
tε0 for all t ∈ (0; 1).

When t → 0+, we obtain R(u) = 0, because limt→0+
C1
C2 t

ε0 = 0 and in view of Lemma 5.1, we deduce λ1 = 0.
This completes the proof.

Corollary 5.3. If Ω satis�es the q(.)-Hardy-Rellich inequality, then we have the following statements:
(i) λ1 = inf

{∫
Ω

1
p(x) |∆u|

p(x) dx, where u ∈ W2,p(·)
0 (Ω) and

∫
Ω

1
q(x)

|u|q(x)

δ(x)2q(x)
dx = 1

}
;

(ii) 0 < λ1 ≤ λ2 ≤ · · · ≤ λn → +∞;
(iii) λ1 = inf Λ (i.e., λ1 is the smallest eigenvalue in the spectrum of (1.1)).

Proof. (i) For u ∈ H, set K1 = {u, −u}. It is clear that γ(K1) = 1, Φ is even and

Φ(u) = max
K1

Φ ≥ inf
K∈Γ1

max
u∈K

Φ(u).

Thus
inf
u∈H

Φ(u) ≥ inf
K∈Γ1

max
u∈K

Φ(u) = λ1.

On the other hand, for all K ∈ Γ1 and u ∈ K, we have

sup
u∈K

Φ ≥ Φ(u) ≥ inf
u∈H

Φ(u).

It follows that
inf
K∈Γ1

max
K
Φ = λ1 ≥ inf

u∈H
Φ(u).

Then
λ1 = inf

{∫
Ω

1
p(x) |∆u|

p(x) dx, where u ∈ W2,p(·)
0 (Ω) and

∫
Ω

1
q(x)

|u|q(x)

δ(x)2q(x)
dx = 1

}
.

(ii) For all i ≥ j, we have Γi ⊂ Γj and in view of the de�nition of λi , i ∈ N*, we get λi ≥ λj. As regards
λn →∞, it has been proved in Theorem 4.2.
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(iii) Let λ ∈ Λ. Thus there exists uλ an eigenfunction of λ such that∫
Ω

1
q(x)

|uλ|q(x)

δ(x)2q(x)
dx = 1.

Therefore
∆2p(x)uλ = λ

|uλ|q(x)−2uλ
δ(x)2q(x)

in Ω.

Then ∫
Ω

1
p(x) |∆uλ|

p(x) dx = λ
∫
Ω

1
q(x)

|uλ|q(x)

2q(x)2q(x)
dx.

In view of the characterization of λ1 in (2.2), we conclude that

λ =
∫
Ω

1
p(x) |∆uλ|

p(x) dx∫
Ω

1
q(x)

|uλ|q(x)
2q(x)2q(x)

dx
=
∫
Ω

1
p(x) |∆uλ|

p(x) dx ≥ λ1.

This implies that λ1 = inf Λ.
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