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Abstract: In this paper, we consider the nonlinear eigenvalue problem:

‘q(x)fz u

A(|AuPD2Au) = A

3007 in Q,
u e WaPY(Q),

where Q is a regular bounded domain of RY, 8(x) = dist(x, 0Q) the distance function from the boundary 00,
A is a positive real number, and functions p(-), g(-) are supposed to be continuous on Q satisfying

1<minqsmaxq<minpsmaxp<Nandmaxq<p; :=M
2 ) [ ) 2 o} N-2p(x)
for any x € Q. We prove the existence of at least one non-decreasing sequence of positive eigenvalues. More-
over, we prove that sup/A = +oo, where A is the spectrum of the problem. Furthermore, we give a proof of
positivity of inf A > 0 provided that Hardy-Rellich inequality holds.

Keywords: p(x)-biharmonic operator; nonlinear eigenvalue problems; variational methods; Ljusternik-
Schnirelman; Hardy-Rellich inequality
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1 Introduction

During the last two decades the field of variable exponent Lebesgue spaces LP®) or Sobolev W™P") have
received a strong deal of attention by exploiting the well-known techniques of Orlicz spaces dated back to the
work of Orlicz [13] in 1931. Motivated by large applications involving partial differential equations governed
by operators may vary with respect to the spacial variable x itself, this filed becomes today a research area
called variable exponent analysis. This area is necessary in nonlinear electrorheological fluids and elastic
mechanics. In that context, we refer the reader to Ruzicka [18], Zhikov [23] and the references therein. Our
results in the present paper are partially inspired from the work of Harjulehto et al. [9] where the authors
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surveyed the differential equations governed by p(.)-Lapalcian with non-standard growth and compared the
results on the existence and the regularity.

In particular, the equations treated here contain also Hardy potential term, which make the analysis more
delicate and quite interesting. Namely, will deal with the following nonlinear eigenvalue problem involving
the p(x)-Biharmonic and Hardy type potential:

q0-2,, |
A(AuPW?au) = AT n wn
ue wrrM(Q), '

where Q is a regular bounded domain in RY, we denote by 8(x) := dist(x, 0Q) the distance from the boundary
00, A is a positive real number playing the role of an eigenvalue, and the exponent functions p(-), g(-) are
continuous on Q, Aﬁ(x)u = A(|Au \p(")‘zA u) is the fourth order p(x)-biharmonic operator.

Recently, El Khalil et al. proved the existence of a sequence of positive eigenvalues for problem (1.1) only
for the constant case g(x) = p(x) = p in [6].

As far as we are aware, nonlinear eigenvalue problems like (1.1) involving the nonhomogenous Hardy
inequality in variable exponent Sobolev space have not yet been studied. That is why, at our best knowledge,
the present paper is a first contribution in this direction.

In this way, inspired by the works of [12, 15, 16], we attempt to expend the results of [6] to the space
of variable exponent. More precisely, we establish the existence of at least one non-decreasing sequence of
nonnegative eigenvalues of this problem such that sup A = oo, where A is the spectrum of (1.1). We prove that
inf A > 0 when the g(.)-Hardy-Rellich inequality holds, as a characterization of the positivity of the principal
eigenvalue of problem (1.1).

In this paper we assume the following conditions:

H(p,q) 1<q <q'<p <p*<¥ and ¢* <p5(x), forany x € Q,
where NGO
- . * pPX -
:=min q, q' :=max g and x):=———"2-—, forany x € Q
q lin g, q 1ax g p2(0) N-2p00 y

The rest of this paper is structured as follows. Section 2 states some preliminary properties to establish our
results presented in Section 4. Section 3 we establish and prove an axillary inequality of Hardy type in variable
exponent Lebesgue spaces, and give a necessary and sufficient condition for Hardy’s inequality to be true.
In Section 4 we prove the existence of at least one non-decreasing sequence of nonnegative eigenvalues to
problem (1.1) under appropriate hypotheses. Section 5 discusses the positivity of the infimum of the spectrum
of our eigenvalue problem.

2 Space W?PO(Q) and useful results

We introduce some basic properties of Lebesgue-Sobolev spaces with variable exponent L*9(Q) and
W™PO(Q). For details, we refer to the book [4] and the references therein. To handle better theses spaces
we define first, for each fixed exponent function p(.), the modular functional Pp) defined on LP(')(Q) by

Py :=/|u|p(") dx.
0

Set
Ci(Q):={h:he C@)and h(x) > 1,¥x € Q}

The generalized Lebesgue space is defined as

’OQ) = {u : Q — R measurable and p (1) < oo},
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We endow it with the Luxemburg norm
; u
llull, = inf {y >0 :pp(")(ﬁ) < 1} .

The following proposition assembles the most important topological features of our variable exponent space
setting that we need to overcome most of difficulties related to our objectives.

Proposition 2.1 ([21]). The space LrYQ)), | -] p(.)) is separable, uniformly convex, reflexive and its conjugate
dual space is LP'O(Q) where p’ () is the conjugate function of p(-), i.e.,

p'(x) = pi(lj(gx—) 1 forall x € Q.

Foru € IPY)(Q) and v € LP")(Q) we have the "equivalent" Holder’s inequality

1 1
‘/u(x)v(x) dx| < (I? + F)|u|p(,)|v|p,(,) < 2lulp Vi -
Q

The Sobolev space with variable exponent wmPO(Q) is defined as
wmPO(Q) = {u e 1P9(Q) : D%u € IPY(Q), |a| < m}.

Equipped with the norm
HuHm,p(x) = Z |Dau|p(x)

lajsm

wmPO)(Q) has the same topological features as LPY)(Q). For more details, we refer the reader to [7, 8, 11] and
[20]. We denote by WP ©)(Q) the closure of C3(Q) in WmPO(Q).
We define also the functional space

Lf(')(_()) = {u : Q — R is measurable and /Iﬁm(xﬂp(")dx < oo}
0

and we equip it with the norm

p(x)
dx < 1}

ulp() =inf{y >0 /ﬁ‘%
0

so that Lf(') (Q)isaBanach space having similar topological properties to those of variable exponent Lebesgue
spaces.

Proposition 2.2 ([8, Theorem 1.3]). Let un, u € LP"), we have
(1) lulpe) =a @pp(x)(%) =1foru#0anda > 0.
@) Julpey < (=>1) @ ppp) < (=5>1).
(3) |un| — O(resp — +o0) & p,)(un) — 0, (resp — +oo).
(4) the following statements are equivalent.
4(i) limp— 40| Un — Ulpy =0,
4(ii)limn—>+oopp(x)(un -u)=0,
4(iii)un — u in measure in Q and limn_>+oopp(x)(un) = pp(x)(u).

Return back to our problem (1.1), solutions are considered in weak sense, namely in Wg P (Q) endowed with
the norm

. . Au(x)
ul .—1nf{y>0.pp(x)( p )sl}.
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Remark 2.3. According to [21] the norm ||. |, . is equivalent to the norm ||A.|| . in the space W(z)”’ ), forthe
Lipschitz boundary and the exponent p(-) is in a class functions for which ﬁ is globally log-Holder continuous.
Consequently, the norms ||.||5 ), ||| and ||A.|| 5., are equivalent. See also [2].

Remark 2.4. Inview of Proposition 2.2, for every u € LP ()(Q), then

min {Jul?", P} < [ 18uP® dxs max (s fulf ). @1
Q

Theorem 2.5 ([1, Theorem 3.2]). Let p, q € C7(Q). Assume p(x) < % and q(x) < p5(x). Then there is a contin-
uous and compact embedding of W'* Q) into LI (Q).

Definition 2.6. A functionu € W(z)’p O(Q) is said to be a weak solution of L) if

X702y (x)

. p(0)-2 dx = A " [u( d 1l 2,00 ().
Z|Au(x) Au(x)Av(x) dx Z 6(x)2q(x) v(x)dx forall v e W5P(Q)

We point out that in the case u is nontrivial we say that A is an eigenvalue of (1.1) corresponding to the eigen-
function u.

We give a direct characterization of A involving a mini-max argument over sets of genus greater than k. We
set

Ay = inf{/LMu\p(") dx, subject to 1 juj®” dx = 1}. (2.2)
) p(x) J q(x) §(x)2¥

The value defined in (2.2) can be written as the Rayleigh quotient

g Jo glgl4urdx

AL = & 2.3
f Q ﬁ 5‘(:‘;{1()«) dx
where the infimum is taken over Wg’p D)\ {0}.
3 Improved g(.)-Hardy-Rellich inequality
Famous Hardy-Rellich inequality states that for all u in the usual Hilbert space H3(Q),
5 N NZ(N—4)2 |u|2
/|Au| dx > 1% 500" dx, N=z5. 3.1)
o Q

The constant 1\’2(11‘]76‘4)2 is optimal, but it is never achieved in any domain Q € R". This inequality was first
proved by Rellich [17] in H3(Q) and it was extended to functions in H*(Q) N H}(Q) by Doled et al [5]. Davis
and Hinz [3] generalized (3.1) and proved that for any p € (1, g),

— — p
/ au? dx s (V@ 1;(21\1 20),» 6\&\)2]0 dx, (32
Q Q

whenever u € C(Q). The inequality (3.2) was proved in [10], for all u € W?P(Q) N Wé’p @@for1<pc< %,
where p is constant. Owen [14] proved for p = 2 and Q is bounded convex open set that

2 9 [ |uf
/|Au\ dx = 16 ] 5007 dx,
0 o)

whenever u € CZ(Q).
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Lemma 3.1. Assume that H(p,q) holds. Then there exists a positive constant C such that the q(.)-Hardy-Rellich

inequality )
p(0) w0
/P(x) Auf™ dx 2 C/ q(x) §(x)29 dx (3.3)

holds for all u € Wé’p (')(_Q) in one of the following cases:
(@) |u|<6(x)?* and |Au|=1;
() |u|26()* and |Au|<1.

Proof. Letu € W2PY(Q)suchthat1<q <q* <p <p*< ¥
0 2

From (a) we have |Au| = 1. Thus
/p(x) |AuPY dx > /|Au|q dx. (3.4)

T |ul?
/|Au| dx>C/6( )Zq’ X,

where C™ = (W) 7 This and (3.4) permit us to write

7)
p(x) ]
/p(X) [Auf dxz g ¢ /q 5(X)2‘T dx

In view of (3.2), we deduce that

Since |u| < 6(x)?, we obtain

g (9]
(s07)" = ()"

Therefore Ll N ) ] \a
q_C_Q/q(6(x)2) dXEq_C_Q/q(X)<5(X)2) dx
Therefore . ] a0
That is . o
/ IT\AuV’(X) dx > I%c / ey Slu\)zq(x) dx
o)
Hence we conclude that . . o
/ px )|Au|p(X) =€ / @JS'(?(‘)Z:J(X) dx,
Q

where C; = Z—IC‘.
From (b) w have |Au| < 1. Thus in this case

/I%Muﬁ’(x) dxz/\Au\’f dx. (3.5)
b oy

Using again (3.2), we have
p* + |ul?
/ |Aul” dx = C S0 dx,
Q o)

where C* = (W)p This and (3.5) give

p’ p(x) - +/i ufP’
/p(x)\Au| dx=>2q C T 5007 dx
Q

[0}
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Since |u| = §(x)?, we get

* (9]
(5K;>p 2<5K;)q '

Thus . ®
—er [ ful P -t 1 uf ¥
¢ [ ¢ (sip) 2 0¢ [ (i)
0 0
Therefore »
P’ p0 - +/ 1/ Jul \ax
= _|Au dx=>q C" | —— dx
/puﬂ | a ﬂn(amg
0 0
Then

1 q 1 |u®
—Aup(")dxz—f/— dx.
| st p*¢ ] 900 602w

0 0

Hence we deduce that

1 1 |u™
AulP® dy > /
[ seuraxzca [ o 50opa
0] Q
where C, = Z—IC*. The result follows. O

Remark 3.2. Inview of (3.3), A, > 0 if and only if the q(.)-Hardy-Rellich inequality holds in Q. Moreover, A, is
exactly the best constant in the inequality (3.3). This makes our problem (1.1) naturally well defined.

Definition 3.3. Let X be a real reflexive Banach space and let X* stand for its dual with respect to the pairing
(+,-). We shall deal with mappings T acting from X into X". The strong convergence in X (and in X") is denoted
by — and the weak convergence by —. T is said to belong to the class (S*) if for any sequence un in X converging
weakly to u € X and lim sup,,_, ,..(Tun, un — u) < 0, uy converges strongly to u in X. We write T € (S%).

Define @(u), ¢(u) : Wé’p(')(Q) — Rby

1 |u|q(X)
l/——g———dx
q(x) §(x)29%)

@(u)=/lﬁmu|p(")dx and @) =
0 0

and set H = {u € W2PY(Q); p(u) = 1}.

Lemma 3.4. We have the following statements:
(i) @ and ¢ are even, and of class C* on Wé’p (')(Q).
(ii) K is a closed Ct-manifold.

Proof. It is clear that ¢ and @ are even and of class C! on Wé’p (@) and K = @ 1{1}. In view of (3.3) H is
closed. The derivative operator ¢’ satisfies ¢’(u) # 0 Vu € I (i.e., ¢’(u) is onto for all u € ). Hence ¢ is a
submersion, which proves that H isa C L_manifold. O

The operator T := @' : Wé’p (')(Q) — W‘Z’P/(')(_Q) defined as

(T(),v) = / |AulPW2AuAv dx forany u,v € Wé’P(')(Q)
Q

satisfies the assertions of the following lemma.

Lemma 3.5. The following statements hold:

(1) T is continuous, bounded and strictly monotone.
(2) Tisof (S+) type.

(3) T is a homeomorphism.
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Proof. (1) Since T is the Fréchet derivative of @, it follows that T is continuous and bounded.
Using the following elementary inequalities, which hold for any three real x, y and ~.

x-y|" < 27(x]"Px = [y Py -y) ify 22,

| <
“G-D

we obtain forall u, v € W(Z)’p(')(_()) such that u # v,

x-y (x| + DX 2x = [y 2y x-y) ifl<y<2,

(T(w) - T(v),u-v) >0,

which means that T is strictly monotone.
(2) Let (un)n be a sequence of Wé’p(')(()) such that

un — u weakly in Wé’p(')([)) and lim sup(T(un), un - u) < 0.

n—+oo

In view of the monotonicity of T, we have
(T(un) - T(u), un —u) 2 0,
and since u, — u weakly in W(z)’p (@), it follows that

lim sup(T(un) — T(u), un — u) = 0.

n—+oo

Thanks to the above inequalities,

Ay - AuP® dx < 2("_’2)/A(un, u) dx,
{xeQ:p(x)=2}
un - Au X < - Un, U @(B(un, u))Qw(xD@ dx,
Aty - AuPPdx < (p* 1) [ (Alun, u))
{x€0:1<p(x)<2} Q

where
{A(un, u) = (JAun P72 Aup — |AuPP 72 Au)(Aun - Au),

B(un, u) = (|Aun| + |Au))?PW,

/A(un, w) dx = (T(un) — T(u), un - u),
Q
we can consider
Os/A(un,u)dx< 1
0

and we distinguish two cases.
First, if [, A(un, u) dx = 0, then A(un, u) = 0, since A(un, u) > O a.e. in Q.
Second, if 0 < [, A(un, u) dx < 1, then

-1
PO = / A(un, u) dx)

{xe0:1<p(x)<2}

is positive and by applying Young’s inequality we deduce that

[6(AQun, W) ] (Bun, w)2 P dx

{xeQ:1<p(x)<2}

< / (A(un, u)(t)zﬁ + (B(un, u))p(x)) dx.

{xeQ:1<p(0)<2}

DE GRUYTER

(3.6)

(3.7)
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Now, by the fact that zﬁ < 2, we have

/ (Atun, WO + (Blan, WP dx s / (Atun, W + Blun, W) dx
{xe0:1<p(x)<2} {xe0:1<p(x)<2}

<1+ / (B(un, w)PY dx.
{xe0:1<p(x)<2}

Hence

1
2
|Aun —Au|p(")dx < < / A(un, u) dx) (1 + /(B(un, w))P¥) dx).
{xeQ:1<p(x)<2} {xe0:1<p(x)<2} Q

Since [, (B(un, wW)P™ dx is bounded, we have

\Aup - AuP¥dx — 0 as n — oo.

{xe0:1<p(x)<2}

(3) Note that the strict monotonicity of T implies that T is into an operator.
Moreover, T is a coercive operator. Indeed, from (2.1) and since p~ -1 > 0, for each u ¢ W(Z,’p(’) (Q) such

that |ju|| = 1, we have
(T, u) _ '(u)

s P 5 oo as |ul| — oo
[lull [[ull

Finally, thanks to the Minty-Browder Theorem [22], the operator T is surjective and admits an inverse map-
ping.
To complete the proof of (3), it suffices then to show the continuity of T™1. Indeed, let (f,), be a sequence
of W’z’p/(')(ﬂ) such that f, — f in W’Z’p,(')([)). Let up and u in Wé’p(’)(ﬂ) such that
TYf) =un and T () =u.

By the coercivity of T, we deduce that the sequence (un)n is bounded in the reflexive space W(z)’p Q). Fora
subsequence, if necessary, we have u, — u in Wé’p (’)(Q) for a some u. Then

lim (T(un) - T(W), un —u) = lim {(fn - f, un - u) = 0.
n—+oo n—+oo
It follows by the assertion (2) and the continuity of T that
un — Uin W2PY(Q) and T(un) — T@) = T(w) in W 2P ¥(Q).

Further, since T is an into operator, we conclude that u = u.

We shall use The following results to prove our theorem related to the existence.

Lemma 3.6. We have the following statements:
(i) ¢’ is completely continuous.
(ii) The functional @ satisfies the Palais-Smale condition on X, i.e., for {un} C H, if {(:D(un)}n is bounded and

on = D' (Un) - Bng’'(un) = 0 as n— +oo, (3.8)

where
(@' (un), un)

ﬁn - <§0/(un), lln> ’

then {un}n»1 has a convergent subsequence in Wg’p(')(_()).
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Proof. (i) First let us prove that ¢’ is well defined. Let u, v € Wé’p (')(Q). We have

, ~ |u|109-2y
(p'(u),v) = WV .
o)
Thus
, |u|CI(X)—1 p |u‘CI(X)—1 p
< [ — L
|<¢ (u), VH = 5(X)2q(x) vax + 5(X)2q(x) vax.
{xeQ:6(x)>1} {xe0:6(x)<1}

Therefore

"W, v)| < 9001y dx + L vdx

(@ (), v)| < lul 5007 spo2a 0

{xeQ:6(x)>1} {x€eQ:6(x)<1}

By applying Holder’s inequality, we obtain

/ ( g(0-1 u qo-1 )
' (W), v)| < 2(|u|2 v +‘ .
r(X) q(x) 6(X)2 r(X) 6(X)2 q(X)
- 9%
where r(x) = PR
This and (3.3) yield

_ 1 :
'@, V)1 = 2 (Ul Wl + o AUl 1AVl ) -

Then ;
— K _
('@ vl = 2 (Ja T v+ 25 0 v,
where k; is a constant given by the embedding of Wé’p (')(Q) in L90(Q) and k, is given by the equivalence of
the norm |A.|, and ||. . Hence

k _
ol <2 (ke ) i,
where || - ||« is the dual norm associated with ||.]|.

For the complete continuity of ¢’, we argue as follow. Let (un)n C W(z) P (')(Q) be a bounded sequence and
un — u (weakly) in Wé’p (')(Q). Due to the g(-)-Hardy inequality (3.3) un — uin L19(@; ﬁ) and due to the fact
that the embedding Wé’p (')(Q) < L19(Q) is compact, un converges strongly to u in L19(Q). Consequently,
there exists a positive function g € L0)(Q) such that

lulsg ae.inQ.
Since g € LI0-1(Q), it follows from the Dominated Convergence Theorem that
[ Un 19972 4 | u 19972 4 in L90(Q).
That is,
¢'(un) = ¢'w) in LYO(Q).

Recall that the embedding
L9 (-)(Q) s WP (-)(Q)
is compact. Thus
@' (un) > @'(w) in W2POQ).

This proves the assertion (i).
(ii) By the definition of @ we have that (Aup) is bounded in R. Thus, without loss of generality, we
Pp(x)

can assume that u, converges weakly in Wg’p (')(_Q) for some functions u € Wé’p (')(Q) and p,)(Aun) — £.
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For the rest we distinguish two cases. If £ = 0, then u, converges strongly to 0 in Wé’p (')(Q). Otherwise, let us
prove that

lim sup(Af,(_)un, un —u) <0.
n—oo

Indeed, notice that
<A§(.)un, Un — u> = pp(x)(AUn) - <A12)(.)un, u>.

Applying an of (3.8) to u, we deduce that
On = (A;(,)un, u) — Bnl{@'(un), u) - 0 as n — oo.

Therefore ,
<® (un), un>

(@' (un), un) ) (9" (un), u).

<A127(.)un, Un —U) = Pp(x)(Aun) - 0n - (

That is,
Ppx)(Aun)
(¢’ (un), un)

On the other hand, from Lemma 3.6, ¢’ is completely continuous. Thus

<A}20(.)Un, Un — u> =

((so’(un), un) — (¢’ (un), u>) - On.

@' (un) = @'(w) and (@' (un), un) — (@'(W), ).
Then
(@' (n), un) = (@' (un), u)| < [(@"(un), un) - (@' (W), w)| + [(@’ (un), u) - (@’ (W), u)|.
It follows that

(@ (un), un) = (9" (un), w)| < {9 (un), un) = (9" (w), u)| + (19" (un) = " ()] [

This implies that
(@' (un), un) - (¢'(un),u) -+ 0 as n — oo. (3.9)
Combining with the above equalities, we obtain

L

lim sup(A2\un, un - u) <« ——— limsu "(un), un) — (@' (un), u)).
nﬂmop( p()Uns Un ) (o' (W), u) nHwP((QD( n), Un) = (@' (un), u))
We deduce
lim sup(Af,(_)un, un —u) 0. (3.10)
n—oo
On the other hand,

(D' (un), un — u) = (AIZ,(_)un, Un — U).

According to (3.10), we conclude that

lim sup(®’ (un), un — u) < 0. (3.11)
n—oo
In view of Lemma 3.5, un — u strongly in Wé’p (')(Q). This achieves the proof of Lemma 3.6. O

4 Existence of infinitely many eigenvalue sequences

Set
I; = {K C K : K is symmetric, compact and v(K) > j},

where v(K) = j is the Krasnoselskii genus of the set K, i.e., the smallest integer j, such that there exists an odd
continuous map from K to R/ \ {0}.
Now, let us establish some useful properties of the Krasnoselskii genus proved by Szulkin [19].
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Lemma 4.1. Let X be a real Banach space and A, B be symmetric subsets of X \ {0} which are closed in X. Then

(a) Ifthere exists an odd continuous mapping f : A — B, then v(A) < v(B).

(b) IfA C B, then v(A) < ~(B).

(©) v(AUB) <~(4)+~(B).

(d) Ify(B) < +oo, then v(A - B) = v(A) - v(B).

(e) IfAiscompact, then(A) < +oo and there exists a neighborhood N of A, N is a symmetric subset of X\ {0},
closed in X such that v(N) = v(A).

(f) IfN is a symmetric and bounded neighborhood of the origin in R and if A is homeomorphic to the boundary
of N by an odd homeomorphism, then v(A) = k.

(g) If Xo is a subspace of X of codimension k and if v(A) > k then A N X, # ¢.

We now state our first main theorem of this paper using the Ljusternik-Schnirelmann theory.

Theorem 4.2. For any integerj € N',

A; = inf max @(u)
KeTlj uek

is a critical value of @ restricted on H. More precisely, there exists u; € K such that

Aj = ®(uy) = sup D(u),
uek

and u; is a solution of (2.6) associated to the positive eigenvalue A;. Moreover,
Aj = o0, as j— oo,

Proof. We only need to prove that forany j € N, T ; # 0 and the last assertion. Indeed, let j € N be given and
let x; € Q and rq > 0 be small enough such that B(x, r1) C Q and meas(B(xq, r1)) < %S(Q) First, we take
u; € Cy(Q) with supp(u;) = B(xy, r1). Put By := Q \ B(xy, r1), then meas(B;) > %5(9) Let x, € By and
r, > 0 such that B(x,, r») C By and meas(B(xq, r1)) < %(Bl).
Next, we take u, € C5°(Q) with supp(u,) = B(x2, 12).

Continuing the process described above we can construct by recurrence a sequence of functions
Ui, Uz, ..., 4; € C7(Q) such that supp(u;) N supp(u;) = 0 if i # j and meas(supp(u;)) > 0 fori ¢
{1, 2, ..., j}-
Let E; = Span{ui, uy, ..., u;} be the vector subspace of C7’(Q) Spanned by {u1, u, ..., u;}. Then, dim E; =

j and note that the map
p(x)
WH|W|:={0{>0:/‘@ dx},

Q
defines a norm on E;. Putting S; := {E; : |v| = 1} the unit sphere of E;. Let us introduce the functional
g : R" xE; — Rby g(s, u) = ¢(su). It is clear that g(0, u) = 0 and g(s, u) is non decreasing with respect to
s. More, for s > 1 we have

g(s,u) 257 p(u),

and so lims_,+e0 g(s, U) = +oo. Therefore, for every u € S; fixed, there is a unique value s = s(u) > O such that

g(s(u), u) = 1.
On the other hand, since

|u|q(X) p
52400 X = ﬁg(s(u), u) = S0 > 0.

og - (0-1 qa q
8 s = [ sty :
Q

The implicit function theorem implies that the map u — s(u) is continuous and even by uniqueness.
Now, take the compact K; := H N E;. Since the map h : S; — K; defined by h(u) = s(u).u is continuous
and odd, it follows by the property of genus that +(Kj) > j. This completes the proof of first part of the theorem.
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Now, we claim that
Aj — oo as j— oo,

Since Wé’p )(Q) is separable, there exists (ey, en)k.n @ bi-orthogonal system such that ey, € Wé’p Q) and
en € w-22'0(Q), the (ex)y are linearly dense in Wé’p (')(.Q) and the (ey)n are total for the dual w-2r'0(Q)).
For k € N, set

Fy =span{ei,...,e;} and Fkl = span{ey,1, €xs2s -+ }-

By (g) of Lemma 4.1, we have for any K € Iy, KN Fj-, # 0. Thus

ty=inf sup @) — oo as k — oo.
€Lk ueKknFi-,

Indeed, if not, for large k there exists u; € Fk{1 with [[u||,) = 1 such that t; < @(u;) < M for some M > 0
independent of k. Thus [|Auy||,.) < M. This implies that (1) is bounded in Wé’p Q). Fora subsequence
of {uy} if necessary, we can assume that {u; } converges weakly in W(Z)’P “)(Q) and strongly in LPV(Q). By our
choice of Fj- ;, we have u; — 0 weakly in Wé’p(') (Q) because (ey, e;) = 0, for any k > n. This contradicts the
fact that [Jul|,() = 1 for all k. Since Ay > ¢, the claim is proved. O

5 The infimum of the eigenvalues

Now, we give the following lemma which will be used in Theorem 5.2 which is the second main result of this
paper.

Lemma5.1. 1; =0 < R(u) = 0, where

. Jo |AuPWdx

uewy@uz0 [, 3007 dx

Proof. 1t is clear that we have the bounds
q p’
Z-R(u) < Ay < “==R(u),
o (u) < Ay T (u)
then from this it follows that A; = 0 < R(u) = 0. O

Theorem 5.2. If there are an open subset U C Q and a point xo € Q such that p(xo) < (or >)p(x) for all
x € oU, thenA; = 0.

Proof. We only deal with the case that p(x) < p(x). The proof of the case that p(xo) > p(x) is similar. Denote
for 0 c Qand § > 0, B(0; 6) = {x € RY : dist(x; 0) < 6}. Without loss of generality, we may assume that
U c Q, then there is &5 > 0 such that

pxo) < p(x) — 4ey forall x € oU,
and there is £; > 0 such that
p(x0) < p(x) - 2¢o forall x € BOU, 1), (5.1)

where B(0U, &1) = {x : 3y € oUsuchthat|x - y| < &;} C Q, and there is €, > 0 such that B(xo, €;) C
U\ B(oU, &1), and
Ip(x0) —p(x)| < go forall x € B(xg, €2). (5.2)
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We can find a function ug € C5°(Q) such that |A(up(x))| < C, 0 < up < 1 and
1 if x€ U\B(oU, &),
uo(x) = ]
0 if xg UUuB(U,&q).
Then, for t > 0 small enough such that
f \tuo\p(")
Q 5(X)2p(x)

f |tug |q(X)
Q 5(X)2q(X)

Thus

‘()

Jo 1AGEuo()PY dx ( o 1A(tuo ()P dx> (fg sz dX )
tug |9 tug |P® tug|atd
fQ L(uglqbd fQ L(uglp()() X fQ lls(u(;lq(X)
fB(xo £2) |A(tu0(x))|p(") dx

I [tuo] 7™
B(x0,£2) §(x)2*™)

< G pp@),
G

R(tuo) =

where C; = [, BOU.c1) |Au0(x)|p(") dx and C; dx are positive constants independent of ¢
with &1 € B(oU, €1) and &, € B(xg, £2).

Using (5.1) and (5.2), we get |p(&1) — p(&>)| > €o. Therefore,

Juo/PY.
fB(xo &) 5(X)2p(X)

R(tugp) < %t&’ forall te (0;1).
2

When t — 0%, we obtain R(u) = 0, because lim;_,¢+ %tgo = 0 and in view of Lemma 5.1, we deduce A; = O
This completes the proof. O

Corollary 5.3. If Q satisfies the q(.)-Hardy-Rellich inequality, then we have the following statements:
q(x)

() A1 =inf { [, ;514uP® dx, where u € WP(0) and f, o G ax = 1}

(i) 0< A4 5/12<---</1n—>+o<>

(iii) Ay = inf A (i.e., A1 is the smallest eigenvalue in the spectrum of (1.1)).

Proof. (i) For u € X, set K1 = {u, —u}. It is clear that v(K;) = 1, @ is even and

Dd(u) = max(D > inf max @(u).
Kerl'y uek

Thus
inf ®@(u) > inf max @(u) = A;.
ueH KeTl's uek

On the other hand, for all K € I'; and u € K, we have

sup @ > @(u) = mf D(u).

uek
It follows that
inf max® = A; > inf ®(u).
Kel, K ueH
Then

) 2,p() w1
Ay = inf / |Au[P™ dx, where u € WgP*'(Q) and/ dx=1;.
p(x) q(x) 8(x )24()()

(ii) For all i > j, we have I'; C I and in view of the definition of A;, i € N", we get A; = A;. As regards
An — oo, it has been proved in Theorem 4.2.
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(iii) Let A € A. Thus there exists u; an eigenfunction of A such that

q(x)
/ R LY i dx =1
g0 ()24

Q
Therefore 02
at0-
22uy = Ay g
5(X)2£1(X)
Then w
q(x
/L\Au,ﬂp(") dx = /1/ R L i dx.
) pk) J 400 24(01®

In view of the characterization of A1 in (2.2), we conclude that

1 ()
L JAuy P dx
A= f() p(x) - /LMM}HP(X) dx = Aq.

1 e J px)
Jo 39 3q007 9% P

This implies that A; = inf A. O
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