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Abstract: The paper is concerned with the existence and multiplicity of positive solutions of the nonhomo-
geneous Choquard equation over an annular type bounded domain. Precisely, we consider the following
equation

,
Ay lu(y)|“»
|x - y|H

|u|2;’2u +finQ, u=0 onoQ,

where Q is a smooth bounded annular domain in R¥(N = 3), 2; = Zlf,v%z", f € L>(Q) and f > 0. We prove
the existence of four positive solutions of the above problem using the Lusternik-Schnirelmann theory and
varitaional methods, when the inner hole of the annulus is sufficiently small.
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1 Introduction

In the pioneering work, Tarantello [31] studied the nonhomogeneous elliptic equation
-Au = |u|2*_2u +fin Q, u=0 onoQ, (1.1)

where 2" = Z2X s the critical Sobolev exponent and Q is a bounded domain in R" with smooth boundary. If
f € H! then it is shown that there exists at least two solutions of (1.1) by using variational methods. Cao and
Zhou [9] proved the existence of two positive solutions of the following nonhomogeneous elliptic equation

-Au = f(x,u(x)) + h in RN (1.2)

where f(x, u) is a Carathéodory function with subcritical grotwh at oo. Further, many researchers investi-
gated (1.1) and (1.2) for the existence and multiplicity of solutions. For details, we refer [10, 11, 20, 21, 33] and
references therein. Recently, Gao and Yang [30] proved the existence of two positive solutions of the non-
homogeneous Choquard equation involving Hardy-Littlewood-Sobolev critical exponent using the splitting
Nehari manifold method of Tarantello [31].

Divya Goel, Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khaz, New Delhi-110016, India,

E-mail: divyagoel2511@gmail.com

*Corresponding Author: Konijeti Sreenadh, Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khaz, New
Delhi-110016, India, E-mail: sreenadh@maths.iitd.ac.in

80pen Access. © 2019 D. Goel and K. Sreenadh, published by De Gruyter. This work is licensed under the Creative Commons

Attribution alone 4.0 License.


https://doi.org/10.1515/anona-2020-0026

804 — D.Goeland K. Sreenadh, Critical growth elliptic problems involving Hardy-Littlewood-Sobolev DE GRUYTER

The existence, uniqueness, and multiplicity of positive solutions of the nonlocal elliptic equation, precisely
the Choquard equation both for mathematical analysis and in perspective of physical models has recently
gained significant attention amongst researchers. As an instance, in 1954 Pekar [28] proposed the equation

-Au+u-= (plc—‘*\u\z) uinR? (1.3)
to study the quantum theory of polaron. Later in 1976, Ph. Choquard [22] examined the steady state of one
component plasma approximation in Hartee-Fock theory using (1.3). In [22], Leib proved the existence and
uniqueness of the ground state of (1.3). The work of Moroz and Schaftingen enriches the literature of Choquard
equations. In [25] authors studied the following Choquard equation

~Au+Vu = (Ia* FW) F'(w), inRY, (1.4)

where a € (0, N), N = 3, I, is the Riesz Potential and F(u) € C}(R, R) with sub critical growth. In this work
authors established the existence of ground state soloutions of (1.4) and assuming some suitable growth
conditions on F and V, they studied the properties like constant sign solutions and radial symmetry of the
solution. Moreover, authors proved the PohoZaev identity and nonlocal Brezis-Kato type estimate. Interested
readers are referred to [16, 24, 26, 27] and references therein for the study of Choquard equation on the un-
bounded domain.

Concerning the boundary value problems of Choquard equation, Gao and Yang [15] studied the Brezis-
Nirenberg type existence results for the following critical equation

27 .
-Au = Ah(u) + Mdy |u\2ﬂ"2uin!), u=0o0noQ,
x—y[¥
Q
where A > 0,0 < u < N, h(u) = u, Q is a smooth bounded domain in R". Later in [14] authors proved the
existence and multiplicity of positive solutions for convex and convex-concave type nonlinearities (h(u) =
u?,0 < g < 1) using variational methods.

The geometry of the domain Q plays an essential and significant role on the existence and multiplicity of
the elliptic boundary value problems. Indeed, in [12], Coron proved the existence of a high energy positive
solution of the problem

-Au = |u|2'"2u inQ, u=0 onoQ, (1.5)

where Q is a bounded domain in R¥(N = 3), precisely an annulus with a small hole. Later in [3], Bahri and
Coron, proved that a positive solution always exists as long as the domain has non-trivial homology with
Z,-coefficients. In [6], Benci and Cerami studied the following equation

—-eAu+u=f(u)inQ, u=0 onodQ, (1.6)

where € € R*, Qis abounded domain in R¥(N = 3) and f : R, — Risa C™! function. Here authors proved
that there exists €” > Osuch thatforall € € (0, €"), (1.6) has cat(Q2)+1 solutions under some growth conditions
on the function f. Since then, the study of existence and multiplicity of solutions of elliptic equations over
non-contractible domain has been substantially studied, for instance, [4, 5, 13, 20, 29, 32] and references
therein.

The existence of high energy solution of (1.5) is a much more delicate issue. In this spirit, recently Goel,
Radulescu and Sreenadh [19] studied the Coron problem for Choquard equations. Here authors proved the
existence of a positive high energy solution for the problem (Pf) when f(x) = 0 and Q is a smooth bounded
domain in RN(N = 3) satisfying the following condition

(A) There exists constants O < R; < R, < oo such that

{(xeRY : Ry<|x| <R} CcQ, {xeR":|x|<R;}ZQ.
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In the light of above works, in this article, we study following problem

(Pp) { -Au \u y))/lli‘ dy \u+\2;"2u++f, inQ, u=0 onoQ,

where 2 = AI}J £, is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality (2.1) and f € F
with F := ={f : fel=), f=0, f % 0}. The domain Q C RY(N = 3) satisfies the condition (A). Here
we prove the existence of four solutions of the problem (Pf). To achieve this, we first seek the help of Nehari
manifold associated with (Py) to prove the existence of the first solution (say u). To proceed further, we prove
many new estimates on the convolution terms involving the minimizers of best constant Sy ; (see Lemma 4.1,
4.3 and 4.4). With the help of these estimates we prove that the minima of the functional over Ny is below the
first critical level where the first critical level is

N-pu+2
202N - )
Here J is the energy functional associated to (Pf) (defined in (2.3)). Moreover, J satisfies the Palais-Smale
condition below the first critical level. Subsequently, we show the existence of the second and the third so-
lution of (Py), in N¢ (a closed subset of the Nehari manifold) by using a well-known result of Ambrosetti
[2](see Lemma 5.2) and assumption (A). To study the existence of the fourth solution, a high energy solution,
we prove that the functional J satisfies the Palais-Smale condition between the first and the second critical
levels, where the second critical level is

2N-pu
Jp(uy) + sy

N-u+2
1nf Sf(u)+ SGN - )Sﬁiz

To prove the existence of fourth solution, we use the minmax Lemma (See Lemma 6.6). To the best of our
knowledge, there is no work on the existence and multiplicity of solutions to Choquard equations (Py) in
non-contractible domains. With this introduction, we state our main result.

Theorem 1.1. Assume p < min{4, N}, f € L*(Q) and f = 0 and Q be a bounded domain satisfying the conditon
(A). Then there exists " > 0 such that (Ps) has at least three positive solutions whenever 0 < ||f|g-1 < e
Moreover, if Ry is small enough then there exists e > 0 such that (Ps) has at least four positive solutions
whenever 0 < ||f|| g1 < e™.

The paper is organized as follows: In Section 2, we give the variational framework and preliminary results.
In section 3, using the Nehari manifold technique, we prove the existence of the first solution. In section
4, we prove some crucial estimates of the minimizer of Sy ; (defined in (2.2)) and analyze the Palais-Smale
sequences. In section 5, we prove the existence of the second and third solution. In section 6, we prove the
existence of the fourth solution.

2 Variational framework and preliminary results

We start with the familiar Hardy-Littlewood-Sobolev Inequality which leads to the study of nonlocal Choquard
equation using variational methods.
Proposition 2.1. [23](Hardy-Littlewood-Sobolev Inequality) Lett,r > 1 and 0 < yu < Nwith 1/t+u/N+1/r =
2,f € L(RN) and h € L"(RN). There exists a sharp constant C(t, r, u, N) independent of f and h such that

/ fOh(y)

Px=yl¥

dxdy < C(t, r, py N|If || eemy | Al ey - @1
RN RN
Ift=r=2N/(2N - ), then

- e
C(tryN)—C(Ny)—nzzé){F(ﬁ)} .
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Equality holds in (2.1) if and only if f = (constant)h and
h(X) = A(yz + |X _ a‘Z)(Zny)/Z,

forsome A € C,0#y cRanda e R". O

The best constant for the embedding D*2(R") into L2 (RV) (where 2" = 2 )is defined as

S= inf {/|Vu2dx: /|u|2*dx= 1}.
ueDL2(RV)\{0}
RN RN

Consequently, we define

Sui=  inf /Vuzdx //‘” AL A 22
H,L ueDL2(RV)\{0} {.N | | ‘X y|y y ( )
R

Lemma 2.2. [15] The constant Sy, defined in (2.2) is achieved if and only if

b ¥
o= (5ree=ar)
where C > 0 is a fixed constant , a € RN and b ¢ (0, o0) are parameters. Moreover,
S = Su,. (C(N, ).

Lemma 2.3. [15] For N =2 3 and O < u < N. Then

_1_

* * 2.2
7R :
o= | [ [ 5 dxay

N RN

defines a norm on L% (RN).

The energy functional gy : H}(Q) — R associated with the problem (Py) is

_1 2, 1 Pty /
Jr) = 2/|Vu| dx 2.2;// Xy dxdy fu dx, (2.3)
Q Q0 o

where u* = max(u, 0). By using Hardy-Littlewood-Sobolev inequality (2.1), we have

1
>
[ ()2 [u* () W(y)\ g Wy o
dxd < C(N, u) %72 |ul5-.

It is not difficult to show that the functional J; € Cl(H}(Q),R) and moreover, if u < min{4, N} then J JEE
C*(H{(Q), R).

Definition 2.4. A function u € H}(Q) is called a weak solution of the problem (Ps)ifforallv e H}(Q) the
following holds

002 [u* () ()
Vu-Vvdx - dxdy - [ fvdx=0.

|x - y|H
Q

Definition 2.5. For c € R, {un} is a (PS). sequence in H}(Q) for Jpifdf = c+0(1) and 3}(un) = o(1) strongly
in H' as n — oo. We say J satisfies the (PS)c condition in H}(Q) if every (PS). sequence in H(Q) has a
convergent subsequence.
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Since gy is not bounded below on H 3(Q), it is worth to consider the Nehari manifold
Nf := {u € Hp(Q)\ {0} | u" # O and (J;(w), u) = 0},
where (, ) denotes the usual duality. We define

Y; = inf Jr(u).

ueNy

Note that when f(x) = 0, 75(Q) is independednt of Q and 7,(Q) := 71, = 212’2 ﬁﬁ) S I’} fz .

Notations: Throughout the paper we will use the notation Jo = J, No =N, ||.|| = ||| HY(Q)

(u* ()% (u* ()%
a(u) = |Vu|2 dx and b(u) = dxdy.
/ /]

|x - y|H

An easy consequence of (2.1) gives J; is coercive and bounded below on Ny.
Proposition 2.6. For any u, v € H{(Q), we have

1

UG P V() UG Ju(y) VOO v(y) ’
// F=T (// ST ) <// =T ddy)

Proof. For details of the proof, see [17, Lemma 2.3]. O

Lemma 2.7. For each u ¢ Hé(()), there exists a unique t > O such that tu € N. Moreover, there holds
_1
N-u+2 a(u)® \ !
1o <
202N -p) b(u)

22" —1
Proof. Let my(t) = %a(u - %b(u) then on solving m/(t) = 0, we get unique t(u) = (%) 227 gych that
“u

t(u)u € N. From the definition of 7y, we have

1

< _(1__1 a(u) _(N-p+2 a(u)® ) &1
T < () = (5 22;) (W) a() (2(2N_m) ( W )

a

Remark 2.8. We remark that by [15, Lemma 1.3], Sy, 1 is never achieved on bounded domain. Therefore if u is
a solution of the following equation

2 .
-Au = ( u®) udy) lu>%u in Q, u=0 onoQ,
Q

|x - y|H

2N-p
then J(u) > 1y = 2’2’21’\;%8” w2
Lemma 2.9. A sequence {un} is a (PS)y,- sequence for J in H}(Q) if and only if J(un) = Yo + on(1) and

a(un) = b(un) + on(1).

Proof. Clearly, any (PS)r,- sequence satisfies a(un) = b(un) + 0(1) and J(un) = 25 + on(1). Conversely, let
J(un) = To + 0on(1) and a(un) = b(un) + 0n(1) then 7y = J(un) = ;E];T"fi)b(un) + 0n(1) and hence we have
22N - )

b(un) = DYy + on(1) where D = N-ni2’

(2.4)
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B (5 00)% (i) P(y) _
Define Tn() = Zﬂ/ T dxdy for y € H}Q) and n = 1,2,--
Claim: || Tn|g-: = (DY0)7 + on(1).

Let € H}(Q) such that ||| = 1 then by Lemma 2.7, we know that there exists a t > 0 such that

2 2.2}
" 2

*7)‘
2

a(ty) = b(ty). Therefore, t = ||| 2;,1 and 7y < 59|y, - This implies,

25 -1
1\
e = () @)

Taking into account (2.4), (2.5), Proposition 2.6 and employing Holder’s inequality, for each n, we have

*
2.2,-1

+ 2; + 2; ﬁ 2; 2; ﬁ
|Tn(zp)s< [ [ ettty dxdy) ( / dedy)

|x - y|H |x - y|H
Q Q Q Q

2201
2,

= b(un) *** [|P|In

*
2,-1

*
2.2)‘71

< (<L) (D7 + 0n(1)) T = (DYy)? + on(1) asn — co.
DT,

So, we get || Tn|| 71 < (DYo)? +0n(1). Moreover, Ty <m> = (b(un))? = (DYy)? +0n(1). This implies || Tn| g1 =

(DTO)% +0n(1). Hence the proof of claim follows. Now, by Riesz representation theorem, for each n, there exists
vn € H}(Q) such that

Tn(Y) = (v, ) = /an -V dx and ||va|| = ||Tn|lga = (DTO)% +on(1).
0

Thus, (v, un) = Tn(un) = b(un) = DYy + on(1). Hence,

[lun - VHHZ = Hun”2 = 2(un, vn) + anHZ

= DYy - 2DYy + DYy + 0n(1) = 0n(1) as n — oo.

For any i € H}(Q) with ||| = 1, we have

(' (), ) = /wn VW dx — To() = (U, ) — (Vs ) = (tn — Vi, ).

Q

Therefore, ||J’(un)||g-1 < |[un — Vn|| = on(1). It implies J’(un) — 0 in H™L. O

Clearly, Ny contains every non zero solution of (Ps) and we know that the Nehari manifold is closely related
to the behavior of the fibering maps ¢ : R* — R defined as ¢u(t) = J¢(tu). It is easy to see that tu e Ny if
and only if ¢, (¢) = 0 and elements of Ny correspond to stationary points of the fibering maps. It is natural to
divide N; into the following sets

N}' ={ue Nﬂ(l){j(l) >0}, Ny =:{ue Nf\¢{j(1) < 0},and N}) = {ue Nf|¢{j(1) =0}.
We also denote the infimum over ZN; and Nf‘ as

Tf+ = uienj\ff; Jr(w) 15 = uienj\ff; Jr(w).
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3 Existence of First Solution

In this section we prove the existence of first solution by showing the existence of minimizer for J; over the
Nehari manifold Ny. First we state some Lemmas whose proof can be found in [30]. We further prove some
properties of the manifold TN;.

S o
Lemma3.l. Iff € Fand ||flg2 < eq := CN,HSI;Zf2 where Cy, = (ft*l) 52 (2.2, — 2) then

221

ag := inf {CNI,HuH - fu dx} is acheived, where
ucE

B {ueH@: //'“(X)""“(”' dudy -1,

Proof. Proof follows from [30, Lemma 4.1]. Since we consider A = 0 in equation (4.1) of [30], our result holds
forall N = 3. O

Lemma 3.2. Forevery u € Ny, u % 0 we have a(u) - (2.2, — 1)b(u) # 0. In particular, N} = {0}.
Lemma 3.3. Foreachu € H})(Q) with u™ # 0 the following holds:

(a) There exists a unique t~ =t (u) > O such that t u Nf’(()). In particular,

_ a(u) ﬁ L
t><aqﬁnmm) = bmax

and J¢(t u) = trr%ax J5(tu).

(b) If / fu > 0, then there exists unique t* € (0, tmax) such that t*u € N}“(Q) and

dp(tu) = or?tlsrzl— dr(tu).

(c) t (u)is a continuous function.

() Ny = {u € H{(@\ {0} | u" # 0 and it (i) = 1}.

Lemma3.4. Foreachu € N}'(Q), we have [, fu dx > 0 and J;(u) < 0. In particular, 7;(Q) < T; (Q)<o.
Lemma 3.5. Let u € N¢(Q) be such that 35 (u) = IIJI\}I’(IQ) Jr(w) = 15(Q) then fQ fu dx > 0 and u is a solution of
we Ny

(Py).

Lemma 3.6. J; has Palais-Smale sequences at each of the levels 7;(Q), 7, f+ (Q)and7, ¥ Q).

Lemma3.7. Let {un} € Ny bea (PS)Tf(Q) sequence for J, then there exists a subsequence of {un}, still denoted
by {un}, and a non-zero u, € H}(Q) such that un — uy strongly in Hy(Q). Moreover, u; € Ny and is a solution
to (Pf).

Proof. J; is bounded below and coercive implies {un} is bounded in H(l)(Q). So, there exists a subsequence
still denoted by {un} such that un, — u; weakly in H3(Q). By [19, Lemma 4.2], we have 3}(u1) = 0. In particular,

ui € Ny and Jp(uy) = (% - ﬁ) a(uy) - (1 - ﬁ) /fu1 dx. Now, using the fact that a is weakly lower
Q

semi continuous we have

.. 1 1 . 1
15(Q) < Jp(uq) < hgglorolf (f - 2.2*)1) alun) - nhﬁrrgo (1 - m) /fun dx = 75(Q).
0
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Consequently, we have 75(Q) = J¢(u1). Let wn = un — u; then by [19, Lemma 4.1], [15, Lemma 2.2] and the fact
that J¢(u1) = 0, we obtain J;(wn) = J(un)-J(u1) = on(1) and (J(wn), @) = (I¢(un), )~ (Ip(u1), P)+on(1) =
on(1). Therefore, (3}(wn), wn) = on(1). It implies Jr(wn) = (% - ﬁ) a(wn) - [, fwn dx = on(1) and since
Jo fwn dx = 0n(1), we get a(wn) = 0n(1). Hence un — u strongly in Hj(Q). O

Lemma 3.8. If u be a solution of (Py) thenu € C 2(Q). Moreover, u is a positive solution.

u* ()

Proof. Let u be a solution of (Py) and G(x, u) = ( / T
Q

dy) |u*|?2u+f. By using same assertions and

arguments as in [25, Proposition 3.1 and Theorem 2], we have / Uy ))/|| m dy | € L=(Q) and since f € F,
we have |G(x, u)| = C(1 + |u|2 ~1). Then by the standard elliptic regulanty u € C*(Q).Since f > 0, wegetu >0

and by using strong maximum principle, u is a positive solution of (Py). |
)
;4

Lemma3.9. Let u < min{4, N} and ko = (2 — )2(2 - SZ(2 Vandf € F, ||f || g1 < eoo (Where e is defined
R

1
in Lemma 3.1) then

1. NHQ) C By, (0) := {u € HY(@) | |Ju]l < ko}.

2. Jyis strictly convex in By, (0).

Proof.

1. Letuce N}(Q) then ¢},(1) = 0 and ¢, (1) > 0. That is, a(u) = b(u) + Jo fu dx and a(u) > (2.2; - 1)b(u).
Therefore, a(u) = b(u) + [, fu dx < (2.27}‘—1)“(”) + [ fu dx. It implies (1 - ﬁ) a() < ||l g |lull. So,

(2.2,-1)

2or 1y Nl

[l <
-

2.2~ 1) 2’: 1 \Ts o
U 2,2 2u-1 L 2(25-1)
< T ey SE : SV _ ko
202, -1 M L (2.2,,—1) HL — 70

2. By using Holders inequality and equation (2.2), we have

21

/' / W B O 20920) 4o b0 (121

Ix-y#

< Sy (2 Paw) @ Vs az)

= SH’; a(u)(z;"l) a(z).

Again using Holders inequality, Proposition 2.6 and (2.2), we have

// (u+(X))2u(u+(y))2u—222(y) dXdy5 b(u)%”ZH%IL ssz’*ia(u)(z;‘fl)a(z). (32)

[x—y#
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From equations (3.1), (3.2) and definition of 3 '(u)(z, z), we get

97wz, 2) =a(2) - 2; / / WP OIBTZ0Z0) g4y

Ix—y#

ut 2, (it (V)22 2
~@2-1) / / () I(;—(ﬁ')‘ z°(y) dxdy

> a(2) (1 -2 Sy ra @ - 2 - 1)S;Iz,ia(u)(2;’1))
=a(z) (1 - (2.2, - 1)5;,2’;a(u)(2,1-1))
2,25 -1
>a(z) | 1- (fi) =0
(2.2,-1)
for u € By,(0) \ {0}. Then 3 '(u) is positive definite for u € By, (0) and J £(u) is strictly convex on By, (0).0]

Lemma 3.10. It holds that u; € N; and Jp(u1) = TF(Q) = 15(Q). Moreover, u, is the unique critical point of J5
in By, (0) and u is a local minimum of Jy in H{(Q).

Proof. Using the proof of [30, Theorem 1.3], we have / fuidx>0.Nowifu; € Ny then there exists a unique
Q
t7(u1) = 1> tmax > t*(uq) > O such that t"(u1)uq € N; then by Lemma 3.3 (b) we have

T5(Q) < 15 (Q) = Jp(t" (ur)uy) < It (ur)uq) = Jp(ur) = 75(Q).

which is a contradiction. It implies u; € N} and Tf* (Q) < Jp(u1) = 76(Q) < Tf* (Q) that is, J¢(u1) = 75(Q) =
TF(Q). Using Lemma 3.5 and Lemma 3.9, we get u; is the unique critical point of g in By, (0) and the proof of
local minimum follows from [30, Lemma 3.2]. O

Lemma3.11. Let u < min{4, N} and u € H}(Q) be a critical point of 3y then either u € Ny or u = u;.

Proof. If u ¢ H}(Q) be a critical point of Jrthenu e Ny = N} UN;. Now using the fact that N} NNy =0 and
N} C By, (0) we have either u € Ny oru=uj. O

4 Asymptotic estimates and Palais-Smale Analysis

In this section we shall prove that the functional J satisfies Palais-Smale condition strictly below the first
critical level and (strictly) between the first and second critical levels. To start with, we shall prove several
new estimates on the nonlinearity.

It is known from Lemma 2.2 that the best constant Sy, ; is achieved by the function

N-2
u(x) = S%(C(N’ H))ﬂ%ﬁ’ﬁ) M,

N2
(1 + |x\2) 2

which is a solution of the problem —Au = (x| * [u|2)[u|%"" in RY with

/Wu' i - //|u(x)|u|u(y)| ——

[x—y*
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We may assume Ry = p, R, = 1/p forp € (0, 1). Now, define v, € C=(RY) such that 0 < Up(x) < 1 forall
x € RV, radially symmetric and

0 O0<|x|< 37p,
1
Up(x)= 1 ZpS|X\S$,
0 |x|= ip’

and

(N(N - 2)e?)"7

(€2 +|x-(1-¢€)a]?)

. (N-p)2-N) 2N
ug(x) = S @2 C(N, }1) 2N-p+2) s
7

where 0 € SN := {x e R¥ : |x| =1}, 0 < € < 1. Set

85°(0) 1= vp(u§(x) € HH(Q). (4.1)

2N-u

Lemma 4.1. (i) a(gy’) = b(g?) = Sﬁ:’fz + 0¢(1) uniformly in o as € — 0.

2Ny
(i) 3(g5%) = zlzlz_ﬁj) S;}:Tz + 0¢(1) uniformly in o as € — 0.

(iii) g5’ — O weakly in H}(Q) uniformly in o as € — 0.
Proof.

(i) Observe the fact that there exist constants d;, d, > O such that

di <|x-(1-e€)o| < d forall x € By, whenever € < 1-2p. (4.2)

Vg5 Il 2y = I VUl 2y < / [Vug|> dx +p~ / uZ|* dx

(RNM\B 1 )UBy, By
2p
+p° / ug|? dx
Bi\BL
4p 2p
2
< CeN2 Ix-(1-€)o”
|x = (1-¢€)a|2N
(RNM\B 5 )UBy,
2p
- dx N-2
+ CeN? / =0(e .
Ix - (1-¢€)o]2N-2) €™

szUBi\Bi
4p 2p
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2N-u

Thus, vag’aHLZ(RN) = HVUg”LZ(RN) + Oe(l) = SII_VT + 05(1).
2N-p
Next we will prove that b(gg?) = S ;" + 0¢(1) uniformly in o as € — 0. For this consider
/ / 18570 85 ) / / WO WEO)
[x -yl |x -y
/] (p 0O p I = D UEWS
|x - y»

RN RN

o\ fJ« [ ] ]

Bap By 321 \By, By B 1 \B2, RM\B 1
P

] |ue(x‘))|( |;z|ey(y>| ixdy,

RN\B 1 BZp RN\B 1 RN\B 1

=C i i, (4.3)

Let &c(x) = W then taking into account the definition of u?, (4.2) and Hardy-Littlewood-
Sobolev inequality, we have the following estimates:
2N-p
N
~N(N-p) -N N
Jus €N | [ ST 0N, 7T (VY - 2)F 800 dx
2p
2N 2N
N N
2N- dx 2N-p A 2N-p
< Ce?NH /m < Ce /dx =0(e ),
2p 2p
ZNI\;y 212\171\71
/ £(x) dx / £(x) dx
Bi\sz
2N-p
2N
2Ny dx 2N
C 2 - =0 7)),
=€ / |x - (1-€)a|2N (e =)
2N-pu 2N-p
2N 2N
Jr<C / £:() / £:(x) dx
B 1 \By RN\B %
2p
2N-p
2N
2N-p dx Wy
<Ce? _—
=€ / |x - (1-€)a|?N (e =),

RM\B 1
2p
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2Ny
2N
/ &e() dx / &e() dx
RM\B ;.
2p
ZNJ
2N
_ dx dx _
<C 2N-u / / =0 2N-u ,
=te x-(1-¢€a?N | |x-(1-€)a2N €
RM\B | By
2p
2Ny 2N-u
N N
_ dx
d < Ce2N-H / s
/ felodx | = Ce x—(- oV

RN\B ;. RN\B |

2p 2p
= 0(e* M),

y 2N-p
Therefore, b(g5’) - // |ue(x|))\( M‘;W(y)‘ dxdy — O as e — O thatis, b(gg?) — S” “2 as ¢ — 0and
RN RN

completes the proof of (i).
(ii) Result follows from the definition of J and by (i).

(iii) Assume by contradiction, gg'° — g1 # 0 weakly in H}(Q) then g 57 — g1 strongly in L?(Q). Then by
using the inequality r2™V-2) + s20V-2) < (42 4+ s)N-2 forallr, s > 0, we have

eN-2
6,0'2
S/|gP‘ dxsC / €+ x- (1—e)o|2)“dx
0

Pelxlsz;

eN-2
=C / 20-2) 4 [y2N-2) dy
37ps|y+(1—€)0\s%

3
E+(1—e)

eN-2,N-1
<C / 2D 2D dy — 0.

0
It yields a contradiction. Hence results follows.

Lemma 4.2. Let o € SN"! and € € (0, 1), then the following holds:

(i) lim sup V(g5 — ud)||2,gny = O.
P=0 GesN-1 ec(0,1] P IED

2.2 .
(i) lim  sup ng"’ll o= e Iy
P—=0 gesN-1 ec(0,1 PN NE

Proof.
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(i) Consider

/ |Vgy’ - vul|’dx <2 / [uZ(x)Vup(x)|? dx + 2 / [Vul()vp(x) - Vul(x)|? dx
RV RV RV

<C p’2/|ug(x)\2 dx+/|Vug(x)|2 dx
2 By

By o

+C|p* / ug ()| dx + / IVul(0)]? dx

B3 \B 1 RM\B 4

4p 2p 2p
From the definition of uZ, we have the following estimates

p? / [uZ(x)|* dx < Cp~* / dx < CpN 2,
sz

sz

/ [Vul(x)|? dx < C/ |x - to] dx < C/ dx < Cp",
BZp BZP BZP

1 _
p? / [uZ(x)|* dx < Cp? / destN 2,

B3 \B 1 B3 \B1
4 2p 4p2p

/ |vul(x)|*> dx < C / W% dx < cpN2.

RM\B RM\B
2p 2p

Therefore, from above estimates and (4.4), we obtain desired result.

(ii) Consider

2, 2 . .
2" Y VRGOV N E I 2,
ng,oHi]fu _ HUgHIZVEM =//( o' Qv (y) = Dug ()| [ug (y)| dxdy
s X =y¥

5
< Czji’
i=1

— 815

(4.4)

where J; are defined in (4.3). Using the Hardy-Littlewood-Sobolev inequality and the definition of &, we

have the following estimates:

2N-u 2N-u
N N

/dx < Cp?NH,

\é
2N-u

== 2N-u
2N SN

T < CN, ) / Ldx | sc
\b2,

J» < CN, 1) / £:(x) dx / £.(x) dx
B % \B2p K@;Zp

2N-u
N

2N-u
<C /dx <Cp 7z,

2p
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2N-u 2N-u

2N 2N
T3 < CN, ) / £:(0dx / £e(0)dx
B 1 \Byy RN\B 1
2p 2p

2N-u
2N

dx
<C / x—(-oP"

RN\BL
2p
2Ny Wy
2N 2N
NS
y|2N y|2N 1-(@2p)¥N
ly+(1-€)ol>5; lylz55-1
Now using the same estimates as above we can easily obtain
N D
2 @Y\
<Cp 7 andJ5 < C| —F——
]4 p ]5 <1 _ (Zp)N>
€022, o12-2,
Hence sup gl — lluelly,* | = 0asp — 0and completes the proof. O
0€SN-1,e€(0,1]

Lemma 4.3. The following asymptic estimates hold:

2N-u
@ a(gs?) < Spr + 0@ 2).

2N-u

(i) b(gg?) < S +0(eM).

2N-u

(iii) b(g®) = Sy - O(e

=

Proof. Part (i) follows from Lemma 4.1 (i). For part (ii) we will first estimate the integral / | g;";"’\z* dx. Since
0

/\gg"’ﬁ*dxsc / Wl dx < / WP dx + / Wl dx
Q

B3 \B3p B3 \B; B \B3
4p 4p 2

2 2p 2p

and
/ ul? dx < ceV / N S 0(eM),

|x - (1-€)a|2N
B3 \Bi1 B3 \Bi

ap  2p 4p P

/ ul® dXS/|u?|2” dx = ST C(N, ) ¥ ,

B1\B3p RN
2p 7
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It implies / | gf,"’\f dx < S¥im C(N, y)N%zﬁz + 0(e") and now using this and Hardy-Littlewood-Sobolev in-

o)
equality we have

€0 (N2 €0 (1))]120
b(gle)‘,o’)=//|gp (X)‘ V‘gp (J’)‘ ¥ dXdy

|x - y[H

< CN, ) / g0 )
2N-p 2N-p

< C(N, p) (s# C(N, p) ™ + o(eN)) TS SEE 4 0(eM),

Nfu

This proves part (ii). Now to prove part (iii), consider

€,0 €,0 2;
b( ;a)_//|gp (X)| |gp Wl dxdy

X —y#

/ / “(x|))|( y;"(y)l dxdy

B 1 \By B 1 \By
2p 2p

ORI
// Xy dxdy ;]1,

RN RN

where J; are defined in equation (4.3). Using the proof of Lemma 4.1(i) and the fact that ||u H NL =S IT +
0¢(1), we obtain the required result. O

Now we will give a Lemma which is taken from [18]. For the sake of completeness, we provide a complete
proof.
Lemma 4.4. If yu < min{4, N} then

g5 00) (g5 ) ua ()

, 2.2;-1 (
b(uy + tgg°) = b(uy) + b(tgy?) + Ct // TEE dxdy
Q
2" 2 -1 e o
uq (x))x(u 3 -
+2.2 t// () (|X1(y;)‘y D) axdy - 09 foratl 0 < 1,
where u; is the local minimum obtained in Lemma 3.10.
Proof. We will divide the proof in two cases:
Casel: 2, > 3.
It is easy to see that there exists A > 0 such that
(@+b)P =aP +b? +pa® b +Aab” foralla, b>0 andp > 3,
which implies that
L €.0(x 2, (€0 2;—1u
b(uy +tgy) = b(uy) + b(tgg?) + Ctz’zu‘l// (8”0 l(fp_ }E?;)) 10) dxdy

v t//(ul(x))z H(ur (1) 1g5(y)

T dxdy, where C = min{4, 2.2, }.
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Case2:2 <2, <3.
We recall the inequality from [7, Lemma 4]: there exist C(depending on 2;) such that, forall a, b > 0,

2 -1 * 321 2.1 .
(a+b)2;2{au+bu+2 au b +2,ab®" - Cab* ifa=b, (4.5)

a* + b2+ 2,a%7 b + 2;ab2;"1 —Ca® b ifas<bh,
Consider Q x Q = 01 U 0, U O3 U O4, Where

01={(x,y) € 2x Q| u1(x) 2 tgy?(x) and u1 (y) = tg5° ()},
02 ={(x,y) € 2x Q| u1(x) > tgg°(x) and u1(y) < tgg’ ()},
03 ={(x,y) € 2x Q| ui(x) < tg5?(x) and uy (y) > tg5’(v)},
04 ={(x,y) € 2x Q| u1(x) < tg5?(x) and u1 (y) < tgg’(y)}-

() (u(y))*

Xy dxdy, forallu € H}(Q) andi=1,2,3,4.

Also, define the b(u)|0i = /

Subcase 1: when (x, y) € 0;.
Employing (4.5), we have the following inequality:

857 ()% (85 () 1141()/)

blus +tg5)j0, = (b(ur) + b(tgy*))jo, +2.2,t** _1// =yl e
2 2—1 €,0
22 / (ur () (ﬁ:(y;)w D) gy - AL,

where Al is sum of e1ght non- negative integrals and each 1ntegral has an upper bound of the

[ 2, -1 o 21
form Cffol ul(X)(tgp ‘(;))yl‘; (ul(y)) dXdy or Cfo] u1(y)(tgp l%‘(’))y‘\"y (u1(X)) dxdy Write (tg; G(X))Zufl

(tgg°(O).(tgg° (0))* with 2; -1=r+s, 0<sc« 27“ Then utilizing the definition of 01, u; € L™(Q)
and Hardy-Littlewood-Sobolev inequality, we have

//u1(X)(t§,§’“(><))2 () dx dy<C//(u1 X (tg5 7 (1) (u () > dxdy

|x - y|H |x - y|H

(tg5? (0)* (1 ()
< C// dxdy

|x = y|H

s(N 2)

// [x = y|H|x - (1 - €)a|sW- 2)
d 2N
sN-2) X
< Ce 2 / S(ZN)(N 2)
Ix-(1-€)o| ¥
d 2N
s0-2) X
< C€ 2 / s(ZN)(N 2) *
x-(1-¢€)a|

By the choice of s we have / dx < o0, As a result, we get

s(2N)(N-2)
|x=(1-¢€)g| =

/ / 1 (06857 00)2 ™ (us (1)

X =y dxdy < O(E(ZN%)@) forall® < 1.
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In a similar manner, we have

w ()5 (1)) ()%
cf [

X -y dxdy < 0(e“™9) forall © < 1.

Subcase 2: when (x, y) € 0.
Once again using (4.5), we have the following inequality:

25700 (g5 () 1u1(y)

|x - y|H

by + 8570, = [b(ur) + b(tgE o, + 2,243 / /

(1 ()2 (s (1)) 150 (y) )
+2. Zy // TEE dxdy - Ag,

where A2 is sum of eight non- negative 1ntegrals and each 1ntegra1 has an upper bound of the form
s 0O (t85 " 0 (g5 () (i ()™ (685 () (s ()

CffOZ : [x-y|¥ dXd)/OI'Cffo : |xfy\ﬂ :

case 1, definition of O,, the fact that tgf,’“ € Hé (Q) and regularity of u;, we have

dxdy. By the similar estimates as in Sub-

dxdy < O(e(ZNT_“)@) forall® < 1.

/ / w1 (0(tg5° (0) %1 (g5 ()

|x —y*

Write (ul(y))z;f1 = (w1 () .(u1(y))® with 2; -1=r+s,0<1+s¢< 27" Then utilizing the definition of 0,,
u, € L*(Q) and Hardy-Littlewood-Sobolev inequality, we have

/ /(141()/))2 g U(y))(ul(X))z ) < / /(u1(y))’(tgf)"’(y))“s(ul(X))Z;‘ dxdy

[x-y[* |x - y|H

(¢85 ()" (w1 ()
< C// dxdy

|x - y|H

(1+s)(N 2)

/ / x=yly -1 - ojaran T4

2N-u

2N
< Ce (1+s)§N—2) / dy
(1+s)(2N)(N—2)
o V-(1-eo

2N-u

d 2N

rs)(N-2) Y

<Ce 2 / (EETIE ’
o ly- (1-¢e)a|

< oo, Hence we obtain

dx
(1+s)2N)(N-2)

-(1-€)a|

By the choice of s we have /
o X

dxdy < O(e(m%)e) forall® < 1.

/ (s (V)21 (£S5 (1) (11 ()%
4 |x —y|#
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Subcase 3: when (x, y) € Os.
Using (4.5), we have

2, 2,-1
b(uy + t85%) 0, = (b(uy) + b(tg5 o, +2. 25> 1//( i) ff )f?;)) ) )y

2" 2'-1_€,0
usp(x u ’
+2.2 t/ ( 1( )) (lxl(y))/)w gp ()/) dxdy—Az,
where A2 is sum of eight non- negative integrals and each 1ntegral has an upper bound of the form
251 €0 €,0 251 €,0
Cffo3 (u1(0)* (tgy w1 (y)* dxdy or Cffo ui()(eg, ")+ (g (0

[x-y[* [x-y[*
case 1, Subcase 2, definition of O3 and regularity of u;, we get A2 < O(e(m%)g) forall © < 1.
Subcase 4: when (x, y) € O4.
Using (4.5), we have

dxdy. By the similar estimates as in Sub-

T00)2 (g5 ()2 (y)

(g5
blus + (g5 )0, = (blun) + bltg5 o, + 225657 [ [ ELEE dxdy
04
2" 2'-1_¢€,0
+2.2;t// (u1(0) ”(;ilfy))j; 8p §%; dxdy—Aé‘,

where A% is sum of eight non- negative integrals and each 1ntegral has an upper bound of the form

(i ()" H(tg5 (0)(tg ()’ " s () (g5 () (g8 ()
ClJo, oy dxdyor C [ [, mr=vw
Subcase 2, we have

dxdy. By the similar estimates as in

Ad < O(e(ZNT_u)@) forall ® < 1.
From all subcases we obtain AL < O(e )9) forall® < 1andi = 1,2, 3, 4. Combining all sub cases we
conclude Case 2. From Case 1 and Case 2 we have the required result. a
Proposition 4.5. Let u < min{4, N} then there exists €y > 0 such that for every O < € < €y we have

N—},l+2 e SN_l

su up +tg5% < Jr(uy) + ——=S¥*2 yniformlyino €
ta(?gf( 1+1t8,%) < Jp(uq) 2GN = ) HL formly

where u is the local minimum in Lemma 3.10.

Proof. By Lemma 3.8, u € L*°(Q) and u > 0 in Q. This implies

€,0 2 €,0 2
b(u1+tg U)_//(u1+tgp (X|)))( (;l‘]l:l‘l'tgp (y)) dxdy_

Claim 1: There exists a Ry > 0 such that

(85 0N EE O W) o wa
// Xy dxdy = CRpe 7 .



DE GRUYTER D. Goel and K. Sreenadh, Critical growth elliptic problems involving Hardy-Littlewood-Sobolev

Clearly,

Is / (85703 (g5 W) > us(y)

X" dxdy

B 1 \By B 1 \By,
2p 2p

§ (Wg00)% g ()
> C / / dxdy

|x - y|H

B%\BZp B%\Bz,:

3N 11—
> C / / et dxdy
By VB2 By \By X - y[#(e? + [x - (1 - €)0[2) 7" (€2 + |y - (1 - €)a]

For any € < 1 - 2p there exists ¢ > O such that 1 — € > ¢ > 2p so we get

I>Ce%+1‘”// dzdw
> INH 2
Sz wire? + 12125 (€2 + jw) " E

2 Ce'™ / / dedw ez = 0(€™).
g1z wH(1+|z]2)7 (1 +|w|]2) 2

Bc

This proves the claim 1. Now using Lemma 4.4, we have

1 1
Jp(uy +tgp) <5 aluy) + S altgy”) + t<u1,g5"’>Hé(m b(ul) - b(tgg %
6‘0
_ e 1//( |X ;|);)) ul()/) dxdy—/fu1 dx
Q

2 2 -1 e,a Ny
—t/fgf,”dx t//(ul(x)) #(uq (y))r % dxdy+O(€(T)9).

Ix—y[¥
for all © < 1. Taking © = =, we have
;4

1 1
Jp(ur + tgp%) <5 alur) + Saltgy®) + tur, 8" ) - b(ul) b(tg,i %)

or _1// (857 00) % (85 ° () ul(y)

|x —y*

dxdy—/fu1 dx
Q

2 2 -1 e,o
_t/fg;adx_t//(ul(x)) * (g () ) dxdy + o(e™2).

[x - y#

— 821
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This on utilizing Lemma 4.3 and claim 1 gives

1 1
Jp(uy +tgp%) < ia(ul) + ja(tgf, %)+ t{u1, g5 >H1(Q) b(ul) b(t £9)

2 / (g5 ()% (gy 0(}’))2“_1

|x = y|H

dxdy - / fuy dx—t / fgS dx
Q

Q

2, 2—1 €,0
//(ul(X)) #ur(y) g5 (v) dxdy + (e’

[x —y*

€,0 2 €,0 2 -1
_gf(u1)+3(tg;¢7) Ct22 1//(gp (X)) (gp ()/)) dXdy+0(e¥)

|x - y|H

= _ 22 [ 2o Wy
<dpu) + 5 (s;}iz +0(eN 2)) 5 <s;}iz - 0(e2 )>
U

— 221 CRoe = +o(e 7).

£2
2

ﬂlz N-2 (22 oty W 2.2 1pg, N2
Now define K(t) := Sy +0(e™ ™) "3 Spi? -0(e" 7)) -t" "CRoe 2 thenK(f) —» ccast —
“cu
;N I‘Z 2_2}1:,2
SHL}H +0(eN?)
e

oo and hm K(t) > 0 so there exists a te > 0 such that sup K(¢t) is attained and t <
>0 SN 5+2 O( 7)

Sp,.(€). Moreover there exists a t; > O such that for sufficiently small € > 0 we have te > ty. Clearly the

function

2 ( 2Ny N2 tz.z; zfvf o
t— — [ SE*? +0( ")) - S ’“2 -0(e"7)
H,L *
2 2.2}1

is an increasing function in [0, Sg 1 (€)]. Therefore,

N-pu+2
2@N-wH

22 -1~ N2 N-2
CRoe 7 +o(e 7).

sup 3f(u1 + tgz’ff) st(ul) SN ;4+2 + O(emm{ , N- 2})
t=0

Hence there exits a €y > 0 such that for every 0 < € < €y we have

N-u+2 2%

€,0 N-u+2 f 1 . N*l.
Stli(?gf(ul +tgp?) < Jp(uq) + 72(2N—y)SH’L uniformlyino € S

Lemma 4.6. The following holds:
(i) HAQ) \N; = Uy U U,, where

Uy i {u € HY(@)\ {0}

ut 20, ul <t (W)}U{O},
W FO, full > £ (nun)}'

(iii) For each O < € < €y, there exists to > 1 and such that u; + togy° € U.

U = {u € HY(@)\ {0}

(i) Nf C Uy

(iv) For each O < € < €, there exists so C (0, 1) and such that u; + sotogy° € Nf.
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N-p+2 N +
W) Y <Yp+ 358 y)Ssz'

Proof.
(i) It holds by Lemma 3.3 (d).

(ii) Letu e N* then t"(u) = 1and 1 < t'(u) < tmax < t (u) = ﬁ - (H ”) that is, Nf c U.

%) < cforall t > 0. On the
[lui+tg, |l

up+t
L/ "g‘é,a ) —» oo as n — oo, Define
[lur+tngp |l

(iii) First, we will show that there exists a constant ¢ > 0 such that 0 < ¢~ (

contrary, let there exist a sequence {t,} such that t, — e and ¢t~ (

Un := ”Zlﬁi"iﬁa” so there exists t~(un) such that ¢ (un)un € N¢. By dominated convergence theorem,
p
b Ui+ t ,0 b(h + ,0') b €,0
b(lhl)z ( - :ipz)z* = u . eipzz (gp ) aSH_}oo'
[ur + tngp |77 |IE +8p " (17 g5

Hence, J¢(t" (un)un) — —oo as n — oo, contradicts the fact that J; is bounded below on Ny. Therefore,

60 2 _ 213
there exists ¢ > O such that 0 < t~ (H'::ig’;a”) <cforallt>0.Letty = % + 1 then
< ,
P

2 2 2 ,01(12 ,
1= = llua|” + 5llgp %117 + 2to(us, g5°°%)
2 2 2 2 [ ur+ gy’
> lug||® + | = |lug|®| = ¢ 2 <t (7’;’0
llur + tgp"||

(iv) For each O < € < €, define a path &c(s) = u; + stogy® for s € [0, 1]. Then

§e(0)=u; and &(1) = uy + togy® € U,.

lus + togy®
2

It implies that u; + togs? € U».

Since Hth (Hull) is a continuous function and &¢([0, 1]) is connected. So, there exists s € [0, 1] such
that &e(so) = uy + Sotogs’ € Nr.

(v) Using part (iv) and Proposition 4.5. O

At this point we will state Global compactness Lemma for the functional g which is a version of Theorem 4.4
of [19].

Lemma 4.7. Let {un} C H}(Q) be such that J f(un) — c, 3}(un) — 0. Then passing if necessary to a subse-
quence, there exists a solution vy € H3(Q) of

+ 27 "
A= '&*Eyi'w" dy | [u*[>'+finQ
Q

and (possibly) k € N U {0}, non-trivial solutions {v1, V2, ..., Vi } of
—Au = (x| * [t )|t in RN
with v; € DV2(RN) and k sequences {y,}n C Q and {Ay}n C Ry i=1,2,---k, satisfying
k

1 .. i i
A—idlst(yn, 0Q) — oo, and ||un - vo - Z(A ) 7 vil(. -y /AL MIpre@yy = 0, N — oo,
n i=1

k k
unllBragery = Y [Villjragnys asn— oo, (vo) + > deolvi) = ¢,
i=0 i=1
1 U QO P )| 12N
here Joo :=1/V2d— *// dxdy, e DVA(RY).
where Joo(u) := 5 [ [Vu|” dx 2.2 Xy xdy, u (R™)

RN RN RN
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2N
Lemma 4.8. (i) Let {un} be a (PS). sequence for J; with c < 7;(Q) + 21212_11\1:;) S g‘iz then there exists a subse-

quence still denoted by {un} and anonzerou® € H}(Q) such that un — u® strongly in H5(Q) and 3¢ (u°) = c.
(ii) Let {un} C Nf bea (PS)c sequence for Jf with

N-p+2 b - N-pu+2
2N -l << T D NSl

then there exists subsequence still denoted by {un} and a nonzero u°® ¢ Ny such that un — u° strongly in
H§(Q) and 35 (u°) = c.

Proof. Proof of (i) follows from [30, Lemma 3.4]. To prove (ii), Let {un} be a (PS). sequence then by standard
arguments {un} is bounded in H}(Q) and there exists a subsequence of {uy} still denoted by {u,} and u° €
H}(Q) such that up, — u° in H}(Q) and 3}(u°) = 0. Then by Lemma 3.11, we have either u° Nf or u° = u;.
Now using Lemma 4.7 we obtain

k
_ N-p+2 55 0 N-u+2 %%
15 (Q) + Ws‘ H_C-Hf(u)+§ Hm(vi)sz(Q)+kmsH22.

i=1
which on using Lemma 4.6(e), glves k < 1. By [19, corollary 3.3], we get v; is a constant multiple of Talenti

function that is, Jeo(vy) = ZL-H+2 S” s .If k = 0 then we are done and if k = 1 and u® = u;, then

2(2N-p)
0 N - H+2 151\1;1‘2 N_l'l+2 ;Nfz
= B =7¢(Q) + ———— =S
c Hf(u )+2(2N )SHL f( )+2(2N— )SHL ’
a contradiction. If k = 1 and u° € Nj?, we get
0 N—y+2 % - N—}l+2 15{\“‘2
= T ST Y ( Q)+ =S,
R TeT R R A A TeT R A
which is again a contradiction. Hence k = 0 and result follows. O

5 Existence of Second and third Solution

In this section we will show the existence of second and third solution of problem (Py). To prove this, we shall
show that for a sufficiently small 6 > 0,

_ N_y+2 2N_+
cat({u €Ny : stTf(Q)+msg;iz _5}) 22,

where cat(X) is the category of the set X is defined in the Definition 5.1. And then employing Lemma 5.2, we
conclude the existence of second and third solutions. We shall first gather some preliminaries.
For c € R, we define

be(u) = cb(u), Te(u) = %a(u) - %bc(u), Me = {u € HS(@)\ {0}(7-(u), u) = O}.
U

We denote
[3f < c] = {u e Nf|3;(u) < c}.

Definition 5.1. (i) For a topological space X, we say that a non-empty, closed subset Y C X is contractible to
a point in X if and only if there exists a continuous mapping g : [0, 1] x Y — X such that for some xq € X,
0(0,x)=xforallx € Yand p(1,x) = xq forall x € Y.
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(ii) We define
cat(X) = min{k € N | there exists closed subsets Y1, Y2, -+ Y, C X such that
Y; is contractible to a point in X for all j and U]’-‘:l Y; = X}

Lemma 5.2. [2] Suppose that X is a Hilbert manifold and G € C'(X,R) . Assume that there are c; € R and
k € N, such that

1. G satisfies the Palais-Smale condition for energy level ¢ < c1;
2. cat{xeX|Gx)<c1}) =k
Then G has at least k critical pointsin {x € X | G(x) < ¢1}. O

Lemma 5.3. [1, Theorem 2.5] Let X be a topological space. Suppose that there are two continuous maps @ :
SNt 5 X and ¥ : X — SN such that Wo® is homotopic to the identity map of SN1. Then cat(X) = 2. O

Now we will proof a Lemma which will relate the functional J; and J.. Note that for each u ¢ Hé (Q) there

exists a unique ¢~ > 0 and a unique t* > 0 such that t u € Ny and t'ueN.

Lemma5.4. (i) Foreachu € ¥ := {u € H}(Q)| |u| = 1}, there exists a unique tc(u) > O such that
tc(Wu € M and

N-u+2

Z(T—p) (bc(u))fm .

max Jc(tu) = Ie(tc(Wu) =
t=0

(ii) Foreachu € HA(Q) withu* # 0and 0 < w < 1, we have

1 1
(L-w)I o) = 5 Il < 30 < 1+ @)1 @)+ 5 Il
(iii) Foreachu € ¥ and 0 < w < 1, we have

2N-u 2N-u

* 1 - * 1
(1= @)Tr g w) = 5 [fls < 3w < (1 + )72 3w + 5 1l

(iv) There exists eq1 > O such that if O < ||f ||+ < e11 then Yy > 0.

Proof.
tz.z;

(i) Foreachu € X, define k(t) = 1t2 - ——bc(u), then if
2" 2.2

tew) = ( bju)) N

we obtain k’(tc(u)) = 0 and k" (t.(u)) < 0. Therefore, there exists a unique t.(u) > 0 such that
N-pu+2
2N -

max Je(tu) = Je(te(uu) = (bc(u))‘zﬁfﬁz )

(ii) For 0 < w < 1, we have

w 2 1 2
< Wl = 0l + 5 [

‘Q/fudx

and foru € H(l)(Q) with u* # 0 by the above inequality, we get

1-w 2 1 _ i 2 l+w 2 1 L 2
7 I = 5 g b = 55 Il =8y < == lull” = 52w b0 + 5 5 -+
This implies that

(=)0 1 ()~ S 1 < 07 < (0 + )0 & @)+ 5 .

1 1
1-w 1+w
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(iii) Using part (ii), we obtain the following estimate for eachu € Yand 0 < w < 1
(1-w)I ot L (W) - IIfHH 1< () < T+ w)J o (¢ (Wu) + 7Hf||H 1 (5.1)

Using (5.1) in part (i) we get

N-pu+2

2N - s

%( 1L(U)u) =

N-pu+2

oN- P = - )W,

=(1- a))N =
Therefore, we get

NPk 1 - 2N-p 1
(L= @) 3w - 5 < Fp(Ew = (1 + @)V W) = S

2Ny
(iv) Combining part (iii) with the fact that 7y = ;}’;T"fi)s . > 0 contributes that

T7(@) > (- )P Ty - o flf

W N-p+2 131\;:‘2 1 2
= - N-p+ - —
(1 CU) 2 2(2N H)SHL 20) ||fHH'1'

Thus, there exists 11 > 0 such that 7y (Q) > 0 whenever ||f]|g1 < €11 O

2N-p
Lemma 5.5. If Q satisfies condition (A) then there exists a 8o > 0 such that if u € N with J(u) < DoB2 gFw2

2Q2N-p) °H,L
8o, then / |—§||Vu|2 dx#0
RN

Proof. Let {un} € Nsuch that J(un) = z(z_ﬁi)sg fz +o(1)and / |X7|\Vun|2 dx = 0.Since {un} € N therefore

by Lemma 2.9, {un} is a Palais-Smale sequence of J at level 212[2 1’\;*2 S” ’“2 . Now using [19, Theorem 4.4] and
Remark 2.8, we have

un = A Z V(. = yh) AN pragemy — O,

where v is a minimizer of Sy ;, AL € R*, y} € Q. Moreover, if n — oo then A} — 0 = Yo is the unit

) |y71
vector in RY. Thus we obtain

- [ = 2gx= | X 2 _ 1y 28 Ay 12
O—R[ |X|\Vun| dx /\x| (|Vun\ VAL Z vi((. - yD/AD) ) dx
/ VD -y dx

—on(1) + / |y n *ﬁ;’z' V(@) dz
rl

2N-p
N-p+2

—On(l) + )’OSH L
as n — oo, which is not possible. O
For O < € < € (defined in Proposition 4.5), define He : SN"! — H}(Q) as
He(0) = uy + sotogy?,

where the function u; + sotogy? defined in Lemma 4.6.
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Lemma 5.6. There exists a §¢ € R* such that

N-pu+2

2N
N-p+2
aN 0 SHE e

He(SY™) ¢ |37 < 75(Q) +

Proof. Trivially, He(0) = uy + sotogy’ € Ny. So we only have to prove that Js(u; + sotogy®) < 15(Q) +

2N-p
272‘ ﬁfi) Sp1” — 8¢ for some & > 0. Since by Proposition 4.5,
co N-u+2 b N-pu+2 4%
7)< A “TH Q) + KT < gm
stt:(x))ﬂf(m +tg,%) < dr(uq) + 2(21\,_]1)8,111 FQ) + 2N ) HL
Hence there exists a 6 > 0 such that
N-p+2 48
€,0) €,0) ¢ 7.(Q SN2 _§
dr(uq + sotog) )<st121§3f(u1 +1t8,7) < T(Q) + 20N - ) hL e

Lemma 5.7. There exists a ey, > O such that ||f|| -1 < ez then for any

N-p+2 ,if“’f‘z} /x 2
— 8§ | wehave | —|Vul|® dx #O0.
202N — ) "HL A IXI| |

uc [Hf < Tf(.Q) +

Ny ANy
Proof. Let u € {HfsTf(QHZIYZ’T"fi)SI’ﬁ”} then Je(u) < Y(Q) + zlgz’l’jf;)sgj’fz and u € Ny, that is,

2N-u
1 4= u = i N-u+2 oN-u+2 u . *
”u”t (IMI) 1. Since Tf(_()) < 0 we have Hf(u) < 2(2N—u)SH,L . So for Ty € X there exitsa t* > O such

that ﬁTIT\ € N which on using Lemma 5.4 (iii) implies

u

155\]714_:‘2 > 2 _i 2 < _L =
(=075 (£ ) = 5 e <3y (€ ) 3500

Now using Lemma 3.4, we have

« U - L e
J <t m) <(1-w) ™ <Hf(u) + ﬂ”f”H’l)
_wvy (N-p+2 2 1
< (1 _ (l)) N-p+2 (WH—]J)S;’)}“Z + %Hf”%[’l)
~ B 725\77*:4 B N - H+ 2 I\ﬁv);fz
_((1 W) 2 1)2(T—}1) H,L

N-p+2 5% 1 2
tsovoomr t o Ml |-
<2(2N - ]1) HL 20)(1 — w)z@fufz H

2N~ 2N
Choose wg > 0 such that for 0 < w < wg, we have ((1 - (u)’NTf2 - 1) 212’2'1‘\;:'5) S}l’,:;” < 570 where 8, is defined
1 6o

in Lemma 5.5. Now for 0 < w < wq choose e,; such that if ||f||z1 < ey then ——————|If[|5- < =2.
2w(l - a))Nﬂ“H2 2

Therefore, we obtain

« U N-pu+2 5%
gOnmdszuN—m%M +0

Using Lemma 5.5 we conclude the result. O
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Define G : [J; < 73(Q) + Nope2 S” ‘“2] — SN1hy

2QN-p) °H,L
/| l\Vu| dx

’ / x| |Vul? dx
Note that from Lemma 5.5, G is well defined.
Lemma 5.8. For 0 < € < €g and ||f||g1 < e22, the map

GoHe:SV1t 8Nt
is homotopic to the identity.

Proof. Define X := {u € H}(Q)\ {O}‘ / %Wu\z dx # O} and G : X — SNl by
RN

5(u)=/i|Vu|2 dx/‘/x|Vu|2 dx
|x| x|
RY RN

DE GRUYTER

as an extension of G. This on using Lemma 4.1 and Lemma 5.5, gives / X IVgp %12 dx # 0 for sufficiently

RN

small €. Thus, E(g;"’) is well defined. Now let y : [s1, s,] — SV~! be a regular geodesic between E(g;"’) and
G(He(0)) such that y(s;) = E(gf,"’) and y(s») = G(He(0)). Moreover, by a analogous argument as in Lemma

4.1, for 6 > O there exists a €y > 0 such that

N-pu+2

H(gZ(l /1)6) Z(ZN )

where 8 is defined in Lemma 5.5. Now define ¢c(A, 0) : [0, 1] x SN-1 — SN-1 by

y(2A(s1 - s2) +s;)  ifAe]o, ),
ced,0) = E(gg(l"‘)e) ifAe[l, 1),
o ifA=1.
Clearly, ¢c is well defined. We claim that Alinll ¢e(A, 0) = o0 and Alinll— ¢e(A,0) = E(g;,o).
—1- —3

(i) lim ¢e(A, 0) = 0: Indeed
A—1-

2N-p
/|X|\V 2(1- ’U€| dx = S” ‘“za+o(1) asd — 1°

then lim ¢c(A,0) =0
A—1-

(b) Alirrlli ¢e(A, 0) = G(gg?): Indeed
-3

lim ¢e(A,0) = lim y(2A(sy - 55) + 52) = y(s1) = G(g5™°).
A—1 A—3

S” s +8pforallo<e<epandoe SV, 1e [%,

1)’

Hence, ¢e € C([0, 1] x SN1, S¥"1) and ¢¢(0, 0) = G(He(0)) and ¢e(1, 0) = o for 0 € SN~ provided 0 < € < €

and ||f||g-1 < ez2. Thus the result follows.

O
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Proposition 5.9. Let e” := min{eqo, €11, €21} where eyo; e11 and e;, defined in Lemma 3.1, Lemma 5.4 and
Lemma 5.7 respectively. Let ||f||y-1 < e” then Jdf has two critical points in

N—y+2 2”‘1‘

Equivalently, (Ps) have another two different solutions which are different from u.

Proof. Using Lemma 5.8 and Lemma 5.3, we have

N-u+2 2%
Cat<|:3fSTf(.Q)+2(T_IJ)S§i? —5€:|> > 2.

Now the proof follows from Lemma 4.8(i) and Lemma 5.2. O

6 Existence of Fourth solution

In this section we will prove the existence of high energy solution by using Brouwer’s degree theory and
minmax theorem given by Brezis and Nirenberg [8].

+ + 9’(7
LetV := {u € H}(Q): // [ OO fu ()P I “‘u (y)\ dxdy = 1}, hg°(x) = ) where g¢'? is defined in (4.1).

[x =yl | pUH
Lemma 6.1. | by "|\D1,2(RN) — Sy as € — O uniformlyin g € SN°1,
Proof. Proof follows from Lemma 4.1(i). O
N-p+2
Lemma 6.2. There exists a po > 0 such that for 0 < p < po, sup S %)% < ZﬁSH,L.
0eSN-1,e€(0,1]
2 2.2, —r . .

Proof. Since we know that ||[Vu?|| @y = luglly;" = Sy~ and this on using Lemma 4.2 we get

sup |hs?|I> — Sur asp — 0. So there exists a po such that 0 < p < po, we obtain
0eSN-1,e€(0,1]

N-p+2
sup  [|hS7)% < 272 Sy . O

oeSN-1,ee(0,1]

Now for any u € H}(Q), by extending it to be zero outside Q, we define Barycenter mapping  : V — R" as

Bw) = //X|u+(x)|2u\u+(y)\2u dxdy,

- [x-y[*
RN R

and alsolet Q := {u € V : B(u) = 0}.
Lemma 6.3. There holds lin%) Bhy?) =0
€—
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Proof. If there exists n > 0 and a sequence €, — 0* such that |(hg") - 0| = n. Then

YRt
Blhgr) =5

2.2,
g "

(z—-0)|vplenz+ (1 - en)0)|2; [up(enw + (1 - en)0)|2;

- - dzdw

s = wiE[L + 21215 [+ [w]2] 77

=0+ > >
/ ‘Up(enZ"'(l—en)O‘)' ”|Up(€nW+(1 —en)0)| # dzdw
D w2 L w2

<0+€n sup |z-o0|<o0+Cen, forsome C > 0.

zesupp(v,)

It implies that 0 < n < |B(hé") — 0| < Cen — O as en — 0%, a contradiction. O

n p

Lemma 6.4. Let mo = inf \|u||? then Sy 1 < mo.
ue

Proof. Obviously Sy, < mo, so let if possible, Sy 1 = ing |u||? then there exists a sequence {v,y} € H(Q)
ue

N-2 - 2N-p
such that |[Va|lnz = 1, B(vn) = O, [[Val|> = Sp,L asn — eo. Setting wyp = Sg";*"? vn we get ||wn\|12v'L“ =Sy°
2N-u 2N-u
and |wn|®> — S },’:‘fz.Therefore, Iwyn) — ;&’;ﬁ;) S;’I:’fz and J'(wn)(wn) = o(1). Using Lemma 2.9, we obtain
2N-p
{wn} is a Palais-Smale sequence of J at level 2]\([2_ 1{‘,:';) S g:fz . Subsequently, by [19, Theorem 4.4] and Remark

2.8, there exist sequences y, € Q, A, € R* such that yn — yo € Q and A, — 0, for the functions

N-2
__N=2 A 2
Vn = S, w,, where w, = C (7") for some C > 0.
Lo C G -yl
Thus if
z
Ci=C / _ — dzdw and
Jod Iz wIRLL+ ZP) (L w2
1
C,=C / - — dzdw,
C ) e w1 s wR]
then
[ X0 P vy
O=B(vn)=C// Xy dxdy = AnC1 + ynCy — Cayo.
RN RN
This is a contradiction. Hence Sy 1 < my. O

Lemma 6.5. There exists €y > 0 such that for 0 < € < €g and |d| = 1 we have

L0 12 Mo + Sp 1
Su,L < [1hy° Ipragamy < —

Proof. Apparently Sy < Hh;"’H %)LZ(RN) and we know that Sy is not attained on a bounded domain. Thus,
Su,r < [hy|l lz)l,z(RN). Since Sy, < mo, there exists §; such that SHTL + 8o < ™2 and from Lemma 6.1 we know
that \|hf,"’||12)1,2(RN) — Sy, as € — 0. Therefore for §; > O there exists a €; > 0 such that th,"’“f)l,z(RN) <
Su.1 + 6o whenever O < € < €y. Hence we have the desired result. O
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Now we will state the minimax lemma given by Brezis and Nirenberg [8].
Lemma 6.6. Let Y be a Banach space and ¢ € C'(Y, R). Let A be a compact metric space, Aoy C A be a closed
setandy € C(Ag, Y). Define

I'={gecC(A, Y):g(s)=y(s)ifs € Ag}, C=infsupp(g(s)), ¢=sup¢.
g€l sca y(Ao)

If T > ¢ then there exists a sequence {un} € Y satisfying ¢p(un) — € and ¢'(un) — O.. Further, if ¢ satisfies
(PS)z condition then there exists uqy € Y such that ¢(ug) = € and ¢’ (uop) = 0. O

Letrg=1-€eoand By, = {(1-€)o e RN : |(1-€)o| <19, 0 € S¥L, 0 < e < 1}, where ¢ is defined in Lemma
6.5. Then we set F = {q € C(By,, V); 955, = hg?} and
o

c=inf sup [g((1-e)0)|?,  &=supl|h5|’
9€F (1-¢)0eB,, 9By,

Lemma 6.7. Foreach q € F, we have q(By,) N Q # 0.

Proof. It is enough to show there exist & > 0 and & € S¥~! such that S(g((1 - &)5)) = 0. Define i : B;, — RY
by Y((1 - €)o) = B(q((1 - €)o)). We claim that

d(y, By, 0) = d(I, By,, 0) # 0, where d is Brouwer’s topological degree.
If (1 - €)o € 0By, then g((1 - €)0) = hy? which implies
(1 -€)a) = Bg((1 - €)0)) = Bhy°) = 0 + 0(1) as € — O.
Now define the homotopy K : [0, 1] x By, — R" by
H(t, (1-€)o) =1 -1 -€)o) + tI(1 - €)o)
then for (1 - €)o € 0By, and t € [0, 1] we have
H(t,(1-€)o)=1-t)g+0(1) + t(1 - eg)o
=0(1)+(1-€pt)o #0, ase — 0.
So by Brouwer’s degree theory, claim holds. It implies that there exist & > 0 and & € SV! such that

P((1 - 2)d) = 0 that s, B(g((1 - &))) = 0. O

Using above Lemma we have mg < sup  ||g((1 - €)0)||? for all g € F. Hence
(1-€)o€By,

mo < inf  sup llg((1 - e)0)||2 =C.

S (1-e)o€By,

Also, by the definition of ¢, and Lemma 6.2, we have ¢ < 2%8 1,1 for 0 < p < po. Combining all these and
using Lemma 6.4 we have
SgL<Mp<C< Z%S 1,1 for p sufficiently small . (6.1)

In addition, from Lemma 6.5, we get

mo +SH,L

¢ = sup |hg°|| < <mg <.

3By,
Now we define

gf(u) = rrtlf(l)xaf(tu) Vo RY and  Ju) = rrtlf(l)xﬁ(tu) 1V S RN,

yr=inf sup Ja(1-€)0) and yo-inf sup H(q((1-e€)o)).
9<% (1-e)oeBy, 1€% (1-e)0€B;,

We remark that the conclusion of Lemma 5.4 (iii) holds true for J . Moreover, g r(u) = Irtla(l)x dr(tu) = J¢(t (W),
>

where ¢t (u) is defined in Lemma 3.3.
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Lemma 6.8. The following holds:
(i) 35 € C'(V,R) and (J;(u), h) = t~(W)(d}(t" (), h) for all h € Ty(V) where

(02 ut ()2 hy)
Tu(V) := {h € Hé(())‘ ' x = o}.
/1

[x-y*

(ii) Ifu € Vis a critical point ofjf then t (Wu € Ny is a critical point of 3.

(iii) If {un}nen is a (PS)c sequence ofgf then {t” (un)un}nen € Ny is a (PS)c sequence for J.

Proof. (i) For every u € H{(Q), t (wu e Ny that s, (3}(t‘(u)u), u) = 0and f—:z Js(tu) < 0 . Therefore,
t=t(u)
by implicit function theorem, we get t (1) € C*(V, (0, o=)). As a result, J () = Jp(t(Wu) € C (v, R) and for
all h € Ty(V), we have
(@), hy = € @@t @), h) + (FE(E @), w)((E W), k) =t (W(IFE Wu), h).
(ii) Combining the fact that u € V is a critical point of J rand (3}(t‘(u)u), u) = 0, we get the desired result.
(iii) Let {un}nen is a (PS)c sequence of 5f, thatis, un € V, ﬁf(un) — cand

Hj}(u)HT;n(V) = sup{|(J¢(un), h)| : h € Tu,(V), [|h]| =1} — Oas n — oo.

- flu|? zAzlfz SH,L 242}'—2 . 1 _
By Lemma 3.3 we have t (un) > (5lay ) ** > (242 ) %7 > C for some C > 0. Since H3(Q) = Ru, @ Tu, (V)
2] 2

SO (3}(14,,), V) = (3}(un), hy), where h, is the projection of v in Ty, (V). Hence,

I3 @aun)l = sup [(@HE undun), V)|
vEHY (@), |[vl|-1

= sup  [(JH(t (un)un), hy)|
veH(Q),|lv|=1

. 1 .
=  sup (@f(un), hy)| < E||3}(u)|\r;n(\7) — 0.

L|
veHy(@),|v|-1 ¢ (Un)

Clearly, J¢(t" (un)un) — c. Therefore, {t”(un)un}nen € Ny is a (PS)c sequence for Jy. O

N-u+2 22 N-pu+2 2%

2N omL Vo< Sui

Lemma 6.9. IfO < P < Pos then m HL °*

. L
Proof. For u € V, solving J'(tu) = t a(u) - t>*"* =0 we get t = 0 and ¢ = (a(u))>%2. Therefore,

Sy _N-u+2 20N-1)
J(u) = max J(tu) = 2GN- ) ([ ¥

From the definition of ¢, we obtain

N-u+2, 20N N-p+2_2Nu
Vo=~ inf sup ||q((1-¢€)o)|| V2 = T CFw?
" 20N - ) 9€F (1 _e)ocB,, 202N - )
which on using (6.1) yields the desired result. O

. 2N-p
Lemma 6.10. J;(h5°) = 35k5S " +o(1) as € — 0.

Proof. By Lemma 4.1, hy° — Oin H}(Q) as € — 0. On solving

JH(thS ) = t a(hg®) - 2271 - / frs% dx =0,
Q

we conclude ¢ = || gg"’ vz + o(1). Hence again from the Lemma 4.1 we obtain

3" (he,o) _ hEO) = hEo) = €,0\ _ N‘F"'Zszavﬂlz 1 0 0O
7(hp'®) = max dr(thy®) = 3(trhy™) = dr(8p )—72(2]\,_“) np +to(l)ase— 0.
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Lemma 6.11. There exists ey > O such that if O < ||f ||z < eg,

2N-p _ 2N-p
N ShE <y <T@ oSS

Tf(.Q)+ m HL *

Proof. Analogous to the proof of Lemma 5.4(iii) we can have
AN 1 _ LTI 1
(1= @) 3w = 5o = 0w < (1+ @) 723 w) + 51 -
Using the above inequality with the definition of J and J £, we get
Ny . < 2N 1
(1= @) P30 - 5 < 370 = (1+ @) P72 3(0) + Sl
For 6 > O there exists e1(6) such that if |f|| g1 < e1(6) then

Yo-8<ys<yo+6. (6.2)
Now from Lemma 5.4(iii) for each 0 < w < 1, we have

N N +2 4 1
(1~ w)* ﬁsg;z el

2N-u

N-u+2 .55 1 2
S;V[,'iz + ﬂ”fHH’l'

_ 2N-u
N-p+2 T
< (@) <1 +w)v 2GN )

So for 6§ > 0 there exists e;(8) > 0 such that whenever ||f||g-1 < €2(6) then

2N-p

-U+2 u+2

N-p+2 — )1
72(21\] II)SHL 6sTf(Q)_72(2N )S H +6.
It implies
—U+2 - N-pu+2 —U+2 B
ﬂs;}iz -6<7; (Q)ersll},’iz < mgﬁ!iz +6. (6.3)

Moreover, from Lemma 6.9

N-u+2

N-pu+2 81512‘2
22N -

SII‘\]I:E+2 < YO < 72N—’_1 HL *

2N-u
N-p+2 o N-pu+2

2.
Hence for fix small 0 < € < minq 25t 0 yo - An SN‘“Z} such that if |f|[z < ey =

2@N-p)°H,L
min{e;(€), e2(€)} then using (6.2) and (6.3), we obtain
N-p+2 %% N-p+2 52t
202N - ) wi < 2(2N - H)s;;;z Yo-€s<yr and
N-p+2 4 - N-pu+2 &%

SN U+2

Tf(.Q) +

VF<Yo+2€-€<

Ny+2_
IN -1 Sy esTf(.Q)+72(2N_ R
N-p+2 ot N-p+2 i
+ N-p+2 + N-p+2
That is, Tf(Q)+2(21{} SSHL " <yf<Tf(Q)+2(2]‘; SSHL w2 O

Proposition 6.12. If0 < p < pg, 0 < ||f|lg < eg (defined in Lemma 6.11) then there exists a critical point
U, € Nf ofﬁf with Hf(u4) =Yf.
2N-u 2N-u

Proof. Letc ¢ (Tf(.()) + 212’2 1’\;% S ;VI N 7@+ 272 1’\,“}21) Sy fz) and {un}nen is a (PS)c sequence of J;. Then
by Lemma 6.8, {t (Un)un}nen € Nrisa (PS)c sequence for Jr which on using Lemma 4.8 gives that {un } e is

2N-p
N-u+2 T
2(2N- y)SN 1
6.6 we have yy is a critical value of J;. Therefore, there exists v4 € V such that Js(v4) = yr and 3}(v4) =0
Thus by Lemma 6.8, uy =t~ (v4)v, € N} is a critical point of J; and Jr(ug) = yp. O

compact. Moreover, from Lemma 6.10, yf > p1 f(h5?) = +0(1) as e sufficiently small. Using Lemma
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Proof of Theorem 1.1: First note that by Lemma 3.8, we have all solutions of (Pf) are positive in Q and from

Lemma 3.7, we have u; € Nj C H{(Q) such that J¢(u1) = 77 whenever O < |[f]|z-1 < eoo. By Proposition 5.9 we
N-u+2 S%ﬂz
202N-p) °H,L

we get three positive solutions of (Ps) whenever 0 < ||f]|g-1 < e” where e is defined in Proposition 5.9. Let

e” = min{e", ey} then by Proposition 6.12, we get u; € Ny d5(us) = yy. O

have two more critical point u,, uz € NJZ of Jr such that in Hf(uz), J f(ug) < Tf(Q) + . Therefore

References

[11 S.Adachiand K. Tanaka, Four positive solutions for the semilinear elliptic equation: —Au + u = a(x)u? + f(x) in RN, Calc.
Var. Partial Differential Equations 11 (2000), no. 1, 63-95.

[2] A.Ambrosetti, Critical points and nonlinear variational problems, Mém. Soc. Math. France (N.S.) 49 (1992), 1-139.

[3] A.Bahriand]. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology
of the domain, Comm. Pure Appl. Math. 41 (1988), no. 3, 253-294.

[4] V.Benciand G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic prob-
lems, Arch. Rational Mech. Anal. 114 (1991), no. 1, 79-93.

[5] V.Benci, G. Cerami and D. Passaseo, On the number of the positive solutions of some nonlinear elliptic problems, in “
Nonlinear analysis, Sc. Norm. Super. di Pisa Quaderni, Scuola Norm. Sup., Pisa (1991), 93-107,

[6] V.Benciand G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topol-
ogy, Calc. Var. Partial Differential Equations 2 (1994), no. 1, 29-48.

[7]1 H.Brezis and L. Nirenberg, A minimization problem with critical exponent and nonzero data, in “Symmetry in Nature",
Scuola Norm. Sup. Pisa 1 (1989), 129-140.

[8] H.Brezis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), no. 8-9, 939-963.

[9] D.M. Cao and H.S. Zhou, Multiple positive solutions of nonhomogeneous semilinear elliptic equations in R, Proc. Roy.
Soc. Edinburgh Sect. A 126 (1996), no. 2, 443-463.

[10] M. Clapp, M. Del Pino and M. Musso, Multiple solutions for a non-homogeneous elliptic equation at the critical exponent,
Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), no. 1, 69-87.

[11] M. Clapp, O. Kavian and B. Ruf, Multiple solutions of nonhomogeneous elliptic equations with critical nonlinearity on sym-
metric domains, Commun. Contemp. Math. 5 (2003), no. 2, 147-169.

[12] J.M. Coron, Topologie et cas limite des injections de Sobolev,C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 7, 209-12.

[13] E.N. Dancer, A note on an equation with critical exponent, Bull. London Math. Soc. 20 (1988), 600-602.

[14] F. Gao, and M. Yang, On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents, J. Math. Anal.
Appl. 448 (2017), no. 2, 1006-1041.

[15] F. Gao and M. Yang, On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci. China Math. 61
(2018), no. 7, 1219-1242.

[16] M. Ghimenti and J. Van Schaftingen, Nodal solutions for the Choquard equation, J. Functional Analysis 271 (2016), no. 1,
107-135.

[17] ). Giacomoni, T. Mukherjee and K. Sreenadh, Doubly nonlocal system with Hardy-Littlewood-Sobolev critical nonlinearity, /.
Math. Anal. Appl. 467 (2018), no. 1, 638-672.

[18] D. Goel and K. Sreenadh, Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity, Nonlinear Anal.
https://doi.org/10.1016/j.na.2019.01.035.

[19] D. Goel, V. D. Radulescu and K. Sreenadh, Coron problem for nonlocal equations invloving Choquard nonlinearity,
arXiv:1804.08084 (2018).

[20] H. He and ). Yang, Positive solutions for critical inhomogeneous elliptic problems in non-contractible domains, Nonlinear
Anal. 70 (2009), no. 2, 952-973.

[21] N. Hirano, Multiple existence of solutions for a nonhomogeneous elliptic problem on RN, J. Math. Anal. Appl. 336 (2007),
no. 1, 506-522.

[22] E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Studies in Appl. Math.
57 (1976/77), no. 2, 93-105.

[23] E.H. Lieb, M. Loss, Analysis, Second edition, Graduate Studies in Mathematics, American Mathematical Society, Provi-
dence, RI, 2001.

[24] V. Moroz and ). Van Schaftingen, Semi-classical states for the Choquard equation, Calc. Var. Partial Differential Equations
52 (2015), no. 1-2, 199-235.

[25] V. Moroz and ). Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer.
Math. Soc. 367 (2015), 6557-6579.



DE GRUYTER  D. Goel and K. Sreenadh, Critical growth elliptic problems involving Hardy-Littlewood-Sobolev == 835

[26] V. Moroz, ). Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent,
Commun. Contemp. Math. 17 (2015), no. 5, 1550005.

[27] V. Moroz and ). Van Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties and
decay asymptotics, J. Functional Analysis 265 (2013), no. 2, 153-184.

[28] S. Pekar, Untersuchung iiber die Elektronentheorie der Kristalle, Akademie Verlag, Berlin, 1954.

[29] O. Rey, A multiplicity result for a variational problem with lack of compactness, Nonlinear Anal. 13 (1989), no. 10, 1241-
1249.

[30] Z.Shen, F. Gao and M. Yang, Multiple solutions for nonhomogeneous Choquard equation involving Hardy-Littlewood-
Sobolev critical exponent, Z. Angew. Math. Phys. 68 (2017), no. 3, 61.

[31] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non
Linéaire 9 (1992), no. 3, 281-304.

[32] T.F. Wu, Three positive solutions for Dirichlet problems involving critical Sobolev exponent and sign-changing weight, J.
Differential Equations 249 (2010), no. 7, 1549-1578.

[33] T.F. Wu, Multiple positive solutions of non-homogeneous elliptic equations in exterior domains, Proc. Roy. Soc. Edinburgh
Sect. A 137 (2007), no. 3, 603-624.



	Critical growth elliptic problems involving Hardy-Littlewood-Sobolev critical exponent in non-contractible domains 
	1 Introduction
	2 Variational framework and preliminary results
	3 Existence of First Solution 
	4 Asymptotic estimates and Palais-Smale Analysis
	5 Existence of Second and third Solution
	6 Existence of Fourth solution


