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Abstract: In this paper, we deal with topology optimization attributed to the non stationary Navier-Stokes
equations. We propose an approach where we analyze the sensitivity of a shape function relating to a pertur-
bation of the flow domain. A numerical optimization algorithm based on topological gradient method is built
and applied to the 2D Tesla micro valve reconstruction. Some numerical results confirm the efficiency of the
proposed approach.

Keywords: Non-stationary Navier-Stokes equations, Tesla valve, Shape optimization, Topological sensitivity
method

1 Introduction

Tesla valves are no-moving-part valves that utilize fluidic inertial forces to inhibit flow in the reverse direction.
It was patented in 1920 by Nikola Tesla as a "Valvular conduit" [1] (see figure 1), and has since made the
subject of various applications in micro-satellite [2], drug delivery [3], microbiology [4, 5] and hydrocephalus
treatment in medicine [6, 7].

Fig. 1: A rotated scanning electron microscope photograph of a Tesla valve by Forster et al. [8]

The Tesla micro-valve performance is evaluated by the diodicity parameter (represents the ratio of the
pressure drop in backward and forward direction) which evaluates the ability of allowing forward flow while
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inhibiting the reverse one,
Di = APpackward .
Ap forward

Different works have focused on the optimal shape of the tesla micro-valve. However, the majority of
works concerns stationary Partial Differential Equations (PDE). Forster et al. [8] proved the possibility of us-
ing Tesla valves in micro-fluidics and determined experimentally the diodicity for Reynolds number (Re) ~
180. Truong et al. in [9] derived numerically the optimum geometry of Tesla valve for 100 < Re < 600 with
better diodicity than [8]. Bardell et al [10] analyzed the mechanism of the diodicity and proposed a Tesla
valve optimal design for low Re. In the case when Re = 100, they finished with Di = 1.4. Gamboa et al. [11]
optimized the shape of Tesla valve for application with piezoactuated plenums. The obtained fluid domain
related to Re = 100 is characterized by a diodicity number Di = 1.1. In 2008, Pingen et al. [12] used the Lat-
tice Bolzmann Method for the optimization of a micro Tesla valve without any information on diodicity. The
used objective function was the pressure drop between inlet and outlet. After that in 2010, Lin et al. [13] used
a topology optimization technique based on the power dissipation energy [14] of forward flow as objective
function and the diodicity was built into the model as a constraint. For Re = 100, they found a new design
of Tesla valve given Di = 1.2. Next in 2015, Lin et al. [15] solved the Tesla valve topology optimization using
the approach of material distribution with inverse diodicity as objective function and fluid volume fraction
as the constraint.

Until recently, there were no investigations dealing with the non-stationary case. We propose in this paper
a new reconstruction method using the sensitivity analysis approach [16—-19] for a non stationary flow.

The principal results of this work concern both theoretical and numerical aspects associated with the
Tesla micro-valve problem. The theoretical part is related to the analysis of the topological sensitivity for the
non stationary Navier-Stokes equations. The numerical part concerns the 2D optimization of the Tesla micro-
valve shape. The optimal shape is constructed by inserting obstacles in the considered initial domain. We
build a simple and fast numerical reconstruction algorithm based on the topological gradient technique. The
efficiency of the presented approach is confirmed by some numerical tests.

The paper is presented as following: Firstly we formulate the problem in section 2. Section 3 concerns the
theoretical aspects. The numerical aspects are given in section 4. Finally section 5 includes Theorems proofs.

2 Problem formulation

Let Q C Rd, d = 2, 3 a bounded domain with regular boundary I' = 0Q. We consider the blood as an
incompressible viscous fluid flow described by the non stationary Navier-Stokes equations [20]. The velocity
w and the pressure p satisfy the following system:

a—w+Vw-w—vAw+Vp =G in Qx]o, TJ,

ot
divw =0 in Qx]0, TJ, (1)
w = Wd on FX]O, T[9
w(.,,0) =0 in Q,

where v is the kinematic viscosity coefficient, G is the gravitational force, T is the computational time and
wy is a given Dirichlet boundary data. Because of the divergence free condition on w, w; must necessarily
satisfy the compatibility condition,

/wd(x, t).nds(x) =0, a.e. tel0, T[
T

where n is the unit outward normal vector along I'.
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Remark 2.1. Problem (1) has at least one solution (see [21](Ch.ILeq.(1.89)). If |w|1 o < v/k, with

23£meas(())1/6 if d=3,

%meas(())l/2 if d=2,

then problem (1) has a unique solution (see [17]).

k=

The topological sensitivity method idea is to study the variation of a given shape function j relating to a
perturbation in the fluid flow domain geometry.
In structural shape optimization case (respectively electromagnetism and fluid dynamics cases) a geometry
perturbation means removing some material (respectively the insertion of an obstacle).
Let Oz, ¢ = z + €0, a small obstacle inserted in Q characterized by its center z, its size € and its shape O.
O is a bounded domain of R? containing the origin and 00 (its boundary) is connected and piecewise C*.
The shape function variation is written

JQ@\ Oz,6) - j(Q) = p(e)8j(2) + o(p(e)), Vz € Q,
where

£ — p(e), a positive scalar function going to zero with €
z — 6j(2), called the topological gradient, describes the shape function variation when an obstacle
is inserted in z. It plays the role of descent direction in the algorithm of optimization.

To our knowledge, the majority of works leading with topological sensitivity method concern the station-
ary case such as Stokes problem [16, 18], quasi-Stokes [19], stationary Navier Stokes problem [17]. We extend
this method to the nonlinear unsteady Navier Stokes flow. To overcome the difficulty due to the non linear
operator and its associated adjoint problem we extend the perturbed velocity by zero in the inclusion which
permits to use the adjoint method in the whole domain. For the time dependent term we will use the funda-
mental solution of the non stationary Stokes operator and decompose the velocity variation.

We define the time dependent shape function as:

T
@\ Tre) = / Je(we(., ) dt, @
0

where J¢ in H*(Q \ 0, £)4 and w is solution to

OWe
ot

+VWe - We —VAW: +Vpe =G in Qg ¢x]0, T[,
divwe =0 in Q. ¢x]0, T|,
we =wy on TIx]0, T, €©)
we =0 on 00;¢x]0, T,
we(.,0) =0 in Qg,

with Q;, ¢ = Q\ O, ¢ is the perturbed domain. Note that if £ = 0 (without obstacle), (wg, po) verify (1) and
Qo = Q.

In the following, we will derive a general mathematical analysis for J. satisfying the following assump-
tion:
Assumption (A)

i) Vez20, t — Je(we(., t)) € LY(0, T).
ii) J, is differentiable in H(Q) and we denote DJ(w) its derivative.
iii) 3p : R+ — R;and 67 € Rsuch thatve=0
T T
/ JeCwe(, 0) = Jo(wo(., )] dt = / DJo(wol., 1) (wel., ) = wol., ) dt + p(e) 87 + 0 (p(e).
0

0
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3 Main results

We deal in this section with the non stationary Navier-Stokes topological sensitivity relating to the domain
perturbation. We consider the shape functions verifying the assumption (A).

3.1 Asymptotic behavior of the velocity variation

We first study the influence on the velocity ve = we — wg of inserting a small obstacle Oy,¢ in Q. From (1) and
(3), it is straightforward to show that (ve, pv,) satisfy the system

% +VVe Ve —VAVe+VVe-Wo+VWg Ve +Vpy, =0 in - 010, T1,
diV Ve =0 il’l .Qz,gx]o, T[,
ve =0 on TIx]o, T[, ()

Ve = —W() on aOZ,Sx]Oy T[:
Vg(., O) =0 in szg.

We will distinguish in the following the 2D and 3D cases.

3.1.1 Three dimensional case

Theorem 3.1. There exists ¢ > 0 independent of €, such that
Ive(x, ) = W(x, 8) 20,75 110, )% CE>
where W = (W', W2, W3) € HY(Qy, ¢)? is defined by
Wik, 0 = UC—2)wolz, 0), Vix, ) € R\0ex]0, TI, (5)

with U’ is solution of (exterior Stokes problem)
VAU + VP =0 in R3O,
divll = in R3O,
U —0 at oo,
U =-¢f on 00,

(6)

with {e;}j-1,,,3 is the R> canonical basis.

We show by using a single layer potential (see [22]) that

U(y) = / E(y - 0)n;(0 ds(0),  PI(y) = /n(y—x)n,-(x)ds(x), vy € R\D.
00 00

where

_ T _ Y 3
E(y) = (I+erer), I(y)= ;-5 VyeR’.

8mvr

withr = |y||, er = %, el is the transpose of e, and nj € H™'/2(00)? is a solution of the boundary integral
equation

/E(y -x)nj(x)ds(x) = -e;, Vy e 0. 7)
20
Using Theorem 3.1 we obtain the following corollary.

Corollary 3.2. We have
ve(x, t) = W(x, t) + O(e), x € Qz¢, t€]O,TI.
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3.1.2 Two dimensional case

Theorem 3.3. There exists ¢ > 0 independent on &, verifying

1 -c
I velx, t) - @W(X’ ) 20,13 (0, )% Tog(®)’
where
2 .
Wx, t) = 4v Y "[F(x - 2)wo(z, Dlej, V(x, 1) € Qz,x]0, TI, ®

j=1

with E/(y) = E(y)ej, 1 <j < 2, {€;}j-1,, is the R? canonical basis and
- T -y 2
E) = o ( log(nI + ere; ) ny)=5-5, ek,
represents the fundamental solution of the Stokes System in R? with r = ||y| and e, = %

Using Theorem 3.3 it follows the velocity estimation in the perturbed fluid flow domain.

Corollary 3.4. We have

Ve, ) = Wix, )+ O(— ), X€Que, t>0.
log(e)

3.2 Asymptotic behavior of the shape function

The topological sensitivity analysis for the non stationary Navier-Stokes operator in three and two dimen-
sional cases is given in this section. The presented results are satisfied by all shape functions j defined by (2)
and J. verifies the Assumption (A).

3.2.1 Three dimensional case

Theorem 3.5. If J¢ satisfies the Assumption (A) with p(e) = €, then j defined by (2) verifies

T

J@\020) - @)+ ¢ | [ wolz, 0Mouolz, 0t +83] + o),
0

where

the matrix M is given by
MOU = /'l;()’)ds(y), 1< i, ] < 3.
20

Ug is the solution to the adjoint problem

_% -Vug-wp+ VW(T; *Ug — vAuO + Vpuo = _D]O(WO) in .QX]O, T[,
divug = in  Qx]o, TJ, ©)
Up = on Ix]0, TJ,

uo(., T) = in Q.
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Corollary 3.6. IO = B0, 1) (the unit ball), 1;(y) = - e;, ¥y € 00 and

T
jQ\Oze) =j(Q) +€ {/6nvw0(z, t).uolz, t)dt + 63} +0(e).
0

3.2.2 Two dimensional case

Theorem 3.7. If ] satisfies the Assumption (A) then j defined by (2) verifies

[lmv/Two(z, t) up(z, t)dt+63} +o(i),
0

JQ\ Oz ¢) = j(Q) + log(¢)

_71
log(e)
where uy is the adjoint state solution to the problem (9).

The proofs of Theorems 3.1, 3.3, 3.5 and 3.7 are relegated to section 5. The variation §J depends on the shape
functions expressions. Some useful examples in numerical applications will be presented in section 3.3.

3.3 Shape function examples

3.3.1 First example

We define the shape function

T
j(Q\W,s)=/ / We = Wy(., )] dxdt

00,

where W, € LY(0, T; H'(Q)) is a datum representing a desired fluid flow state.
This example concerns the L2-norm shape function that has been used in geometric control problems
like the optimization of location of some obstacle in a tank to approximate an object flow W, (see [16]).

Proposition 3.8. The function
Je(w) = / |w =W, t)|2 dx, Ywe H'(Qz,e),
-Qz,s

satisfies the assumption (A) with

DJo(wo.. O)v =2 / Wl )= W0, D)vdx, v e H(Q),
0]

6J(z) =0, VzeQ.

3.3.2 Second example

We define the shape function which corresponds to the dissipation energy minimization
T
j\G= = [ [ [vwe- Wl 0f axde,
00,

where W, € L(0, T; H?(Q))is a given datum. It was used in several optimization problems such as minimum
drag problem [23], pipe bend design [10? ], cavity example [24], reconstruction of Tesla valve [13].
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Proposition 3.9. The function

Je(w) = / v |Vw— YWy(., t)|2 dx, vYwe HY(Qze),
Q.

satisfies the assumption (A) with

DJo(wol., O)v = 2v / (Vwol, )= YWy(, ) Vvdx, Yve H'(Q),
Q

T
471v/|w0(z, O*dt, vzeQ ifd=2,
83(2) = 70
—/(/n(y)ds(y)).wo(z, t)ydt, vzeQ ifd=3.
0 00

4 Numerical results

In this section, we deal with some numerical applications to validate the obtained theoretical results given
in section 3.

4.1 Validation of the asymptotic expansion

To establish the numerical validation of Theorem 3.7, we consider the variation relating to € of

1

Az(g) = j(Q\Oz,¢) - j(Q) + @OﬂzL
where
T
5j(z) = 4mv / Wolz, B uglz, ) dt+ 89, (10)

0
We expect to prove numerically that A;(e) satisfies the previously derived theoretical estimate A,(g) =

°(fogge) -

To this aim, we consider the following data:

- Q =]0, 1[x]0, 1[is a square domain.

— The locations z& = z; + €B(0, 1) of the considered obstacles are arbitrary chosen (see Table 1).
— The shape function j is defined by the semi-norm

T
jng=//me—wmﬁmm, (11)
0 Q.
where W is a given velocity state.
Table 1: Location of obstacles
obstacle zi z! z2 z} z2

location Zi zZ1 = (0.2, 0.8) zZ) = (0.8, 0.2) zZ3 = (0.5, 0.5) Zy = (0.7, 0.7)
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In this case, the function A, () is defined by (see Theorem 3.7 and Proposition 3.9):

T

4y
log(e)

T
8e(e) = HONOD ~ ) + o ([ wolei, Doz, e+ [ fwotei, O ).
0

0

The validation algorithm uses the following steps:

The validation algorithm:

. Step 1:

— compute the solution wy and the associated adjoint state ug in the domain Q.

— determine j(Q) defined by (11).

. Step 2: For each obstacle zé =z;+€B(0,1),i=1, ..., 4:

- determine the variation 6j(z;) given in (10),

- choose &}, = max{e > 0, such that z; + £,B(0,1) C Q},
- compute an approximation of the function € — j(Q\0O%), € €]0, &}].
e Step 3: Deduce numerically the function & — log(|4,:(¢)]), € €]0, €}].

For each considered obstacle OL = z; + £B(0, 1), we plot in Figure 2 the variation of log(|4z,(¢)|) relating

to log(-log(¢)).

21=(0.2.0.8)

P20
F=dl) |
rmE

0g 1 11 12 13 14 15 15
logi-iagi))

73=[0.5,0.5)

laglAl<))
o

oa 1 11 iz 13 14 15 16
legi-log{«))

Fig. 2: Variation of log(|A;, (¢)|) relating to log(- log(e)).

Z2=[0.8,0.9)

=20
r=d0) |
FmE 0

LL 1 11 12 13 14 15 16
leg(-ag(s))

24=[0.7,0.T)

L] 1 11 12 13 14 15 16
logi-lag(«))
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We define B; to describe the behavior of € — A, (€) relating to - log(e), i.e.
4z(2)] = 0 ((~log(e)™) .

It corresponds to the slope of the line approximating the variation € + log(|]Az (¢)|) relating to log (— log(s))
for each obstacle zL,i = 1, .., 4.

From the plotted curves in Figure 2, one deduce the slopes f3;, i = 1, ..., 4 in table 2.

Table 2: The obtained slopes B; of the lines associated with the obstacles Oé, i=1,..,4.

The considered obstacles O, 0O} 02 VF: O
The obtained slopes f; -1.18 -1.187 -1.217 -1.163

We deduce that the numerical results confirm the behavior predicted by the theoretical estimate

Az (e) = o ).

-1
log(e)
4.2 The Tesla micro-valve application

The hydrocephalus treatment is a very important application in medicine. The problem is to optimize numer-
ically the design of the 2D Tesla micro-valve at Re=100. To solve this problem we consider the objective func-
tion as the forward energy dissipation and the diodicity as a constraint. The optimal domain is constructed
through the insertion of some obstacles in the initial one. The problem leads to optimize the location of ob-
stacles.

4.2.1 Shape optimization problem

We define Q as the pentagon [15] having one inclined inlet I';, and one horizontal outlet Iy, (see Figure 3).
The aim is to find the fluid flow optimal domain Q" which minimizes the dissipated energy by the forward

Fig. 3: Considered pentagon design domain

fluid flow and reproducing the original Tesla valve design given in Figure 1. This can be formulated :

Find Q" solution to
(12)

25/
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where
Daq = {D C Qsuchthat Ty, c I'NoD, Iou C I'n oD and |D| < Viesirea}

with |.| and Vesireq TEPresents respectively the Lebesgue measure and the target volume.

We recall that the performance of the Tesla valve is measured by diodicity Di which is known as the ratio
of the pressure drop in backward direction to that in forward direction, which is equivalent to the ratio of
dissipation of reverse and forward flows [15]:

. D(wy) ()WI ow;
Di= Dw )w1thCD(w)—/[ Z( ])]

with (wy, ps) and (wy, py) are respectively the solution to the Navier Stokes system in the forward and the
reverse flows. Then, diodicity can be maximized by minimizing forward dissipation while maximizing reverse
dissipation. That is why our optimization problem is defined with the diodicity Di as a constraint; Di > 1.

Using the above definitions, the optimization problem [15] for reconstructing Tesla valve can be expressed as

*  Objective: power dissipation of forward flow
T
(@) = d(wy) = v / / Vwy? dxdt,
0 Q

* Constraints

- Volume fraction | Vjesireq 1< 0.8 | Vo |.
- Diodicity Di = ¢ > 1.
- Navier Stokes equations for forward and backward directions.

We use the obtained theoretical results in 3.2.2 to solve (12).

4.2.2 The topology optimization process

To obtain the optimal domain, an iterative process is applied to construct a sequence of geometries (Q; )0
with Qo = Q and Q.1 = Qi \ O where O is an obstacle inserted in Qy. To define the obstacle location and
size, we find the function §j; defined by (see Theorem 3.7)
T
8ji(2) = lmv[/ (Wilz, Dugl(z, 8) + |wi(z, t)|2) dt} ,Vz € O, (13)
0
where
- wj represents the velocity, solution to the Navier-Stokes problem in Q;

a(‘)/vt" +VWe Wi —-vAwg +Vp, =G in  Qx]0, TJ,
divw, =0 in Qux]0, T,

wy =wg on TIx]0, T[, (14)
wy =0 on Xx]0, T,

Wk(-) O) = WO in .Qk.

- uy is the adjoint state, solution to

—% VU - Wiy + VWE | - up —vAU + Vg, =-Dlo(wi_y) in  Qx]0, TI,
divu, = in  Qux]o, T,

u, = on Ix]o, TJ, (15)
u, = on Xyx]0, T,

uk(., T) = in Qk’
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where X = (UK, 0)) is the obstacle boundary inserted during the previous iterations.
The optimization steps are summarized as:

The Algorithm:
1. Initialization: Set Qo = Q,and k =0
2. Repeat until [Qy| < Vgesired:

(@)  The topological sensitivity function:

compute wy, solution to the non stationary Stokes problem (14) in Q,
compute vy, solution to the associated adjoint problem (15) in Q,
compute the term 6J; and deduce the function 6j,(z), vz € Qy.

(b) The obstacle to be inserted:
determine p; € [0, 1] such that j(Q; \oT;*) <j(Q, \ OK), vp € [0, 1],
k
set Oy = {x € Qi; 8ji (0 < py 6% }, where 65 . = min(8j,(2)).

min min

(c) The new domain:

set ‘Qk+1 = ‘Qk \0710

(d) k < k+1 and go to (2).

The stopping criteria is defined by the natural optimality condition

8i*(x) 2 0, ¥x € Q.

— 577

This algorithm is like a descent method where 8j* represents the descent direction and |O| = |Qp \ Q1]
the step length. The parameter p; is chosen to allow p — j(Q; \ 0’5) to decrease as much as possible. The

computation of p; in (b) can be viewed as line search step.

The numerical discretization of problems (14) and (15) is done by P1 - bubble/P1 finite element method [25].
The computation of the approximated solutions is achieved by the Uzawa’s algorithm. The function 6]‘" is

computed piecewise constant over elements.
Next, we will apply the proposed algorithm to reconstruct Tesla micro valve.

4.2.3 Reproducing the Tesla micro valve

We illustrate in this section the strengths of topology optimization method, namely the ability to find optimal
design using only information on boundary conditions and constraints without the need of initial design.
The considered design domain is the pentagon domain (see Figure 3). This problem example has already

been studied by S. Lin and al. in [15] in the steady state regime using projection method.

For the forward direction, the inlet boundary velocity has a parabolic behavior (Re=100 relating to the
inlet dimension). At the outlet boundary, the pressure is taken constant and no-slip condition is considered
on the walls. For the backward flow direction, we reverse these boundary conditions. Besides, we prescribe
solid regions close to the inlets/outlets to minimize the boundary effect on the final design solution.

We illustrate the geometries obtained during the optimization process in Figure 4. The optimal domain is

obtained after four iterations. It is nearly identical to literature [1, 15] (see Figure 5).
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Fig. 4: Geometries obtained during the optimization process

(a) mesh of obtained domain (b) Tesla-type valve

Fig. 5: mesh of obtained design (left) and reference Tesla valve (right)

4.2.4 Discussion

In the previous Figure, thanks to the topological gradient, we deduce an easy reconstruction of tesla valve.
Now, we normalize the obtained tesla valve behavior by plotting the obtained forward and reverse flows re-
spectively in figures 6(a) and 6(b). It is clear that the velocity field is strongly different for the two cases.
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(a) Forward flow velocity field (b) Backward flow velocity field

Fig. 6: Forward and backward flow velocity field

To study the obtained tesla valve performance, we calculate the diodicity. Using the energy view point
expression of diodicity, the experimentally derived value is 1.137. In bibliography [26], the diodicity is well
predicted using

Di~1+4.78*107° * (N*1®Re!72)

with N is the number of tesla valves and Re is the Reynolds number. Based on this expression, we found
Di = 1.1316 which ensures an agreement between the obtained diodicity and the experimental one.

5 Mathematical analysis

This section deals with the proofs of Theorems 3.1, 3.3, 3.5 and 3.7.

5.1 Proof of Theorem 3.1

Let Q be the pressure associated with the velocity W:
1 x-z 1 > X-z
= pZ—_~= == AW/
Qx, t) £P( . )-wolz, t) c § 1P( - wy(z, 1), (16)
j=

where P/ is the pressure associated with the velocity U’ solution to (6). Setting the variation
Ze = Vg — Wandpzs = st - Q. (17)

From (4) and (6), we can verify that (z¢, p;,) is solution to

% —VAze +Vze - (Wo + W) + V(wg + W) - ze + VZe - 2 + VP2,
=—aa—mt/—VW0-W—VW-W()—VW-W in  Qz¢x]0, T,
divze =0 in QZ,EX]O’ T[, (18)
ze =-W on FX]O, T[,
ze =-wolx, )+ wol(z, t) on 00¢x]0, TI,
Zg(., O) =0 in .Qz’g.
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The last boundary condition follows due to the fact that U/ = -e;j on 00.
Moreover, since [wo|;2(0,1.11(q)) < v/k, then € sufficiently small,

[Wo + W20, 1110, ) < @ < V/k.

Let R > O such that O;,. C B(z, R) and B(z, R) C Q. Using the trace theorem, we obtain

w
I1zell 120, 13110, o)) < € ( 15 0. 7i22¢0., o)
W20, s gy + IWo (X, 8) = Wo(z, Ol 1200, 13120, 1)) (19)
+|Vwo + W+ VW -wo + VW - W|| 20 1,510, g)))’

where Qp = Q\B(z, R).
Using (5) and the variable change x = z + £y, we obtain

ow ow
15 o rz@.n = | O(Z )\|L2(0T)||U(7)||L2(QH)

3/2n Mo,

M2, 01Uz, )re)-

By the same way, we have

IN

IWlz200, ;1 (0p) Iwo(z, L2 (0, T)(HU( )HLZ(QR) + ||VXU( )HLZ(QR))’

IN

[wo(z, ')HLZ(O,T)(g | UHLZ((QR)/s) +et HvaHLZ(QR)/g))-
Using [19] (see also [27]), the velocity field U/, solution to the exterior Stokes problem, satisfies the estimate
”U]HLZ((QR)/S) < C£_1/2 and Hva]HLZ(QR)/S) < C€1/2.

Then, using the smoothness of wy and the previous estimates, one can deduce

||W||L2(0,T;L2(QZ,S)) < ceand ||W|| 20, 7,11 (qp)) S CE- (20)

For the third term in (19). Expanding wo(x, t) = wo(z, t) + e Vwo(&y, t)y with &, € O, ¢ and using the fact
that Vwyg is uniformly bounded, it follows that

HW()(X, t) - Wo(Z, t)HLz(O,T;LZ(.Oz!E)) < CE. (21)
We now examine the last term in (19). Since wg € L*°(Q),

[Vwo - W+VW-wo + YW-W|20r510, ) < C(IIWllk20, 15110, )

+

VW[ 20,5810, ) + IVW - Wl 120, 7;11(0,, L)) »

IN

C(HWHLZ(O,T;LZ(Q,, ot ‘W|L2(O,T;H1(Qz,g))“WHLZ(O,T;Hl(.Oz,g)))’

according to Lemma 4.2 in [17].
In addition, by Lemma 4.5 in [17], the variable change and the continuity of wg, we can deduce

Wl,rre@.. < & IWipernae,,) = cell? (22)
and then

[Vwo - W+ VW -wo +VW- W20 1,510, ,) < CE- (23)
Finally, combining (20), (21) and (23) we deduce that

1Ze 120, 7:H1 (0, o)) < CE-
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5.2 Proof of Theorem 3.3

Let Q be the pressure associated with the velocity W:

2
Qlx, t) = 4nv(x - z).wo(z, t) = 4mv Z IV (x - z)wé(z, t),

j=1
where IT is the pressure associated with the velocity E’.
Setting
1 1
—Ve-—— Wands: =py, - —— Q. 2
Ze = Ve~ qoaie) W and se = bv. — e Q (24)
From (1) and (3), we obtain that (z¢, s¢) is solution to
o 1 1
§ -VAz, + VZ;V-V(WO + @W) +V(wg + 1ngw) -ze+Vze ze +Vse
1 1
=- Lasa W-VW-wo- ——VW-W in  Q¢x]0, T,
log(e)[ ot Vo VIW-wo log(e)v ] m 2] [
diVZg =0 in Qz, g><]0, T[, (25)
Ze = L w on Ix]o, TJ,
log(e)
ze =-wolx, t)- ﬂE(x—z) wol(z, t) on 00z ¢x]0, T[.
log(e)
Using the relation E((x - z)/e) = E(x - z) + lii(j) I, the last boundary condition can be rewritten as
4y
ze = -wo(x, t) + wo(z, t) - ——=E((x - 2)/e) wo(z, t) on 00;,-x]0, TI[.
log(e)

Then, by an energy inequality [28], it follows

zellL20,7;11 (0., o))
s s |15 o @ o *+ 1 W, )
log(e) L ot il o1
+ log(e)||wo(z + €y, t) = wo(z, Dl 20, 1;m112(00, ) (26)
+4nv||E((x - 2)/€) wo(z, Ollr20,1;m112000,, )
+|Vwo - W+ VIV - wp + logﬁvw . W||LZ(O,T;L2(QL£)) .
We estimate in the following each term in (26) separately.
We remark that:
- Since O is an open domain containing the origin, 3r > 0 such that B(0,r) C O.
- Qis a bounded domain in such a way that 3R > 0 such that Q ¢ B(z, R), Vz € Q.
-Wehave Q; e -z={x-2,x€ Qz¢} C CO,re,R) = {y e R} re < |[y| <R}.
From the fact that C(0, re, R) c R? \ 0, it follows that the function 1 : y — log(|y|) is smooth in C(0, re, R)
and we have [[Y|lo co,re,r) < - Then, using the cylindrical coordinate system, one can prove that 3¢ > 0,
independent of €, such that

HE(X - Z)HLZ(O,T;LZ(QZ,S)) S ||E(y)||C(0,r£,R) <G, (27)
HVE(X_Z)HLZ(O,T;LZ(.QZ’E) < ¢ +/-1log(e). (28)

e Estimate of the first term in (26): Using that wo € H'(0, T; H(Q2)), we obtain

ow ow
HWHLZ(O,T;LZ(QZ,S)) = 4”V||Tt0 (z, 20, EG = DI 2(q, ) = O(1).

e Estimate of the last term of (26):
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Since wg and Vwg belong to L=°(Q), we have

1
[Vwo - W+ VW - wg + @VW‘ WllL20, 1220z, 00 <

1
c(IWllr2o, 75120, ) + IV Wlli2(0, 131200, ) + mHVWHLZ(O,T;LZ(!)Z,E))HWHLZ(O,T;LZ(.OZ,E)))'

Using the definition of W, we can deduce the following estimates

W20, ) < € VW20, ri20,,) < €V -log(e). (29)
Yet, we have
1
IVwo - W+ VW - wq + mvw' Wll20,1;120, ) ¢ €V —log(e). (30)

e Estimate of boundary condition imposed on I':
Let R > 0 such that Oz,¢ C Bl(z, R)and B(z,R) C Q. Since z ¢ Qz = 0O\B(z, R), the function x — E(x - 2)
belongs to Gl(Qfé). By the trace theorem, we have

W2,y = 41vIiwo(z, Oz, 1l EGC = 2

IN

4mv|lwo(z, Ollr20,1) | IEX = 2)lI 120 + IVE(X = 2)l|2(0) |-

Therefore, || W||12(o, ,m1/2(ry is uniformly bounded with respect to €.

e Estimate of boundary condition imposed on 00, ¢:
Using the theorem of trace and the smoothness of wg in O, ¢x]0, T[, one can obtain

HWo(X, t) — wolz, t)HLZ(O,T;H”Z(bOZ,E)) < CE.

Then, the first boundary term on 00y, ¢ satisfies

-1
log(e) [[wo(x, £) = wo(z, t)”LZ(O,T;Hl/Z(bOZ,E)) =0 <@) .
To estimate the last boundary term, we use that O contains the origin.
Setting O, = O\B(0, r) and Oy, ¢ = z + £0Oy. Using the theorem of trace and the variable change x = z + gy, we
obtain

|E((x - 2)/e)wol(z, t)HLZ(O,T;Hl/Z(aOZ, )

< [Wo(z, D120, (B = 2/)l12(0, o + V3 = 2)/)l120, )

< [wo(z, Oll20,n) (EIEW 20 + € IVYEW 20, ) -

From the fact that y — E(y) is sufficiently smooth in O, c R? \ {0}, the last quantity is uniformly bounded
and then

-41v —cell?
10g(£) HE((X - Z)/é‘)Wo(Z, t)HLZ(O,T;Hl/Z(GOZ‘ o)) < @

Finally, combining the above estimates, we obtain, 3¢ > 0, independent of ¢, such as
lze|| < ¢
EIL2(0,T;HY(Qz,6)) = log(e)

which ends the proof of Theorem 3.3.
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5.3 Asymptotic analysis

This section deals with the proofs of the Theorems presented in paragraphs 3.2 and 3.3.
Using the assumption (A),

@\ Oz, ¢) - j(Q)

T T
/ Tewe(., 6) dt - / Jowo(., ) dt 31)
0 0

T
[ DIt 0) (e 0= wol., ) dt + p(e) 83+ 0 (o),
0

where w; is extended by zero inside the domain Oy, ¢.
Using Green formula and that we = 0 in Og, it follows

@\ 5 ) - j(Q) - —v// Ve Vo dx dt - // uodxdt+// 00 o dxat

OZ £
+v // VwoVug dx dt - // (Vvewg + Vwove)ug dx dt
0 OZYE OQZ,E
+2 // (Vwowo)ug dx dt + p(e) 67 + o (p(¢)),
00,
where ug is the solution to the associated adjoint problem.
From (4) and the fact that wo = 0 on I'<]0, T[, we obtain
T T
- v// VveVupdxdt - / %u dxdt - / / (Vvewg + Vwove)ug dx dt
@, . 0 0, 0 Q.
T
/ / 0(Ve, pv,)nuodsdt + / / (Vveve)ug dx dt. (32
0 00, 0 Q..
Therefore,
J(@\ Oz, ) - j(Q)
T
- / a(\)/vo up dx dt + v/ / VwoVug dx dt + 2/ / (Vwowg)ug dx dt
0 O, 0 O, 0 O, (33)
T T

—/ / o(vg,pvg)nuodsdt+//(vavg)uodxdt+p(s)53(z)+o(p(£)).

0 00;,¢ 0 Q.

We begin by giving the estimate of the first three terms in (33).

Lemma 5.1. The integral terms in (33) satisfy the estimate

T
/ a;vo Ugdxdt+v / / VwoVug dx dt + 2/ /(Vwowo)uo dx dt = 0(g9).

0 O ¢ 0 O 0 O
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Proof 5.2. Using the variable change x = z + €y, the first integral term in (33) can be written

/ / %uodxdt

0 O

/ /(M uolz + ey, )~ 20080y ayar

+

£ |O\/aw0(z ) up(z, t)dt,

where || denotes the Lebesgue measure of O.
Using that wy and uq are smooth near z, one can deduce that

T T r
//%uodxdt+v//VWOVuodxdt+2//(Vwowo)uodxdt=O(ed).

Ooz,e Ooz,s Ooz,e

By the same arguments, we can estimate the two other terms in (33).
The shape function variation can be rewritten

T T
j(_()\m)—j(.())=—/ / a(vg,pvg)nuodsdt+/ /(vavg)uo dx dt + p(£)63(z) + o(p(&)).

0 90, . 0

We are now ready to prove the established results in Theorems 3.5 and 3.7 and propositions 3.8 and 3.9.

5.3.1 Proof of Theorem 3.5

Using an integration by parts and the fact that div(ve) = 0 yield

|/T/ (Vveve)ug dx dt| |—/T/ (V(uo) - (ve)) - vedx ]

00, . 00;,¢
| Vuo ”Lm([)z, s)” Ve ”%2(sz ) (34)

IN

IN

2 || Vuo ”Lw(_oz‘g) (Il ze ||i2(9z,£) +| W ||i2(gzyg))

< ce?.

Then, the shape function variation can be written

T
i(Q\ 050 - j(Q) - - / / 0(ve, pv)nuodsdt + £89(z) + o(e).
0 00,

From the definition of (z¢, s¢) and the variable change x = z + €y, we have

// o(ve, pv.)nugdsdt // 0(ze, se)nuodsdt

000, , oaoz ¢
+€ /wo(z, t).(/a(U, P)y)n(y) up(z + €y, t)ds(y)) dt
0 00

where o(U, P)nis the 3 x 3 matrix defined by

(a(U, P)n);j = (o(U, PY()n(y));, 1 <i,j<3.
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By the trace theorem, Theorem 3.1 and that ug is smooth in O, ¢,

|/ / 0(ze, se)nuodsdt| < ||0(ze, senll 2o, 1,120, U020, 1310, 1)) = 0(E)-
000,

Making the variable change x = z + £ y, expanding ug(z + €y, t) = uo(z, t) + £ Vuo(éy, t)y with &, € 0;, ¢ and
using that Vug is uniformly bounded, we obtain

/ / 0(ve, pv.)nuodsdt

00z, ¢

= /wo(z t).(/ o(U, P)(y)n ds(y)) Ug(z, t)dt

T
we [wolz, of / oU, PYYOlo(z + €Y, ) - oz, Dlds))de + ofe).
0
Due to the jump condition of the single layer potential o(U’, P)n = -i/ + o(V/, $)n, where (V/, §) is the
solution to the interior problem
VAV +vS =0 in 0,
div’/ =0 in 0,
V. =U on 00.

By the fact that div o(V7, §) = vAV/ - VS/ = 0in O, we have / oV, $)(y)nds =0

00
Then, we obtain

T
/ [ otve, pmuodsde=-e [witz, 0. / Nds@uo(z, 0)dt + ofe).
000, 0
Consequently, the shape function j admits the asymptotic expansion
T
jQ\Oze)=j(Q) +e [/wo(z, ). Mouo(z, t)dt+ 63} +0(g),
0

where M is the matrix given by

Moy = - [ njdst). 1sij<3.
00

5.3.2 Proof of Theorem 3.7

The shape function variation is given by

@\ Oz, e)-j(Q) = - // G(VS,pVS)nuodsdt+/ /(vavg)uo dxdt+ ()63(2) o(l o(e ))

000, 0 Q.

Recall that the term (W, Q) describing the perturbation due to the presence of a small obstacle O, ¢ is given
by: V(X, t) S .szgX]O, T[’
2 2 .
W(x, t) = 4mv Z[E’(x -2)wo(z, lej, Qx,t) = 4nv Z IP(x - 2)wy(z, ),
j=1 j=1
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where E/(y) = E(y)e; and IP(y) = I1(y).ej, 1 < j < 2.
Applying an integration by parts and using the fact that div(ve) = 0 provides

T T
/ﬁvavg)uo dxdt=—//(Vu0~vg)-vgdxdt.

OQz’g OQz,s
Then,
T
| / ﬁwsvs)uo dxdt] = 1 Vuo g, )l ve g,
00, . (35)
< 2 Vuo ||L°°(Qz,£) (Il ze ”]242(_(25) +| W "]242(_08)]
C(;l>2 = O(i) .
log(e) log(e)
It follows that
H(Q\ T - (@) = / / ove, pvmuodsdt + o5 892) + o).
(BOZ €
Then, from the decomposition (24), one can derive
T
o(ve, pv,)nugds dt = / / 0(ze, Se)nugdsdt
b aéz,e 0 aozs (36)
4ty
Tog(e) wo(z, t)( / o(E, IN(x - z)nup(x, t)ds(x)) dt
0 00, ¢

where o(E, IMn is the 2 x 2 matrix defined by (o(E, Mn); ; = (o(E/, IMn);, 1 <i,j<2.
Using Theorem 3.3 and the smoothness of ug in Oy, ¢, it follows

‘// 0(ze, sg)nuodsdt‘ (log(e))

oaoz e
The second term in (36) can be written
/ o(E, ) (x - 2)nuo(x, HAs(x) = / o(E, ) (x - 2)nluo(x, 1) - to(z, Hlds(0)
()Oz,g aoz,s

' / o(E, IN)(x - 2)n ug(z, )ds(x).
00, ¢

Using the trace theorem and the variable change x = z + €y, one can obtain

T
| /wo(z,t)-( / 0(E, M(x - Dnluo(x, 0 - uo(z, Dds(0) d]
0 30;,,

< ¢ |lwo(z, Ol 20, n lo(E, IN(X = 20|l g-112(500, U0 (X, 8) = Uo(Z, Dl 120, 7311120, ))-

By the fact that ug is smooth in Oy, ¢, it follows

A 1o, 8) = uo(2, Dl o, (0., = O

Recall that B(0,r) € O, Or = O\B(0, ) and Oy, ¢ = z + €0y C Oy, ¢. Here, one can check that the function x —
o(E, IT)(x-z) issmooth in Oy, ¢. Using the trace theorem, we prove that the quantity || o(E, I1)(x-2)n| -1z (30, ,)
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is bounded with respect to €, which implies

T
lgg% WO(Z, t)- < / O'(E, ID(x - Z)n[uo(X, t) — up(z, t)]dS(X)) dt = O(]Q-g%)
0 20, ¢

Combining the above estimates, one can deduce

T
//a(vg,pvs)nuodsdt
g

T
_ 4mv /wo(Z, t)- ( / o(E, H)(X—Z)nds(x)) uo(z, t)dt+o(10_g7tg))-
o

aoz,e

Since div(o(E/, I)(x - 2)) = 6z€jin Oy, ¢, it follows

/ o(E(x - 2), Hx-2)nds = I,
00,

where I is the 2 x 2 identity matrix.

Then, the last estimate becomes

/ / 0(Ve, pv,)nug ds dt = ﬁ wo(z, Hug(z, t)dt+o( o(e )) 37)

0 00;,,

Consequently, all shape functions j satisfying the assumption (A) admit the asymptotic expansion
T

jQ\Oze) = }(Q)+ ( ) [lmv/wo(z, t) uo(z, t)dt+53(z)} +0(10 3))

0

5.3.3 Proof of Proposition 3.8

Since the desired fluid flow state W; € L?(0, T; H'()), the function J, is differentiable at wq(., t) and we
have
DJowol., D)) =2 / (Wolr 0-Wal, O)vdx, w e H'(Q).
0
The variation of the associated shape function j is given by

j(Qz,¢) ](.Q)—// |We — Wy|* dx dt - // |wo - Wg|? dx dt

0Q; .

=/D]o(Wo)(Ws—W0)dt+// lwe — wo|* dx dt

0 00, .

T T
+// |w0|2dxdt—// W2 dx dt.
00, 00,

Using the smoothness of wy and W, in Q, one can conclude that

/T/ lwo|* dx dt = o(e) and /T/ |Wy|?dx dt = o(g).

00, 00;¢
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For the two-dimensional case: Using the decomposition (24), it follows

T T T

o2 2 1 2
// [We —wp|” <2 // |Ze] dthJri(log(e))z // |W|“dxdt
0Q; ¢ 00, . 00,

From Theorem 3.3, one can check

T
// |ze|>dxdt = O(lo_g%)'

0Q;,

Making use of (27), one can deduce
[Wllz2(0, 132200, ) = 47vIIWo(z, D120, nIEX = 2)[|12(q, ) = O(1).

Then, it follows

T

(logie))2 // |W‘2dth=O(b:g%)'

00, .

For the three-dimensional case: Using the decomposition (17), it follows

T T T
// \wg—w0|2s2(// |zg|2dxdt+// |W|2dxdt).
00, 00, 00, .

Using Theorem 3.1 and the change of variable, one can check

/T/ |ze|>dxdt = o(e) and /T/ \W2dxdt = o(e).

00, . 00,

Therefore the function J, satisfies the assumption (A) with

DJo(wol., ) () = 2 /(wo(., H-W,(, D)vdx, Vve H'(Q),
0

8J(x)=0, VxeQ.

5.3.4 Proof of Proposition 3.9

The function Jj is differentiable at wq(., t) and we have

Dlo(wol., D)) = 2v / (Vwol, )= YWy, D) Vvdx, Vve H'(Q).
Q

The variation of the associated shape function j is given by

T T
(02,65 = [ Dio(wo)lwe - wo)de v / TW, 2 dx dt
0 00,

T

T
+v// \Vw0|2dxdt+v// |Vwe — Vwo|? dx dt.

OOZ,S OQZ.S

DE GRUYTER

(38)
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Thanks to the regularity of wo and W, in O, ¢, one can derive

T T
// v|[Vwo|? dx dt = o(e), // VIVW,4|?dx dt = o(e).

00, 00,

For the two-dimensional case: By an adaptation of the technique used in the proof of Theorem 3.7,
one can derive

r T
_ —4nv 2 _71
/ / 0(ze, se)nwo dsdt = log(e) 0/|W0(Z’ 2l dt+0(10g(£))'

000,

Therefore, the function J satisfies the assumption (A) with

DJo(wol., ) (V) = 2v / (Vwol., - VW40, ) Vvdx, Vve H'(Q),
Q

T
and 6J(x) = lmv/ [wo(z, t)|2 dt, vxec Q.
0

For the three-dimensional case: By an adaptation of the technique used in the proof of Theorem 3.5,
one can derive

T T
/ / 0(ze, sSe)nwodsdt = ¢ [/WO(Z, t).Mowo(z, t)dt} +o(e).

0 90, 0

Therefore, the function J, satisfies the assumption (A) with

DJo(wo(., ) (v) = ZV/(VWO(., t)-VWy(., ) Vvdx, Vve HY(Q),
0

T
and 6J(2) = /wo(z, t). Mowo(z, Hdt, vz € Q.
0

6 Conclusion

This paper deals with non-stationary Navier-Stokes topological optimization problem. In the theoretical part
of this work, we have established a topological asymptotic formula describing the shape function variation
related to a small Dirichlet geometric perturbation.

The obtained theoretical results are exploited for building a topological optimization algorithm for solv-
ing the Tesla micro-valve optimization problem. We illustrate the strengths of this approach namely the ability
to find optimal design based only on boundary conditions and constraints information without the need of
an initial design.
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