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Abstract: In this paper, we deal with topology optimization attributed to the non stationary Navier-Stokes
equations. We propose an approach where we analyze the sensitivity of a shape function relating to a pertur-
bation of the �ow domain. A numerical optimization algorithm based on topological gradientmethod is built
and applied to the 2D Tesla micro valve reconstruction. Some numerical results con�rm the e�ciency of the
proposed approach.
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1 Introduction
Tesla valves are no-moving-part valves that utilize �uidic inertial forces to inhibit �ow in the reverse direction.
It was patented in 1920 by Nikola Tesla as a "Valvular conduit" [1] (see �gure 1), and has since made the
subject of various applications in micro-satellite [2], drug delivery [3], microbiology [4, 5] and hydrocephalus
treatment in medicine [6, 7].

Fig. 1: A rotated scanning electron microscope photograph of a Tesla valve by Forster et al. [8]

The Tesla micro-valve performance is evaluated by the diodicity parameter (represents the ratio of the
pressure drop in backward and forward direction) which evaluates the ability of allowing forward �owwhile
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inhibiting the reverse one,
Di = ∆pbackward∆pforward

.

Di�erent works have focused on the optimal shape of the tesla micro-valve. However, the majority of
works concerns stationary Partial Di�erential Equations (PDE). Forster et al. [8] proved the possibility of us-
ing Tesla valves in micro-�uidics and determined experimentally the diodicity for Reynolds number (Re) '
180. Truong et al. in [9] derived numerically the optimum geometry of Tesla valve for 100 < Re < 600 with
better diodicity than [8]. Bardell et al [10] analyzed the mechanism of the diodicity and proposed a Tesla
valve optimal design for low Re. In the case when Re = 100, they �nished with Di = 1.4. Gamboa et al. [11]
optimized the shape of Tesla valve for application with piezoactuated plenums. The obtained �uid domain
related to Re = 100 is characterized by a diodicity number Di = 1.1. In 2008, Pingen et al. [12] used the Lat-
tice Bolzmann Method for the optimization of a micro Tesla valve without any information on diodicity. The
used objective function was the pressure drop between inlet and outlet. After that in 2010, Lin et al. [13] used
a topology optimization technique based on the power dissipation energy [14] of forward �ow as objective
function and the diodicity was built into the model as a constraint. For Re = 100, they found a new design
of Tesla valve given Di = 1.2. Next in 2015, Lin et al. [15] solved the Tesla valve topology optimization using
the approach of material distribution with inverse diodicity as objective function and �uid volume fraction
as the constraint.

Until recently, therewere no investigations dealingwith thenon-stationary case.Wepropose in this paper
a new reconstruction method using the sensitivity analysis approach [16–19] for a non stationary �ow.

The principal results of this work concern both theoretical and numerical aspects associated with the
Tesla micro-valve problem. The theoretical part is related to the analysis of the topological sensitivity for the
non stationary Navier-Stokes equations. The numerical part concerns the 2D optimization of the Tesla micro-
valve shape. The optimal shape is constructed by inserting obstacles in the considered initial domain. We
build a simple and fast numerical reconstruction algorithm based on the topological gradient technique. The
e�ciency of the presented approach is con�rmed by some numerical tests.

The paper is presented as following: Firstly we formulate the problem in section 2. Section 3 concerns the
theoretical aspects. The numerical aspects are given in section 4. Finally section 5 includes Theorems proofs.

2 Problem formulation
Let Ω ⊂ Rd , d = 2, 3 a bounded domain with regular boundary Γ = ∂Ω. We consider the blood as an
incompressible viscous �uid �ow described by the non stationary Navier-Stokes equations [20]. The velocity
w and the pressure p satisfy the following system:

∂w
∂t +∇w · w − ν∆w +∇p = G in Ω×]0, T[,

divw = 0 in Ω×]0, T[,
w = wd on Γ×]0, T[,

w(., 0) = 0 in Ω,

(1)

where ν is the kinematic viscosity coe�cient, G is the gravitational force, T is the computational time and
wd is a given Dirichlet boundary data. Because of the divergence free condition on w, wd must necessarily
satisfy the compatibility condition,∫

Γ

wd(x, t).nds(x) = 0, a.e. t ∈]0, T[

where n is the unit outward normal vector along Γ.
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Remark 2.1. Problem (1) has at least one solution (see [21](Ch.II,eq.(1.89)). If |w|1,Ω < ν/k, with

k =


2
√
2

3 meas(Ω)1/6 if d = 3,
1
2meas(Ω)1/2 if d = 2,

then problem (1) has a unique solution (see [17]).

The topological sensitivity method idea is to study the variation of a given shape function j relating to a
perturbation in the �uid �ow domain geometry.
In structural shape optimization case (respectively electromagnetism and �uid dynamics cases) a geometry
perturbation means removing some material (respectively the insertion of an obstacle).

Let Oz, ε = z + εO, a small obstacle inserted in Ω characterized by its center z, its size ε and its shape O.
O is a bounded domain of Rd containing the origin and ∂O (its boundary) is connected and piecewise C1.

The shape function variation is written

j(Ω \ Oz, ε) − j(Ω) = ρ(ε)δj(z) + o
(
ρ(ε)

)
, ∀z ∈ Ω,

where

� ε 7→ ρ(ε), a positive scalar function going to zero with ε
� z 7→ δj(z), called the topological gradient, describes the shape function variation when an obstacle

is inserted in z. It plays the role of descent direction in the algorithm of optimization.

To our knowledge, themajority of works leading with topological sensitivity method concern the station-
ary case such as Stokes problem [16, 18], quasi-Stokes [19], stationary Navier Stokes problem [17]. We extend
this method to the nonlinear unsteady Navier Stokes �ow. To overcome the di�culty due to the non linear
operator and its associated adjoint problem we extend the perturbed velocity by zero in the inclusion which
permits to use the adjoint method in the whole domain. For the time dependent term we will use the funda-
mental solution of the non stationary Stokes operator and decompose the velocity variation.

We de�ne the time dependent shape function as:

j(Ω \ Oz, ε) =
T∫

0

Jε(wε(., t)) dt, (2)

where Jε in H1(Ω \ Oz, ε)d and wε is solution to

∂wε
∂t +∇wε · wε − ν∆wε +∇pε = G in Ωz, ε×]0, T[,

divwε = 0 in Ωz, ε×]0, T[,
wε = wd on Γ×]0, T[,
wε = 0 on ∂Oz, ε×]0, T[,

wε(., 0) = 0 in Ωz, ε ,

(3)

with Ωz, ε = Ω \ Oz, ε is the perturbed domain. Note that if ε = 0 (without obstacle), (w0, p0) verify (1) and
Ω0 = Ω.

In the following, we will derive a general mathematical analysis for Jε satisfying the following assump-
tion:
Assumption (A)

i) ∀ε ≥ 0, t 7→ Jε(wε(., t)) ∈ L1(0, T).
ii) J0 is di�erentiable in H1(Ω) and we denote DJ0(w) its derivative.
iii) ∃ ρ : R+ −→ R+ and δJ ∈ R such that ∀ε ≥ 0

T∫
0

[
Jε(wε(., t)) − J0(w0(., t))

]
dt =

T∫
0

DJ0(w0(., t))
(
wε(., t) − w0(., t)

)
dt + ρ(ε) δJ + o (ρ(ε)).



570 | M. Abdelwahed et al., Reconstruction of Tesla micro-valve using topological sensitivity analysis

3 Main results
We deal in this section with the non stationary Navier-Stokes topological sensitivity relating to the domain
perturbation. We consider the shape functions verifying the assumption (A).

3.1 Asymptotic behavior of the velocity variation

We �rst study the in�uence on the velocity vε = wε − w0 of inserting a small obstacle Oz,ε in Ω. From (1) and
(3), it is straightforward to show that (vε , pvε ) satisfy the system

∂vε
∂t +∇vε · vε − ν∆vε +∇vε · w0 +∇w0 · vε +∇pvε = 0 in Ωz,ε×]0, T[,

div vε = 0 in Ωz, ε×]0, T[,
vε = 0 on Γ×]0, T[,
vε = −w0 on ∂Oz,ε×]0, T[,

vε(., 0) = 0 in Ωz, ε .

(4)

We will distinguish in the following the 2D and 3D cases.

3.1.1 Three dimensional case

Theorem 3.1. There exists c > 0 independent of ε, such that

|| vε(x, t) −W(x, t) ||L2(0,T; H1(Ωz, ε))≤ cε,

where W = (W1,W2,W3) ∈ H1(Ωz, ε)3 is de�ned by

W j(x, t) = U j( x − zε ).w0(z, t), ∀(x, t) ∈ R3\Oε×]0, T[, (5)

with U j is solution of (exterior Stokes problem)
−ν∆U j +∇Pj = 0 in R3\O,

div U j = 0 in R3\O,
U j −→ 0 at ∞,
U j = −ej on ∂O,

(6)

with {ej}j=1,2,3 is the R3 canonical basis.

We show by using a single layer potential (see [22]) that

U j(y) =
∫
∂O

E(y − x) ηj(x) ds(x), Pj(y) =
∫
∂O

Π(y − x) ηj(x) ds(x), ∀y ∈ R3\O.

where
E(y) = 1

8πνr (I + ere
T
r ), Π(y) = y

4πr3 ∀ y ∈ R3.

with r = ‖y‖, er = y
r , e

T
r is the transpose of er and ηj ∈ H−1/2(∂O)3 is a solution of the boundary integral

equation ∫
∂O

E(y − x) ηj(x) ds(x) = −ej , ∀ y ∈ ∂O. (7)

Using Theorem 3.1 we obtain the following corollary.

Corollary 3.2. We have
vε(x, t) = W(x, t) + O(ε), x ∈ Ωz, ε , t ∈]0, T[.
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3.1.2 Two dimensional case

Theorem 3.3. There exists c > 0 independent on ε, verifying

|| vε(x, t) − 1
log(ε)W(x, t) ||L2(0,T; H1(Ωz, ε))≤

−c
log(ε) ,

where

W(x, t) = 4πν
2∑
j=1

[Ej(x − z)w0(z, t)]ej , ∀(x, t) ∈ Ωz, ε×]0, T[, (8)

with Ej(y) = E(y)ej , 1 ≤ j ≤ 2, {ej}j=1,2 is the R2 canonical basis and

E(y) = 1
4πν

(
− log(r)I + ereTr

)
, Π(y) = y

2πr2 , ∀y ∈ R2,

represents the fundamental solution of the Stokes System in R2 with r = ‖y‖ and er = yr .

Using Theorem 3.3 it follows the velocity estimation in the perturbed �uid �ow domain.

Corollary 3.4. We have
vε(x, t) = W(x, t) + O( −1log(ε) ), x ∈ Ωz, ε , t > 0.

3.2 Asymptotic behavior of the shape function

The topological sensitivity analysis for the non stationary Navier-Stokes operator in three and two dimen-
sional cases is given in this section. The presented results are satis�ed by all shape functions j de�ned by (2)
and Jε veri�es the Assumption (A).

3.2.1 Three dimensional case

Theorem 3.5. If Jε satis�es the Assumption (A) with ρ(ε) = ε, then j de�ned by (2) veri�es

j(Ω \ Oz, ε) = j(Ω) + ε
[ T∫
0

w0(z, t).MOu0(z, t) dt + δJ
]
+ o(ε),

where

- the matrixMO is given by
MOij =

∫
∂O

ηij(y)ds(y), 1 ≤ i, j ≤ 3.

- u0 is the solution to the adjoint problem
−∂u0∂t −∇u0 · w0 +∇wT0 · u0 − ν∆u0 +∇pu0 = −DJ0(w0) in Ω×]0, T[,

div u0 = 0 in Ω×]0, T[,
u0 = 0 on Γ×]0, T[,

u0(., T) = 0 in Ω.

(9)
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Corollary 3.6. If O = B(0, 1) (the unit ball), ηj(y) = −
3ν
2 ej , ∀y ∈ ∂O and

j(Ω \ Oz, ε) = j(Ω) + ε
[ T∫
0

6πνw0(z, t).u0(z, t) dt + δJ
]
+ o(ε).

3.2.2 Two dimensional case

Theorem 3.7. If Jε satis�es the Assumption (A) then j de�ned by (2) veri�es

j(Ω \ Oz, ε) = j(Ω) + −1
log(ε)

[
4πν

T∫
0

w0(z, t) u0(z, t) dt + δJ
]
+ o
( −1
log(ε)

)
,

where u0 is the adjoint state solution to the problem (9).

The proofs of Theorems 3.1, 3.3, 3.5 and 3.7 are relegated to section 5. The variation δJ depends on the shape
functions expressions. Some useful examples in numerical applications will be presented in section 3.3.

3.3 Shape function examples

3.3.1 First example

We de�ne the shape function

j(Ω \ Oz, ε) =
T∫

0

∫
Ωz, ε

∣∣wε −Wd(., t)
∣∣2 dxdt

whereWd ∈ L1(0, T; H1(Ω)) is a datum representing a desired �uid �ow state.
This example concerns the L2-norm shape function that has been used in geometric control problems

like the optimization of location of some obstacle in a tank to approximate an object �owWd (see [16]).

Proposition 3.8. The function

Jε(w) =
∫
Ωz, ε

∣∣w −Wd(., t)
∣∣2 dx, ∀w ∈ H1(Ωz, ε),

satis�es the assumption (A) with

DJ0(w0(., t))v = 2
∫
Ω

(w0(., t) −Wd(., t)) v dx, ∀v ∈ H1(Ω),

δJ(z) = 0, ∀z ∈ Ω.

3.3.2 Second example

We de�ne the shape function which corresponds to the dissipation energy minimization

j(Ω \ Oz, ε) =
T∫

0

∫
Ωz, ε

∣∣∇wε −∇Wd(., t)
∣∣2 dxdt,

whereWd ∈ L1(0, T; H2(Ω)) is a givendatum. Itwasused in several optimizationproblems suchasminimum
drag problem [23], pipe bend design [10? ], cavity example [24], reconstruction of Tesla valve [13].
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Proposition 3.9. The function

Jε(w) =
∫
Ωz, ε

ν
∣∣∇w −∇Wd(., t)

∣∣2 dx, ∀w ∈ H1(Ωz, ε),

satis�es the assumption (A) with

DJ0(w0(., t))v = 2ν
∫
Ω

(∇w0(., t) −∇Wd(., t))∇v dx , ∀ v ∈ H1(Ω),

δJ(z) =


4πν

T∫
0

|w0(z, t)|2 dt, ∀z ∈ Ω if d = 2,

−
T∫

0

( ∫
∂O

η(y)ds(y)
)
.w0(z, t) dt, ∀z ∈ Ω if d = 3.

4 Numerical results
In this section, we deal with some numerical applications to validate the obtained theoretical results given
in section 3.

4.1 Validation of the asymptotic expansion

To establish the numerical validation of Theorem 3.7, we consider the variation relating to ε of

∆z(ε) = j(Ω\Oz, ε) − j(Ω) + 1
log(ε) δj(z),

where

δj(z) = 4πν
T∫

0

w0(z, t) u0(z, t) dt + δJ. (10)

We expect to prove numerically that ∆z(ε) satis�es the previously derived theoretical estimate ∆z(ε) =
o
( −1
log(ε)

)
.

To this aim, we consider the following data:
− Ω =]0, 1[×]0, 1[ is a square domain.
− The locations ziε = zi + εB(0, 1) of the considered obstacles are arbitrary chosen (see Table 1).
− The shape function j is de�ned by the semi-norm

j(Ωz, ε) =
T∫

0

∫
Ωz, ε

|∇wε −∇Wd|
2dxdt, (11)

whereWd is a given velocity state.

Table 1: Location of obstacles

obstacle ziε z1ε z2ε z3ε z4ε
location zi z1 = (0.2, 0.8) z2 = (0.8, 0.2) z3 = (0.5, 0.5) z4 = (0.7, 0.7)
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In this case, the function ∆zi (ε) is de�ned by (see Theorem 3.7 and Proposition 3.9):

∆zi (ε) = j(Ω\Oiε) − j(Ω) +
4πν
log(ε)

( T∫
0

w0(zi , t) u0(zi , t) dt +
T∫

0

|w0(zi , t)|2 dt
)
.

The validation algorithm uses the following steps:

The validation algorithm:

• Step 1:
− compute the solution w0 and the associated adjoint state u0 in the domain Ω.
− determine j(Ω) de�ned by (11).

• Step 2: For each obstacle ziε = zi + εB(0, 1), i = 1, ..., 4:
− determine the variation δj(zi) given in (10),
− choose εi0 = max{ε > 0, such that zi + εi0B(0, 1) ⊂ Ω},
− compute an approximation of the function ε 7→ j(Ω\Oiε), ε ∈]0, εi0].

• Step 3: Deduce numerically the function ε 7→ log(|∆zi (ε)|), ε ∈]0, εi0].

For each considered obstacle Oiε = zi + εB(0, 1), we plot in Figure 2 the variation of log(|∆zi (ε)|) relating
to log(− log(ε)).

Fig. 2: Variation of log(|∆zi (ε)|) relating to log(− log(ε)).
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We de�ne βi to describe the behavior of ε 7→ ∆zi (ε) relating to − log(ε), i.e.

|∆zi (ε)| = O
((
− log(ε)

)βi) .
It corresponds to the slope of the line approximating the variation ε 7→ log(|∆zi (ε)|) relating to log

(
− log(ε)

)
for each obstacle ziε, i = 1, .., 4.

From the plotted curves in Figure 2, one deduce the slopes βi , i = 1, ..., 4 in table 2.

Table 2: The obtained slopes βi of the lines associated with the obstacles Oiε , i = 1, ... , 4.

The considered obstacles Oiε O1
ε O2

ε O3
ε O4

ε
The obtained slopes βi −1.18 −1.187 −1.217 −1.163

We deduce that the numerical results con�rm the behavior predicted by the theoretical estimate

∆zi (ε) = o(
−1

log(ε) ).

4.2 The Tesla micro-valve application

The hydrocephalus treatment is a very important application inmedicine. The problem is to optimize numer-
ically the design of the 2D Tesla micro-valve at Re=100. To solve this problem we consider the objective func-
tion as the forward energy dissipation and the diodicity as a constraint. The optimal domain is constructed
through the insertion of some obstacles in the initial one. The problem leads to optimize the location of ob-
stacles.

4.2.1 Shape optimization problem

We de�ne Ω as the pentagon [15] having one inclined inlet Γin and one horizontal outlet Γout (see Figure 3).
The aim is to �nd the �uid �ow optimal domain Ω* which minimizes the dissipated energy by the forward

Fig. 3: Considered pentagon design domain

�uid �ow and reproducing the original Tesla valve design given in Figure 1. This can be formulated :{
Find Ω* solution to
min
Ω⊂Dad

j(Ω), (12)
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where
Dad =

{
D ⊂ Ω such that Γin ⊂ Γ ∩ ∂D, Γout ⊂ Γ ∩ ∂D and |D| ≤ Vdesired

}
,

with |.| and Vdesired represents respectively the Lebesgue measure and the target volume.
We recall that the performance of the Tesla valve is measured by diodicity Di which is known as the ratio
of the pressure drop in backward direction to that in forward direction, which is equivalent to the ratio of
dissipation of reverse and forward �ows [15]:

Di = Φ(wr)
Φ(wf )

with Φ(w) =
∫
Ω

[ ν2
∑
i,j
(∂wi∂xj

+ ∂wj∂xi
)2],

with (wf , pf ) and (wr , pr) are respectively the solution to the Navier Stokes system in the forward and the
reverse �ows. Then, diodicity can bemaximized byminimizing forward dissipationwhilemaximizing reverse
dissipation. That is why our optimization problem is de�ned with the diodicity Di as a constraint; Di > 1.
Using the above de�nitions, the optimization problem [15] for reconstructing Tesla valve can be expressed as

* Objective: power dissipation of forward �ow

j(Ω) = Φ(wf ) = ν
T∫

0

∫
Ω

|∇wf |2 dx dt,

* Constraints

- Volume fraction | Vdesired |< 0.8 | V0 |.
- Diodicity Di ≥ c > 1.
- Navier Stokes equations for forward and backward directions.

We use the obtained theoretical results in 3.2.2 to solve (12).

4.2.2 The topology optimization process

To obtain the optimal domain, an iterative process is applied to construct a sequence of geometries (Ωk)k≥0
with Ω0 = Ω and Ωk+1 = Ωk \ Ok where Ok is an obstacle inserted in Ωk. To de�ne the obstacle location and
size, we �nd the function δjk de�ned by (see Theorem 3.7)

δjk(z) = 4πν
[ T∫
0

(
wk(z, t)uk(z, t) +

∣∣wk(z, t)∣∣2 ) dt], ∀z ∈ Ωk , (13)

where
− wk represents the velocity, solution to the Navier-Stokes problem in Ωk

∂wk
∂t +∇wk · wk − ν∆wk +∇pk = G in Ωk×]0, T[,

divwk = 0 in Ωk×]0, T[,
wk = wd on Γ×]0, T[,
wk = 0 on Σk×]0, T[,

wk(., 0) = w0 in Ωk .

(14)

− uk is the adjoint state, solution to

−∂uk∂t −∇uk · wk−1 +∇w
T
k−1 · uk − ν∆uk +∇qk = −DJ0(wk−1) in Ωk×]0, T[,

div uk = 0 in Ωk×]0, T[,
uk = 0 on Γ×]0, T[,
uk = 0 on Σk×]0, T[,

uk(., T) = 0 in Ωk ,

(15)
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where Σk = ∂(∪kl=0Ol) is the obstacle boundary inserted during the previous iterations.
The optimization steps are summarized as:

The Algorithm:
1. Initialization: Set Ω0 = Ω, and k = 0
2. Repeat until |Ωk| ≤ Vdesired:

(a) The topological sensitivity function:

- compute wk, solution to the non stationary Stokes problem (14) in Ωk,
- compute vk, solution to the associated adjoint problem (15) in Ωk,
- compute the term δJk and deduce the function δjk(z), ∀z ∈ Ωk.

(b) The obstacle to be inserted:

- determine ρ*k ∈ [0, 1] such that j(Ωk \ Okρ*k ) ≤ j(Ωk \ O
k
ρ), ∀ρ ∈ [0, 1],

- set Ok =
{
x ∈ Ωk; δjk(x) ≤ ρ*k δkmin

}
, where δkmin = min(δjk(z)).

(c) The new domain:

- set Ωk+1 = Ωk \ Ok,

(d) k ←− k + 1 and go to (2).

The stopping criteria is de�ned by the natural optimality condition

δjk(x) ≥ 0, ∀x ∈ Ωk .

This algorithm is like a descent method where δjk represents the descent direction and |Ok| = |Ωk \ Ωk+1|
the step length. The parameter ρ*k is chosen to allow ρ 7−→ j(Ωk \ Okρ) to decrease as much as possible. The
computation of ρ*k in (b) can be viewed as line search step.
The numerical discretization of problems (14) and (15) is done by P1−bubble/P1 �nite element method [25].
The computation of the approximated solutions is achieved by the Uzawa’s algorithm. The function δjk is
computed piecewise constant over elements.
Next, we will apply the proposed algorithm to reconstruct Tesla micro valve.

4.2.3 Reproducing the Tesla micro valve

We illustrate in this section the strengths of topology optimizationmethod, namely the ability to �nd optimal
design using only information on boundary conditions and constraints without the need of initial design.

The considered design domain is the pentagon domain (see Figure 3). This problem example has already
been studied by S. Lin and al. in [15] in the steady state regime using projection method.

For the forward direction, the inlet boundary velocity has a parabolic behavior (Re=100 relating to the
inlet dimension). At the outlet boundary, the pressure is taken constant and no-slip condition is considered
on the walls. For the backward �ow direction, we reverse these boundary conditions. Besides, we prescribe
solid regions close to the inlets/outlets to minimize the boundary e�ect on the �nal design solution.
We illustrate the geometries obtained during the optimization process in Figure 4. The optimal domain is
obtained after four iterations. It is nearly identical to literature [1, 15] (see Figure 5).
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Fig. 4: Geometries obtained during the optimization process

(a)mesh of obtained domain (b) Tesla-type valve

Fig. 5: mesh of obtained design (left) and reference Tesla valve (right)

4.2.4 Discussion

In the previous Figure, thanks to the topological gradient, we deduce an easy reconstruction of tesla valve.
Now, we normalize the obtained tesla valve behavior by plotting the obtained forward and reverse �ows re-
spectively in �gures 6(a) and 6(b). It is clear that the velocity �eld is strongly di�erent for the two cases.
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(a) Forward �ow velocity �eld (b) Backward �ow velocity �eld

Fig. 6: Forward and backward flow velocity �eld

To study the obtained tesla valve performance, we calculate the diodicity. Using the energy view point
expression of diodicity, the experimentally derived value is 1.137. In bibliography [26], the diodicity is well
predicted using

Di ∼= 1 + 4.78 * 10−5 * (N0.16Re1.72)

with N is the number of tesla valves and Re is the Reynolds number. Based on this expression, we found
Di ∼= 1.1316 which ensures an agreement between the obtained diodicity and the experimental one.

5 Mathematical analysis
This section deals with the proofs of Theorems 3.1, 3.3, 3.5 and 3.7.

5.1 Proof of Theorem 3.1

Let Q be the pressure associated with the velocityW:

Q(x, t) = 1
ε P(

x − z
ε ).w0(z, t) =

1
ε

3∑
j=1

Pj( x − zε )wj0(z, t), (16)

where Pj is the pressure associated with the velocity U j solution to (6). Setting the variation

zε = vε −W and pzε = pvε − Q. (17)

From (4) and (6), we can verify that (zε , pzε ) is solution to

∂zε
∂t −ν∆zε +∇zε · (w0 +W) +∇(w0 +W) · zε +∇zε · zε +∇pzε

= −∂W∂t −∇w0 ·W −∇W · w0 −∇W ·W in Ωz, ε×]0, T[,
div zε = 0 in Ωz, ε×]0, T[,

zε = −W on Γ×]0, T[,
zε = −w0(x, t) + w0(z, t) on ∂Oε×]0, T[,

zε(., 0) = 0 in Ωz, ε .

(18)
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The last boundary condition follows due to the fact that U j = −ej on ∂O.
Moreover, since |w0|L2(0,T;H1(Ω)) < ν/k, then ε su�ciently small,

|w0 +W|L2(0,T;H1(Ωz, ε)) ≤ α < ν/k.

Let R > 0 such that Oz, ε ⊂ B(z, R) and B(z, R) ⊂ Ω. Using the trace theorem, we obtain

‖zε‖L2(0,T;H1(Ωz, ε)) ≤ c
(
‖∂W∂t ‖L2(0,T;L2(Ωz, ε))
+‖W‖L2(0,T;H1(ΩR)) + ‖w0(x, t) − w0(z, t)‖L2(0,T;L2(Ωz, ε))
+‖∇w0 ·W +∇W · w0 +∇W ·W‖L2(0,T;H−1(Ωz, ε))

)
,

(19)

where ΩR = Ω\B(z, R).
Using (5) and the variable change x = z + εy, we obtain

‖∂W∂t ‖L2(0,T;L2(Ωz, ε)) = ‖∂w0
∂t (z, .)‖L2(0,T)‖U(

x − z
ε )‖L2(Ωz, ε)

= ε3/2‖∂w0
∂t (z, .)‖L2(0,T)‖U‖L2((Ωz, ε)/ε).

By the same way, we have

‖W‖L2(0,T;H1(ΩR)) ≤ ‖w0(z, .)‖L2(0,T)(‖U(
x − z
ε )‖L2(ΩR) + ‖∇xU(

x − z
ε )‖L2(ΩR)),

≤ ‖w0(z, .)‖L2(0,T)(ε3/2‖U‖L2((ΩR)/ε) + ε
1/2‖∇yU‖L2(ΩR)/ε)).

Using [19] (see also [27]), the velocity �eld U j, solution to the exterior Stokes problem, satis�es the estimate

‖U j‖L2((ΩR)/ε) ≤ cε
−1/2 and ‖∇yU j‖L2(ΩR)/ε) ≤ cε

1/2.

Then, using the smoothness of w0 and the previous estimates, one can deduce

‖∂W∂t ‖L2(0,T;L2(Ωz, ε)) ≤ cε and ‖W‖L2(0,T;H1(ΩR)) ≤ cε. (20)

For the third term in (19). Expanding w0(x, t) = w0(z, t) + ε∇w0(ξy , t)y with ξy ∈ Oz, ε and using the fact
that∇w0 is uniformly bounded, it follows that

‖w0(x, t) − w0(z, t)‖L2(0,T;L2(Ωz, ε)) ≤ cε. (21)

We now examine the last term in (19). Since w0 ∈ L∞(Ω),

‖∇w0 ·W +∇W · w0 + ∇W ·W‖L2(0,T;H−1(Ωz, ε)) ≤ c
(
‖W‖L2(0,T;H−1(Ωz, ε))

+ ‖∇W‖L2(0,T;H−1(Ωz, ε)) + ‖∇W ·W‖L2(0,T;H−1(Ωz, ε))
)
,

≤ c
(
‖W‖L2(0,T;L2(Ωz, ε)) + |W|L2(0,T;H1(Ωz, ε))‖W‖L2(0,T;H1(Ωz, ε))

)
,

according to Lemma 4.2 in [17].
In addition, by Lemma 4.5 in [17], the variable change and the continuity of w0, we can deduce

‖W‖L2(0,T;L2(Ωz, ε)) ≤ cε, |W|L2(0,T;H1(Ωz, ε)) ≤ cε1/2 (22)

and then

‖∇w0 ·W +∇W · w0 +∇W ·W‖L2(0,T;H−1(Ωz, ε)) ≤ cε. (23)

Finally, combining (20), (21) and (23) we deduce that

‖zε‖L2(0,T;H1(Ωz, ε)) ≤ cε.
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5.2 Proof of Theorem 3.3

Let Q be the pressure associated with the velocityW:

Q(x, t) = 4πν Π(x − z).w0(z, t) = 4πν
2∑
j=1

Π j(x − z)wj0(z, t),

where Π j is the pressure associated with the velocity Ej .
Setting

zε = vε − 1
log(ε) W and sε = pvε −

1
log(ε) Q. (24)

From (1) and (3), we obtain that (zε , sε) is solution to

∂zε
∂t −ν∆zε +∇zε · (w0 +

1
log(ε)W) +∇(w0 +

1
log(ε)W) · zε +∇zε ·zε +∇sε

= − 1
log(ε) [

∂W
∂t −∇w0 ·W −∇W · w0 −

1
log(ε)∇W ·W] in Ωz, ε×]0, T[,

div zε = 0 in Ωz, ε×]0, T[,
zε = − 1

log(ε) W on Γ×]0, T[,

zε = −w0(x, t) −
4πν
log(ε)E(x − z)w0(z, t) on ∂Oz, ε×]0, T[.

(25)

Using the relation E((x − z)/ε) = E(x − z) + log(ε)
4πν I, the last boundary condition can be rewritten as

zε = −w0(x, t) + w0(z, t) −
4πν
log(ε)E((x − z)/ε)w0(z, t) on ∂Oz, ε×]0, T[.

Then, by an energy inequality [28], it follows

‖zε‖L2(0,T;H1(Ωz, ε))

≤ −c
log(ε)

[
‖∂W∂t ‖L2(0,T;L2(Ωz, ε)) + ‖W‖L2(0,T;H1/2(Γ))

+ log(ε)‖w0(z + εy, t) − w0(z, t)‖L2(0,T;H1/2(∂Oz, ε))
+4πν‖E((x − z)/ε)w0(z, t)‖L2(0,T;H1/2(∂Oz, ε))

+‖∇w0 ·W +∇W · w0 +
1

log(ε)∇W ·W‖L2(0,T;L2(Ωz, ε))
]
.

(26)

We estimate in the following each term in (26) separately.
We remark that:

− Since O is an open domain containing the origin, ∃r > 0 such that B(0, r) ⊂ O.
− Ω is a bounded domain in such a way that ∃R > 0 such that Ω ⊂ B(z, R), ∀z ∈ Ω.
− We have Ωz, ε − z = {x − z, x ∈ Ωz, ε} ⊂ C(0, rε, R) =

{
y ∈ R2; rε < |y| < R

}
.

From the fact that C(0, rε, R) ⊂ R2 \ 0, it follows that the function ψ : y 7→ log(|y|) is smooth in C(0, rε, R)
and we have ‖ψ‖0,C(0,rε,R) ≤ c. Then, using the cylindrical coordinate system, one can prove that ∃c > 0,
independent of ε, such that ∥∥E(x − z)∥∥L2(0,T;L2(Ωz, ε)) ≤ ‖E(y)‖C(0,rε,R) ≤ c, (27)∥∥∇E(x − z)∥∥L2(0,T;L2(Ωz, ε) ≤ c

√
− log(ε). (28)

• Estimate of the �rst term in (26): Using that w0 ∈ H1(0, T;H1(Ω)), we obtain

‖∂W∂t ‖L2(0,T;L2(Ωz, ε)) = 4πν‖∂w0
∂t (z, t)‖L2(0,T)‖E(x − z)‖L2(Ωz, ε) = O(1).

• Estimate of the last term of (26):
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Since w0 and∇w0 belong to L∞(Ω), we have

‖∇w0 ·W +∇W · w0 +
1

log(ε)∇W ·W‖L2(0,T;L2(Ωz, ε)) ≤

c
(
‖W‖L2(0,T;L2(Ωz, ε)) + ‖∇W‖L2(0,T;L2(Ωz, ε)) +

1
log(ε)‖∇W‖L2(0,T;L2(Ωz, ε))‖W‖L2(0,T;L2(Ωz, ε))

)
.

Using the de�nition ofW, we can deduce the following estimates

‖W‖L2(0,T;L2(Ωz, ε)) ≤ c, ‖∇W‖L2(0,T;L2(Ωz, ε)) ≤ c
√
− log(ε). (29)

Yet, we have

‖∇w0 ·W +∇W · w0 +
1

log(ε)∇W ·W‖L2(0,T;L2(Ωz, ε)) ≤ c
√
− log(ε). (30)

• Estimate of boundary condition imposed on Γ:
Let R̃ > 0 such that Oz, ε ⊂ B(z, R̃) and B(z, R̃) ⊂ Ω. Since z ∉ ΩR̃ = Ω\B(z, R̃), the function x 7→ E(x − z)
belongs to C1(ΩR̃). By the trace theorem, we have

‖W‖L2(0,T;H1/2(Γ) = 4πν‖w0(z, t)‖L2(0,T)‖E(x − z)‖H1/2(Γ)

≤ 4πν‖w0(z, t)‖L2(0,T)
[
‖E(x − z)‖L2(ΩR) + ‖∇E(x − z)‖L2(ΩR)

]
.

Therefore, ‖W‖L2(0,T;H1/2(Γ) is uniformly bounded with respect to ε.

• Estimate of boundary condition imposed on ∂Oz, ε:
Using the theorem of trace and the smoothness of w0 in Oz, ε×]0, T[, one can obtain

‖w0(x, t) − w0(z, t)‖L2(0,T;H1/2(∂Oz, ε)) ≤ cε.

Then, the �rst boundary term on ∂Oz, ε satis�es

log(ε) ‖w0(x, t) − w0(z, t)‖L2(0,T;H1/2(∂Oz, ε)) = o
(
−1

log(ε)

)
.

To estimate the last boundary term, we use that O contains the origin.
Setting Or = O\B(0, r) and Or, ε = z + εOr. Using the theorem of trace and the variable change x = z + εy, we
obtain

‖E((x − z)/ε)w0(z, t)‖L2(0,T;H1/2(∂Oz, ε))

≤ ‖w0(z, t)‖L2(0,T)
(
‖E((x − z)/ε)‖L2(Or, ε) + ‖∇xE((x − z)/ε)‖L2(Or, ε)

)
≤ ‖w0(z, t)‖L2(0,T)

(
ε‖E(y)‖L2(Or) + ε

1/2‖∇yE(y)‖L2(Or)
)
.

From the fact that y 7→ E(y) is su�ciently smooth in Or ⊂ R2 \ {0}, the last quantity is uniformly bounded
and then

−4πν
log(ε)‖E((x − z)/ε)w0(z, t)‖L2(0,T;H1/2(∂Oz, ε)) ≤

−cε1/2
log(ε) .

Finally, combining the above estimates, we obtain, ∃c > 0, independent of ε, such as

‖zε‖L2(0,T;H1(Ωz, ε)) ≤
−c

log(ε)

which ends the proof of Theorem 3.3.
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5.3 Asymptotic analysis

This section deals with the proofs of the Theorems presented in paragraphs 3.2 and 3.3.
Using the assumption (A),

j(Ω \ Oz, ε) − j(Ω) =
T∫

0

Jε(wε(., t)) dt −
T∫

0

J0(w0(., t)) dt (31)

=
T∫

0

DJ0(w0(., t))
(
wε(., t) − w0(., t)

)
dt + ρ(ε) δJ + o (ρ(ε)),

where wε is extended by zero inside the domain Oz, ε.
Using Green formula and that wε = 0 in Oε, it follows

j(Ω \ Oz, ε) − j(Ω) = −ν
T∫

0

∫
Ωz, ε

∇vε∇u0 dx dt −
T∫

0

∫
Ωz, ε

∂vε
∂t u0 dx dt +

T∫
0

∫
Oz, ε

∂w0
∂t u0 dx dt

+ ν
T∫

0

∫
Oz, ε

∇w0∇u0 dx dt −
T∫

0

∫
Ωz, ε

(∇vεw0 +∇w0vε)u0 dx dt

+2
T∫

0

∫
Oz, ε

(∇w0w0)u0 dx dt + ρ(ε) δJ + o (ρ(ε)),

where u0 is the solution to the associated adjoint problem.
From (4) and the fact that w0 = 0 on Γ×]0, T[, we obtain

− ν
T∫

0

∫
Ωz, ε

∇vε∇u0dxdt −
T∫

0

∫
Ωz,ε

∂vε
∂t u0dxdt −

T∫
0

∫
Ωz, ε

(∇vεw0 +∇w0vε)u0 dx dt

= −
T∫

0

∫
∂Oz, ε

σ(vε , pvε )nu0dsdt +
T∫

0

∫
Ωz, ε

(∇vεvε)u0 dx dt. (32)

Therefore,

j(Ω \ Oz, ε) − j(Ω)

=
T∫

0

∫
Oz, ε

∂w0
∂t u0 dx dt + ν

T∫
0

∫
Oz, ε

∇w0∇u0 dx dt + 2
T∫

0

∫
Oz, ε

(∇w0w0)u0 dx dt

−
T∫

0

∫
∂Oz, ε

σ(vε , pvε )nu0ds dt +
T∫

0

∫
Ωz, ε

(∇vεvε)u0 dx dt + ρ(ε)δJ(z) + o(ρ(ε)).

(33)

We begin by giving the estimate of the �rst three terms in (33).

Lemma 5.1. The integral terms in (33) satisfy the estimate

T∫
0

∫
Oz, ε

∂w0
∂t u0 dx dt + ν

T∫
0

∫
Oz, ε

∇w0∇u0 dx dt + 2
T∫

0

∫
Oz, ε

(∇w0w0)u0 dx dt = O(εd).
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Proof 5.2. Using the variable change x = z + εy, the �rst integral term in (33) can be written

T∫
0

∫
Oz, ε

∂w0
∂t u0 dx dt = εd

T∫
0

∫
O

(∂w0(z + εy, t)
∂t u0(z + εy, t) −

∂w0(z, t)
∂t u0(z, t)dydt

+ εd|O|
T∫

0

∂w0(z, t)
∂t u0(z, t)dt,

where |O| denotes the Lebesgue measure of O.
Using that w0 and u0 are smooth near z, one can deduce that

T∫
0

∫
Oz, ε

∂w0
∂t u0 dx dt + ν

T∫
0

∫
Oz, ε

∇w0∇u0 dx dt + 2
T∫

0

∫
Oz, ε

(∇w0w0)u0 dx dt = O(εd).

By the same arguments, we can estimate the two other terms in (33).

The shape function variation can be rewritten

j(Ω \ Oz, ε) − j(Ω) = −
T∫

0

∫
∂Oz, ε

σ(vε , pvε )nu0dsdt +
T∫

0

∫
Ωz, ε

(∇vεvε)u0 dx dt + ρ(ε)δJ(z) + o(ρ(ε)).

We are now ready to prove the established results in Theorems 3.5 and 3.7 and propositions 3.8 and 3.9.

5.3.1 Proof of Theorem 3.5

Using an integration by parts and the fact that div(vε) = 0 yield

|
T∫

0

∫
Ωz, ε

(∇vεvε)u0 dx dt| = | −
T∫

0

∫
Ωz, ε

(
∇(u0) · (vε)

)
· vεdx dt|

≤ || ∇u0 ||L∞(Ωz, ε)|| vε ||
2
L2(Ωz, ε)

≤ 2 || ∇u0 ||L∞(Ωz, ε) (|| zε ||
2
L2(Ωz, ε) + || W ||2L2(Ωz, ε))

≤ cε2.

(34)

Then, the shape function variation can be written

j(Ω \ Oz, ε) − j(Ω) = −
T∫

0

∫
∂Oz, ε

σ(vε , pvε )nu0dsdt + εδJ(z) + o(ε).

From the de�nition of (zε , sε) and the variable change x = z + εy, we have

T∫
0

∫
∂Oz, ε

σ(vε , pvε )n u0 ds dt =
T∫

0

∫
∂Oz, ε

σ(zε , sε)n u0dsdt

+ε
T∫

0

w0(z, t).
( ∫
∂O

σ(U, P)(y)n(y) u0(z + ε y, t)ds(y)
)
dt,

where σ(U, P)n is the 3 × 3 matrix de�ned by

(σ(U, P)n)ij = (σ(U j , Pj)(y)n(y))i , 1 ≤ i, j ≤ 3.
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By the trace theorem, Theorem 3.1 and that u0 is smooth in Oz, ε,

|
T∫

0

∫
∂Oz, ε

σ(zε , sε)n u0dsdt| ≤ ‖σ(zε , sε)n‖L2(0,T;H−1/2(∂Oz, ε))‖u0‖L2(0,T;H1(Oz, ε)) = o(ε).

Making the variable change x = z + ε y, expanding u0(z + ε y, t) = u0(z, t) + ε∇u0(ξy , t)y with ξy ∈ Oz, ε and
using that∇u0 is uniformly bounded, we obtain

T∫
0

∫
∂Oz, ε

σ(vε , pvε )n u0dsdt

= ε
T∫

0

w0(z, t).
(∫
∂O

σ(U, P)(y)n ds(y)
)
u0(z, t)dt

+ε
T∫

0

w0(z, t)
( ∫
∂O

σ(U, P)(y)n(y)[u0(z + ε y, t) − u0(z, t)]ds(y)
)
dt + o(ε).

Due to the jump condition of the single layer potential σ(U j , Pj)n = −ηj + σ(V j , Sj)n, where (V j , Sj) is the
solution to the interior problem 

−ν∆V j +∇Sj = 0 in O,
divV j = 0 in O,

V j = U j on ∂O.

By the fact that div σ(V j , Sj) = ν∆V j −∇Sj = 0 in O, we have
∫
∂O

σ(V j , Sj)(y)n ds = 0.

Then, we obtain
T∫

0

∫
∂Oz, ε

σ(vε , pvε )n u0 ds dt = −ε
T∫

0

w0(z, t).
( ∫
∂O

η(y)ds(y)u0(z, t)
)
dt + o(ε).

Consequently, the shape function j admits the asymptotic expansion

j(Ω \ Oz, ε) = j(Ω) + ε
[ T∫
0

w0(z, t).MOu0(z, t)dt + δJ
]
+ o(ε),

whereMO is the matrix given by

MO ij = −
∫
∂O

ηij(y)ds(y), 1 ≤ i, j ≤ 3.

5.3.2 Proof of Theorem 3.7

The shape function variation is given by

j(Ω \ Oz, ε) − j(Ω) = −
T∫

0

∫
∂Oz, ε

σ(vε , pvε )nu0dsdt +
T∫

0

∫
Ωz, ε

(∇vεvε)u0 dx dt +
−1

log(ε) δJ(z) + o(
−1

log(ε) ).

Recall that the term (W , Q) describing the perturbation due to the presence of a small obstacle Oz, ε is given
by: ∀(x, t) ∈ Ωz, ε×]0, T[,

W(x, t) = 4πν
2∑
j=1

[Ej(x − z)w0(z, t)]ej , Q(x, t) = 4πν
2∑
j=1

Π j(x − z)wj0(z, t),
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where Ej(y) = E(y)ej and Π j(y) = Π(y).ej, 1 ≤ j ≤ 2.
Applying an integration by parts and using the fact that div(vε) = 0 provides

T∫
0

∫
Ωz, ε

(∇vεvε)u0 dx dt = −
T∫

0

∫
Ωz, ε

(∇u0 · vε) · vεdx dt.

Then,

|
T∫

0

∫
Ωz, ε

(∇vεvε)u0 dx dt| ≤ || ∇u0 ||L∞(Ωz, ε)|| vε ||
2
L2(Ωz, ε)

≤ 2 || ∇u0 ||L∞(Ωz, ε) [|| zε ||
2
L2(Ωε) + || W ||2L2(Ωε)]

≤ c
( −1
log(ε)

)2
= o
( −1
log(ε)

)
.

(35)

It follows that

j(Ω \ Oz, ε) − j(Ω) = −
T∫

0

∫
∂Oz, ε

σ(vε , pvε )nu0dsdt +
−1

log(ε) δJ(z) + o(
−1

log(ε) ).

Then, from the decomposition (24), one can derive

T∫
0

∫
∂Oz, ε

σ(vε , pvε )nu0ds dt =
T∫

0

∫
∂Oz, ε

σ(zε , sε)n u0dsdt

+ 4πν
log(ε)

T∫
0

w0(z, t)
( ∫
∂Oz, ε

σ(E, Π)(x − z)n u0(x, t)ds(x)
)
dt,

(36)

where σ(E, Π)n is the 2 × 2 matrix de�ned by (σ(E, Π)n)i,j = (σ(Ej , Π j)n)i , 1 ≤ i, j ≤ 2.
Using Theorem 3.3 and the smoothness of u0 in Oz, ε, it follows

∣∣∣ T∫
0

∫
∂Oz, ε

σ(zε , sε)n u0dsdt
∣∣∣ = o( −1

log(ε)
)
.

The second term in (36) can be written∫
∂Oz, ε

σ(E, Π)(x − z)n u0(x, t)ds(x) =
∫

∂Oz, ε

σ(E, Π)(x − z)n[u0(x, t) − u0(z, t)]ds(x)

+
∫

∂Oz, ε

σ(E, Π)(x − z)n u0(z, t)ds(x).

Using the trace theorem and the variable change x = z + εy, one can obtain

|
T∫

0

w0(z, t) ·
( ∫
∂Oz, ε

σ(E, Π)(x − z)n[u0(x, t) − u0(z, t)]ds(x)
)
dt|

≤ c ‖w0(z, t)‖L2(0,T)‖σ(E, Π)(x − z)n‖H−1/2(∂Oz, ε)‖u0(x, t) − u0(z, t)‖L2(0,T;H1/2(Oz, ε)).

By the fact that u0 is smooth in Oz, ε, it follows

lim
ε−→0

‖u0(x, t) − u0(z, t)‖L2(0,T;H1/2(Oz, ε)) = 0.

Recall that B(0, r) ⊂ O, Or = O\B(0, r) and Or, ε = z + εOr ⊂ Oz, ε. Here, one can check that the function x 7→
σ(E, Π)(x−z) is smooth inOr, ε. Using the trace theorem,weprove that the quantity ‖σ(E, Π)(x−z)n‖H−1/2(∂Oz, ε)
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is bounded with respect to ε, which implies

4πν
log(ε)

T∫
0

w0(z, t) ·
( ∫
∂Oz, ε

σ(E, Π)(x − z)n[u0(x, t) − u0(z, t)]ds(x)
)
dt = o

( −1
log(ε)

)
.

Combining the above estimates, one can deduce
T∫

0

∫
∂Oz, ε

σ(vε , pvε )nu0dsdt

= 4πν
log(ε)

T∫
0

w0(z, t) ·
( ∫
∂Oz, ε

σ(E, Π)(x − z)nds(x)
)
u0(z, t)dt + o

( −1
log(ε)

)
.

Since div(σ(Ej , Π j)(x − z)) = δzej in Oz, ε, it follows∫
∂Oε

σ(E(x − z), Π(x − z))n ds = I,

where I is the 2 × 2 identity matrix.

Then, the last estimate becomes
T∫

0

∫
∂Oz, ε

σ(vε , pvε )n u0 ds dt =
4πν
log(ε)

T∫
0

w0(z, t)u0(z, t)dt + o
( −1
log(ε)

)
. (37)

Consequently, all shape functions j satisfying the assumption (A) admit the asymptotic expansion

j(Ω \ Oz, ε) = j(Ω) + −1
log(ε)

[
4πν

T∫
0

w0(z, t) u0(z, t) dt + δJ(z)
]
+ o
( −1
log(ε)

)
.

5.3.3 Proof of Proposition 3.8

Since the desired �uid �ow state Wd ∈ L2(0, T;H1(Ω)), the function J0 is di�erentiable at w0(., t) and we
have

DJ0(w0(., t))(v) = 2
∫
Ω

(
w0(., t) −Wd(., t)

)
v dx, ∀v ∈ H1(Ω).

The variation of the associated shape function j is given by

j(Ωz, ε) − j(Ω) =
T∫

0

∫
Ωz, ε

|wε −Wd|
2 dx dt −

T∫
0

∫
Ω

|w0 −Wd|
2 dx dt

=
T∫

0

DJ0(w0)(wε − w0) dt +
T∫

0

∫
Ωz, ε

|wε − w0|2 dx dt

+
T∫

0

∫
Oz, ε

|w0|2 dx dt −
T∫

0

∫
Oz, ε

|Wd|
2 dx dt.

Using the smoothness of w0 andWd in Ω, one can conclude that
T∫

0

∫
Oz, ε

|w0|2 dx dt = o(ε) and
T∫

0

∫
Oz, ε

|Wd|
2dx dt = o(ε).
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- For the two-dimensional case: Using the decomposition (24), it follows

T∫
0

∫
Ωz, ε

|wε − w0|2 ≤ 2

 T∫
0

∫
Ωz, ε

|zε|2dxdt + 1
(log(ε))2

T∫
0

∫
Ωz, ε

|W|2dxdt

 .
From Theorem 3.3, one can check

T∫
0

∫
Ωz, ε

|zε|2dxdt = o
( −1
log(ε)

)
.

Making use of (27), one can deduce

‖W‖L2(0,T;L2(Ωz, ε)) = 4πν‖w0(z, t)‖L2(0,T)‖E(x − z)‖L2(Ωz, ε) = O(1).

Then, it follows

1
(log(ε))2

T∫
0

∫
Ωz, ε

|W|2dxdt = o
( −1
log(ε)

)
.

- For the three-dimensional case: Using the decomposition (17), it follows
T∫

0

∫
Ωz, ε

|wε − w0|2 ≤ 2
( T∫

0

∫
Ωz, ε

|zε|2dxdt +
T∫

0

∫
Ωz, ε

|W|2dxdt
)
.

Using Theorem 3.1 and the change of variable, one can check
T∫

0

∫
Ωz, ε

|zε|2dxdt = o(ε) and
T∫

0

∫
Ωz, ε

|W|2dxdt = o(ε).

Therefore the function Jε satis�es the assumption (A) with

DJ0(w0(., t)) (v) = 2
∫
Ω

(w0(., t) −Wd(., t)) v dx, ∀ v ∈ H1(Ω),

δJ(x) = 0, ∀x ∈ Ω.

5.3.4 Proof of Proposition 3.9

The function J0 is di�erentiable at w0(., t) and we have

DJ0(w0(., t))(v) = 2 ν
∫
Ω

(∇w0(., t) −∇Wd(., t))∇v dx, ∀ v ∈ H1(Ω).

The variation of the associated shape function j is given by

j(Ωz, ε) − j(Ω) =
T∫

0

DJ0(w0)(wε − w0) dt − ν
T∫

0

∫
Oz, ε

|∇Wd|
2 dx dt (38)

+ ν
T∫

0

∫
Oz, ε

|∇w0|2 dx dt + ν
T∫

0

∫
Ωz, ε

|∇wε −∇w0|2 dx dt.
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Thanks to the regularity of w0 andWd in Oz, ε, one can derive

T∫
0

∫
Oz, ε

ν|∇w0|2 dx dt = o(ε),
T∫

0

∫
Oz, ε

ν|∇Wd|
2dx dt = o(ε).

- For the two-dimensional case: By an adaptation of the technique used in the proof of Theorem 3.7,
one can derive

T∫
0

∫
∂Oz, ε

σ(zε , sε)n w0 ds dt =
−4πν
log(ε)

T∫
0

|w0(z, t)|2 dt + o(
−1

log(ε) ).

Therefore, the function Jε satis�es the assumption (A) with

DJ0(w0(., t)) (v) = 2 ν
∫
Ω

(∇w0(., t) −∇Wd(., t))∇v dx, ∀ v ∈ H1(Ω),

and δJ(x) = 4πν
T∫

0

|w0(z, t)|2 dt, ∀x ∈ Ω.

- For the three-dimensional case: By an adaptation of the technique used in the proof of Theorem 3.5,
one can derive

T∫
0

∫
∂Oz, ε

σ(zε , sε)n w0 ds dt = ε
[ T∫
0

w0(z, t).MOw0(z, t)dt
]
+ o(ε).

Therefore, the function Jε satis�es the assumption (A) with

DJ0(w0(., t)) (v) = 2 ν
∫
Ω

(∇w0(., t) −∇Wd(., t))∇v dx, ∀ v ∈ H1(Ω),

and δJ(z) =
T∫

0

w0(z, t).MOw0(z, t)dt, ∀z ∈ Ω.

6 Conclusion
This paper deals with non-stationary Navier-Stokes topological optimization problem. In the theoretical part
of this work, we have established a topological asymptotic formula describing the shape function variation
related to a small Dirichlet geometric perturbation.

The obtained theoretical results are exploited for building a topological optimization algorithm for solv-
ing the Teslamicro-valve optimizationproblem.We illustrate the strengths of this approachnamely the ability
to �nd optimal design based only on boundary conditions and constraints information without the need of
an initial design.
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