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1 Introduction
Consider the p-superlinear semipositone p-Laplacian problem

−∆p u = uq−1 − µ in Ω

u > 0 in Ω

u = 0 on ∂Ω,

(1.1)

where Ω is a smooth bounded domain inRN , 1 < p < N, p < q ≤ p*, µ > 0 is a parameter, and p* = Np/(N − p)
is the critical Sobolev exponent. The scaling u 7→ µ1/(q−1) u transforms the �rst equation in (1.1) into

−∆p u = µ(q−p)/(q−1)
(
uq−1 − 1

)
,

so in the subcritical case q < p*, it follows from the results in Castro et al.[1] and Chhetri et al.[2] that this prob-
lem has a weak positive solution for su�ciently small µ > 0 when p > 1 (see also Unsurangie [3], Allegretto
et al.[4], Ambrosetti et al.[5], and Caldwell et al.[6] for the case when p = 2). On the other hand, in the critical
case q = p*, it follows from a standard argument involving the Pohozaev identity for the p-Laplacian (see
Guedda and Véron [7, Theorem 1.1]) that problem (1.1) has no solution for any µ > 0 when Ω is star-shaped.
The purpose of the present paper is to show that this situation can be reversed by the addition of lower-order
terms, as was observed in the positone case by Brézis and Nirenberg in the celebrated paper [8]. However,
this extension to the semipositone case is not straightforward as u = 0 is no longer a subsolution, making it
much harder to �nd a positive solution as was pointed out in Lions [9]. The positive solutions that we obtain
here are ground states, i.e., they minimize the energy among all positive solutions.
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We study the Brézis-Nirenberg type critical semipositone p-Laplacian problem
−∆p u = λup−1 + up

*−1 − µ in Ω

u > 0 in Ω

u = 0 on ∂Ω,

(1.2)

where λ, µ > 0 are parameters. LetW1,p
0 (Ω) be the usual Sobolev space with the norm given by

‖u‖p =
∫
Ω

|∇u|p dx.

For a given λ > 0, the energy of a weak solution u ∈ W1,p
0 (Ω) of problem (1.2) is given by

Iµ(u) =
∫
Ω

(
|∇u|p
p − λu

p

p − u
p*

p* + µu
)
dx,

and clearly all weak solutions lie on the set

Nµ =

u ∈ W1,p
0 (Ω) : u > 0 in Ω and

∫
Ω

|∇u|p dx =
∫
Ω

(
λup + up

*
− µu

)
dx

 .

We will refer to a weak solution that minimizes Iµ onNµ as a ground state. Let

λ1 = inf
u∈W1,p

0 (Ω)\{0}

∫
Ω

|∇u|p dx

∫
Ω

|u|p dx
(1.3)

be the �rst Dirichlet eigenvalue of the p-Laplacian, which is positive. We will prove the following existence
theorem.

Theorem 1.1. If N ≥ p2 and λ ∈ (0, λ1), then there exists µ* > 0 such that for all µ ∈ (0, µ*), problem (1.2) has
a ground state solution uµ ∈ C1,α(Ω) for some α ∈ (0, 1).

The scaling u 7→ µ−1/(p
*−p) u transforms the �rst equation in the critical semipositone p-Laplacian problem

−∆p u = λup−1 + µ
(
up

*−1 − 1
)

in Ω

u > 0 in Ω

u = 0 on ∂Ω

(1.4)

into
−∆p u = λup−1 + up

*−1 − µ(p
*−1)/(p*−p),

so as an immediate corollary we have the following existence theorem for problem (1.4).

Theorem 1.2. If N ≥ p2 and λ ∈ (0, λ1), then there exists µ* > 0 such that for all µ ∈ (0, µ*), problem (1.4) has
a ground state solution uµ ∈ C1,α(Ω) for some α ∈ (0, 1).

We would like to emphasize that Theorems 1.1 and 1.2 are new even in the semilinear case p = 2.
The outline of the proof of Theorem 1.1 is as follows. We consider the modi�ed problem−∆p u = λu

p−1
+ + up

*−1
+ − µ f (u) in Ω

u = 0 on ∂Ω,
(1.5)
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where u+(x) = max
{
u(x), 0

}
and

f (t) =


1, t ≥ 0

1 − |t|p−1, −1 < t < 0

0, t ≤ −1.

Weak solutions of this problem coincide with critical points of the C1-functional

Iµ(u) =
∫
Ω

(
|∇u|p
p − λu

p
+
p − u

p*
+
p*

)
dx + µ

[ ∫
{u≥0}

u dx

+
∫

{−1<u<0}

(
u − |u|

p−1 u
p

)
dx −

(
1 − 1

p

)
|{u ≤ −1}|

]
, u ∈ W1,p

0 (Ω),

where |·|denotes the Lebesguemeasure inRN . Recall that Iµ satis�es the Palais-Smale compactness condition
at the level c ∈ R, or the (PS)c condition for short, if every sequence

(
uj
)
⊂ W1,p

0 (Ω) such that Iµ(uj) → c
and I′µ(uj)→ 0, called a (PS)c sequence for Iµ, has a convergent subsequence. As we will see in Lemma 2.1 in
the next section, it follows from concentration compactness arguments that Iµ satis�es the (PS)c condition
for all

c < 1
N SN/p −

(
1 − 1

p

)
µ |Ω| ,

where S is the best Sobolev constant (see (2.1)). Firstwewill construct amountain pass level below this thresh-
old for compactness for all su�ciently small µ > 0. This part of the proof is more or less standard. The novelty
of the paper lies in the fact that the solution uµ of the modi�ed problem (1.5) thus obtained is positive, and
hence also a solution of our original problem (1.2), if µ is further restricted. Note that this does not follow
from the strong maximum principle as usual since −µ f (0) < 0. This is precisely the main di�culty in �nding
positive solutions of semipositone problems (see Lions [9]). We will prove that for every sequence µj → 0,
a subsequence of uµj is positive in Ω. The idea is to show that a subsequence of uµj converges in C10(Ω) to a
solution of the limit problem 

−∆p u = λup−1 + up
*−1 in Ω

u > 0 in Ω

u = 0 on ∂Ω.

This requires a uniform C1,α(Ω) estimate of uµj for some α ∈ (0, 1). We will obtain such an estimate by show-
ing that uµj is uniformly bounded inW1,p

0 (Ω) and uniformly equi-integrable in Lp
*
(Ω), and applying a result

of de Figueiredo et al.[10]. The proof of uniform equi-integrability in Lp
*
(Ω) involves a second (nonstandard)

application of the concentration compactness principle. Finally, we use the mountain pass characterization
of our solution to show that it is indeed a ground state.

Remark 1.3. Establishing the existence of solutions to the critical semipositone problem
−∆p u = µ

(
up−1 + up

*−1 − 1
)

in Ω

u > 0 in Ω

u = 0 on ∂Ω

for small µ remains open.
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2 Preliminaries
Let

S = inf
u∈W1,p

0 (Ω)\{0}

∫
Ω

|∇u|p dx

∫
Ω

|u|p
*
dx

p/p* (2.1)

be the best constant in the Sobolev inequality, which is independent of Ω. The proof of Theorem 1.1 will make
use of the following compactness result.

Lemma 2.1. For any �xed λ, µ > 0, Iµ satis�es the (PS)c condition for all

c < 1
N SN/p −

(
1 − 1

p

)
µ |Ω| . (2.2)

Proof. Let
(
uj
)
be a (PS)c sequence. First we show that

(
uj
)
is bounded. We have

Iµ(uj) =
∫
Ω

(
|∇uj|p

p −
λupj+
p −

up
*

j+
p*

)
dx + µ

[ ∫
{uj≥0}

uj dx

+
∫

{−1<uj<0}

(
uj −

|uj|p−1 uj
p

)
dx −

(
1 − 1

p

) ∣∣{uj ≤ −1}∣∣ ] = c + o(1) (2.3)

and

I′µ(uj) v =
∫
Ω

(
|∇uj|p−2∇uj ·∇v − λup−1j+ v − up

*−1
j+ v

)
dx + µ

[ ∫
{uj≥0}

v dx

+
∫

{−1<uj<0}

(
1 − |uj|p−1

)
v dx

]
= o(1) ‖v‖ ∀v ∈ W1,p

0 (Ω). (2.4)

Taking v = uj in (2.4), dividing by p, and subtracting from (2.3) gives

1
N

∫
Ω

up
*

j+ dx ≤ c +
(
1 − 1

p

)
µ |Ω| + o(1)

(∥∥uj∥∥ + 1) , (2.5)

and it follows from this, (2.3), and the Hölder inequality that
(
uj
)
is bounded inW1,p

0 (Ω).
Since

(
uj
)
is bounded, so is

(
uj+
)
, a renamed subsequence of which then converges to some v ≥ 0 weakly

inW1,p
0 (Ω), strongly in Lq(Ω) for all q ∈ [1, p*) and a.e.in Ω, and

|∇uj+|p dx
w*−−→ κ, up

*

j+ dx
w*−−→ ν (2.6)

in the sense of measures, where κ and ν are bounded nonnegative measures on Ω (see, e.g., Folland [11]). By
the concentration compactness principle of Lions [12, 13], then there exist an at most countable index set I
and points xi ∈ Ω, i ∈ I such that

κ ≥ |∇v|p dx +
∑
i∈I

κi δxi , ν = vp
*
dx +

∑
i∈I

νi δxi , (2.7)
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where κi , νi > 0 and νp/p
*

i ≤ κi/S. We claim that I = ∅. Suppose by contradiction that there exists i ∈ I. Let
φ : RN → [0, 1] be a smooth function such that φ(x) = 1 for |x| ≤ 1 and φ(x) = 0 for |x| ≥ 2. Then set

φi,ρ(x) = φ
(
x − xi
ρ

)
, x ∈ RN

for i ∈ I and ρ > 0, and note that φi,ρ : RN → [0, 1] is a smooth function such that φi,ρ(x) = 1 for |x − xi| ≤ ρ
and φi,ρ(x) = 0 for |x − xi| ≥ 2ρ. The sequence

(
φi,ρ uj+

)
is bounded inW1,p

0 (Ω) and hence taking v = φi,ρ uj+
in (2.4) gives∫

Ω

(
φi,ρ |∇uj+|p + uj+ |∇uj+|p−2∇uj+ ·∇φi,ρ − λ φi,ρ upj+ − φi,ρ u

p*
j+ + µ φi,ρ uj+

)
dx = o(1). (2.8)

By (2.6), ∫
Ω

φi,ρ |∇uj+|p dx →
∫
Ω

φi,ρ dκ,
∫
Ω

φi,ρ up
*

j+ dx →
∫
Ω

φi,ρ dν.

Denoting by C a generic positive constant independent of j and ρ,∣∣∣∣∣∣
∫
Ω

(
uj+ |∇uj+|p−2∇uj+ ·∇φi,ρ − λ φi,ρ upj+ + µ φi,ρ uj+

)
dx

∣∣∣∣∣∣ ≤ C
[(

1
ρ + µ

)
I1/pj + Ij

]
,

where

Ij :=
∫

Ω∩B2ρ(xi)

upj+ dx →
∫

Ω∩B2ρ(xi)

vp dx ≤ Cρp

 ∫
Ω∩B2ρ(xi)

vp
*
dx


p/p*

.

So passing to the limit in (2.8) gives

∫
Ω

φi,ρ dκ −
∫
Ω

φi,ρ dν ≤ C

(1 + µρ)
 ∫
Ω∩B2ρ(xi)

vp
*
dx


1/p*

+
∫

Ω∩B2ρ(xi)

vp dx

 .
Letting ρ ↘ 0 and using (2.7) now gives κi ≤ νi, which together with νi > 0 and νp/p

*

i ≤ κi/S then gives
νi ≥ SN/p. On the other hand, passing to the limit in (2.5) and using (2.6) and (2.7) gives

νi ≤ N
[
c +
(
1 − 1

p

)
µ |Ω|

]
< SN/p

by (2.2), a contradiction. Hence I = ∅ and ∫
Ω

up
*

j+ dx →
∫
Ω

vp
*
dx. (2.9)

Passing to a further subsequence, uj converges to some u weakly in W1,p
0 (Ω), strongly in Lq(Ω) for all

q ∈ [1, p*), and a.e.in Ω. Since

|up
*−1
j+ (uj − u)| ≤ up

*

j+ + u
p*−1
j+ |u| ≤

(
2 − 1

p*

)
up

*

j+ +
1
p* |u|

p*

by Young’s inequality, ∫
Ω

up
*−1
j+ (uj − u) dx → 0

by (2.9) and the dominated convergence theorem. Then taking v = uj − u in (2.4) gives∫
Ω

|∇uj|p−2∇uj ·∇(uj − u) dx → 0,

so uj → u inW1,p
0 (Ω) for a renamed subsequence (see, e.g., Perera et al.[14, Proposition 1.3]).
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The in�mum in (2.1) is attained by the family of functions

uε(x) =
CN,p ε(N−p)/p

2

(ε + |x|p/(p−1))(N−p)/p
, ε > 0

when Ω = RN , where the constant CN,p > 0 is chosen so that∫
RN

|∇uε|p dx =
∫
RN

up
*

ε dx = SN/p .

Without loss of generality, we may assume that 0 ∈ Ω. Let r > 0 be so small that B2r(0) ⊂ Ω, take a function
ψ ∈ C∞0 (B2r(0), [0, 1]) such that ψ = 1 on Br(0), and set

ũε(x) = ψ(x) uε(x), vε(x) =
ũε(x)∫

Ω

ũp
*

ε dx

1/p* ,

so that
∫
Ω

vp
*

ε dx = 1. Then we have the well-known estimates

∫
Ω

|∇vε|p dx ≤ S + Cε(N−p)/p , (2.10)

∫
Ω

vpε dx ≥


1
C ε

p−1, N > p2

1
C ε

p−1 |log ε|, N = p2,
(2.11)

where C = C(N, p) > 0 is a constant (see, e.g., Drábek and Huang [15]).

3 Proof of Theorem 1.1
First we show that Iµ has a uniformly positivemountain pass level below the threshold for compactness given
in Lemma 2.1 for all su�ciently small µ > 0. Let vε be as in the last section.

Lemma 3.1. There exist µ0, ρ, c0 > 0, R > ρ, and β < 1
N SN/p such that the following hold for all µ ∈ (0, µ0):

(i) ‖u‖ = ρ ⇒ Iµ(u) ≥ c0,
(ii) Iµ(tvε) ≤ 0 for all t ≥ R and ε ∈ (0, 1],
(iii) denoting by Γ =

{
γ ∈ C([0, 1],W1,p

0 (Ω)) : γ(0) = 0, γ(1) = Rvε
}

the class of paths joining the origin
to Rvε,

c0 ≤ cµ := inf
γ∈Γ

max
u∈γ([0,1])

Iµ(u) ≤ β −
(
1 − 1

p

)
µ |Ω| (3.1)

for all su�ciently small ε > 0,
(iv) Iµ has a critical point uµ at the level cµ.

Proof. By (1.3) and (2.1),

Iµ(u) ≥
1
p

(
1 − λ

λ1

)
‖u‖p − S

−p*/p

p* ‖u‖p
*
−
(
1 − 1

p

)
µ |Ω| ,

and (i) follows from this for su�ciently small ρ, c0, µ > 0 since λ < λ1.
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Since vε ≥ 0,

Iµ(tvε) =
tp
p

∫
Ω

(
|∇vε|p − λvpε

)
dx − t

p*

p* + µt
∫
Ω

vε dx

for t ≥ 0. By the Hölder’s and Young’s inequalities,

µt
∫
Ω

vε dx ≤ µt |Ω|1−1/p
∫
Ω

vpε dx

1/p

≤ Cλ µp/(p−1) +
λtp
2p

∫
Ω

vpε dx,

where

Cλ =
(
1 − 1

p

)(
2
λ

)1/(p−1)
|Ω| ,

so

Iµ(tvε) ≤
tp
p

∫
Ω

(
|∇vε|p −

λ
2 v

p
ε

)
dx − t

p*

p* + Cλ µ
p/(p−1). (3.2)

Then by (2.10) and for ε, µ ∈ (0, 1],

Iµ(tvε) ≤ (S + C)
tp
p −

tp
*

p* + Cλ ,

from which (ii) follows for su�ciently large R > ρ.
The �rst inequality in (3.1) is immediate from (i) since R > ρ. Maximizing the right-hand side of (3.2) over

t ≥ 0 gives

cµ ≤
1
N

∫
Ω

(
|∇vε|p −

λ
2 v

p
ε

)
dx

N/p + Cλ µp/(p−1),
and (2.10) and (2.11) imply that the integral on the right-hand side is strictly less than S for all su�ciently
small ε > 0 since N ≥ p2 and λ > 0, so the second inequality in (3.1) holds for su�ciently small µ > 0.

Finally, (iv) follows from (i)–(iii), Lemma 2.1, and the mountain pass lemma (see Ambrosetti and Rabi-
nowitz [16]).

Next we show that uµ is uniformly bounded in W1,p
0 (Ω) and uniformly equi-integrable in Lp

*
(Ω), and hence

also uniformly bounded in C1,α(Ω) for some α ∈ (0, 1) by de Figueiredo et al. [10, Proposition 3.7], for all
su�ciently small µ ∈ (0, µ0).

Lemma 3.2. There exists µ* ∈ (0, µ0] such that the following hold for all µ ∈ (0, µ*):

(i) uµ is uniformly bounded in W1,p
0 (Ω),

(ii)
∫
E

|uµ|p
*
dx → 0 as |E| → 0, uniformly in µ,

(iii) uµ is uniformly bounded in C1,α(Ω) for some α ∈ (0, 1).

Proof. We have

Iµ(uµ) =
∫
Ω

(
|∇uµ|p
p −

λupµ+
p −

up
*

µ+
p*

)
dx + µ

[ ∫
{uµ≥0}

uµ dx

+
∫

{−1<uµ<0}

(
uµ −

|uµ|p−1 uµ
p

)
dx −

(
1 − 1

p

)
|{uµ ≤ −1}|

]
= cµ (3.3)
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and

I′µ(uµ) v =
∫
Ω

(
|∇uµ|p−2∇uµ ·∇v − λup−1µ+ v − up

*−1
µ+ v

)
dx + µ

[ ∫
{uµ≥0}

v dx

+
∫

{−1<uµ<0}

(
1 − |uµ|p−1

)
v dx

]
= 0 ∀v ∈ W1,p

0 (Ω). (3.4)

Taking v = uµ in (3.4), dividing by p, and subtracting from (3.3) gives

1
N

∫
Ω

up
*

µ+ dx ≤ cµ +
(
1 − 1

p

)
µ |Ω| ≤ β (3.5)

by (3.1), and (i) follows from this, (3.4) with v = uµ, and the Hölder inequality.
If (ii) does not hold, then there exist sequences µj → 0 and

(
Ej
)
with

∣∣Ej∣∣→ 0 such that

lim
∫
Ej

|uµj |p
*
dx > 0. (3.6)

Since
(
uµj
)
is bounded by (i), so is

(
uµj+

)
, a renamed subsequence of which then converges to some v ≥ 0

weakly inW1,p
0 (Ω), strongly in Lq(Ω) for all q ∈ [1, p*) and a.e.in Ω, and

|∇uµj+|p dx
w*−−→ κ, up

*

µj+ dx
w*−−→ ν (3.7)

in the sense ofmeasures, where κ and ν are bounded nonnegativemeasures onΩ. By Lions [12, 13], then there
exist an at most countable index set I and points xi ∈ Ω, i ∈ I such that

κ ≥ |∇v|p dx +
∑
i∈I

κi δxi , ν = vp
*
dx +

∑
i∈I

νi δxi , (3.8)

where κi , νi > 0 and νp/p
*

i ≤ κi/S. Suppose I is nonempty, say, i ∈ I. An argument similar to that in the proof
of Lemma 2.1 shows that κi ≤ νi, so νi ≥ SN/p. On the other hand, passing to the limit in (3.5) with µ = µj and
using (3.7) and (3.8) gives νi ≤ Nβ < SN/p, a contradiction. Hence I = ∅ and∫

Ω

up
*

µj+ dx →
∫
Ω

vp
*
dx.

As in the proof of Lemma 2.1, a further subsequence of
(
uµj
)
then converges to some u inW1,p

0 (Ω), and hence
also in Lp

*
(Ω), and a.e.in Ω. Then∫

Ej

|uµj |p
*
dx ≤

∫
Ω

∣∣∣|uµj |p* − |u|p* ∣∣∣ dx + ∫
Ej

|u|p
*
dx → 0,

contradicting (3.6).
Finally, (iii) follows from (i), (ii), and de Figueiredo et al.[10, Proposition 3.7].

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We claim that uµ is positive in Ω, and hence a weak solution of problem (1.2), for all
su�ciently small µ ∈ (0, µ*). It su�ces to show that for every sequence µj → 0, a subsequence of uµj is
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positive in Ω. By Lemma 3.2 (iii), a renamed subsequence of uµj converges to some u in C10(Ω). We have

Iµj (uµj ) =
∫
Ω

(
|∇uµj |p

p −
λupµj+
p −

up
*

µj+
p*

)
dx + µj

[ ∫
{
uµj ≥0

} uµj dx

+
∫

{
−1<uµj <0

}
(
uµj −

|uµj |p−1 uµj
p

)
dx −

(
1 − 1

p

) ∣∣{uµj ≤ −1}∣∣ ] = cµj ≥ c0
by (3.1) and

I′µj (uµj ) v =
∫
Ω

(
|∇uµj |p−2∇uµj ·∇v − λu

p−1
µj+ v − u

p*−1
µj+ v

)
dx + µj

[ ∫
{
uµj ≥0

} v dx

+
∫

{
−1<uµj <0

}
(
1 − |uµj |p−1

)
v dx

]
= 0 ∀v ∈ W1,p

0 (Ω),

and passing to the limits gives ∫
Ω

(
|∇u|p
p − λu

p
+
p − u

p*
+
p*

)
dx ≥ c0

and ∫
Ω

(
|∇u|p−2∇u ·∇v − λup−1+ v − up

*−1
+ v

)
dx = 0 ∀v ∈ W1,p

0 (Ω),

so u is a nontrivial weak solution of the problem−∆p u = λu
p−1
+ + up

*−1
+ in Ω

u = 0 on ∂Ω.

Then u > 0 in Ω and its interior normal derivative ∂u/∂ν > 0 on ∂Ω by the strong maximum principle and
the Hopf lemma for the p-Laplacian (see Vázquez [17]). Since uµj → u in C10(Ω), then uµj > 0 in Ω for all
su�ciently large j.

It remains to show that uµ minimizes Iµ on Nµ when it is positive. For each w ∈ Nµ, we will construct a
path γw ∈ Γ such that

max
u∈γw([0,1])

Iµ(u) = Iµ(w).

Since
Iµ(uµ) = cµ ≤ max

u∈γw([0,1])
Iµ(u)

by the de�nition of cµ, the desired conclusion will then follow. First we note that the function

g(t) = Iµ(tw) =
tp
p

∫
Ω

(
|∇w|p − λwp

)
dx − t

p*

p*

∫
Ω

wp
*
dx + µt

∫
Ω

w dx, t ≥ 0

has a unique maximum at t = 1. Indeed,

g′(t) = tp−1
∫
Ω

(
|∇w|p − λwp

)
dx − tp

*−1
∫
Ω

wp
*
dx + µ

∫
Ω

w dx

=
(
tp−1 − tp

*−1
)∫
Ω

(
|∇w|p − λwp

)
dx +

(
1 − tp

*−1
)
µ
∫
Ω

w dx
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since w ∈ Nµ, and the last two integrals are positive since λ < λ1 and w > 0, so g′(t) > 0 for 0 ≤ t < 1,
g′(1) = 0, and g′(t) < 0 for t > 1. Hence

max
t≥0

Iµ(tw) = Iµ(w) > 0

since g(0) = 0. In view of Lemma 3.1 (ii), now it su�ces to observe that there exists R̃ > max {1, R} such that

Iµ(R̃u) =
R̃p
p

∫
Ω

(
|∇u|p − λup

)
dx − R̃

p*

p*

∫
Ω

up
*
dx + µR̃

∫
Ω

u dx ≤ 0

for all u on the line segment joining w to vε since all norms on a �nite dimensional space are equivalent.
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