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1 Introduction

We consider viscosity solutions of the normalized p-Laplace equation
a_u
ot

inQr = Q x (0, T), Q being a domain in R". Formally, the equation reads

ou ou d%u
| 0X; 0X; 0X;0%; "

= |Vu|> P div(|VulP~2Vu), 1<p <oo, (1.1)

n
‘3— =Au+(p - 2)|Vu|™? Z
In the linear case p = 2, we have the heat equation u; = Au, and also for n = 1, the equation reduces to the
heat equation u; = (p — 1)uyy. At the limit p = 1, we obtain the equation for motion by mean curvature. We
aim at showing that the time derlvatlve 7 exists in the Sobolev sense and belongs to 120 (Qr). We also study
the second derivatives aa (;‘X
There has been some recent interest in connection with stochastic game theory, where the equation
appears, cf. [7]. From our point of view, the work [3] is of actual interest, because there it is shown that the
time derivative u; of the viscosity solutions exists and is locally bounded, provided that the lateral boundary
values are smooth. Thus, the boundary values control the time regularity. If no such assumptions about the
behaviour at the lateral boundary 0Q x (0, T) are made, a conclusion like u; € L (Qr) is in doubt. Our main
result is the following, where we unfortunately have to restrict p.

loc

Theorem 1.1. Suppose that u = u(x, t) is a viscosity solution of the normalized p-Laplace equation in Q7. If

— <p< 54, then the Sobolev derivatives ‘3‘; and af (;‘ exist and belong to Lloc(QT)'

We emphasize that no assumptions on the boundary values are made for this interior estimate. Our method
of proof is based on a verification of the identity
T T
j Jugbt dxdt = - j J Updxdt, ¢ eCPQr),
00

0Q
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where we have to prove that the function U, which is the right-hand side of equation (1.1), belongs to leo Q7).
Thus, the second spatial derivatives D?u are crucial (local boundedness of Vu was provenin [2, 3] and interior
Holder estimates for the gradient in [6]). The elliptic case has been studied in [1].

In the range 1 < p < 2, one can bypass the question of second derivatives.

Theorem 1.2. Suppose that u = u(x, t) is a viscosity solution of the normalized p-Laplace equation in Q. If
1 < p < 2, then the Sobolev derivative % exists and belongs to leoc(QT)'

To avoid the problem of vanishing gradient, we first study the regularized equation

€
aait = IVl + €2) 7 div((IVul|? + €2) 7 vue). (1.2)
Here the classical parabolic regularity theory is applicable. The equation was studied by Does in [3], where
an estimate of the gradient Vu¢ was found with Bernstein’s method. We shall prove a maximum principle for
the gradient. Further, we differentiate equation (1.2) with respect to the space variables and derive estimates
for u€, which are passed over to the solution u of (1.1).

Analogous results seem to be possible to reach through the Cordes condition. This also restricts the range
of valid exponents p. We have refrained from this approach, mainly since the absence of zero (lateral) bound-
ary values produces many undesired terms to estimate. Finally, we mention that the limits % and 15—4 in Theo-
rem 1.1 are evidently an artifact of the method. It would be interesting to know whether the theorem is valid
in the whole range 1 < p < co. In any case, our method is not capable to reach all exponents.

2 Preliminaries

Notation. The gradient of a function f: Qr — Ris

of i)

ox1 "7 oxy

-

and its Hessian matrix is

2 n 2 2
= 5oL ey (s2L)

()Xian ij=1 ax,-ax,-
We shall, occasionally, use the abbreviation

. ou o = 0%u

T70x” %7 axjox

for partial derivatives. Young’s inequality

p ~11pld
|ab|§5ﬂ+(l)qllb;| 1+1 1
p

>

§ q’ p aq

is often referred to. Finally, the summation convention is used when convenient.

Viscosity solutions. The normalized p-Laplace equation is not in divergence form. Thus, the concept of weak
solutions with test functions under the integral sign is problematic. Fortunately, the modern concept of vis-
cosity solutions works well. The existence and uniqueness of viscosity solutions of the normalized p-Laplace
equation was established in [2]. We recall the definition.

Definition 2.1. We say that an upper semi-continuous function u is a viscosity subsolution of equation (1.1)
if for all ¢ € C?(Qr), we have

¢Xi¢Xj
oot )

atany interior point (x, t) where u — ¢ attains alocal maximum, provided V¢ (x, t) # 0. Further, at any interior

¢t£<5ij+(p—2)
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point (x, t) where u — ¢ attains a local maximum and V¢(x, t) = 0, we require
be < (85 + (p — 2)Ninj) Pxix;
for some n € R", with |n| < 1.

Definition 2.2. We say that a lower semi-continuous function u is a viscosity supersolution of equation (1.1)
if for all ¢p € C?(Qr), we have

d)t > (61‘)' +(p-2) Té;;pl); )‘l)xix,-

atany interior point (x, t) where u — ¢ attains alocal minimum, provided V¢ (x, t) # 0. Further, at any interior
point (x, t) where u — ¢ attains a local minimum and V¢(x, t) = 0, we require

¢e = (85 + (p — 2)ninj) Prix;

for some n € R", with |n| < 1.

Definition 2.3. A continuous function u is a viscosity solution if it is both a viscosity subsolution and a vis-
cosity supersolution.

For a detailed discussion on the definition at critical points, we refer to [5]. The reason behind the choice of
n € R" is given in [5, Section 2]. The viscosity solutions of equation (1.2) are defined in a similar manner,
except that now V¢ (x, t) = 0 is not a problem.

Maximum principle for the gradient. In order to estimate the time derivative, we need bounds on the second
derivatives of u€ (and also on its gradient). If we first assume that u€ is C! on the parabolic boundary OparQ7,
we get bounds on the gradient in all of Q7. This follows from the following maximum principle.

Proposition 2.4 (Maximum principle). Let u€ be a solution of equation (1.2). If Vu¢ € C*(Qr), then

max{|Vu®|} = max {|Vu®|}.
Qr pariiT

Proof. With some modifications, a proof can be extracted from [3]. We give a direct proof. To this end, consider
Ve(x, t) = [Vu€|? + €.
To find the partial differential equation satisfied by V¢, we calculate!

€ _
W, V 2uv]uw+2u UV,

€ ,E7E _ €2 €,€, € €
Vi =2uju ul.u].Vij —|VV| + 2u; Uy Uy Uy,

Writing equation (1.1) in the form
t ij (1 ) |Vu€|2 €2 ij?

we find
p-2
V€

0 € € p- €2 1 €.,,€ 7€
EV —uva vu =u,Au;, — 2(V€)2 (—IVVI + = u u, Vv, )

Rearranging and using

[(Vus, VVE|* +

AVE = 2|D?*uf|? + 2(Vu€, VAu®),

we arrive at the following differential equation for V¢:

VE = AVE - 2|D*uf)? -

(V€)2I<Vu VO + —{—IVV€|2+u A 2.1)

Let
w(x, t) = |Vul(x, )] + €2 —at = Vé(x, t) —at fora > 0.

1 Sum over repeated indices.
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Suppose that w€ has an interior maximum point at (xo, to). At this point, V¢(xq, tg) > 0, otherwise we would
have Vé(x, t) = 0 in Qr, in which case there is nothing to prove. By the infinitesimal calculus,

Vw(xg, tg) =0 and w¢(xo, to) = 0,

where we have included the case t = T. Further, the matrix D?w(xo, to) is negative semidefinite. Using equa-
tion (2.1) and noting that Vw = VV¢ and D?w = D? V¢, we get, at (xo, to),

OSW[ZVf—(X

_ € _ 2e2_P—2 € €\ |2 p-2
=AV® - 2|D"u®| (Ve)zl(Vu,VV M+ e

1
{EIVVEI2 + uf,u;Vﬁy} -a
utut
= (85 + 0 -2 Jwg - 202 - a < -a,
since the matrix A, with elements A;; = §;; + (p - 2)%, is positive semidefinite. To avoid the contradiction
a < 0, w must attain its maximum on the parabolic boundary.
Hence, for any (x, t) € Qr, we have

Ve(x, t) - at < max {V¢(x, t) — at} < max VE(x, t).

pars4T parsaT

We finish the proof by sending a — 0*. O
With no assumptions for u¢ on the parabolic boundary, we need a stronger result, taken from [3, p. 381].

Theorem 2.5. Let u€ be a solution of equation (1.2), with u®(x, 0) = ug(x). Then

1 2
€
IVue(x, )] < cn,pnuoumeT){l ¥ ( 0D, aparQT)> }

Note that no condition on the lateral boundary 0Q x [0, T] was used. By continuity,

1 2
IVul(x, )| < Cnplluc(-, to)"oo{l + (diSt((X t),0 QT)) }
s 1), Opar

forxe Dcc Qand O <ty <t < T - ty. The estimate

1 2
Wl < Ot + (gt V) 2
VU | Leo (Dx[te, T-to]) < ClUCllLeo(r){ 1 + GSHD, 37 (2.2)

follows. (Here one can pass to the limit as € — 0.)

The proof of the lemma below, a simple special case of the Miranda-Talenti lemma, can be found for
smooth functions in [4, p.308]. If f is not smooth, we perform a strictly interior approximation, so that no
boundary integrals appear (which is possible since & € Cg°).

Lemma 2.6 (Miranda-Talenti). Let & € C(Qr) and f € L*(0, T, W>2(Q)). Then

T

J JIA('£f)|2 dxdt = ﬂwz(fmz dx dt.
0Q

0Q

3 Regularization

The next lemma tells us that the solutions of (1.2) converge locally uniformly to the viscosity solution of (1.1).

Lemma 3.1. Let u be a viscosity solution of equation (1.1) and let u€ be the classical solution of the regularized
equation (1.2) with boundary values
u=u® onodpaQr.

Then u¢ — u uniformly on compact subsets of Qr.
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Proof. By Theorem 2.5, we can use Ascoli’s theorem to extract a convergent subsequence u® converging
locally uniformly to some continuous function, namely, u¢ — v. We claim that v is a viscosity solution of
equation (1.1). The lemma then follows by uniqueness.

We demonstrate that v is a viscosity subsolution. (A symmetric proof shows that v is a viscosity super-
solution.) Assume that v — ¢ attains a strict local maximum at zo = (xo, to). Since u¢ — v locally uniformly,
there are points

Ze ™ 20

such that u€ — ¢ attains a local maximum at z.. If Vgp(z) # O, then V¢p(z,) # O for all € > 0 small enough,
and at z., we have

b Px
b= (03 + 0 - Dggr e )b (3.
Letting € — 0, we see that v satisfies Definition 2.3 when V¢ (zo) # 0. If V¢p(zo) = 0, let
V(ze)

Ne =

Vool +e?

Since [n¢| < 1, there is a subsequence such that ., — 1 when k — oo for some n € R", with |n| < 1. Passing
to the limit € — 0 in equation (3.1), we see that v is a viscosity subsolution. O

Our proof of Theorem 1.1 consists in showing that the second derivatives D?u€ belong locally to L? with a
bound independent of €. Once this is established, we see that

p-

€2, 22 2 €
(IVu€| +e) dlv((IVuI +e)2Vu) Au +W

(Vu®, D2ucVu®)y < Cp nlD*uc|.
Hence, for any bounded subdomain D cc Qr,
Javeus? + )7 div((VucP + €)' V)| ) < C
with C independent of €. By this uniform bound, there exists a subsequence such that, as j — oo,
(IVub|? + e]-z)%p div((|Vu|? + e].z)#Vuef) — U weaklyin L?(D).

In particular, this means that U € L?(D) and for any ¢ € Cy’ (D), we have

j—oo

T
lim J J(;b(IVu‘c’fl2 + € 2)5¢ * div((|Vu|? + ez) Vuef dxdt =
0D

oy

J(;I)dedt.
D

If u is the unique viscosity solution of (1.1), we invoke Lemma 3.1 and the calculations above to find, for
any test function ¢ € C3°(D),

T
Ju% dxdt = 11mj
0

5t Jim uci dx dt

Ot 1y
=]

This shows that the Sobolev derivative u; exists and, since the previous equation holds for any subdomain

D cc Qr, we conclude that ‘3” =Uce LIZOC(Q 7). To complete the proof of Theorem 1.1, it remains to establish

the missing local bound of |D?u€| ;> uniformly in €.
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4 The differentiated equation

We shall derive a fundamental identity. Let
Ve = [Vull?, V€= |Vuc|? + e’
Differentiating equation (1.2) with respect to the variable x;, we obtain
0 e _2-p
ot T 2
Take ¢ € C(Qr), with & > 0. Multiply both sides of the equation by &2V¢ u].e and sum j from 1 to n. Integrate
over Qr, using integration by parts and keeping in mind that ¢ is compactly supported in Qr, to obtain

2o B div((V)'T vu) + (V6) T div[((V6)'T vu),].

T
3 | [ gaveaxar- 2 j [ £2vey 8 cwue, vve) div((v) 7 vue) dx e

0Q 00
(ro d
_ — (Ve 2 e Y g2 Ve 2P € .
[ [ 55l uil gt F ) axar
00
Writing out the derivatives gives the fundamental formula

I+11:=

T
2D dx dt + P ; 2 J J i<$2(Vu‘5, VvEYAu€ dx dt

|
[SYS—

E&Vedxdt+ (2 -p) J J % (Vu®, Ve (Vu¢, V&) dx dt -
00

i
| ;

Il
N~
O
Ot

j £(VVE, VE dx dt
Q

I
"
<
|
<

In the next section we shall bound the main term I uniformly with respect to €.

5 Estimate of the second derivatives

We shall provide an estimate of the main term I. First, we record the elementary inequality
[VVE|? = |2D%ufVu€|? < 4|D*uf|>ve. (5.1)

One dimension. As an exercise, we show that in this case, the second derivatives are locally bounded in L?
forany 1 < p < co. In one dimension, equation (1.1) reads

0
2-p Y
= |uyl ox

We absorb the terms IV and V, using Young’s inequality and inequality (5.1). For any § > O,

([ pof 0% (%2
J,[{Z( )( +(p_2)(aLT—5(|p—2l+1))dxdt
0Q X

{|ux|p zux} (P — Duxy.

T T
< % Hfgtve dxdt + % j j Ve|VER dx dt.
0Q 0Q

Applying Theorem 2.5 we see that the right-hand side is bounded by a constant independent of € > 0. We
have
(au 2

1+(p-2) >min{l,p -1} > 0.

(aue) +e2

It follows that 2% e L2 locally for any p € (1, 00).
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General n. We assume for the moment that 1 < p < 2. We rewrite the term II involving the Laplacian as

£2(Vue, Vve) Au = %%{(vw, VYO AEUE) - 2(Vus, VE) — uAE).

2-p 1
2 Ve

Upon this rewriting, the term IV disappears from the equation. We focus our attention on the term involving
A(éu€). By Lemma 2.6,

T T
j jwz(fuf)ﬁ dx dt = J JIA({ue)IZ dx dt.
0Q 0Q

Differentiating, we see that

(bu®); = &u® + &uf,  (8u); = &u® +ufé + %’iu]‘?' + {ufj.

It follows that
ID2(&u®))? = £2|D*uf|? + f(u, Vu¢, D*u®),

where f(u€, Vuf, D?u€) depends only linearly on the second derivatives ufj:

f(u€, Vu€, D*u®) = (u€)?|D?&% + 4u€(VE, D*EVUC) + 4&(VE, D*uvu®)
+ 2|VEPIVUE|? + 2(VuE, VE|? + 2ué trace{(D? &) (D*uf)}.

By Young’s inequality, we obtain

T
2—pJ'
2
0

Inserting this into the main equation gives

2-p
4

1 ¢ e . E )
Jﬁf(w » VVEYA(Su) dx dt < 4(2 p)

S TN

T
Jé’ZIDzuel2 dx dt + ij(ue,Vue,Dzue)dxdt.
Q 0Q

&(VvE, V&) dx dt

N~

i 5
I ::(1—Z(Z—p)> j{lezuelzdxdts

Q

o

T T
JJ{&V dxdt—!

0 —,

T
+2;pjjf(u€,uf,ufj)dxdt
00
2 ‘ 1
-p - € €\ ,,€
+ 3 jjvei(Vu,Vv)u A& dx dt.
Q

0
=:1II -V + VI + VIL

All terms containing D?u€ can be absorbed by the new main term I*. To this end, we use Young’s inequal-
ity with a small parameter 6 > O to balance the terms.? For term V, we have

T T T
J jg(vw, V&) dxdt < § J J £2D2ucP? dx dt + % J J VeIV dx dt.
0Q 0Q 0Q

Similarly, for term VII,
T 1 1
JJW{(Vu&VW)uEA{dthS251 J52|D2u€|2+5_
00 2

1

= T

T
J J|u€|2|A.,f|2 dx dt.
0Q

2 The parameter § is to be made so small that terms like 6§ _[OT IQ £2|D?uf|? dx dt can be moved over to the left-hand side.
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Using similar inequalities for the term involving f(u€, Vu€¢, D?u€) and choosing the parameters small enough
in Young’s inequality, we find,

T
I j.é’lezu"TI2 dxdt<C ” ((u€)? + |Vu€|?) dx dt, (5.2)
0Q {&+0}

where C is independent of € but depends on || ¢z, provided that 1 — —(2 p)>0,ie,p> — . This is now a
decisive restriction. Invoking Lemma 3.1 and estimate (2.2), we deduce that the majorant in (5 2)isindepen-
dent of €.

A symmetric proof when p > 2 shows that equation (5.2) holds when p < 15—4

6 Thecasel<p<2

In this section, we give a proof of Theorem 1.2. To this end, let £ € C5°(Qr), with 0 < & < 1. We claim that

“.{2<aa—“:)2 dxdt < 4IIV€||§O{ “waz dxdt + 119 “am dxdt}, 6.1)
0Q 0Q 0Q

where the supremum norm of V¢ = |Vu¢|? + €? is taken locally, over the support of £. Here, u€ is the solution of
the regularized equation (1.2). This is enough to complete the proof of Theorem 1.2, in virtue of Theorem 2.5.
Multiplying the regularlzed equation (1.2) by (|Vu|? + €2)5 & 2u¢ yields

(VU + €)' (u6)? = £2u€ div((|Vuc|? +e2)%Vu€)
= div(E2uS (Ve + €) 7 Vi) — (IVue)? + €2)'F (Vus, V(E2uS)).

The integral of the divergence term vanishes by Gauss’s theorem and, upon integration, we have

Ot

T
J (V)5 ) dxdt = - j j(veﬁ (YU, V(&2uS)) dx d
Q 0Q

T
—2”§(V€)¥<w€,vauf dx dt - j.{z(ve (Vue, Vus) dx dt.
0Q

o-._m]

The first integral on the right-hand side can be absorbed by the left-hand side by choosing o = % in
280V (Vus, VOUS| < 0E2(VE)'T (uf)? + (V"f) “IVueR|veR,

and integrating.
For the last term, the decisive observation is that

10 - -
Ea—t(wuﬂ2 +€2)% = (IVuE + €2)"7 (Vue, Vus) = (V)T (Vus, Vut).
We use this in the last integral on the right-hand side to obtain

T
—M{Z(Ve (Vue, Vus) dx dt = -

© e,

J;t{‘f (Ve) dx dt + %JT(!{&(Ve)gdxdt

- [[5et],

Q
“ ££,(V)} dx dt.
0Q

0
T

J £5,(V6)) dx dt

N
'BIN
or—

’GIN
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To sum up, we have now the final estimate

-2

T
j ng(ve)‘%(uf)z dxdt <2
0Q

N =
TN

T
J(V€)¥|Vu€|2|v.f|2dxdt+ ”‘sgt(ve)’% dx dt
Q 0Q

<2

S L L ——

T
j(VGﬁlvaz dx dt + j jsa(veﬁ dx dt.
Q 0Q

TN

So far, our calculations are valid in the full range 1 < p < co. For 1 < p < 2, we have
_ p=2
(V)T = Vel

where the supremum norm is taken over the support of £. Hence, equation (6.1) holds for 1 < p < 2 and the
proof of Theorem 1.2 is complete.
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