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1 Introduction
We consider viscosity solutions of the normalized p-Laplace equation

∂u
∂t
= |∇u|2−p div(|∇u|p−2∇u), 1 < p < ∞, (1.1)

in ΩT = Ω × (0, T), Ω being a domain inℝn. Formally, the equation reads

∂u
∂t
= ∆u + (p − 2)|∇u|−2

n
∑
i,j=1

∂u
∂xi

∂u
∂xj

∂2u
∂xi∂xj

.

In the linear case p = 2, we have the heat equation ut = ∆u, and also for n = 1, the equation reduces to the

heat equation ut = (p − 1)uxx. At the limit p = 1, we obtain the equation for motion by mean curvature. We

aim at showing that the time derivative

∂u
∂t exists in the Sobolev sense and belongs to L

2

loc

(ΩT). We also study

the second derivatives

∂2u
∂xi∂xj .

There has been some recent interest in connection with stochastic game theory, where the equation

appears, cf. [7]. From our point of view, the work [3] is of actual interest, because there it is shown that the

time derivative ut of the viscosity solutions exists and is locally bounded, provided that the lateral boundary
values are smooth. Thus, the boundary values control the time regularity. If no such assumptions about the

behaviour at the lateral boundary ∂Ω × (0, T) are made, a conclusion like ut ∈ L∞
loc

(ΩT) is in doubt. Our main

result is the following, where we unfortunately have to restrict p.

Theorem 1.1. Suppose that u = u(x, t) is a viscosity solution of the normalized p-Laplace equation in ΩT . If
6

5

< p < 14

5

, then the Sobolev derivatives ∂u
∂t and

∂2u
∂xi∂xj exist and belong to L

2

loc

(ΩT).

We emphasize that no assumptions on the boundary values are made for this interior estimate. Our method

of proof is based on a verification of the identity

T

∫
0

∫
Ω

uϕt dx dt = −
T

∫
0

∫
Ω

Uϕ dx dt, ϕ ∈ C∞
0

(ΩT),
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wherewehave to prove that the functionU, which is the right-hand side of equation (1.1), belongs to L2
loc

(ΩT).
Thus, the second spatial derivativesD2u are crucial (local boundedness of∇uwasproven in [2, 3] and interior
Hölder estimates for the gradient in [6]). The elliptic case has been studied in [1].

In the range 1 < p < 2, one can bypass the question of second derivatives.

Theorem 1.2. Suppose that u = u(x, t) is a viscosity solution of the normalized p-Laplace equation in ΩT . If
1 < p < 2, then the Sobolev derivative ∂u

∂t exists and belongs to L
2

loc

(ΩT).

To avoid the problem of vanishing gradient, we first study the regularized equation

∂uϵ

∂t
= (|∇uϵ|2 + ϵ2)

2−p
2
div((|∇uϵ|2 + ϵ2)

p−2
2 ∇uϵ). (1.2)

Here the classical parabolic regularity theory is applicable. The equation was studied by Does in [3], where

an estimate of the gradient ∇uϵ was found with Bernstein’s method. We shall prove a maximum principle for

the gradient. Further, we differentiate equation (1.2) with respect to the space variables and derive estimates

for uϵ, which are passed over to the solution u of (1.1).
Analogous results seem to be possible to reach through the Cordes condition. This also restricts the range

of valid exponents p. We have refrained from this approach, mainly since the absence of zero (lateral) bound-

ary values produces many undesired terms to estimate. Finally, we mention that the limits

6

5

and

14

5

in Theo-

rem 1.1 are evidently an artifact of the method. It would be interesting to know whether the theorem is valid

in the whole range 1 < p < ∞. In any case, our method is not capable to reach all exponents.

2 Preliminaries
Notation. The gradient of a function f : ΩT → ℝ is

∇f = ( ∂f∂x
1

, . . . ,

∂f
∂xn
)

and its Hessian matrix is

(D2f )ij =
∂2f

∂xi∂xj
, |D2f |2 =

n
∑
i,j=1
(

∂2f
∂xi∂xj
)
2

.

We shall, occasionally, use the abbreviation

uj =
∂u
∂xj

, ujk =
∂2u

∂xj∂xk

for partial derivatives. Young’s inequality

|ab| ≤ δ |a|
p

p
+ (

1

δ )
q−1 |b|q

q
,

1

p
+
1

q
= 1

is often referred to. Finally, the summation convention is used when convenient.

Viscosity solutions. The normalized p-Laplace equation is not in divergence form. Thus, the concept of weak

solutions with test functions under the integral sign is problematic. Fortunately, the modern concept of vis-

cosity solutions works well. The existence and uniqueness of viscosity solutions of the normalized p-Laplace
equation was established in [2]. We recall the definition.

Definition 2.1. We say that an upper semi-continuous function u is a viscosity subsolution of equation (1.1)
if for all ϕ ∈ C2(ΩT), we have

ϕt ≤ (δij + (p − 2)
ϕxiϕxj
|∇ϕ|2
)ϕxixj

at any interior point (x, t)where u − ϕ attains a localmaximum,provided∇ϕ(x, t) ̸= 0. Further, at any interior
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point (x, t) where u − ϕ attains a local maximum and ∇ϕ(x, t) = 0, we require

ϕt ≤ (δij + (p − 2)ηiηj)ϕxixj

for some η ∈ ℝn, with |η| ≤ 1.

Definition 2.2. We say that a lower semi-continuous function u is a viscosity supersolution of equation (1.1)
if for all ϕ ∈ C2(ΩT), we have

ϕt ≥ (δij + (p − 2)
ϕxiϕxj
|∇ϕ|2
)ϕxixj

at any interior point (x, t)where u − ϕ attains a localminimum, provided∇ϕ(x, t) ̸= 0. Further, at any interior
point (x, t) where u − ϕ attains a local minimum and ∇ϕ(x, t) = 0, we require

ϕt ≥ (δij + (p − 2)ηiηj)ϕxixj

for some η ∈ ℝn, with |η| ≤ 1.

Definition 2.3. A continuous function u is a viscosity solution if it is both a viscosity subsolution and a vis-

cosity supersolution.

For a detailed discussion on the definition at critical points, we refer to [5]. The reason behind the choice of

η ∈ ℝn is given in [5, Section 2]. The viscosity solutions of equation (1.2) are defined in a similar manner,

except that now ∇ϕ(x, t) = 0 is not a problem.

Maximum principle for the gradient. In order to estimate the time derivative, we need bounds on the second

derivatives of uϵ (and also on its gradient). If we first assume that uϵ is C1 on the parabolic boundary ∂
par

ΩT ,

we get bounds on the gradient in all of ΩT . This follows from the following maximum principle.

Proposition 2.4 (Maximum principle). Let uϵ be a solution of equation (1.2). If ∇uϵ ∈ C1(ΩT), then

max

ΩT

{|∇uϵ|} = max

∂
par

ΩT
{|∇uϵ|}.

Proof. With somemodifications, a proof canbe extracted from [3].Wegive adirect proof. To this end, consider

Vϵ(x, t) = |∇uϵ|2 + ϵ2.

To find the partial differential equation satisfied by Vϵ
, we calculate¹

Vϵ
i = 2u

ϵ
νuϵiν , Vϵ

ij = 2u
ϵ
νju

ϵ
iν + 2u

ϵ
νuϵijν , uϵi u

ϵ
j V

ϵ
ij =

1

2

|∇Vϵ|2 + 2uϵi u
ϵ
j u

ϵ
νuϵijν .

Writing equation (1.1) in the form

uϵt = (δij + (p − 2)
uϵi u

ϵ
j

|∇uϵ|2 + ϵ2
)uϵij ,

we find

1

2

Vϵ
t = u

ϵ
ν
∂
∂xν

uϵt = u
ϵ
ν∆uϵν −

p − 2
2(Vϵ)2
|⟨∇uϵ , ∇Vϵ⟩|2 +

p − 2
Vϵ (

1

4

|∇Vϵ|2 +
1

2

uϵνuϵμVϵ
νμ).

Rearranging and using

∆Vϵ = 2|D2uϵ|2 + 2⟨∇uϵ , ∇∆uϵ⟩,

we arrive at the following differential equation for Vϵ
:

Vϵ
t = ∆V

ϵ − 2|D2uϵ|2 − p − 2
(Vϵ)2
|⟨∇uϵ , ∇Vϵ⟩|2 +

p − 2
Vϵ {

1

2

|∇Vϵ|2 + uϵνuϵμVϵ
νμ}. (2.1)

Let

w(x, t) = |∇uϵ(x, t)|2 + ϵ2 − αt = Vϵ(x, t) − αt for α > 0.

1 Sum over repeated indices.
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Suppose that wϵ
has an interiormaximum point at (x

0
, t

0
). At this point, Vϵ(x

0
, t

0
) > 0, otherwise we would

have Vϵ(x, t) ≡ 0 in ΩT , in which case there is nothing to prove. By the infinitesimal calculus,

∇w(x
0
, t

0
) = 0 and wt(x0, t0) ≥ 0,

where we have included the case t
0
= T. Further, thematrix D2w(x

0
, t

0
) is negative semidefinite. Using equa-

tion (2.1) and noting that ∇w = ∇Vϵ
and D2w = D2Vϵ

, we get, at (x
0
, t

0
),

0 ≤ wt = Vϵ
t − α

= ∆Vϵ − 2|D2uϵ|2 − p − 2
(Vϵ)2
|⟨∇uϵ , ∇Vϵ⟩|2 +

p − 2
Vϵ {

1

2

|∇Vϵ|2 + uϵνuϵμVϵ
νμ} − α

= (δij + (p − 2)
uϵi u

ϵ
j

Vϵ )w
ϵ
ij − 2|D

2uϵ|2 − α ≤ −α,

since the matrix A, with elements Aij = δij + (p − 2)
uϵi u

ϵ
j

Vϵ , is positive semidefinite. To avoid the contradiction

α ≤ 0, w must attain its maximum on the parabolic boundary.

Hence, for any (x, t) ∈ ΩT , we have

Vϵ(x, t) − αt ≤ max

∂
par

ΩT
{Vϵ(x, t) − αt} ≤ max

∂
par

ΩT
Vϵ(x, t).

We finish the proof by sending α → 0

+
.

With no assumptions for uϵ on the parabolic boundary, we need a stronger result, taken from [3, p. 381].

Theorem 2.5. Let uϵ be a solution of equation (1.2), with uϵ(x, 0) = u
0
(x). Then

|∇uϵ(x, t)| ≤ Cn,p‖u0‖L∞(ΩT ){1 + (
1

dist((x, t), ∂
par

ΩT)
)
2

}.

Note that no condition on the lateral boundary ∂Ω × [0, T] was used. By continuity,

|∇uϵ(x, t)| ≤ Cn,p‖uϵ( ⋅ , t0)‖∞{1 + (
1

dist((x, t), ∂
par

ΩT)
)
2

}

for x ∈ D ⊂⊂ Ω and 0 < t
0
≤ t ≤ T − t

0
. The estimate

‖∇uϵ‖L∞(D×[t
0
,T−t

0
]) ≤ C‖uϵ‖L∞(ΩT ){1 + (

1

dist(D, ∂
par

ΩT)
)
2

} (2.2)

follows. (Here one can pass to the limit as ϵ → 0.)

The proof of the lemma below, a simple special case of the Miranda–Talenti lemma, can be found for

smooth functions in [4, p. 308]. If f is not smooth, we perform a strictly interior approximation, so that no

boundary integrals appear (which is possible since ξ ∈ C∞
0

).

Lemma 2.6 (Miranda–Talenti). Let ξ ∈ C∞
0

(ΩT) and f ∈ L2(0, T,W2,2(Ω)). Then

T

∫
0

∫
Ω

|∆(ξf )|2 dx dt =
T

∫
0

∫
Ω

|D2(ξf)|2 dx dt.

3 Regularization
The next lemma tells us that the solutions of (1.2) converge locally uniformly to the viscosity solution of (1.1).

Lemma 3.1. Let u be a viscosity solution of equation (1.1) and let uϵ be the classical solution of the regularized
equation (1.2) with boundary values

u = uϵ on ∂
par

ΩT .

Then uϵ → u uniformly on compact subsets of ΩT .
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Proof. By Theorem 2.5, we can use Ascoli’s theorem to extract a convergent subsequence uϵj converging
locally uniformly to some continuous function, namely, uϵj → v. We claim that v is a viscosity solution of

equation (1.1). The lemma then follows by uniqueness.

We demonstrate that v is a viscosity subsolution. (A symmetric proof shows that v is a viscosity super-
solution.) Assume that v − ϕ attains a strict local maximum at z

0
= (x

0
, t

0
). Since uϵ → v locally uniformly,

there are points

zϵ → z
0

such that uϵ − ϕ attains a local maximum at zϵ. If ∇ϕ(z0) ̸= 0, then ∇ϕ(zϵ) ̸= 0 for all ϵ > 0 small enough,

and at zϵ, we have

ϕt ≤ (δij + (p − 2)
ϕxiϕxj
|∇ϕ|2 + ϵ2

)ϕxixj . (3.1)

Letting ϵ → 0, we see that v satisfies Definition 2.3 when ∇ϕ(z
0
) ̸= 0. If ∇ϕ(z

0
) = 0, let

ηϵ =
∇ϕ(zϵ)

√|∇ϕ(zϵ)|2 + ϵ2
.

Since |ηϵ| ≤ 1, there is a subsequence such that ηϵk → η when k →∞ for some η ∈ ℝn, with |η| ≤ 1. Passing
to the limit ϵk → 0 in equation (3.1), we see that v is a viscosity subsolution.

Our proof of Theorem 1.1 consists in showing that the second derivatives D2uϵ belong locally to L2 with a

bound independent of ϵ. Once this is established, we see that

(|∇uϵ|2 + ϵ2)
2−p
2
div((|∇uϵ|2 + ϵ2)

p−2
2 ∇uϵ) = ∆uϵ + p − 2

|∇uϵ|2 + ϵ2
⟨∇uϵ , D2uϵ∇uϵ⟩ ≤ Cp,n|D2uϵ|.

Hence, for any bounded subdomain D ⊂⊂ ΩT ,

󵄩󵄩󵄩󵄩(|∇u
ϵ|2 + ϵ2)

2−p
2
div((|∇uϵ|2 + ϵ2)

p−2
2 ∇uϵ)󵄩󵄩󵄩󵄩L2(D) ≤ C,

with C independent of ϵ. By this uniform bound, there exists a subsequence such that, as j →∞,

(|∇uϵj |2 + ϵ2j )
2−p
2
div((|∇uϵj |2 + ϵ2j )

p−2
2 ∇uϵj ) → U weakly in L2(D).

In particular, this means that U ∈ L2(D) and for any ϕ ∈ C∞
0

(D), we have

lim

j→∞

T

∫
0

∫
D

ϕ(|∇uϵj |2 + ϵ2j )
2−p
2
div((|∇uϵj |2 + ϵ2j )

p−2
2 ∇uϵj ) dx dt =

T

∫
0

∫
D

ϕU dx dt.

If u is the unique viscosity solution of (1.1), we invoke Lemma 3.1 and the calculations above to find, for

any test function ϕ ∈ C∞
0

(D),

T

∫
0

∫
D

u ∂ϕ
∂t

dx dt = lim
j→∞

T

∫
0

∫
D

uϵj ∂ϕ
∂t

dx dt

= − lim
j→∞

T

∫
0

∫
D

ϕ(|∇uϵj |2 + ϵ2j )
2−p
2
div((|∇uϵj |2 + ϵ2j )

p−2
2 ∇uϵj ) dx dt

= −
T

∫
0

∫
D

ϕU dx dt.

This shows that the Sobolev derivative ut exists and, since the previous equation holds for any subdomain

D ⊂⊂ ΩT , we conclude that
∂u
∂t = U ∈ L

2

loc

(ΩT). To complete the proof of Theorem 1.1, it remains to establish

the missing local bound of ‖D2uϵ‖L2 uniformly in ϵ.
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4 The differentiated equation
We shall derive a fundamental identity. Let

vϵ = |∇uϵ|2, Vϵ = |∇uϵ|2 + ϵ2.

Differentiating equation (1.2) with respect to the variable xj, we obtain

∂
∂t
uϵj =

2 − p
2

(Vϵ)−
p
2 vϵj div((V

ϵ)
p−2
2 ∇uϵ) + (Vϵ)

2−p
2
div[((Vϵ)

p−2
2 ∇uϵ)j].

Take ξ ∈ C∞
0

(ΩT), with ξ ≥ 0. Multiply both sides of the equation by ξ2Vϵuϵj and sum j from 1 to n. Integrate
over ΩT , using integration by parts and keeping in mind that ξ is compactly supported in ΩT , to obtain

−
1

2

T

∫
0

∫
Ω

ξξtVϵ dx dt = 2 − p
2

T

∫
0

∫
Ω

ξ2(Vϵ)−
p
2 ⟨∇uϵ , ∇vϵ⟩div((Vϵ)

p−2
2 ∇uϵ) dx dt

−
T

∫
0

∫
Ω

∂
∂xj
{(Vϵ)

p−2
2 uϵk}

∂
∂xk
{ξ2(Vϵ)

2−p
2 uϵj } dx dt.

Writing out the derivatives gives the fundamental formula

I + II :=
T

∫
0

∫
Ω

ξ2|D2uϵ|2 dx dt + p − 2
2

T

∫
0

∫
Ω

1

Vϵ ξ
2⟨∇uϵ , ∇vϵ⟩∆uϵ dx dt

=
1

2

T

∫
0

∫
Ω

ξξtVϵ dx dt + (2 − p)
T

∫
0

∫
Ω

1

Vϵ ξ⟨∇u
ϵ
, ∇vϵ⟩⟨∇uϵ , ∇ξ⟩ dx dt −

T

∫
0

∫
Ω

ξ⟨∇vϵ , ∇ξ dx dt

=: III + IV − V.

In the next section we shall bound the main term I uniformly with respect to ϵ.

5 Estimate of the second derivatives
We shall provide an estimate of the main term I. First, we record the elementary inequality

|∇vϵ|2 = |2D2uϵ∇uϵ|2 ≤ 4|D2uϵ|2vϵ . (5.1)

One dimension. As an exercise, we show that in this case, the second derivatives are locally bounded in L2

for any 1 < p < ∞. In one dimension, equation (1.1) reads

ut = |ux|2−p
∂
∂x {
|ux|p−2ux} = (p − 1)uxx .

We absorb the terms IV and V, using Young’s inequality and inequality (5.1). For any δ > 0,
T

∫
0

∫
Ω

ξ2(∂
2uϵ

∂x2
)
2

(1 + (p − 2)
( ∂u

ϵ

∂x )
2

( ∂u
ϵ

∂x )
2 + ϵ2
− δ(|p − 2| + 1)) dx dt

≤
1

2

T

∫
0

∫
Ω

ξξtVϵ dx dt + |p − 2| + 1
δ

T

∫
0

∫
Ω

Vϵ|∇ξ |2 dx dt.

Applying Theorem 2.5 we see that the right-hand side is bounded by a constant independent of ϵ > 0. We

have

1 + (p − 2)
( ∂u

ϵ

∂x )
2

( ∂u
ϵ

∂x )
2 + ϵ2
≥ min{1, p − 1} > 0.

It follows that

∂2uϵ
∂x2 ∈ L

2

locally for any p ∈ (1,∞).
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General n. We assume for the moment that 1 < p < 2. We rewrite the term II involving the Laplacian as

2 − p
2

1

Vϵ ξ
2⟨∇uϵ , ∇vϵ⟩∆uϵ = 2 − p

2

1

Vϵ ξ⟨∇u
ϵ
, ∇vϵ⟩{∆(ξuϵ) − 2⟨∇uϵ , ∇ξ⟩ − uϵ∆ξ}.

Upon this rewriting, the term IV disappears from the equation. We focus our attention on the term involving

∆(ξuϵ). By Lemma 2.6,

T

∫
0

∫
Ω

|D2(ξuϵ)|2 dx dt =
T

∫
0

∫
Ω

|∆(ξuϵ)|2 dx dt.

Differentiating, we see that

(ξuϵ)i = ξiuϵ + ξuϵi , (ξu
ϵ)ij = ξijuϵ + uϵi ξj + ξiu

ϵ
j + ξu

ϵ
ij .

It follows that

|D2(ξuϵ)|2 = ξ2|D2uϵ|2 + f(uϵ , ∇uϵ , D2uϵ),

where f(uϵ , ∇uϵi , D
2uϵ) depends only linearly on the second derivatives uϵij:

f(uϵ , ∇uϵ , D2uϵ) = (uϵ)2|D2ξ|2 + 4uϵ⟨∇ξ, D2ξ∇uϵ⟩ + 4ξ⟨∇ξ, D2uϵ∇uϵ⟩
+ 2|∇ξ|2|∇uϵ|2 + 2|⟨∇uϵ , ∇ξ⟩|2 + 2uϵξ trace{(D2ξ)(D2uϵ)}.

By Young’s inequality, we obtain

2 − p
2

T

∫
0

∫
Ω

1

Vϵ ξ⟨∇u
ϵ
, ∇vϵ⟩∆(ξuϵ) dx dt ≤ 5

4

(2 − p)
T

∫
0

∫
Ω

ξ2|D2uϵ|2 dx dt + 2 − p
4

T

∫
0

∫
Ω

f(uϵ , ∇uϵ , D2uϵ) dx dt.

Inserting this into the main equation gives

I

∗
:= (1 −

5

4

(2 − p))
T

∫
0

∫
Ω

ξ2|D2uϵ|2 dx dt ≤ 1
2

T

∫
0

∫
Ω

ξξtVϵ dx dt −
T

∫
0

∫
Ω

ξ⟨∇vϵ , ∇ξ⟩ dx dt

+
2 − p
2

T

∫
0

∫
Ω

f(uϵ , uϵi , u
ϵ
ij) dx dt

+
2 − p
2

T

∫
0

∫
Ω

1

Vϵ ξ⟨∇u
ϵ
, ∇vϵ⟩uϵ∆ξ dx dt.

=: III − V + VI + VII.

All terms containing D2uϵ can be absorbed by the newmain term I

∗
. To this end, we use Young’s inequal-

ity with a small parameter δ > 0 to balance the terms.² For term V, we have

T

∫
0

∫
Ω

ξ⟨∇vϵ , ∇ξ⟩ dx dt ≤ δ
T

∫
0

∫
Ω

ξ2|D2uϵ|2 dx dt + 1
δ

T

∫
0

∫
Ω

Vϵ|∇ξ|2 dx dt.

Similarly, for term VII,

T

∫
0

∫
Ω

1

Vϵ ξ⟨∇u
ϵ
, ∇vϵ⟩uϵ∆ξ dx dt ≤ 2δ

1

T

∫
0

∫
Ω

ξ2|D2uϵ|2 + 1

δ
1

T

∫
0

∫
Ω

|uϵ|2|∆ξ|2 dx dt.

2 The parameter δ is to be made so small that terms like δ ∫T
0

∫
Ω

ξ2|D2uϵ |2 dx dt can be moved over to the left-hand side.
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Using similar inequalities for the term involving f(uϵ , ∇uϵ , D2uϵ) and choosing the parameters small enough

in Young’s inequality, we find,

T

∫
0

∫
Ω

ξ2|D2uϵ|2 dx dt ≤ C ∬
{ξ ̸=0}

((uϵ)2 + |∇uϵ|2) dx dt, (5.2)

where C is independent of ϵ but depends on ‖ξ‖C2 , provided that 1 − 5

4

(2 − p) > 0, i.e., p > 6

5

. This is now a

decisive restriction. Invoking Lemma 3.1 and estimate (2.2), we deduce that themajorant in (5.2) is indepen-

dent of ϵ.
A symmetric proof when p > 2 shows that equation (5.2) holds when p < 14

5

.

6 The case 1 < p < 2
In this section, we give a proof of Theorem 1.2. To this end, let ξ ∈ C∞

0

(ΩT), with 0 ≤ ξ ≤ 1. We claim that

T

∫
0

∫
Ω

ξ2(∂u
ϵ

∂t )
2

dx dt ≤ 4‖Vϵ‖2∞{
T

∫
0

∫
Ω

|∇ξ|2 dx dt + 1
p

T

∫
0

∫
Ω

ξ|ξt| dx dt}, (6.1)

where the supremumnormofVϵ = |∇uϵ|2 + ϵ2 is taken locally, over the support of ξ . Here, uϵ is the solution of
the regularized equation (1.2). This is enough to complete the proof of Theorem 1.2, in virtue of Theorem 2.5.

Multiplying the regularized equation (1.2) by (|∇uϵ|2 + ϵ2)
p−2
2 ξ2uϵt yields

ξ2(|∇uϵ|2 + ϵ2)
p−2
2 (uϵt )

2 = ξ2uϵt div((|∇u
ϵ|2 + ϵ2)

p−2
2 ∇uϵ)

= div(ξ2uϵt (|∇u
ϵ|2 + ϵ2)

p−2
2 ∇uϵ) − (|∇uϵ|2 + ϵ2)

p−2
2 ⟨∇uϵ , ∇(ξ2uϵt )⟩.

The integral of the divergence term vanishes by Gauss’s theorem and, upon integration, we have

T

∫
0

∫
Ω

ξ2(Vϵ)
p−2
2 (uϵt )

2 dx dt = −
T

∫
0

∫
Ω

(Vϵ)
p−2
2 ⟨∇uϵ , ∇(ξ2uϵt )⟩ dx dt

= −2
T

∫
0

∫
Ω

ξ(Vϵ)
p−2
2 ⟨∇uϵ , ∇ξ⟩uϵt dx dt −

T

∫
0

∫
Ω

ξ2(Vϵ)
p−2
2 ⟨∇uϵ , ∇uϵt ⟩ dx dt.

The first integral on the right-hand side can be absorbed by the left-hand side by choosing σ = 1

2

in

󵄨󵄨󵄨󵄨2ξ(V
ϵ)

p−2
2 ⟨∇uϵ , ∇ξ⟩uϵt

󵄨󵄨󵄨󵄨 ≤ σξ
2(Vϵ)

p−2
2 (uϵt )

2 +
1

σ
(Vϵ)

p−2
2 |∇uϵ|2|∇ξ|2,

and integrating.

For the last term, the decisive observation is that

1

p
∂
∂t
(|∇uϵ|2 + ϵ2)

p
2 = (|∇uϵ|2 + ϵ2)

p−2
2 ⟨∇uϵ , ∇uϵt ⟩ = (V

ϵ)
p−2
2 ⟨∇uϵ , ∇uϵt ⟩.

We use this in the last integral on the right-hand side to obtain

−
T

∫
0

∫
Ω

ξ2(Vϵ)
p−2
2 ⟨∇uϵ , ∇uϵt ⟩ dx dt = −

T

∫
0

∫
Ω

∂
∂t{

ξ2

p
(Vϵ)

p
2 } dx dt + 2p

T

∫
0

∫
Ω

ξξt(Vϵ)
p
2 dx dt

= −∫
Ω

[
ξ2

p
(Vϵ)

p
2 ]

t=T

t=0
dx + 2

p

T

∫
0

∫
Ω

ξξt(Vϵ)
p
2 dx dt

=
2

p

T

∫
0

∫
Ω

ξξt(Vϵ)
p
2 dx dt.
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To sum up, we have now the final estimate

1

2

T

∫
0

∫
Ω

ξ2(Vϵ)
p−2
2 (uϵt )

2 dx dt ≤ 2
T

∫
0

∫
Ω

(Vϵ)
p−2
2 |∇uϵ|2|∇ξ|2 dx dt + 2

p

T

∫
0

∫
Ω

ξξt(Vϵ)
p
2 dx dt

≤ 2
T

∫
0

∫
Ω

(Vϵ)
p
2 |∇ξ|2 dx dt + 2

p

T

∫
0

∫
Ω

ξξt(Vϵ)
p
2 dx dt.

So far, our calculations are valid in the full range 1 < p < ∞. For 1 < p < 2, we have

(Vϵ)
p−2
2 ≥ ‖Vϵ‖

p−2
2

∞ ,

where the supremum norm is taken over the support of ξ . Hence, equation (6.1) holds for 1 < p < 2 and the
proof of Theorem 1.2 is complete.
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