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Abstract: In this paper we study on smooth bounded domains the global regularity (up to the boundary) for

weak solutions to systems having p-structure depending only on the symmetric part of the gradient.
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1 Introduction

In this paper we study regularity of weak solutions to the boundary value problem

{
−div S(Du) = f in Ω,

u = 0 on ∂Ω,
(1.1)

where Du := 1

2

(∇u + ∇u⊤) denotes the symmetric part of the gradient ∇u and Ω ⊂ ℝ3 is a bounded domain

with a C2,1 boundary ∂Ω.¹ Our interest in this system comes from the p-Stokes system

{{{
{{{
{

−div S(Du) + ∇π = f in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω.
(1.2)

In both problems the typical example for S we have in mind is

S(Du) = μ(δ + |Du|)p−2Du,

where p ∈ (1, 2], δ ≥ 0and μ > 0. Inprevious investigations of (1.2), only suboptimal results for the regularity

up to the boundary have been proved. Here wemean suboptimal in the sense that the results are weaker than

the results known for p-Laplacian systems, cf. [1, 13, 14]. Clearly, system (1.1) is obtained from (1.2) by

dropping the divergence constraint and the resulting pressure gradient. Thus, system (1.1) lies in between

system (1.2) and p-Laplacian systems, which depend on the full gradient ∇u.
We would like to stress that system (1.1) is of its own independent interest, since it is studied within

plasticity theory, when formulated in the framework of deformation theory (cf. [11, 24]). In this context the

unknown is the displacement vector field u = (u1, u2, u3)⊤, while the external body force f = (f 1, f 2, f 3)⊤

1 We restrict ourselves to the problem in three space dimensions, however the results can be easily transferred to the problem

inℝd for all d ≥ 2.
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is given. The stress tensor S, which is the tensor of small elasto-plastic deformations, depends only on Du.
Physical interpretation and discussion of both systems (1.1) and (1.2) and the underlying models can be

found, e.g., in [5, 11, 15, 19, 20].

We study global regularity properties of weak solutions to (1.1) in sufficiently smooth and bounded

domains Ω; we obtain, for all p ∈ (1, 2], the optimal result, namely, that F(Du) belongs to W1,2(Ω), where
the nonlinear tensor-valued function F is defined in (2.5). This result has been proved near a flat bound-

ary in [24] and is the same result as for p-Laplacian systems (cf. [1, 13, 14]). The situation is quite different

for (1.2). There the optimal result, i.e., F(Du) ∈ W1,2(Ω), is only known for
(i) two-dimensional bounded domains (cf. [16], where even the p-Navier–Stokes system is treated);

(ii) the space-periodic problem inℝd, d ≥ 2, which follows immediately from interior estimates, i.e., F(Du) ∈
W1,2

loc

(Ω), which are known in all dimensions, and the periodicity of the solution;

(iii) if the no-slip boundary condition is replaced by perfect slip boundary conditions (cf. [17]);

(iv) in the case of small f (cf. [6]).
We also observe that the above results for the p-Stokes system (apart those in the space periodic setting)

require the stress tensor to be non-degenerate, that is, δ > 0. In the case of homogeneous Dirichlet bound-

ary conditions and three- and higher-dimensional bounded, sufficiently smooth domains only suboptimal

results are known. To our knowledge, the state of the art for general data is that F(Du) ∈ W1,2

loc

(Ω), tangential
derivatives of F(Du) near the boundary belong to L2, while the normal derivative of F(Du) near the boundary
belongs to some Lq, where q = q(p) < 2 (cf. [2, 4] and the discussion therein). We would also like to men-

tion a result for another system between (1.2) and p-Laplacian systems, namely, if (1.2) is considered with S
depending on the full velocity gradient ∇u. In this case, it is proved in [7] that u ∈ W2,r(ℝ3) ∩W1,p

0

(ℝ3) for
some r > 3, provided p < 2 is very close to 2.

In the present paper we extend the optimal regularity result for (1.1) of Seregin and Shilkin [24] in the

case of a flat boundary to the general case of bounded sufficiently smoothdomains and to possibly degenerate

stress tensors, that is, the case δ = 0. The precise result we prove is the following:

Theorem 1.1. Let the tensor field S in (1.1) have (p, δ)-structure (cf. Definition 2.1) for some p ∈ (1, 2] and
δ ∈ [0,∞), and let F be the associated tensor field to S defined in (2.5). Let Ω ⊂ ℝ3 be a bounded domain with
C2,1 boundary, and let f ∈ Lp󸀠 (Ω). Then the unique weak solution u ∈ W1,p

0

(Ω) of problem (1.1) satisfies

∫
Ω

|∇F(Du)|2 dx ≤ c,

where c denotes a positive function which is non-decreasing in ‖f‖p󸀠 and δ, and which depends on the domain
through its measure |Ω| and the C2,1-norms of the local description of ∂Ω. In particular, the above estimate
implies that u ∈ W2,

3p
p+1 (Ω).

2 Notations and preliminaries

In this section we introduce the notation we will use, state the precise assumptions on the extra stress ten-

sor S, and formulate the main results of the paper.

2.1 Notation

We use c, C to denote generic constants which may change from line to line, but they are independent

of the crucial quantities. Moreover, we write f ∼ g if and only if there exists constants c, C > 0 such that

cf ≤ g ≤ Cf . In some cases we need to specify the dependence on certain parameters, and consequently we

denote by c( ⋅ ) a positive function which is non-decreasing with respect to all its arguments. In particular,

we denote by c(δ−1) a possibly critical dependence on the parameter δ as δ → 0, while c(δ) only indicates
that the constant c depends on δ and will satisfy c(δ) ≤ c(δ

0
) for all δ ≤ δ

0
.
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Weuse standard Lebesgue spaces (Lp(Ω), ‖ ⋅ ‖p) and Sobolev spaces (Wk,p(Ω), ‖ ⋅ ‖k,p), where Ω ⊂ ℝ3 is a
sufficiently smooth bounded domain. The spaceW1,p

0

(Ω) is the closure of the compactly supported, smooth

functions C∞
0

(Ω) in W1,p(Ω). Thanks to the Poincaré inequality, we equip W1,p
0

(Ω) with the gradient norm

‖∇ ⋅ ‖p. When dealing with functions defined only on some open subset G ⊂ Ω, we denote the norm in Lp(G)
by ‖ ⋅ ‖p,G. As usual, we use the symbol⇀ to denote weak convergence, and→ to denote strong convergence.

The symbol spt f denotes the support of the function f . We do not distinguish between scalar, vector-valued

or tensor-valued function spaces. However, we denote vectors by boldface lower-case letter as, e.g., u and

tensors by boldface upper case letters as, e.g., S. For vectorsu, v ∈ ℝ3, we denoteu
s
⊗ v := 1

2

(u ⊗ v + (u ⊗ v)⊤),
where the standard tensor product u ⊗ v ∈ ℝ3×3 is defined as (u ⊗ v)ij := uivj. The scalar product of vectors
is denoted by u ⋅ v = ∑3i=1 uivi and the scalar product of tensors is denoted by A ⋅ B := ∑3i,j=1 AijBij.

Greek lower-case letters take only the values 1, 2, while Latin lower-case ones take the values 1, 2, 3.

We use the summation convention over repeated indices only for Greek lower-case letters, but not for Latin

lower-case ones.

2.2 (p, δ)-structure

We now define what it means that a tensor field S has (p, δ)-structure, see [8, 23]. For a tensor P ∈ ℝ3×3, we
denote its symmetric part byPsym := 1

2

(P + P⊤) ∈ ℝ3×3
sym

:= {P ∈ ℝ3×3 | P = P⊤}.Weuse thenotation |P|2 =P ⋅ P⊤.
It is convenient to define for t ≥ 0 a special N-function² ϕ( ⋅ ) = ϕp,δ( ⋅ ), for p ∈ (1,∞), δ ≥ 0, by

ϕ(t) :=
t

∫
0

(δ + s)p−2s ds. (2.1)

The function ϕ satisfies, uniformly in t and independently of δ, the important equivalences

ϕ󸀠󸀠(t)t ∼ ϕ󸀠(t), (2.2)

ϕ󸀠(t)t ∼ ϕ(t),
tp + δp ∼ ϕ(t) + δp . (2.3)

We use the convention that if ϕ󸀠󸀠(0) does not exist, the left-hand side in (2.2) is continuously extended by

zero for t = 0. We define the shifted N-functions {ϕa}a≥0 (cf. [8, 9, 23]), for t ≥ 0, by

ϕa(t) :=
t

∫
0

ϕ󸀠(a + s)s
a + s

ds

Note that the family {ϕa}a≥0 satisfies the ∆2-conditionuniformlywith respect to a ≥ 0, i.e.,ϕa(2t) ≤ c(p)ϕa(t)
holds for all t ≥ 0.

Definition 2.1 ((p, δ)-structure). We say that a tensor field S : ℝ3×3 → ℝ3×3
sym

, belonging to C0(ℝ3×3,ℝ3×3
sym
) ∩

C1(ℝ3×3 \ {0},ℝ3×3
sym
), satisfying S(P) = S(Psym) and S(0) = 0, possesses (p, δ)-structure if for some p ∈ (1,∞),

δ ∈ [0,∞), and the N-function ϕ = ϕp,δ (cf. (2.1)), there exist constants κ0, κ1 > 0 such that
3

∑
i,j,k,l=1

∂klSij(P)QijQkl ≥ κ0ϕ󸀠󸀠(|Psym|)|Qsym|2, |∂klSij(P)| ≤ κ1ϕ󸀠󸀠(|Psym|) (2.4)

for all P,Q ∈ ℝ3×3, with Psym ̸= 0, and all i, j, k, l = 1, 2, 3. The constants κ
0
, κ

1
and p are called the charac-

teristics of S.

Remark 2.2. (i) Assume that S has (p, δ)-structure for some δ ∈ [0, δ
0
]. Then, if not otherwise stated, the

constants in the estimates depend only on the characteristics of S and on δ
0
, but they are independent

of δ.

2 For the general theory of N-functions and Orlicz spaces, we refer to [21].
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(ii) An important example of a tensor field Shaving (p, δ)-structure is given by S(P) = ϕ󸀠(|Psym|)|Psym|−1Psym.
In this case, the characteristics of S, namely, κ

0
and κ

1
, depend only on p and are independent of δ ≥ 0.

(iii) For a tensor field S with (p, δ)-structure, we have ∂klSij(P) = ∂klSji(P) for all i, j, k, l = 1, 2, 3 and all

P ∈ ℝ3×3, due to its symmetry. Moreover, from S(P) = S(Psym), it follows that ∂klSij(P) = 1

2

∂klSij(Psym) +
1

2

∂lkSij(Psym) for all i, j, k, l = 1, 2, 3 and all P ∈ ℝ3×3, and consequently ∂klSij(P) = ∂lkSij(P) for all
i, j, k, l = 1, 2, 3 and all P ∈ ℝ3×3

sym
.

To a tensor field S with (p, δ)-structure, we associate the tensor field F : ℝ3×3 → ℝ3×3
sym

defined through

F(P) := (δ + |Psym|)
p−2
2 Psym. (2.5)

The connection between S, F, and {ϕa}a≥0 is best explained in the following proposition (cf. [8, 23]).

Proposition 2.3. Let S have (p, δ)-structure, and let F be as defined in (2.5). Then

(S(P) − S(Q)) ⋅ (P − Q) ∼ |F(P) − F(Q)|2 ∼ ϕ|Psym|(|Psym − Qsym|)

∼ ϕ󸀠󸀠(|Psym| + |Psym − Qsym|)|Psym − Qsym|2,

|S(P) − S(Q)| ∼ ϕ󸀠|Psym|(|P
sym − Qsym|) (2.6)

uniformly in P,Q ∈ ℝ3×3. Moreover, uniformly in Q ∈ ℝ3×3,

S(Q) ⋅ Q ∼ |F(Q)|2 ∼ ϕ(|Qsym|).

The constants depend only on the characteristics of S.

For a detailed discussion of the properties of S and F and their relation to Orlicz spaces and N-functions, we
refer the reader to [3, 23]. Since in the following we shall insert into S and F only symmetric tensors, we can

drop in the above formulas the superscript “sym” and restrict the admitted tensors to symmetric ones.

We recall that the following equivalence,which is proved in [3, Lemma3.8], is valid for all smooth enough

symmetric tensor fields Q ∈ ℝ3×3
sym

:

|∂iF(Q)|2 ∼ ϕ󸀠󸀠(|Q|)|∂iQ|2. (2.7)

The proof of this equivalence is based on Proposition 2.3. This proposition and the theory of divided differ-

ences also imply (cf. [4, Equation (2.26)]) that

|∂τF(Q)|2 ∼ ϕ󸀠󸀠(|Q|)|∂τQ|2 (2.8)

for all smooth enough symmetric tensor fields Q ∈ ℝ3×3
sym

.

A crucial observation in [24] is that the quantities in (2.7) are also equivalent to several further quantities.

To formulate this precisely, we introduce, for i = 1, 2, 3 and for sufficiently smooth symmetric tensor fieldsQ,
the quantity

Pi(Q) := ∂iS(Q) ⋅ ∂iQ =
3

∑
k,l,m,n=1

∂klSmn(Q)∂iQkl∂iQmn . (2.9)

Recall that in the definition of Pi(Q) there is no summation convention over the repeated Latin lower-case

index i in ∂iS(Q) ⋅ ∂iQ. Note that if S has (p, δ)-structure, then Pi(Q) ≥ 0 for i = 1, 2, 3. The following impor-

tant equivalences hold, first proved in [24].

Proposition 2.4. Assume that S has (p, δ)-structure. Then the following equivalences are valid, for all smooth
enough symmetric tensor fields Q and all i = 1, 2, 3:

Pi(Q) ∼ ϕ󸀠󸀠(|Q|)|∂iQ|2 ∼ |∂iF(Q)|2, (2.10)

Pi(Q) ∼
|∂iS(Q)|2

ϕ󸀠󸀠(|Q|)
, (2.11)

with the constants only depending on the characteristics of S.
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Proof. The assertions are proved in [24] using a different notation. For the convenience of the reader, we

sketch the proof here. The equivalences in (2.10) follow from (2.7), (2.9) and the fact that S has (p, δ)-
structure. Furthermore, using (2.10), we have

|Pi(Q)|2 ≤ |∂iS(Q)|2|∂iQ|2 ≤ c|∂iS(Q)|2
Pi(Q)
ϕ󸀠󸀠(|Q|)

,

which proves one inequality of (2.11). The other one follows from

|∂iS(Q)|2 ≤ c
3

∑
k,l=1
|∂klS(Q)∂iQkl|2 ≤ c(ϕ󸀠󸀠(|Q|))2|∂iQ|2 ≤ cϕ󸀠󸀠(|Q|)Pi(Q),

where we used (2.4) and (2.10).

2.3 Existence of weak solutions

In this section we define weak solutions of (1.1), recall the main results of existence and uniqueness and

discuss a perturbed problem, which is used to justify the computations that follow. From now on, we restrict

ourselves to the case p ≤ 2.

Definition 2.5. We say that u ∈ W1,p
0

(Ω) is a weak solution to (1.1) if for all v ∈ W1,p
0

(Ω),

∫
Ω

S(Du) ⋅ Dv dx = ∫
Ω

f ⋅ v dx.

We have the following standard result.

Proposition 2.6. Let the tensor field S in (1.1) have (p, δ)-structure for some p ∈ (1, 2] and δ ∈ [0,∞). Let
Ω ⊂ ℝ3 be a bounded domain with C2,1 boundary, and let f ∈ Lp󸀠 (Ω). Then there exists a unique weak solution
u to (1.1) such that

∫
Ω

ϕ(|Du|) dx ≤ c(‖f‖p󸀠 , δ).
Proof. The assertions follow directly from the assumptions by using the theory of monotone operators.

In order to justify some of the following computations, we find it convenient to consider a perturbed prob-

lem, where we add to the tensor field S with (p, δ)-structure a linear perturbation. Using again the theory of
monotone operators one can easily prove the following proposition.

Proposition 2.7. Let the tensor field S in (1.1) have (p, δ)-structure for some p ∈ (1, 2] and δ ∈ [0,∞), and let
f ∈ Lp󸀠 (Ω) be given. Then there exists a unique weak solution uε ∈ W1,2

0

(Ω) of the problem

{
−div Sε(Duε) = f in Ω,
uε = 0 on ∂Ω,

(2.12)

where
Sε(Q) := εQ + S(Q), with ε > 0,

i.e., uε satisfies, for all v ∈ W1,2

0

(Ω),

∫
Ω

Sε(Duε) ⋅ Dv dx = ∫
Ω

f ⋅ v dx.

The solution uε satisfies the estimate

∫
Ω

ε|∇uε|2 + ϕ(|Duε|) dx ≤ c(‖f‖p󸀠 , δ). (2.13)
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Remark 2.8. In fact, one could already prove more at this point. Namely, that for ε → 0, the unique solution

uε converges to the unique weak solution u of the unperturbed problem (1.1). Let us sketch the argument

only, since later we get the same result with different easier arguments. From (2.13) and the properties of S
follows that

uε ⇀ u inW1,p
0

(Ω),

S(Duε) ⇀ χ in Lp󸀠 (Ω).
Passing to the limit in the weak formulation of the perturbed problem, we get

∫
Ω

χ ⋅ Dv dx = ∫
Ω

f ⋅ v dx for all v ∈ W1,p
0

(Ω).

One can not show directly that limε→0 ∫
Ω

εDuε ⋅ (Duε − Du) dx = 0, since Du belongs to Lp(Ω) only. Instead
one uses the Lipschitz truncationmethod (cf. [10, 22]). Denoting by vε,j the Lipschitz truncation of ξ(uε − u),
where ξ ∈ C∞

0

(Ω) is a localization, one can show, using the ideas from [10, 22], that

lim sup

ε→0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

(S(Duε) − S(Du)) ⋅ Dvε,j dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0,

which impliesDuε → Du almost everywhere in Ω. Consequently, we have χ = S(Du), since weak and a.e. lim-

its coincide.

2.4 Description and properties of the boundary

We assume that the boundary ∂Ω is of class C2,1, that is, for each point P ∈ ∂Ω, there are local coordinates
such that, in these coordinates, we have P = 0 and ∂Ω is locally described by a C2,1-function, i.e., there exist
RP , R󸀠P ∈ (0,∞), rP ∈ (0, 1) and a C

2,1

-function aP : B2RP
(0) → B1R󸀠

P
(0) such that

(b1) x ∈ ∂Ω ∩ (B2RP
(0) × B1R󸀠

P
(0)) ⇔ x

3
= aP(x1, x2),

(b2) ΩP := {(x, x3) | x = (x1, x2)⊤ ∈ B2RP
(0), aP(x) < x3 < aP(x) + R󸀠P} ⊂ Ω,

(b3) ∇aP(0) = 0, and for all x = (x1, x2)⊤ ∈ B2RP
(0), |∇aP(x)| < rP,

where Bk
r (0) denotes the k-dimensional open ball with center 0 and radius r > 0. Note that rP can be made

arbitrarily small if we make RP small enough. In the sequel, we will also use, for 0 < λ < 1, the following
scaled open sets:

λΩP := {(x, x3) | x = (x1, x2)⊤ ∈ B2λRP
(0), aP(x) < x3 < aP(x) + λR󸀠P} ⊆ ΩP .

To localize near to ∂Ω ∩ ∂ΩP for P ∈ ∂Ω, we fix smooth functions ξP : ℝ3 → ℝ such that
(ℓ1) χ 1

2

ΩP (x) ≤ ξP(x) ≤ χ 3

4

ΩP (x),
where χA(x) is the indicator function of the measurable set A. For the remaining interior estimate, we

localize by a smooth function 0 ≤ ξ
00
≤ 1, with spt ξ

00
⊂ Ω

00
, where Ω

00
⊂ Ω is an open set such that

dist(∂Ω
00
, ∂Ω) > 0. Since the boundary ∂Ω is compact, we can use an appropriate finite sub-covering which,

together with the interior estimate, yields the global estimate.

Let us introduce the tangential derivatives near the boundary. To simplify the notation, we fix P ∈ ∂Ω,
h ∈ (0, RP

16

), and simply write ξ := ξP, a := aP. We use the standard notation x = (x󸀠, x
3
)⊤ and denote by ei,

i = 1, 2, 3, the canonical orthonormal basis in ℝ3. In the following, lower-case Greek letters take the values
1, 2. For a function g, with spt g ⊂ spt ξ , we define, for α = 1, 2,

gτ(x󸀠, x3) = gτα (x󸀠, x3) := g(x󸀠 + heα , x3 + a(x󸀠 + heα) − a(x󸀠)),

and if ∆

+g := gτ − g, we define tangential divided differences by d+g := h−1∆+g. It holds that, if g ∈ W1,1(Ω),
then we have for α = 1, 2

d+g → ∂τg = ∂ταg := ∂αg + ∂αa∂3g as h → 0, (2.14)
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almost everywhere in spt ξ (cf. [18, Section3]). Conversely, uniform Lq-bounds for d+g imply that ∂τg belongs
to Lq(spt ξ). For simplicity, we denote ∇a := (∂

1
a, ∂

2
a, 0)⊤. The following variant of integration by parts will

be often used.

Lemma 2.9. Let spt g ∪ spt f ⊂ spt ξ , and let h be small enough. Then

∫
Ω

fg−τ dx = ∫
Ω

fτg dx.

Consequently, ∫
Ω

fd+g dx = ∫
Ω

(d−f )g dx. Moreover, if in addition f and g are smooth enough and at least one
vanishes on ∂Ω, then

∫
Ω

f∂τg dx = −∫
Ω

(∂τ f )g dx.

3 Proof of the main result

In the proof of the main result we use finite differences to show estimates in the interior and in tangential

directions near the boundary, and for calculations involving directly derivatives in “normal” directions near

the boundary. In order to justify that all occurring quantities are well posed, we perform the estimate for the

approximate system (2.12).

The first intermediate step is the following result for the approximate problem.

Proposition 3.1. Let the tensor field S in (1.1) have (p, δ)-structure for some p ∈ (1, 2] and δ ∈ (0,∞), and letF
be the associated tensor field to S. LetΩ ⊂ ℝ3 be a bounded domainwith C2,1 boundary and let f ∈ Lp󸀠 (Ω). Then
the unique weak solution uε ∈ W1,2

0

(Ω) of the approximate problem (2.12) satisfies³

{{{{{
{{{{{
{

∫
Ω

εξ2
0

|∇2uε|2 + ξ2
0

|∇F(Duε)|2 dx ≤ c(‖f‖p󸀠 , ‖ξ0‖2,∞, δ),
∫
Ω

εξ2P |∂τDuε|
2 + ξ2P |∂τF(Duε)|

2 dx ≤ c(‖f‖p󸀠 , ‖ξP‖2,∞, ‖aP‖C2,1 , δ). (3.1)

Here ξ
0
is a cut-off functionwith support in the interior ofΩ, while for arbitrary P ∈ ∂Ω the function ξP is a cut-off

function with support near to the boundary ∂Ω, as defined in Section 2.4. The tangential derivative ∂τ is defined
locally in ΩP by (2.14). Moreover, there exists a constant C1 > 0 such that⁴

∫
Ω

εξ2|∂
3
Duε|2 + ξ2|∂3F(Duε)|2 dx ≤ c(‖f‖p󸀠 , ‖ξ‖2,∞, ‖a‖C2,1 , δ−1, ε−1, C1), (3.2)

provided that in the local description of the boundary, we have rP < C1 in (b3).
In particular, these estimates imply that uε ∈ W2,2(Ω) and that (2.12) holds pointwise a.e. in Ω.

The two estimates in (3.1) are uniform with respect to ε and could be also proved directly for problem (1.1).

However, the third estimate (3.2) depends on ε and it is needed to justify all subsequent steps, which will

give the proof of an estimate uniformly in ε, by using a different technique.

Proof of Proposition 3.1. The proof of estimate (3.1) is very similar, being in fact a simplification (due to the

fact that there is no pressure term involved) to the proof of the results in [4, Theorems 2.28 and 2.29]. On the

other hand, the proof of (3.2) is different from the one in [4] due to themissing divergence constraint. In fact,

it adapts techniques known from nonlinear elliptic systems. For the convenience of the reader, we recall the

main steps here.

3 Recall that c(δ) only indicates that the constant c depends on δ and will satisfy c(δ) ≤ c(δ
0
) for all δ ≤ δ

0
.

4 Recall that c(δ−1) indicates a possibly critical dependence on δ as δ → 0.
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Fix P ∈ ∂Ω and use in ΩP
v = d−(ξ2d+(uε| 1

2

ΩP )),

where ξ := ξP, a := aP, and h ∈ (0, RP
16

), as a test function in the weak formulation of (2.12). This yields

∫
Ω

ξ2d+Sε(Duε) ⋅ d+Duε dx = −∫
Ω

Sε(Duε) ⋅ (ξ2d+∂3uε − (ξ−τd−ξ + ξd−ξ )∂3uε)
s
⊗ d−∇a dx

− ∫
Ω

Sε(Duε) ⋅ ξ2(∂3uε)τ
s
⊗ d−d+∇a − Sε(Duε) ⋅ d−(2ξ∇ξ

s
⊗ d+uε) dx

+ ∫
Ω

Sε((Duε)τ) ⋅ (2ξ∂3ξd+uε + ξ2d+∂3uε)
s
⊗ d+∇a dx

+ ∫
Ω

f ⋅ d−(ξ2d+uε) dx =:
8

∑
j=1

Ij .

From the assumption on S, Proposition 2.3 and [4, Lemma 3.11], we have the following estimate:

∫
Ω

εξ2|d+∇uε|2 + εξ2|∇d+uε|2 + |d+F(Duε)|2 + ϕ(ξ |∇d+u|) + ϕ(ξ |d+∇u|) dx

≤ c∫
Ω

ξ2d+Sε(Duε) ⋅ d+Duε dx + c(‖ξ‖1,∞, ‖a‖C1,1 ) ∫
Ω∩spt ξ

ϕ(|∇uε|) dx.

The terms I
1
–I

7
are estimated exactly as in [4, Equations (3.17)–(3.22)], while I

8
is estimated as the term I

15

in [4, (4.20)]. Thus, we get

∫
Ω

εξ2|d+∇uε|2 + εξ2|∇d+uε|2 + ξ2|d+F(Duε)|2 + ϕ(ξ|d+∇uε|) + ϕ(ξ|∇d+uε|) dx

≤ c(‖f‖p󸀠 , ‖ξ‖2,∞, ‖a‖C2,1 , δ).
This proves the second estimate in (3.1) by standard arguments. The first estimate in (3.1) is proved in the

sameway with many simplifications, since we work in the interior where the method works for all directions.

This estimate implies that uε ∈ W2,2

loc

(Ω) and that the system (2.12) is well-defined point-wise a.e. in Ω.

To estimate the derivatives in the x
3
direction, we use equation (2.12) and it is at this point that we have

changes with respect to the results in [4]. In fact, as usual in elliptic problems, we have to recover the partial

derivatives with respect to x
3
by using the information on the tangential ones. In this problem the main diffi-

culty is that the leading order term is nonlinear and depends on the symmetric part of the gradient. Thus, we

have to exploit the properties of (p, δ)-structure of the tensor S (cf. Definition 2.1). Denoting, for i = 1, 2, 3,⁵
fi := −fi − ∂γσSi3(Duε)∂3Dγσuε − ∑3k,l=1 ∂klSiβ(Duε)∂βDkluε, we can re-write the equations in (2.12) as fol-

lows:

3

∑
k=1

∂k3Si3(Duε)∂3Dk3uε + ∂3αSi3(Duε)∂3D3αuε = fi a.e. in Ω.

Contrary to the corresponding equality [4, Equation (3.49)], hereweusedirectly all the equations in (1.1), and

not only the first two. Now we multiply these equations not by ∂
3
Di3uε as expected, but by ∂3D̂i3uε, where

D̂αβuε = 0 for α, β = 1, 2, D̂α3uε = D̂3αuε = 2Dα3uε for α = 1, 2, D̂33
uε = D33

uε. Summing over i = 1, 2, 3, we
get, by using the symmetries in Remark 2.2 (iii), that

4∂α3Sεβ3(Duε)∂3Dα3uε∂3Dβ3uε + 2∂α3Sε
33

(Duε)∂3Dα3uε∂3D33
uε

+ 2∂
33
Sεβ3(Duε)∂3D33

uε∂3Dβ3uε + ∂33Sε
33

(Duε)∂3D33
uε∂3D33

uε =
3

∑
i=1

fi∂3D̂i3uε a.e. in Ω. (3.3)

5 Recall that we use the summation convention over repeated Greek lower-case letters from 1 to 2.
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To obtain a lower bound for the left-hand side, we observe that the terms on the left-hand side of (3.3)

containing S are equal to

3

∑
i,j,k,l=1

∂klSij(Duε)QijQkl

if we choose Q = ∂
3
Duε, where Dαβuε = 0 for α, β = 1, 2, Dα3uε = D3αuε = Dα3uε for α = 1, 2, and D

33
uε =

D
33
uε. Thus, it follows from the coercivity estimate in (2.4) that these terms are bounded from below by

κ
0
ϕ󸀠󸀠(|Duε|)|∂3Duε|2. Similarly, we see that the remaining terms on the left-hand side of (3.3) are equal to

ε|∂
3
Duε|2. Denoting bi := ∂3Di3uε, i = 1, 2, 3,we see that |b| ∼ |D̂uε| ∼ |Duε|. Consequently,we get from (3.3)

the estimate

(ε + ϕ󸀠󸀠(|Duε|))|b| ≤ |f| a.e. in Ω.

By straightforward manipulations (cf. [4, Sections 3.2 and 4.2]), we can estimate the right-hand side as

follows:

|f| ≤ c(|f| + (ε + ϕ󸀠󸀠(|Duε|))(|∂τ∇uε| + ‖∇a‖∞|∇2uε|)).

Note that we can deduce from b information about b̃i := ∂2
33

uiε, i = 1, 2, 3, because

|b| ≥ 2|b̃| − |∂τ∇uε| − ‖∇a‖∞|∇2uε|

holds a.e. in ΩP. This and the last two inequalities imply

(ε + ϕ󸀠󸀠(|Duε|))|b̃| ≤ c(|f| + (ε + ϕ󸀠󸀠(|Duε|))(|∂τ∇uε| + ‖∇a‖∞|∇2uε|)) a.e. in ΩP .

Adding on both sides, for α = 1, 2 and i, k = 1, 2, 3, the term

(ε + ϕ󸀠󸀠(|Duε|))|∂α∂iukε |,

and using on the right-hand side the definition of the tangential derivative (cf. (2.14)), we finally arrive at

(ε + ϕ󸀠󸀠(|Duε|))|∇2uε| ≤ c(|f| + (ε + ϕ󸀠󸀠(|Duε|))(|∂τ∇uε| + ‖∇a‖∞|∇2uε|)),

which is valid a.e. in ΩP. Note that the constant c only depends on the characteristics of S. Next, we can
choose the open sets ΩP in such a way that ‖∇aP(x)‖∞,ΩP is small enough, so that we can absorb the last term

from the right-hand side, which yields

(ε + ϕ󸀠󸀠(|Duε|))|∇2uε| ≤ c(|f| + (ε + ϕ󸀠󸀠(|Duε|))|∂τ∇uε|) a.e. in ΩP ,

where again the constant c only depends on the characteristics of S. By neglecting the second term on the

left-hand side (which is non-negative), raising the remaining inequality to the power 2, and using that S has
(p, δ)-structure for p < 2, we obtain

∫
Ω

εξ2P |∇
2uε|2 dx ≤ c∫

Ω

|f|2 dx + (ε + δ
2(p−2))
ε (ε∫

Ω

ξ2P |∂τ∇uε|
2 dx).

The already proven results on tangential derivatives and Korn’s inequality imply that the last integral from

the right-hand side is finite. Thus, the properties of the covering imply the estimate in (3.2).

3.1 Improved estimates for normal derivatives

In the proof of (3.2), we used system (2.12) and obtained an estimate that is not uniformwith respect to ε. In
this section, by following the ideas in [24], we proceed differently and estimate P

3
in terms of the quantities

occurring in (3.1). The main technical step of the paper is the proof of the following result.
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Proposition 3.2. Let the hypotheses in Theorem 1.1 be satisfied with δ > 0, and let the local description aP
of the boundary and the localization function ξP satisfy (b1)–(b3) and (ℓ1) (cf. Section 2.4). Then there exists
a constant C

2
> 0 such that the weak solution uε ∈ W1,2

0

(Ω) of the approximate problem (2.12) satisfies,⁶ for
every P ∈ ∂Ω,

∫
Ω

εξ2P |∂3Duε|
2 + ξ2P |∂3F(Duε)|

2 dx ≤ C(‖f‖p󸀠 , ‖ξP‖2,∞, ‖aP‖C2,1 , δ, C2),
provided rP < C2 in (b3).

Proof. Let us fix an arbitrary point P ∈ ∂Ω and a local description a = aP of the boundary and the localization
function ξ = ξP satisfying (b1)–(b3) and (ℓ1). In the following we denote by C constants that depend only on
the characteristics of S. First we observe that, by the results of Proposition 2.4, there exists a constant C

0
,

depending only on the characteristics of S, such that

1

C
0

|∂
3
F(Duε)|2 ≤ P3

(Duε) a.e. in Ω.

Thus, using also the symmetry of Duε and S, we get

∫
Ω

εξ2|∂
3
Duε|2 +

1

C
0

ξ2|∂
3
F(Duε)|2 dx ≤ ∫

Ω

ξ2(ε∂
3
Duε + ∂3S(Duε)) ⋅ ∂3Duε dx

= ∫
Ω

3

∑
i,j=1

ξ2(ε∂
3
Dijuε + ∂3Sij(Duε))∂3∂jui dx

= ∫
Ω

ξ2(ε∂
3
Dαβuε + ∂3Sαβ(Duε))∂3Dαβuε dx

+ ∫
Ω

ξ2(ε∂
3
D
3αuε + ∂3S3α(Duε))∂αD33

uε dx

+ ∫
Ω

3

∑
j=1

ξ2∂
3
(εDj3uε + Sj3(Duε))∂2

3

ujε dx

=: I
1
+ I

2
+ I

3
.

To estimate I
2
, we multiply and divide by the quantity √ϕ󸀠󸀠(|Duε|) ̸= 0, and use Young’s inequality and

Proposition 2.4. This yields that, for all λ > 0, there exists cλ > 0 such that

|I
2
| ≤

2

∑
α=1
∫
Ω

ξ2|∂
3
S(Duε)||∂αDuε|

√ϕ󸀠󸀠(|Duε|)
√ϕ󸀠󸀠(|Duε|)

dx + λ∫
Ω

εξ2|∂
3
Duε|2 dx + cλ−1 2

∑
α=1
∫
Ω

εξ2|∂αDuε|2 dx

≤ λ∫
Ω

ξ2 |∂3S(Duε)|
2

ϕ󸀠󸀠(|Duε|)
dx + cλ−1 2

∑
α=1
∫
Ω

ξ2ϕ󸀠󸀠(|Duε|)|∂αDuε|2 dx

+ λ∫
Ω

εξ2|∂
3
Duε|2 dx + cλ−1 2

∑
α=1
∫
Ω

εξ2|∂αDuε|2 dx

≤ Cλ∫
Ω

ξ2|∂
3
F(Duε)|2 dx + cλ−1 2

∑
a=1
∫
Ω

ξ2|∂αF(Duε)|2 dx

+ λ∫
Ω

εξ2|∂
3
Duε|2 dx + cλ−1 2

∑
α=1
∫
Ω

εξ2|∂αDuε|2 dx.

Here and in the followingwe denote by cλ−1 constants thatmay depend on the characteristics of S and on λ−1,
while C denotes constants that may depend on the characteristics of S only.

6 Recall that c(δ) only indicates that the constant c depends on δ and will satisfy c(δ) ≤ c(δ
0
) for all δ ≤ δ

0
.
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To treat the third integral I
3
, we proceed as follows: We use the following well-known algebraic identity,

valid for smooth enough vectors v and i, j, k = 1, 2, 3:

∂j∂kvi = ∂jDikv + ∂kDijv − ∂iDjkv, (3.4)

and equations (2.12) point-wise, which can be written, for j = 1, 2, 3, as

∂
3
(εDj3uε + Sj3(Duε)) = −f j − ∂β(εDjβuε + Sjβ(Duε)) a.e. in Ω.

This is possible due to Proposition 3.1. Hence, we obtain

|I
3
| ≤

3

∑
j=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

ξ2( − f j − ∂βSjβ(Duε) − ε∂βDjβuε)(2∂3Dj3uε − ∂jD33
uε) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
.

The right-hand side can be estimated in a way similar to I
2
. This yields that, for all λ > 0, there exists cλ > 0

such that

|I
3
| ≤ ∫

Ω

ξ2(|f| +
2

∑
β=1
|∂βS(Duε)|)(2|∂3Duε| +

2

∑
α=1
|∂αDuε|)

√ϕ󸀠󸀠(|Duε|)
√ϕ󸀠󸀠(|Duε|)

dx

+ λ∫
Ω

εξ2|∂
3
Duε|2 dx + cλ−1 2

∑
β=1
∫
Ω

εξ2|∂βDuε|2 dx

≤ λC∫
Ω

ξ2|∂
3
F(Duε)|2 dx + cλ−1 2

∑
β=1
∫
Ω

ξ2|∂βF(Duε)|2 dx + λ∫
Ω

εξ2|∂
3
Duε|2 dx

+ cλ−1 2

∑
β=1
∫
Ω

εξ2|∂βDuε|2 dx + cλ−1 ∫
Ω

ξ2|f|2

ϕ󸀠󸀠(|Duε|)
dx

≤ λC∫
Ω

ξ2|∂
3
F(Duε)|2 dx + cλ−1 2

∑
β=1
∫
Ω

ξ2|∂βF(Duε)|2 dx + λ∫
Ω

εξ2|∂
3
Duε|2 dx

+ cλ−1 2

∑
β=1
∫
Ω

εξ2|∂βDuε|2 dx + cλ−1 (‖f‖p󸀠p󸀠 + ‖Duε‖pp + δp).
Observe that we used p ≤ 2 to estimate the term involving f.

To estimate I
1
, we employ the algebraic identity (3.4) to split the integral as follows:

I
1
= ∫

Ω

ξ2(ε∂
3
Dαβuε + ∂3Sαβ(Duε))(∂αD3βuε + ∂βD3αuε) dx − ∫

Ω

ξ2(ε∂
3
Dαβuε + ∂3Sαβ(Duε))∂β∂αu3ε dx

=: A + B.

The first term is estimated in a way similar to I
2
, yielding, for all λ > 0,

|A| ≤ Cλ∫
Ω

ξ2|∂
3
F(Duε)|2 dx + cλ−1 2

∑
β=1
∫
Ω

ξ2|∂βF(Duε)|2 dx

+ λ∫
Ω

εξ2|∂
3
Duε|2 dx + cλ−1 2

∑
β=1
∫
Ω

εξ2|∂βDuε|2 dx.

To estimate B we observe that by the definition of the tangential derivative, we have

∂α∂βu3ε = ∂α∂τβu3ε − (∂α∂βa)D33
uε − (∂βa)∂αD33

uε ,

and consequently the term B can be split into the following three terms:

−∫
Ω

ξ2(ε∂
3
Dαβuε + ∂3Sαβ(Duε))(∂α∂τβu3ε − (∂α∂βa)D33

uε − (∂βa)∂αD33
uε) dx =: B1 + B2 + B3.
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We estimate B
2
as follows:

|B
2
| ≤ ∫

Ω

ξ2|∂
3
S(Duε)||∇2a||Duε|

√ϕ󸀠󸀠(|Duε|)
√ϕ󸀠󸀠(|Duε|)

+ εξ2|∂
3
Duε||∇2a||Duε| dx

≤ λ∫
Ω

ξ2 |∂3S(Duε)|
2

ϕ󸀠󸀠(|Duε|)
dx + cλ−1‖∇2a‖2∞ ∫

Ω

ξ2|Duε|2ϕ󸀠󸀠(|Duε|) dx

+ λ∫
Ω

εξ2|∂
3
Duε|2 dx + cλ−1‖∇2a‖2∞ ∫

Ω

εξ2|Duε|2 dx

≤ λC∫
Ω

ξ2|∂
3
F(Duε)|2 dx + cλ−1‖∇2a‖2∞ρϕ(|Duε|) + 1

8

∫
Ω

εξ2|∂
3
Duε|2 dx + 2ε‖∇2a‖2∞‖Duε‖22.

The term B
3
is estimated in a way similar to I

2
, yielding, for all λ > 0,

|B
3
| ≤ λC∫

Ω

ξ2|∂
3
F(Duε)|2 dx + cλ−1‖∇a‖2∞ 2

∑
β=1
∫
Ω

ξ2|∂βF(Duε)|2 dx

+ λ∫
Ω

εξ2|∂
3
Duε|2 dx + cλ−1 |∇a‖2∞ 2

∑
β=1

2

∑
β=1
∫
Ω

εξ2|∂βDuε|2 dx.

Concerning the term B
1
, we would like to perform some integration by parts, which is one of the crucial

observations we are adapting from [24]. Neglecting the localization ξ in B
1
, we would like to use that

∫
Ω

∂
3
Sεαβ(Duε)∂α∂τβu

3

ε dx = ∫
Ω

∂αSεαβ(Duε)∂3∂τβu
3

ε dx.

This formula can be justified by using an appropriate approximation that exists for uε ∈ W1,2

0

(Ω) ∩W2,2(Ω),
since ∂τuε = 0 on ∂Ω. More precisely, to treat the term B

1
, we use that the solution uε of (2.12) belongs

toW1,2

0

(Ω) ∩W2,2(Ω). Thus, ∂τ(uε |ΩP ) = 0 on ∂ΩP ∩ ∂Ω, hence ξP∂τ(u3ε ) = 0 on ∂Ω. This implies that we can

find a sequence {(Sn ,Un)} ⊂ C∞(Ω) × C∞
0

(Ω) such that (Sn ,Un) → (Sε , ∂τuε) inW1,2(Ω) ×W1,2

0

(Ω), and per-
form calculations with (Sn ,Un), showing then that all formulas of integration by parts are valid. The passage

to the limit as n → +∞ is done only in the last step. For simplicity, we drop the details of this well-known

argument (sketched also in [24]), and we write directly formulas without this smooth approximation. Thus,

performing several integrations by parts, we get

∫
Ω

ξ2∂
3
Sαβ(Duε)∂α∂τβu3ε dx = ∫

Ω

(∂αξ2)Sαβ(Duε)∂3∂τβu3ε dx − ∫
Ω

(∂
3
ξ2)Sαβ(Duε)∂α∂τβu3ε dx

+ ∫
Ω

ξ2∂αSαβ(Duε)∂3∂τβu3ε dx

and

ε∫
Ω

ξ2∂
3
Dαβuε∂α∂τβu3ε dx = ε∫

Ω

(∂αξ2)Dαβuε∂3∂τβu3ε dx − ε∫
Ω

(∂
3
ξ2)Dαβuε∂α∂τβu3ε dx

+ ε∫
Ω

ξ2∂αDαβuε∂3∂τβu3ε dx.

This shows that

B
1
= ∫

Ω

2ξ∂αξSαβ(Duε)∂3∂τβu3ε dx − ∫
Ω

2ξ∂
3
ξSαβ(Duε)∂α∂τβu3ε dx

+ ∫
Ω

ξ2∂αSαβ(Duε)∂3∂τβu3ε dx + ε∫
Ω

2ξ∂αξDαβuε∂3∂τβu3ε dx

− ε∫
Ω

2ξ∂
3
ξDαβuε∂α∂τβu3ε dx + ε∫

Ω

ξ2∂αDαβuε∂3∂τβu3ε dx

=: B
1,1
+ B

1,2
+ B

1,3
+ B

1,4
+ B

1,5
+ B

1,6
.
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To estimate B
1,1

, B
1,3

, B
1,4

, B
1,6

, we observe that

∂
3
∂τβu3ε = ∂τβ∂3u3ε = ∂τβD33

uε .

By using Young’s inequality, the growth properties of S in (2.6) and (2.8), we get

|B
1,1
| ≤ ‖∇ξ‖2∞ ∫

Ω

|S(Duε)|2

ϕ󸀠󸀠(|Duε|)
dx + C

2

∑
β=1
∫
Ω

ξ2ϕ󸀠󸀠(|Duε|)|∂τβDuε|2 dx

≤ ‖∇ξ‖2∞ρϕ(|Duε|) + C
2

∑
β=1
∫
Ω

ξ2|∂τβF(Duε)|2 dx

and

|B
1,3
| ≤

2

∑
β=1
∫
Ω

ξ2
|∂βSαβ(Duε)|2

ϕ󸀠󸀠(|Duε|)
dx +

2

∑
β=1
∫
Ω

ξ2ϕ󸀠󸀠(|Duε|)|∂τβDuε|2 dx

≤ C
2

∑
β=1
∫
Ω

ξ2|∂βF(Duε)|2 + ξ2|∂τβF(Duε)|2 dx.

Similarly, we get

|B
1,4
| ≤ Cε‖∇ξ‖2∞‖Duε‖22 + C

2

∑
β=1
∫
Ω

εξ2|∂τβDuε|2 dx

and

|B
1,6
| ≤ Cε

2

∑
β=1
∫
Ω

ξ2|∂βDuε|2 + ξ2|∂τβDuε|2 dx.

To estimate B
1,2

and B
15
, we observe that, using the algebraic identity (3.4) and the definition of the

tangential derivative,

∂α∂τβu3ε = ∂α(∂βu3ε + ∂βa∂3u3ε )
= ∂α∂βu3ε + ∂α∂βaD33

uε + ∂βa ∂αD33
uε

= ∂αDβ3uε + ∂βDα3uε − ∂3Dαβuε + ∂α∂βaD33
uε + ∂βa∂αD33

uε .

Hence, by substituting and again the same inequalities as before, we arrive to the following estimates:

|B
1,2
| ≤ λC∫

Ω

ξ2|∂
3
F(Duε)|2 dx + C(1 + ‖∇a‖2∞)

2

∑
β=1
∫
Ω

ξ2|∂βF(Duε)|2 dx + cλ−1 (1 + ‖∇2a‖∞)‖∇ξ‖2∞ρϕ(|Duε|),
|B

1,5
| ≤ λ∫

Ω

εξ2|∂
3
Duε|2 dx + cλ−1 (1 + ‖∇a‖2∞) 2

∑
β=1
∫
Ω

εξ2|∂βDuε|2 dx + cλ−1 (1 + ‖∇2a‖∞)‖∇ξ‖2∞ε‖Duε‖22.
Collecting all estimates and using that ‖∇a‖∞ ≤ rP ≤ 1, we finally obtain

∫
Ω

εξ2|∂
3
Duε|2 +

1

C
0

ξ2|∂
3
F(Duε)|2 dx

≤ λ∫
Ω

εξ2|∂
3
Duε|2 dx + λC∫

Ω

ξ2|∂
3
F(Duε)|2 dx

+ cλ−1 2

∑
β=1
∫
Ω

ξ2|∂βF(Duε)|2 + ξ2|∂τβF(uε)|2 dx + cλ−1 2

∑
β=1
∫
Ω

εξ2|∂βDuε|2 dx

+ cλ−1(1 + ‖∇2a‖2∞ + (1 + ‖∇2a‖2∞)‖∇ξ‖2∞)(‖f‖p󸀠p󸀠 + ρϕ(|Duε|) + ρϕ(δ))
+ cλ−1(1 + ‖∇2a‖2∞ + (1 + ‖∇2a‖2∞)‖∇ξ‖2∞)‖Duε‖22.
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The quantities that are bounded uniformly in L2(ΩP) are the tangential derivatives of εDuε and of F(Duε). By
definition, we have

∂βDuε = ∂τβDuε − ∂βa∂3Duε ,
∂βF(Duε) = ∂τβF(Duε) − ∂βa∂3F(Duε),

and if we substitute, we obtain

∫
Ω

εξ2|∂
3
Duε|2 +

1

C
0

ξ2|∂
3
F(Duε)|2 dx

≤ (λ + 4‖∇a‖2∞) ∫
Ω

εξ2|∂
3
Duε|2 dx + (λC + cλ−1‖∇a‖2∞) ∫

Ω

ξ2|∂
3
F(Duε)|2 dx

+ cλ−1 2

∑
β=1
∫
Ω

ξ2|∂τβF(uε)|2 dx + cλ−1 2

∑
β=1
∫
Ω

εξ2|∂τβDuε|2 dx

+ cλ−1(1 + ‖∇2a‖2∞ + (1 + ‖∇2a‖2∞)‖∇ξ‖2∞)(‖f‖p󸀠p󸀠 + ρϕ(|Duε|) + ρϕ(δ))
+ cλ−1(1 + ‖∇2a‖2∞ + (1 + ‖∇2a‖2∞)‖∇ξ‖2∞)‖Duε‖22.

By choosing first λ > 0 small enough such that λC < 4−1C
0
and then choosing in the local description of

the boundary R = RP small enough such that cλ‖∇a‖∞ < 4−1C0, we can absorb the first two terms from the

right-hand side into the left-hand side to obtain

∫
Ω

εξ2|∂
3
Duε|2 +

1

C
0

ξ2|∂
3
F(Duε)|2 dx

≤ cλ−1 2

∑
β=1
∫
Ω

ξ2|∂τβF(uε)|2 dx + cλ−1 2

∑
β=1
∫
Ω

εξ2|∂τβDuε|2 dx

+ cλ−1(1 + ‖∇2a‖2∞ + (1 + ‖∇2a‖2∞)‖∇ξ‖2∞)(‖f‖p󸀠p󸀠 + ρϕ(|Duε|) + ρϕ(δ))
+ cλ−1(1 + ‖∇2a‖2∞ + (1 + ‖∇2a‖2∞)‖∇ξ‖2∞)‖Duε‖22,

where now cλ depends on the fixed paramater λ, the characteristics of S and on C
2
. The right-hand side is

bounded uniformlywith respect to ε > 0, due to Proposition 3.1, proving the assertion of the proposition.

Choosing now an appropriate finite covering of the boundary (for the details, see also [4]), Propositions 3.1–

3.2 yield the following result.

Theorem 3.3. Let the hypotheses in Theorem 1.1 with δ > 0 be satisfied. Then⁷

ε‖∇Duε‖2
2

+ ‖∇F(Duε)‖2
2

≤ C(‖f‖p󸀠 , δ, ∂Ω).
3.2 Passage to the limit

Once this has been proved, by means of appropriate limiting process, we can show that the estimate is inher-

ited by u = limε→0 uε, since u is the unique solution to the boundary value problem (1.1). We can now give

the proof of the main result.

Proof of Theorem 1.1. Let us firstly assume that δ > 0. From Propositions 2.3 and 2.7, and Theorem 3.3, we

know that F(Duε) is uniformly bounded with respect to ε in W1,2(Ω). This also implies (cf. [3, Lemma 4.4])

that uε is uniformly bounded with respect to ε inW2,p(Ω). The properties of S and Proposition 2.7 also yield

7 Recall that c(δ) only indicates that the constant c depends on δ and will satisfy c(δ) ≤ c(δ
0
) for all δ ≤ δ

0
.
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that S(Duε) is uniformly bounded with respect to ε in Lp󸀠 (Ω). Thus, there exists a subsequence {εn} (which
converges to 0 as n → +∞), u ∈ W2,p(Ω), F̃ ∈ W1,2(Ω), and χ ∈ Lp󸀠 (Ω) such that

uεn ⇀ u inW2,p(Ω) ∩W1,p
0

(Ω),

Duεn → Du a.e. in Ω,

F(Duεn ) ⇀ F̃ inW1,2(Ω),

S(Duεn ) ⇀ χ in Lp󸀠 (Ω).
The continuity of S and F, and the classical result stating that the weak limit and the a.e. limit in Lebesgue

spaces coincide (cf. [12]) imply that

F̃ = F(Du) and χ = S(Du).

These results enable us to pass to the limit in the weak formulation of the perturbed problem (2.12), which

yields

∫
Ω

S(Du) ⋅ Dv dx = ∫
Ω

f ⋅ v dx for all v ∈ C∞
0

(Ω),

where we also used that limεn→0 ∫
Ω

εnDuεn ⋅ Dv dx = 0. By density, we thus know that u is the unique weak

solution of problem (1.1). Finally, the lower semi-continuity of the norm implies that

∫
Ω

|∇F(Du)|2 dx ≤ lim inf

εn→0
∫
Ω

|∇F(Duεn )|2 dx ≤ c.

Note that in [3, Section 4] it is shown that

‖u‖p
W2,

3p
p+1 (Ω) ≤ c(‖F(Du)‖22 + δp),

which implies the Sobolev regularity stated in Theorem 1.1. This finishes the proof in the case δ > 0.
Let us now assume that δ = 0. Propositions 3.1 and 3.2 are valid only for δ > 0 and thus cannot be used

directly for the case that S has (p, δ)-structure with δ = 0. However, it is proved in [3, Section 3.1] that for

any stress tensor with (p, 0)-structure S, there exist stress tensors Sκ, having (p, κ)-structure with κ > 0,
approximating S in an appropriate way.⁸ Thus, we approximate (2.12) by the system

{
−div Sε,κ(Duε,κ) = f in Ω,

u = 0 on ∂Ω,

where

Sε,κ(Q) := εQ + Sκ(Q), with ε > 0, κ ∈ (0, 1).

For fixed κ > 0, we can use the above theory and the fact that the estimates are uniformly in κ to pass to the
limit as ε → 0. Thus, we obtain that for all κ ∈ (0, 1), there exists a unique uκ ∈ W

1,p
0

(Ω) satisfying, for all
v ∈ W1,p

0

(Ω),
∫
Ω

Sκ(Duκ) ⋅ Dv dx = ∫
Ω

f ⋅ v dx

and

∫
Ω

|Fκ(Duκ)|2 + |∇Fκ(Duκ)|2 dx ≤ c(‖f‖p󸀠 , ∂Ω), (3.5)

where the constant is independent of κ ∈ (0, 1) and Fκ : ℝ3×3 → ℝ3×3
sym

is defined through

Fκ(P) := (κ + |Psym|)
p−2
2 Psym.

8 The special case S(D) = |D|p−2D could be approximated by Sδ = (δ + |D|)p−2D. However, for a general extra stress tensor S
having only (p, δ)-structure, this is not possible.
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Now we can proceed as in [3]. Indeed, from (3.5) and the properties of ϕp,κ (in particular (2.3)), it follows

that Fκ(Duκ) is uniformly bounded in W1,2(Ω), that uκ is uniformly bounded in W1,p
0

(Ω) and that Sκ(Duκ)
is uniformly bounded in Lp󸀠 (Ω). Thus, there exist A ∈ W1,2(Ω), u ∈ W1,p

0

(Ω), χ ∈ Lp󸀠 (Ω), and a subsequence
{κn}, with κn → 0, such that

F(Duκn ) ⇀ A inW1,2(Ω),

Fκn (Duκn ) → A in L2(Ω) and a.e. in Ω,

uκn ⇀ u inW1,p
0

(Ω),

Sκ(Duκ) ⇀ χ in Lp󸀠 (Ω).
Setting B := (F0)−1(A), it follows from [3, Lemma 3.23] that

Duκn = (Fκn )−1(Fκn (Duκn )) → (F0)−1(A) = B a.e. in Ω.

Since weak and a.e. limit coincide, we obtain that

Duκn → Du = B a.e. in Ω.

From [3, Lemma 3.16] and [3, Corollary 3.22], it now follows that

F(Duκn ) ⇀ F0(Du) inW1,2(Ω),

Sκn (Duκn ) → S(Du) a.e. in Ω.

Since weak and a.e. limit coincide, we obtain that

Du = χ a.e. in Ω.

Now we can finish the proof in the same way as in the case δ > 0.

Funding: The research that led to the present paper was partially supported by a grant of the group GNAMPA
of INdAM.
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