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1 Introduction

In this paper we study regularity of weak solutions to the boundary value problem

{ —divS(@Du)=f inQ,
(1.1)

u=0 on oQ,

where Du := %(Vu +Vu") denotes the symmetric part of the gradient Vu and Q ¢ R3 is a bounded domain
with a C>! boundary 0Q.! Our interest in this system comes from the p-Stokes system

—divS(Du) + Vr=f inQ,
divu=0 in Q, (1.2)
u=0 on 0Q.

In both problems the typical example for S we have in mind is
S(Du) = u(6 + |Du|)’>Du,

wherep € (1, 2],6 > 0Oand u > 0. In previous investigations of (1.2), only suboptimal results for the regularity
up to the boundary have been proved. Here we mean suboptimal in the sense that the results are weaker than
the results known for p-Laplacian systems, cf. [1, 13, 14]. Clearly, system (1.1) is obtained from (1.2) by
dropping the divergence constraint and the resulting pressure gradient. Thus, system (1.1) lies in between
system (1.2) and p-Laplacian systems, which depend on the full gradient Vu.

We would like to stress that system (1.1) is of its own independent interest, since it is studied within
plasticity theory, when formulated in the framework of deformation theory (cf. [11, 24]). In this context the
unknown is the displacement vector field u = (u?, u?, u3)", while the external body force f = (f1, f2, f3)7

1 We restrict ourselves to the problem in three space dimensions, however the results can be easily transferred to the problem
inR9 forall d > 2.
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is given. The stress tensor S, which is the tensor of small elasto-plastic deformations, depends only on Du.
Physical interpretation and discussion of both systems (1.1) and (1.2) and the underlying models can be
found, e.g., in [5, 11, 15, 19, 20].

We study global regularity properties of weak solutions to (1.1) in sufficiently smooth and bounded
domains Q; we obtain, for all p € (1, 2], the optimal result, namely, that F(Du) belongs to W'2(Q), where
the nonlinear tensor-valued function F is defined in (2.5). This result has been proved near a flat bound-
ary in [24] and is the same result as for p-Laplacian systems (cf. [1, 13, 14]). The situation is quite different
for (1.2). There the optimal result, i.e., F(Du) € W2(Q), is only known for
(i) two-dimensional bounded domains (cf. [16], where even the p-Navier—Stokes system is treated);

(ii) the space-periodic problem in R4, d > 2, which follows immediately from interior estimates, i.e., F(Du) €

W110c2 (Q), which are known in all dimensions, and the periodicity of the solution;

(iii) if the no-slip boundary condition is replaced by perfect slip boundary conditions (cf. [17]);

(iv) in the case of small f (cf. [6]).

We also observe that the above results for the p-Stokes system (apart those in the space periodic setting)
require the stress tensor to be non-degenerate, that is, § > 0. In the case of homogeneous Dirichlet bound-
ary conditions and three- and higher-dimensional bounded, sufficiently smooth domains only suboptimal
results are known. To our knowledge, the state of the art for general data is that F(Du) ¢ Wllo’c2 (Q), tangential
derivatives of F(Du) near the boundary belong to L2, while the normal derivative of F(Du) near the boundary
belongs to some L9, where g = q(p) < 2 (cf. [2, 4] and the discussion therein). We would also like to men-
tion a result for another system between (1.2) and p-Laplacian systems, namely, if (1.2) is considered with S
depending on the full velocity gradient Vu. In this case, it is proved in [7] that u € W27(R3) n Wé P(R3) for
some r > 3, provided p < 2 is very close to 2.

In the present paper we extend the optimal regularity result for (1.1) of Seregin and Shilkin [24] in the
case of a flat boundary to the general case of bounded sufficiently smooth domains and to possibly degenerate
stress tensors, that is, the case § = 0. The precise result we prove is the following:

Theorem 1.1. Let the tensor field S in (1.1) have (p, 6)-structure (cf. Definition 2.1) for some p € (1, 2] and
8 € [0, 00), and let F be the associated tensor field to S defined in (2.5). Let Q ¢ R> be a bounded domain with
C%1 boundary, and let f € LPI(Q). Then the unique weak solution u € Wé’p (Q) of problem (1.1) satisfies

JWF(Du)I2 dx <c,
h

where c denotes a positive function which is non-decreasing in ||f||, and 8, and which depends on the domain

through its measure |Q| and the C*-norms of the local description of Q. In particular, the above estimate
3

implies that u € W2 71 (Q).

2 Notations and preliminaries

In this section we introduce the notation we will use, state the precise assumptions on the extra stress ten-
sor S, and formulate the main results of the paper.

2.1 Notation

We use c, C to denote generic constants which may change from line to line, but they are independent
of the crucial quantities. Moreover, we write f ~ g if and only if there exists constants ¢, C > 0 such that
cf < g < Cf.In some cases we need to specify the dependence on certain parameters, and consequently we
denote by c(-) a positive function which is non-decreasing with respect to all its arguments. In particular,
we denote by c(671) a possibly critical dependence on the parameter § as § — 0, while ¢(8) only indicates
that the constant ¢ depends on 6 and will satisfy c(8) < c(8p) for all § < 6.
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We use standard Lebesgue spaces (LP(Q), || - [l,) and Sobolev spaces (W*P(Q), || - [lx, ), where Q ¢ R?isa
sufficiently smooth bounded domain. The space Wé ’P(Q) is the closure of the compactly supported, smooth
functions C3°(Q) in WLP(Q). Thanks to the Poincaré inequality, we equip Wé *P(Q) with the gradient norm
[V-lp. When dealing with functions defined only on some open subset G ¢ Q, we denote the norm in L?(G)
byl - lp,c. As usual, we use the symbol — to denote weak convergence, and — to denote strong convergence.
The symbol spt f denotes the support of the function f. We do not distinguish between scalar, vector-valued
or tensor-valued function spaces. However, we denote vectors by boldface lower-case letter as, e.g., u and
tensors by boldface upper case letters as, e.g., S. For vectors u, v € R3, we denoteu é V= %(u QV+(uev)’),
where the standard tensor product u ® v e R3*3 is defined as (u ® V)jj := u;vj. The scalar product of vectors
isdenoted byu-v = Y7 | u;v; and the scalar product of tensors is denoted by A - B := Z?’jzl AjjBj;.

Greek lower-case letters take only the values 1, 2, while Latin lower-case ones take the values 1, 2, 3.
We use the summation convention over repeated indices only for Greek lower-case letters, but not for Latin
lower-case ones.

2.2 (p, 0)-structure

We now define what it means that a tensor field S has (p, §)-structure, see [8, 23]. For a tensor P € R3*3, we
denote its symmetric partby P := 2 (P + PT) € R3)3 := {P € R> | P = PT}. We use the notation [P|> =P - P".

sym *
It is convenient to define for ¢t > 0 a special N-function? ¢(-) = ¢ s(-), for p € (1, 00), 6 = 0, by

t
P(t) := J((S + 5P 2sds. (2.1)
0
The function ¢ satisfies, uniformly in t and independently of §, the important equivalences
P" (Ot~ ¢'(0), (2.2)
P' (Ot ~ (D),
t? + 67 ~ ¢p(t) + 6°. (2.3)

We use the convention that if ¢"/(0) does not exist, the left-hand side in (2.2) is continuously extended by
zero for t = 0. We define the shifted N-functions {¢4}450 (cf. [8, 9, 23]), for t > 0, by

t

Pa(t) := J. w ds

a+s
0

Note that the family {¢p,} 450 satisfies the A, -condition uniformly with respectto a > 0, i.e., p4(2f) < c(p)p4(t)
holds for all ¢ > 0.

Definition 2.1 ((p, §)-structure). We say that a tensor field S: R>®> — R332, belonging to CO(R**?, R32) n
CH(R¥3\ {0}, R):3), satisfying S(P) = S(P¥Y™) and $(0) = 0, possesses (p, 6)-structure if for some p € (1, c0),
6 € [0, c0), and the N-function ¢ = ¢ 5 (cf. (2.1)), there exist constants ko, k1 > O such that

3

Z 0aSiji(P)QijQur = kod" (IPV™NIQV™|2,  [014Sii(P)| < k19" (IPF™]) (2.4)

ijl=1

for all P, Q € R332, with PY™ # 0, and all i, j, k, [ = 1, 2, 3. The constants ko, k1 and p are called the charac-
teristics of S.

Remark 2.2. (i) Assume that S has (p, 8)-structure for some 6 € [0, §y]. Then, if not otherwise stated, the
constants in the estimates depend only on the characteristics of S and on 6, but they are independent
of 8.

2 For the general theory of N-functions and Orlicz spaces, we refer to [21].
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(ii) Animportantexample of a tensor field S having (p, §)-structure is given by S(P) = ¢’ (|PSY™|)|PSy™|~-1psym,
In this case, the characteristics of S, namely, ko and k1, depend only on p and are independent of § > 0.

(iii) For a tensor field S with (p, §)-structure, we have 0y;S;;(P) = 01S;i(P) for all i,j, k,1=1,2,3 and all
P ¢ R*3, due to its symmetry. Moreover, from S(P) = S(PY™), it follows that 01Sii(P) = %6k15ij(P5Vm) +
$0uS;;(PY™) for all i,j,k,1=1,2,3 and all P e R**3, and consequently 0x;S;(P) = 0;S(P) for all
i,j,k,1=1,2,3and allP € R33.

To a tensor field S with (p, §)-structure, we associate the tensor field F: R33 — IRQ’YXIEl defined through
F(P) := (6 + [PSV™m)) =" pym, (2.5)

The connection between S, F, and {¢4}4>0 is best explained in the following proposition (cf. [8, 23]).

Proposition 2.3. Let S have (p, 6)-structure, and let F be as defined in (2.5). Then

(S(P)-S(Q)) - (P - Q) ~ [F(P) - F(Q)|* ~ ¢jpsm(IPY™ - Q™))
- ¢II(|Psym| + |Psym _ stml)lpsym _ stm|2,
IS(P) = S(Q)| ~ b]peym(IPV™ — Q™)) 2.6)

uniformly in P, Q € R3*3. Moreover, uniformly in Q € R3*3,

S(Q)-Q ~ [F(Q)* ~ $(1Q>™)).
The constants depend only on the characteristics of S.

For a detailed discussion of the properties of S and F and their relation to Orlicz spaces and N-functions, we
refer the reader to [3, 23]. Since in the following we shall insert into S and F only symmetric tensors, we can
drop in the above formulas the superscript “sym” and restrict the admitted tensors to symmetric ones.

We recall that the following equivalence, which is proved in [3, Lemma 3.8], is valid for all smooth enough
symmetric tensor fields Q € R33:

10;F(Q)* ~ ¢" (1Q)[0:QI*. (2.7)

The proof of this equivalence is based on Proposition 2.3. This proposition and the theory of divided differ-
ences also imply (cf. [4, Equation (2.26)]) that

l0-F(QI* ~ ¢ (1QDI0-QJ (2.8)

for all smooth enough symmetric tensor fields Q € R33.

A crucial observation in [24] is that the quantities in (2.7) are also equivalent to several further quantities.
To formulate this precisely, we introduce, fori = 1, 2, 3 and for sufficiently smooth symmetric tensor fields Q,
the quantity

3
Pi(Q) :=08(Q)-0iQ= Y  OuSmn(Q)diQuiiQuin. (2.9)

k,l,m,n=1

Recall that in the definition of P;(Q) there is no summation convention over the repeated Latin lower-case
index i in 0;S(Q) - 0;Q. Note that if S has (p, §)-structure, then P;(Q) > 0 fori = 1, 2, 3. The following impor-
tant equivalences hold, first proved in [24].

Proposition 2.4. Assume that S has (p, 6)-structure. Then the following equivalences are valid, for all smooth
enough symmetric tensor fields Qand alli = 1, 2, 3:

P:(Q) ~ ¢"(1Q))10;QI* ~ [9;F(Q)I?, (2.10)
oy 10iSQ)
Pi(Q) FUTR (2.11)

with the constants only depending on the characteristics of S.
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Proof. The assertions are proved in [24] using a different notation. For the convenience of the reader, we
sketch the proof here. The equivalences in (2.10) follow from (2.7), (2.9) and the fact that S has (p, 6)-
structure. Furthermore, using (2.10), we have

2 Pi(Q)

fP,' 2_6,’5 Zai 2_ ais NI
[P:(Q)I < 10:S(Q)I*10:Ql” < c[0;S(Q)| #7(1QD)

which proves one inequality of (2.11). The other one follows from

3
10iS@)* < ¢ ) 10kS(@);Quil* < c(¢"(1Q1)*10:Q1 < cd” (1Q)Pi(Q),
k=1

where we used (2.4) and (2.10). O

2.3 Existence of weak solutions

In this section we define weak solutions of (1.1), recall the main results of existence and uniqueness and
discuss a perturbed problem, which is used to justify the computations that follow. From now on, we restrict
ourselves to the case p < 2.

Definition 2.5. We say that u € W, (Q) is a weak solution to (1.1) if for all v € W 7 (Q),

JS(Du)-Dvdx: Jf~vdx.
Q Q

We have the following standard result.

Proposition 2.6. Let the tensor field S in (1.1) have (p, §)-structure for some p € (1,2] and 6 € [0, co). Let
Q c R3 be a bounded domain with C>' boundary, and let f ¢ LP'(Q). Then there exists a unique weak solution
u to (1.1) such that

| p(iDup ax < cai. o).

Q

Proof. The assertions follow directly from the assumptions by using the theory of monotone operators. [
In order to justify some of the following computations, we find it convenient to consider a perturbed prob-

lem, where we add to the tensor field S with (p, §)-structure a linear perturbation. Using again the theory of
monotone operators one can easily prove the following proposition.

Proposition 2.7. Let the tensor field S in (1.1) have (p, 6)-structure for some p € (1, 2] and 6§ € [0, co), and let
feL? (Q) be given. Then there exists a unique weak solution u. € Wé ’Z(Q) of the problem

—divS*(Du,) =f inQ,
(2.12)
u. =0 onoqQ,
where
Sf(Q) :=Q+S(Q), withe >0,
i.e., U, satisfies, for all v € Wé’z(Q),
J S¢(Du;) -Dvdx = j f. vdx.
Q Q
The solution u. satisfies the estimate
J elVu|? + p(IDuc]) dx < c(fl,, 6). (2.13)

Q
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Remark 2.8. In fact, one could already prove more at this point. Namely, that for ¢ — 0, the unique solution
u. converges to the unique weak solution u of the unperturbed problem (1.1). Let us sketch the argument
only, since later we get the same result with different easier arguments. From (2.13) and the properties of S
follows that

u. —u inW,PQ),

S(Du;) — x inL?(Q).
Passing to the limit in the weak formulation of the perturbed problem, we get

J)(-Dvdx: If~vdx forall v e Wy (Q).
0 0

One can not show directly that lim._,¢ fQ eDu; - (Du, — Du) dx = 0, since Du belongs to L?(Q) only. Instead
one uses the Lipschitz truncation method (cf. [10, 22]). Denoting by v&/ the Lipschitz truncation of é(ug —u),
where ¢ € C3°(Q) is a localization, one can show, using the ideas from [10, 22], that

lim sup J(S(Dug) — S(Du)) - Dv® dx| = 0,

-0

which implies Du; — Du almost everywhere in Q. Consequently, we have y = S(Du), since weak and a.e. lim-
its coincide.

2.4 Description and properties of the boundary

We assume that the boundary 0Q is of class C?1, that is, for each point P € 0Q, there are local coordinates
such that, in these coordinates, we have P = 0 and 0Q is locally described by a C>!-function, i.e., there exist
Rp, R}, € (0,00), rp € (0, 1) and a C**-function ap: BIZQP(O) - lee' (0) such that

(b1) x € 0Q N (B (0) x BL, (0)) & X3 = ap(x1, x2), !

(b2) Qp := {(x, x3) | X = (X1, x2)7 € B, (0), ap(x) < x3 < ap(x) + Rp} € Q,

(b3) Vap(0) =0, and for all x = (x1, x2)T € BIZQP(O), [Vap(x)| < rp,

where B’r‘ (0) denotes the k-dimensional open ball with center O and radius r > 0. Note that rp can be made
arbitrarily small if we make Rp small enough. In the sequel, we will also use, for 0 < A < 1, the following
scaled open sets:

AQp :={(x,x3) | x = (x1,x2)" € BiRP(O), ap(x) < x3 < ap(x) + ARp} € Qp.

To localize near to 0Q N 9Qp for P € 0Q, we fix smooth functions ép: R*> — R such that
(€1) X10,(X) < &p(X) <X30,(%),
where y,4(x) is the indicator function of the measurable set A. For the remaining interior estimate, we
localize by a smooth function 0 < &y < 1, with sptépo ¢ Qoo, Where Qo ¢ Q is an open set such that
dist(0Qop, 0Q) > 0. Since the boundary 0Q is compact, we can use an appropriate finite sub-covering which,
together with the interior estimate, yields the global estimate.

Let us introduce the tangential derivatives near the boundary. To simplify the notation, we fix P € 0Q,
h € (0, %), and simply write & := &p, a := ap. We use the standard notation x = (x’, x3) and denote by el,
i =1, 2,3, the canonical orthonormal basis in R3. In the following, lower-case Greek letters take the values
1, 2. For a function g, with spt g c spt ¢, we define, fora = 1, 2,

8r(x', x3) = gr, (X', x3) 1= g(x' + he®, x5 + a(x’ + he®) - a(x")),

andif A*g := g — g, we define tangential divided differences by d*g := h~1A*g. It holds that, if g € W11(Q),
then we have fora =1, 2
d*g — 08 =07,8:=0a8 +0qa038 ash— 0, (2.14)
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almost everywhere in spt & (cf. [18, Section 3]). Conversely, uniform L?-bounds for d*g imply that 0,g belongs
to Li(spt &). For simplicity, we denote Va := (914, 9,a, 0)". The following variant of integration by parts will
be often used.

Lemma 2.9. Letsptg Usptf c spté, and let h be small enough. Then

[ fo-rax= [ frgax

Q Q
Consequently, IQ fdtgdx = fQ(d*f)g dx. Moreover, if in addition f and g are smooth enough and at least one
vanishes on 0Q, then

| forgdx = [(@:pgax.

Q Q

3 Proof of the main result

In the proof of the main result we use finite differences to show estimates in the interior and in tangential
directions near the boundary, and for calculations involving directly derivatives in “normal” directions near
the boundary. In order to justify that all occurring quantities are well posed, we perform the estimate for the
approximate system (2.12).

The first intermediate step is the following result for the approximate problem.

Proposition 3.1. Let the tensor field Sin (1.1) have (p, §)-structure forsomep € (1, 2] and 6 € (0, co), and let F
be the associated tensor field to S. Let Q ¢ R3 be a bounded domain with C** boundary and let f ¢ v (Q). Then
the unique weak solution u; € Wé’z(Q) of the approximate problem (2.12) satisfies?

J 85IV u|* + &5 IVF(Due)|” dx < c(Iflp, 1€0112,005 6),
Q

J&fﬁlarDusIz + &p10F(Due)|* dx < c(Ifllp, 1€p112,00, laplica, 6).
0

(3.1)

Here & is a cut-off function with support in the interior of Q, while for arbitrary P € 0Q the function &p is a cut-off
function with support near to the boundary 0Q, as defined in Section 2.4. The tangential derivative 0 is defined
locally in Qp by (2.14). Moreover, there exists a constant C1 > O such that*

j £&2103Du|? + &2|03F(Du,)|? dx < c(Iflly, 11€12,00, lallc21, 671, €71, C), (3.2)
Q

provided that in the local description of the boundary, we have rp < Cq in (b3).
In particular, these estimates imply that u, € W%2(Q) and that (2.12) holds pointwise a.e. in Q.

The two estimates in (3.1) are uniform with respect to € and could be also proved directly for problem (1.1).
However, the third estimate (3.2) depends on ¢ and it is needed to justify all subsequent steps, which will
give the proof of an estimate uniformly in &, by using a different technique.

Proof of Proposition 3.1. The proof of estimate (3.1) is very similar, being in fact a simplification (due to the
fact that there is no pressure term involved) to the proof of the results in [4, Theorems 2.28 and 2.29]. On the
other hand, the proof of (3.2) is different from the one in [4] due to the missing divergence constraint. In fact,
it adapts techniques known from nonlinear elliptic systems. For the convenience of the reader, we recall the
main steps here.

3 Recall that c(6) only indicates that the constant ¢ depends on § and will satisfy c(8) < c(6¢) for all § < 6p.
4 Recall that c(671) indicates a possibly critical dependence on § as § — 0.
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Fix P € 0Q and use in Qp
v =d (§%d"(ucl1q,)),

where & := ép, a :=ap,and h € (O, 1¢)» as a test function in the weak formulation of (2.12). This yields

j £2d*S¢(Du,) - d*Du, dx = — J SE(Du,) - (£2d" 05w — (£-rd & + Ed-E)03u,) & dVa dx
Q Q

- j SE(Du,) - £2(95uy), @ d-d*Va — SE(Duy) - d(26VE & d*uy) dx

+ | S5((Dug),) - (2£03éd u, + {2d+63u£) ® d*Vadx

+

f.d (£2d"u,)dx = ZI,
j=1

i
i

From the assumption on S, Proposition 2.3 and [4, Lemma 3.11], we have the following estimate:

j e&?|dVu,|? + e&2|Vd ug|? + |d*F(Duy)|” + ¢(£|Vd*ul) + p(£|d*Vul) dx
Q
<c j £2d*S5(Du;) - d*Dug dx + (€10, lallcrr) j d(Vug|) dx.
Q Qnspt &

The terms I, -1 are estimated exactly as in [4, Equations (3.17)—(3.22)], while I is estimated as the term I;5
in [4, (4.20)]. Thus, we get

j 2|d V. + €2V u, + E1d FDU) + p(Ed Vue]) + p(EVd* u,) dx

< c(Ifllpr, 18112,00, Nallc21, 6).

This proves the second estimate in (3.1) by standard arguments. The first estimate in (3.1) is proved in the
same way with many simpliﬁcations since we work in the interior where the method works for all directions.
This estimate implies that u, € loc (Q) and that the system (2.12) is well-defined point-wise a.e. in Q.

To estimate the derivatives in the x3 direction, we use equation (2.12) and it is at this point that we have
changes with respect to the results in [4]. In fact, as usual in elliptic problems, we have to recover the partial
derivatives with respect to x3 by using the information on the tangential ones. In this problem the main diffi-
culty is that the leading order term is nonlinear and depends on the symmetric part of the gradient. Thus, we
have to exploit the properties of (p, §)-structure of the tensor S (cf. Definition 2.1). Denoting, fori = 1, 2, 3,
fi 1= —fi — 0y¢Si3(DU:)03DyUe — 22,121 0Sip(Dug)ogDiue, we can re-write the equations in (2.12) as fol-
lows:

3
2. %3Si3(DUe)03 DisUe + 034513 (D) 03 D3alle = i ae.in Q.
k=1
Contrary to the corresponding equality [4, Equation (3.49)], here we use directly all the equationsin (1.1), and
not only the first two. Now we multiply these equations not by 03 D;3u, as expected, but by 03 Di3u,, where
ﬁa/;ug =0fora,f=1,2, ﬁa;;llg = ﬁ3au£ =2Dg3ucfora =1, 2, ’D\33u‘g = D33u.. Summingoveri =1, 2, 3, we
get, by using the symmetries in Remark 2.2 (iii), that

4aa33 (Dus)aBDa3usaBDB3u£ + zaa3533(Due)a3Da3u£aBD33u£

+ 203355 (Du;)03D33u:03Dp3ue + 933555 (DUe)93D33u:03 D330, = Z fiosDizue  ae.inQ. (3.3)
i=1

5 Recall that we use the summation convention over repeated Greek lower-case letters from 1 to 2.
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To obtain a lower bound for the left-hand side, we observe that the terms on the left-hand side of (3.3)
containing S are equal to

3
Z 0x1Sij(Due) Q45 Qu

i,j,k,1=1

if we choose Q = 93Du,, where Dogu, = 0 for a, f = 1, 2, Da3@e = DU, = Dosu, for a = 1, 2, and D33u, =
D33u,. Thus, it follows from the coercivity estimate in (2.4) that these terms are bounded from below by
Ko (|Dug|)|0;Dug 2. Similarly, we see that the remaining terms on the left-hand side of (3.3) are equal to
£|03Du,|2. Denoting b; := d3Dj3u,,i = 1, 2, 3, we see that |b| ~ [Dug| ~ [Du,|. Consequently, we get from (3.3)
the estimate

(e+¢" (IDug))lbl < |f| a.e.inQ.

By straightforward manipulations (cf. [4, Sections 3.2 and 4.2]), we can estimate the right-hand side as
follows:

Il < c(Ifl + (€ + ¢" (IDUL])) (10 VUe| + [Valloo| V> uel)).
Note that we can deduce from b information about b; := a§3u§, i=1,2,3,because
6] > 26| - [0, Vue| - [Valleo| V2 ue|
holds a.e. in Qp. This and the last two inequalities imply
(e + @" (IDuc))Ib] < c(If] + (g + " (IDU))) (10 VUe| + [Vallo|VZue]))  ace.in Qp.
Adding on both sides, fora = 1,2 and i, k = 1, 2, 3, the term
(€ + ¢" (IDuc)))|dq0ufl,
and using on the right-hand side the definition of the tangential derivative (cf. (2.14)), we finally arrive at
(e +¢" (IDU )|V ue| < c(If| + (e + ¢ (IDUD) (10 VU] + [Valloo| V2 Ue)),

which is valid a.e. in Qp. Note that the constant ¢ only depends on the characteristics of S. Next, we can
choose the open sets Qp in such a way that |[Vap(x)l|«,q, is small enough, so that we can absorb the last term
from the right-hand side, which yields

(e +¢" (IDu)|Vue| < c(Ifl + (¢ + ¢" (D)0 Vue|) a.e.inQp,

where again the constant ¢ only depends on the characteristics of S. By neglecting the second term on the
left-hand side (which is non-negative), raising the remaining inequality to the power 2, and using that S has
(p, 6)-structure for p < 2, we obtain
€+ 622
I e&3Viu > dx < c jlfl2 dx + %(e j
Q Q

£2|0,Vu, ? dx).

The already proven results on tangential derivatives and Korn’s inequality imply that the last integral from
the right-hand side is finite. Thus, the properties of the covering imply the estimate in (3.2). O

3.1 Improved estimates for normal derivatives
In the proof of (3.2), we used system (2.12) and obtained an estimate that is not uniform with respect to €. In

this section, by following the ideas in [24], we proceed differently and estimate P5 in terms of the quantities
occurring in (3.1). The main technical step of the paper is the proof of the following result.
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Proposition 3.2. Let the hypotheses in Theorem 1.1 be satisfied with 6 > 0, and let the local description ap
of the boundary and the localization function &p satisfy (b1)—(b3) and (£1) (cf. Section 2.4). Then there exists
a constant C, > 0 such that the weak solution u, € Wé’z(Q) of the approximate problem (2.12) satisfies, for
every P € 0Q,

J €&3103Due|* + £310sF(Duy)|” dx < C(Ifllp, 1€pl12,00, laplc21, 8, Ca),

Q
provided rp < C; in (b3).

Proof. Letus fix an arbitrary point P € 0Q and a local description a = ap of the boundary and the localization
function ¢ = ¢p satisfying (b1)-(b3) and (£1). In the following we denote by C constants that depend only on
the characteristics of S. First we observe that, by the results of Proposition 2.4, there exists a constant Co,
depending only on the characteristics of S, such that

1
C—|agl=(1)ug)|2 < P3(Du,) a.e.inQ.
0
Thus, using also the symmetry of Du, and S, we get

j ££210;Du, | + Cifz|a31=(nug)|2 dx < J £2(£95Du, + 0;S(Du,)) - 95D, dx
0
Q

3
Y &(ed3Djju. + 055;5(Du,))0305u’ dx
i,j=1

D, O, O

&2(£03Dgpue + 03S45(DU,))d3Dapu, dx

+ [ (6030300 + 05534(D))daD3su, dx

)
3
+ j z 3(eDj3ug + S,g(Dug))a3u8 dx
o=t

=: 11 +12+I3.

To estimate I, we multiply and divide by the quantity /¢ (|Du,[) # 0, and use Young’s inequality and
Proposition 2.4. This yields that, for all A > 0, there exists ¢y > 0 such that

¢" (IDug|) 2 2 4 2 2
IL| < J£2|a3S(Du )]daDug| Y DUe dx+/1[e§ 195D, |2 dx + ¢ Jeé’ 19Du |2 dx
Z:;l € a € /—¢H(|Du€|) ) € az::lg 74 €

2

2|a3S(Dus)| ) ,
d -1 Du;|)[0,Duc | d
(J;'f ¢"(|D X+ Ca ,;(J;‘S ¢ (IDug )| u.|” dx

1~}

A

IN

2

+1 J £&2|03Dug|? dx + cp Z
aQ a=1

£&82]0,Dug|? dx

O —

2
<ch J £2105FDuy)dx +ca Y [ £210,FDu)P dx
Q a=

-
o —

2
+1 J &%|0sDu;|* dx + cpr Y I ££%0,Du,|* dx.

Q Q

Here and in the following we denote by c)-: constants that may depend on the characteristics of Sand on A1,
while C denotes constants that may depend on the characteristics of S only.

6 Recall that c(6) only indicates that the constant ¢ depends on 6§ and will satisfy c(§) < c(6o) forall § < 6.
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To treat the third integral I5, we proceed as follows: We use the following well-known algebraic identity,
valid for smooth enough vectorsvand i, j, k=1, 2, 3:

a,-akvf = 0jDixV + 0k DjjV — 0;Djrv, (3.4)
and equations (2.12) point-wise, which can be written, forj = 1, 2, 3, as
03(eDjzu, + Sj3(Dug)) = —fi - 0g(eDjpu, + S,-/_;(Du,.;)) a.e.in Q.

This is possible due to Proposition 3.1. Hence, we obtain

3
L] < zl I £2(~ f - 05S;5(Du;) — £d5Djpu;)(205Dj3uts — 0;D33u;) dx|.
j=1 Q
The right-hand side can be estimated in a way similar to I,. This yields that, for all A > 0, there exists cy > 0
such that

Vo"(Duc)

2 2
Ll< | &(If 95S(Du,)| )( 2|05 Du, 9.Du,
|3|<£€(||+Z|ﬁ(u)|)(|3 wl+ Y wl) S

p=1

2

i J ££%103Du 2 dx + c1 ) J ££2|9Du,|? dx
Q B=1g

2
< ch§2|a3F(Du8)|2 dx+cp Y J.52|a,;1=(1)u8)|2 dx+AJs.{2|63Dug|2 dx
Q B=1g Q
+c ijs{zla Du.|?> dx + ¢ J IR dx
A P ") ¢7(Du.)
Q Q
2
< ACI{2|63F(DuS)|2 dx+cp Y szlagF(Dug)Iz dx+Aje.{2|63Dug|2 dx
Q B=1g Q
2 1
+Ct Y Je{2|aﬂnu€|2 dx + ckl(ufng, + [Dugll} + 67).
ﬁzlg

Observe that we used p < 2 to estimate the term involving f.
To estimate I;, we employ the algebraic identity (3.4) to split the integral as follows:

I = J &2(£03Dgpuie + 03S45(DU,))(04D3pu, + OpD3u,) dX — J &2(£03Dqpus + 03S45(DU,))pdqu dx
Q Q
=: A+ B.

The first term is estimated in a way similar to I, yielding, for all A > 0O,

2
|A] < CA j &£%|0sF(Dug)|> dx + cpr Y. j &2|0gF(Du,)|? dx
Q B=1g
2
‘A J ££210;Du, 2 dx + 10 Y j ££2(0Du,|? dx.
Q B=1g

To estimate B we observe that by the definition of the tangential derivative, we have
aaaﬁug = aaarﬁug — (aaaﬁa)D33u5 - (aﬁa)aaD33uE,
and consequently the term B can be split into the following three terms:

- J £%(£03Dapug + 03Sap(Du,))(0a0r, Uz — (020pa)D33u — (0pa)0qD331) dX =: By + By + Bs.
Q
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We estimate B, as follows:

V¢"(Due)
V" (IDugl)

dx + ci IV2al, J £2Du, 2" (IDu,|) dx
Q

B2l < [ €10:8DuovaliDu
Q

,10:8(Duy)?

<] " (Du,)

+£&2|03Dug||V2a||Dug| dx

) J ££213;Du, |2 dx + c11 [V2all%, J &2 |Du,|? dx
Q Q

1
<AC J &2103F(Duy)|? dx + cp1 V2 alZ pg (IDu|) + 3 J ££%103Du,|? dx + 2¢[ Va2, [Ducl3.
Q Q
The term Bj is estimated in a way similar to I, yielding, for all A > 0,
2
B3] < AC j £2105F(Du,) 2 dx + ¢ [Val, Y J £2105F(Du,)[? dx
Q B=1g

2 2
A J £22103Du? dx + - ValZ, Y Y J ££2(05Du, | dx.
0 p=1p=14
Concerning the term By, we would like to perform some integration by parts, which is one of the crucial
observations we are adapting from [24]. Neglecting the localization & in By, we would like to use that

J 0355 5(DUe)adr,ul dx = j 00 5(DUL)d3 07,142 dx.

Q Q
This formula can be justified by using an appropriate approximation that exists for u, € Wé’z(Q) nw2(Q),
since d;u. = 0 on 9Q. More precisely, to treat the term By, we use that the solution u, of (2.12) belongs
to Wé’z(Q) N W2:2(Q). Thus, 0¢(Ug|q,) = 0 0n 0Qp N 0Q, hence &pd-(u?) = 0 on Q. This implies that we can
find a sequence {(8,, Un)} C C®(Q) x CP(Q) such that (8, Uy) — (8¢, d,u.) in WH2(Q) x Wy*(Q), and per-
form calculations with (8,, U,), showing then that all formulas of integration by parts are valid. The passage
to the limit as n — +oo is done only in the last step. For simplicity, we drop the details of this well-known
argument (sketched also in [24]), and we write directly formulas without this smooth approximation. Thus,
performing several integrations by parts, we get

J’ 520380(/3(1)“8)6(161,; ui dx = J'(aagz)saﬁ(Dus)aB Oz, ug ax - J’(a3fz)saﬁ(nus)aaarﬂug dx

Q Q Q
+ j £20,54p(DU,)0307, 182 dx
Q
and
e I £205D 41 0q0r,ul dX = € I(aa.fz)paﬂug@am 3 dx - ¢ J(a3.{2)DaﬁuSaaaTﬂu§ dx
Q Q Q
re J £204D a1 0307,18 d.
Q
This shows that

By = j 2£04£Sop (D) 0307, dX j 280585 4p(DUL) 0,12 dx
Q Q
" J £20,S4(DU)0307, 182 dX + £ j 2£048D 41030+, U3 dX
Q Q
e J 2£058D 41040, 12 dX + £ J £20,Dapuiz0307,182 dx
Q Q
=: Bl,l + Bl,Z + 31,3 + B1,4 + Bl,5 + Bl,6-
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To estimate B1 1, B1,3, B1,4, B1,6, We observe that
a3afﬁu2 = arﬁaﬂlg = aTBD33ug.

By using Young’s inequality, the growth properties of S in (2.6) and (2.8), we get

S(Du,)|?
Bl < IVEI2, | ISDu.)

2
= _dx+C § J§2¢”(|Du€|)|ar Du,|? dx
n B
] ¢" (IDug|) =y

2
< IV§12pp(Ducl) + C ' [ 2107, FDuc)” dx
ﬂzlg
and

[05S45(Dug)|? 2
Biols Y | tnes dxs Y, [ £ (Duchior, Duf dx
B=1p B=1p

<C

’EM~

j £2105FDu,)|? + 210, F(Du)|? dx.
Q

Similarly, we get
2
IB1,4] < CellVEIZ, IDu|% + C Z IElearﬂDuslz dx
ﬂ=1Q
and ,
Biol<Ce Y J52|aﬂnug|2 + £210,,Dug|? dx.
,B=1Q

To estimate B, and Bis, we observe that, using the algebraic identity (3.4) and the definition of the
tangential derivative,
007, U; = 0a(dpuy + dpaosu;)
= 040pU; + 0q0paDs3u + dpa daD33u,
= 0¢Dp3ue + 0gDy3ue — 03Dgpu; + 040paD33u, + 0gadgD3su,.

Hence, by substituting and again the same inequalities as before, we arrive to the following estimates:

N

[B1,2l <AC J &2|0sF(Du)|? dx + C(1 + [|[ValZ) Z J’ &2|0gF(Duy)|? dx + a1 (1 + V2 alloo)IVEN 2, pp (IDU]),
Q B=1g

2
IB1,5l <A J £&%|03Duc|” dx + o (1 +[Vald,) Y J £&2|10pDug|? dx + cp1(1 + IV alloo) IVE (12 € Dugl3.
Q B=1q

Collecting all estimates and using that |Va| < rp < 1, we finally obtain

1
[ e¢0:0u.2 + = ¢210:F(Du P ax
o 0
<1 j ££2|35Du,|? dx + AC j £2/35F(Du,)? dx

Q
2 2

o j £210gF DU, + £210, Fue)2 dx+ cpr Y J ££2|0Du,|? dx
B=1p B=1g

+ e (14 IV2ald, + (L + 1V ali)IVEN, ) (IFIP, + py(IDuel) + py(6))
e (1+IV2ald, + (1 + 1V2alZ)IVEIZ,)IDue]3.
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The quantities that are bounded uniformly in L?(Qp) are the tangential derivatives of eDu, and of F(Du,). By
definition, we have

0gDu, = aTﬁDug - 0paosDu,,
0pF(Du;) = 0.,F(Du;) - 0gaosF(Du,),

and if we substitute, we obtain

1
[ e210:Ducl? + %105 FDu.) P dx
s 0
< (A +4|val’) J ££213;Du,|? dx + (AC + cp1[Val2,) j £2/35F(Duy) 2 dx

Q Q
2

2

ron Y j £210,Fuo)2 dx+ cpr Y I ££2(0,,Du, |? dx
B=IQ B=IQ

1+[V2al +(1+ ||V2a||§0)||vf||§o)(||f||i/ +pg(IDug]) + pgy(6))

+ CA—l(
+ o (1+V2alg, + (1 + [V2alZ)IVENZ, ) IDug 3.

By choosing first A > 0 small enough such that AC < 4~1Cy and then choosing in the local description of
the boundary R = Rp small enough such that c;||Valls < 471Co, we can absorb the first two terms from the
right-hand side into the left-hand side to obtain

1
[e&zwanusﬁ ¢ £ 42103F(Du, )| dx

Q
2 2

<cin ), [ §10nFwol dxr e Y [ o810, Ducf dx
B=1¢, B=1¢,

+ e (L4 IV2al, + (1 + IV alZ)IVENZ, )(IEI, + pg (IDue]) + pg(8))

+ o (1+[V2alZ, + (1 + [V2alZ)IVENS, ) IDug |3,
where now ¢, depends on the fixed paramater A, the characteristics of S and on C,. The right-hand side is
bounded uniformly with respect to € > 0, due to Proposition 3.1, proving the assertion of the proposition. [

Choosing now an appropriate finite covering of the boundary (for the details, see also [4]), Propositions 3.1-
3.2 yield the following result.

Theorem 3.3. Let the hypotheses in Theorem 1.1 with § > 0 be satisfied. Then”

elVDu|)5 + [VE(Due)[5 < C(Ifll, 6, 00).

3.2 Passage to the limit

Once this has been proved, by means of appropriate limiting process, we can show that the estimate is inher-
ited by u = lim,_,o u,, since u is the unique solution to the boundary value problem (1.1). We can now give
the proof of the main result.

Proof of Theorem 1.1. Let us firstly assume that § > 0. From Propositions 2.3 and 2.7, and Theorem 3.3, we
know that F(Duy) is uniformly bounded with respect to £ in W2(Q). This also implies (cf. [3, Lemma 4.4])
that u, is uniformly bounded with respect to € in W2?(Q). The properties of $ and Proposition 2.7 also yield

7 Recall that c(6) only indicates that the constant ¢ depends on § and will satisfy c(6) < c(8p) forall § < 8.



190 —— L.C.Berselliand M. RiZi¢ka, Regularity for systems with symmetric gradients DE GRUYTER

that S(Du,) is uniformly bounded with respect to € in LP'(Q). Thus, there exists a subsequence {&,} (which
converges to 0 as n — +co), u € W2P(Q), F ¢ WH2(Q), and x € LP'(Q) such that

u, —u in WHP(Q)n Wi (Q),
Du,, - Du a..inQ,
F(Du,,) = F in wH2(Q),
SDu,) —x inL?(Q).

The continuity of S and F, and the classical result stating that the weak limit and the a.e. limit in Lebesgue
spaces coincide (cf. [12]) imply that

F=FDu) and y =S(Du).

These results enable us to pass to the limit in the weak formulation of the perturbed problem (2.12), which
yields

J S(Du) -Dvdx = Jf -vdx forallve C3°(Q),

Q Q

where we also used that limg, o jQ enDug, - Dv dx = 0. By density, we thus know that u is the unique weak
solution of problem (1.1). Finally, the lower semi-continuity of the norm implies that

J|VF(Du)|2 dx < lim inf J|v1=(Du£n)|2 dx < c.
Enp—
Q Q

Note that in [3, Section 4] it is shown that

lal” - c(IF(Du)|3 + 6°),
wH P (Q)

which implies the Sobolev regularity stated in Theorem 1.1. This finishes the proof in the case § > 0.

Let us now assume that § = 0. Propositions 3.1 and 3.2 are valid only for § > 0 and thus cannot be used
directly for the case that S has (p, §)-structure with § = 0. However, it is proved in [3, Section 3.1] that for
any stress tensor with (p, 0)-structure S, there exist stress tensors S*, having (p, x)-structure with x > 0,
approximating S in an appropriate way.® Thus, we approximate (2.12) by the system

—divS®*(Du. x) =f inQ,
u=0 on 0Q,
where
S&%(Q) := eQ + S*(Q), withe>0,x € (0, 1).

For fixed x > 0, we can use the above theory and the fact that the estimates are uniformly in x to pass to the
limit as € — 0. Thus, we obtain that for all x € (0, 1), there exists a unique uy € Wé P (Q) satisfying, for all
ve W,P(Q),

jSK(DuK) Dvdx = Jf~vdx

Q Q
and
le"(DuK)lz + |[VF*(Duy)|? dx < c(|Ifll,, 0Q), (3.5)
Q
where the constant is independent of x € (0, 1) and F¥: R¥>3 — R2>3 is defined through

sym

FX(P) := (x + [PY™)) 7 pym,

8 The special case S(D) = |D|”~2D could be approximated by S% = (6 + [D|)P2D. However, for a general extra stress tensor S
having only (p, §)-structure, this is not possible.
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Now we can proceed as in [3]. Indeed, from (3.5) and the properties of ¢, , (in particular (2.3)), it follows
that F*(Du,) is uniformly bounded in W'2(Q), that u, is uniformly bounded in W(l)’p (Q) and that S¥(Duy)
is uniformly bounded in L?' (Q). Thus, there exist A € W12(Q), u € Wé’p (Q), x € LP'(Q), and a subsequence
{kn}, with x, — 0, such that

F(Du,,) — A in WH2(Q),
F*(Du,,) — A inL%*(Q)anda.e.inQ,
u, —u inW,r(Q),

S*(Du,) — x in L (Q).
Setting B := (F°)"1(A), it follows from [3, Lemma 3.23] that
Duy, = (F*)"'(F*(Duy,)) — (F°)'(A) =B ae.inQ.
Since weak and a.e. limit coincide, we obtain that
Du,, - Du=B ae.inQ.
From [3, Lemma 3.16] and [3, Corollary 3.22], it now follows that

F(Du,,) — F°(Du) in w'2(Q),
S“ (Duy,) — S(Du) a.e.in Q.

Since weak and a.e. limit coincide, we obtain that
Du=y ae.inQ.

Now we can finish the proof in the same way as in the case § > 0. O
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