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Abstract: As a solution to the restriction question for associate Morrey potentials (Question 1.1), this paper
characterizes a Radon measure y on R" such that the Riesz operator I, maps the associate Morrey spaces
HY™ ¢ HPX to the p-induced Morrey spaces LZ’A c Lz’,’éo continuously. The discovered restriction/trace prin-
ciple (Theorem 1.2) is brand-new, and its demonstration is non-trivial.
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1 Introduction

1.1 Description of Question 1.1

Stemming from an extensive investigation of [2, 7, 9, 10, 45], this paper attempts to answer the coming-
up-next restriction question, i.e., a trace problem for associate Morrey potentials. Namely, the Riesz images
I,HP'™ ¢ I,HP* of the spaces HY'™* c HP associated with the Morrey spaces L7-""* 5> L#T"* that have been
proven to be of independent interest in geometric potential analysis (see, e.g., [5]) but also of great value in
treating the local behaviour of an appropriate solution to certain elliptic partial differential equation or the
incompressible Navier-Stokes system (see, e.g., [11, 14-16, 20-22, 28, 29, 31-35, 38, 39, 42, 43]):

Question 1.1. Let u be a Radon measure on the Euclidean space R™. What ball condition must y have so that
the Riesz mapping f +— I,f is continuous (i.e., the potential I,f is restricted to the support of y) in the chain

P;K px Lo a7 q,A
H?" cHP® = L))" < Lo
for the associate Morrey spaces H)"* ¢ HP"¥ and the u-based Morrey spaces LZ’A c LZ’,/}X)?

A resolution of the above question relies on the following fundamentals.

First of all, from a geometric measure theory perspective, a Radon measure on R" is defined as a Borel
regular measure assigning finite mass to any compact subset of R" (cf. [18, p. 5]). For a given Radon measure
1 on R" and a nonnegative number f3, denote by

Mullg=  sup  rPu(B(x,n)
(x,r)eR"%(0,00)
the -th order ball variation of u. Trivially, |[ullo is the total variation of u. Obviously, this variation [||ullg
is finite whenever $ € {1, ..., n} and u is the 8-dimensional Hausdorff measure H? restricted on a smooth
manifold M ¢ R" with 3#(M) < co.
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Next, given a € (0, n) the Riesz operator I, acting on a Lebesgue v-measurable function f in R" is deter-
mined by

Laf(x) = j v — X1 () dv(y),

RrR"

whose constant multiple

defines an inverse for a power of the Laplace operator on R" (cf. [5, p. 9]), i.e., such an singular integral u
solves the £-th order Laplace equation (=A)?u = f using the Fourier transform.

After that, for (g, A) € [1, c0) x (0, n], let LZ’,/(IX, be the weak Morrey space of all y-measurable functions f
on R" with

1

e = sup (F™ou(fy € B, 1) £ If )] > 1)) < oo,
oo (x,1,t)eR"%(0,00)%(0,00)

where B(x, r) is the Euclidean open ball with centre x and radius r. Naturally, as a proper subspace of Lﬁ’,/}x,,

the symbol LZ’/1 is employed to represent the Morrey space of all u-measurable functions f with

1
q
Ifllar =  sup (r“ J Iflqdy) < 00.
K 0,00)

(x,r)eR"x( BGur)
Inparticular, L}, , = Lo, and L) = L. Moreover, if u = v (the n-dimensional Lebesgue measure on R") and
(g, M) = (p, ¥) € [1,00) x (0, n], then LZ’,/}vo and LZ’A will be simply written as L2 and LP'* respectively, and the
endpoint spaces L2" and LP" coincide with the weak-L? space L%, and L?, respectively; but if g = co, then
L* = L% = [, Furthermore, for p € [1, 00] and p’ = p/(p - 1) with co=1/(1-1) and 1 = co/(c0 - 1),
set

HP = {v — measurable functions f: ||f[|gex = sup Ifg dvl < OO} - [L;&’),x]*’
Plgl st
Loo R"
HPX = «lv — measurable functions f : ||f|grx = sup jfg dv| < oo} = [Lp""]*.
Il st

Naturally, H"* and HP"¥ are called the associate spaces [L2¥]* and [LP'¥]* of the Morrey spaces L2% and
LP"¥ respectively (cf. [36]). Especially, one has H}”‘ = HV¥ = L1 (for 0 < k < n)and H™" ¢ H®" = L™ (due
toL! =Ll g LL", cf. [17]).

Last but not least, note that x — |x|"1£7 is an element of LP'X for 0 < x < n (cf. [46, p.587]) and that
x — (1 +|x|")~! belongs to HP*X for n > 15, (cf. [24, Example 2.5]). So, the next implication seems to be very
natural and motivative (cf. [26, p.85] and [6, Theorem 3.3]):
pn

W lgpx 2 Wf e 2 Ifllze 2 (Ifllpg, forg = T m-0@-D <p.

In the above and below, X > Y stands for that there exists a constant ¢ > Osuch that X > cY, X > Y > X will
be simply written as X = Y, and 1 represents the characteristic function of a set E ¢ R".

1.2 Answering Question 1.1
Working on the above question plus the last implication one discovers the following trace and embedding

principle for the associate Morrey potentials I, HP** (regarded as the space of tempered distributions having
derivatives of order a in the associate Morrey space H?¥).
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Theorem 1.2. Assume (a, 8, A) € (0, n) x (0, n] x (0, n].
@ If A
1<q=ﬂ:;—;n<oo, O<x<n<f+A<2n,
thenIy: HVX — LZ”1 is continuous if and only if
I,1 :
Malxlga

Mzl g0 = sup

— " < 0o,
KcR" compact with v(K)>0 v(K)

while I,: HV* — LZ’,/;O is continuous if and only if ||ullg < co.
(i) If

l<q-= p(B+A-n)

_msp<oo, O<k<n<f+A<2n,

thenI,: HY™ ¢ HPX — LZ”1 c LZ’,’E,O is continuous if and only if [lulls < co.
(iii) If
B+A-n

1<q:m<oo, O<k<n<f+A<2n,

then I, : H®¥ — LZ”1 orI,: H®X — LZ’,]C‘X, is continuous if and only if [|ullls < co.

Interestingly, as an immediate application of Theorem 1.2, the next corollary completely describes the em-
bedding of the k-th order associate Morrey—Sobolev space into Lz’/\. More precisely, if

k
Vf = (_A)ZJ; for k even,
V(-A)7 f for k odd,
then
Ifl < L(IV¥fD)

for all C®-functions f with compact support in R”" (see, e.g., [4, p.393] or [30, p. 19]), and hence applying
Theorem 1.2, together with a small modification of the argument used in the proof of [30, p. 71, Theorem] as
p = 1, produces the following corollary.

Corollary 1.3. If (k,B,A) € {1,...,n-1} x(0,n] x(0,n],1 < p < oo,
B+A-n

1<gq=—2>1"""°"
<4 plk+n-k-x

, O<x<n<B+A<2n,

then

k -1
sup  [Ifll eIVl gox < 00 & llullp < 0.
0<|Vkf|eHPx H

Through exploiting the local nature of some indicator-like functions, introducing Lemmas 2.1, 3.1 and 4.1,
and utilising the dual structure of a local LZ-space, the non-trivial arguments for (i), (ii) and (iii) of Theo-
rem 1.2 and their crucial Remarks 2.2, 3.2 and 4.2 will be arranged in Sections 2, 3 and 4, respectively.
It is believed that the techniques developed in the forthcoming three sections can be applied to investigate a
similar trace problem for the following Cordes—Nirenberg potentials (see, e.g., [16, 26, 27, 34]):

{Iaf: sup Jlf(y)lplx—yl‘y dv(y) < oo}, 1<p<oo,0<y<n.
xeR"
]RYI

Nevertheless, this investigation will be the subject of a future article.

2 Demonstration of Theorem 1.2 (i)

2.1 Alemma for Theorem 1.2(i)

To prove Theorem 1.2 (i), one needs the following result which improves [2, Theorem 5.1].
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Lemma2.1. f0O<a<n,0<A<k<n,

_pB+A-n) _ pn

K
1<p<—, n—-ap<p<n, 1< < s
p a p<p 1 K—ap K—ap

then

-1
al llya. Lp.x .
lullp < 00 & sup afll ar Ifllpx < 00
0%feLp-x oo

Proof. Suppose

-1
sup ”Iotf"LWl Iflpx < 00.
0#feLpx Ho00

For a given ball B(x, r), we compute (cf. [6])

1180, n e = ﬁf, r* < yeg(lf 9 In1px,n(¥), ,U(B(X, r)) < y({y €B(x,r): 1" g IalB(x,r)(Y)})'

Note that 1p(,r) belongs to LP’¥, so
H(BOG M) < u({y € BOG )t 1 < Il g DI < 1ppon 8 < 77
This inequality ensures that [|ulllg < co due to
O0<B=xpl-ag+n-A<n.

Next, suppose [|ulllg < co. Without loss of generality, one may assume O < f € LP-*, For a positive number
t and a given ball B(x, r) with B(x, )¢ = R" \ B(x, r)let 0 < f € LP"%, f1 = flpx,n, f2 = flBx,r)e»
Fe={y e B, 1) : Inf(y) > t}, Fr1=1{y € Bot,1): Iaf1(y) > t}, Feo={y € B(x,1): Iofo(y) > t}.
Then
U(Fe) < u(Fep2,1) + p(Fey2,2)-

It remains to control the last two terms separately.

Step 1: In order to prove the desired estimate

(x+,

p-n)
U(Ft2,1) < |||H|||ﬁt_p”*“1’ " forall (x,r,t) € R" x (0, 00) x (0, 00),
one utilises the Fubini theorem to obtain

tu(Fe) < j Iaf1(2) dp(z)
Feq

= J ( le - z|* M f1(y) dV(y)) du(z)

Fin RM

< j(T( j ﬁ(y)dv(y))s“-"-1 dS)du(Z)

F1 0 B(z,5)

sT [ ] fl(y)dV(y)du(z)>s“1ds
0 " Ft1 B(z,s)

<Jo(6) +)oo(6),

where § > 0 will be determined later with
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First, if p > 1, then an application of the H6lder inequality with p’ = p/(p - 1) plus f € LP*¥ derives

j j F1) dv(y) du(z) < ju(B(y, $) N Fer)(Lpan ) dv(y)

Ft1 B(z,s) R

1
o

s( | (f(y))pdV(y))p< | (n(By.s) 1 Fer)) dv(y))"

B(x,r) B(x,r)

[~

!

sr"?ufnm( | (u(B(y,s)nFt,l))(u(Bw,s)nFt,l))p1dv<y>)”
B(x,r)
erIIfIILp,Ksﬁlllulllj,’( j H(B(y,s)nFt,l)dV(,V)>p

B(x,r)
ES
! 1

< Tn"K||f||LP’K5§|||H|||§< J 1p(y,5)(2) dV(Z))p (U(Fe,0))?

B(x,r)

el ((Fe1))7

=

n-x By
<1 |flpexs? 2

At the same time, if p = 1, then a slight modification of the above estimation gives

j FL) dv(y) du(z) < P lesPlulp.
F:1 B(z,s)

Second, for Jo(8) one uses the foregoing inequalities to gain that if p > 1, then

10(6)=f<j | fl(y)dv(y)du(m)s“l ds

0 Fi1 B(z,s)
[
nox i L Bynyan-1
<7 Wl liplly (u(Fe))?" [ s772 ds
0

n-x p-n 1 L
~rv 877 I Nox el g (C(Fe, )P

and if p = 1, then
Jo(8) < X8 F fll el -

Of course, the condition 8 > n — ap is needed for the treatment of Jo(§). Meanwhile, for |, (8) one utilises
f € LP* to deduce

Joo(8) < Ifllzo j S (Fe) ds ~ 6% 5 u(Fe,)If o
5

Here the condition ap < x has been used.
Third, putting the estimates for Jo(6) and ), (6) together gives

n-k p=n 1 1 _k
r e 8 Iflexllully ((Fe1)?” + 8% P u(Fe)lf s forp > 1,

tu(Fe1) <
KB xlllplllp + 8% ¥ u(Fe )If x forp = 1.

Now, choosing

( u(Fe,1) )&ﬁ
=l
gives
nex/o—1 p(n=p-x)
M(Fe1) < Mpllpr™ (@ If llex) =
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Step 2: In order to prove the estimate
n—K 41 plxtfion) n
MU(Fes2,2) < Mulllipr™ (@ Wflpex) =@ forall (x, 7, t) € R" x (0, 00) x (0, 00),
one can borrow the idea used in Step 1 to get

tu(Ft2) < Ko(6) + Ko (6),

where 5
| ( | rorave) du(z))s“-"-1 ds forj=0,
K](a) _ (())o F» B(z,s)
J ( J fo(y) dv(y) du(Z)>s“‘"‘1 ds forj = co.
6  F:y B(z,s)
Notice that

yeB(x,r)andz € B(y,s)NF;, = y € B(x,r+5s).
So, if p > 1, then

j j f2(y) dv(y) d(z) < j f(y)( j 1505215, ,(2) du(2)>dV(y)

F¢> B(z,s) B(x,r+s) R"
7 P o
s( | o dv(y))( | (j1B<y,s>(z)1pf,z(z)du<z>) dv(y))
B(x,r+s) B(x,r+s) R"

S B-n

n-x l
< Wfllox(r +5) 7 (u(Fe2)? s™ 7 llully

and if p = 1, then

J F2(y) dv(y) du(z) < Iflex(r + s)"*sPliullg,
F[,z B(Z,S)

whence

1

B-n n—x 1
Ko(6) < Ifllex 67 (8 +1) 7 (U(Ft2))? IIIIJIIIZ forp > 1,
If Lex 8%B=1(8 + 1) lulllg forp=1.

Similarly, one has

Koo (8) < If I J s u(F ) ds = 8°7F u(Fe ) If e
5

Putting together the estimates for Ko (6) and K, (6) yields

Bn n-x L 1 _k
Wfleox (87 (8 +1) 7 (u(Fe2)?" lplly + 6% P u(Fe2)) forp>1,

tu(Ft ) <
If lLex (8%B-T(E + )" lplllg + 8% p(Fe 2)) forp = 1.

Below is a treatment of two cases: § > rand 6 < r.

Case 6 > r . Under this situation, one has

1
7

p-n n-x 1 _x B-x L 1 _x
8T (5 +1) 7 (UFL2)Y lully + 8" P u(Fe2) < 877 ((Fe,2)) P llully + 8% 7 u(Fe2) forp > 1,
PGS + 1) X lpllp + 8 W(Fe,2) < 8P M lulllg + 8% u(Fr,2) forp=1,

and hence selecting

o= (i)
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yields
< u(Ft,2)
lzellg
Taking the p(B + k — n)/(x — ap)-th power on this last estimate gives

x-ap
Bp -
)" < Wl

n-xK
Br 1 P(B+x-n) _
)7 E ) S Ml

P (u(Ft,z)

F < t1 X ap
U(Ft2) < Mullg& = 1f lLex) lls

Case 6 < r .Under this situation, one has

n—x
1 1
! !

p-n n-x 1 x F
FE T+ T (u(Fe2))? "|y"|§ +0ru(FL2) S( Z—Z a>(H(Ft,z))” ME2)
67r "

1
il + =22
p

8% P(E + 1) N lullp + 8% Fu(Fe2) < ST N ulllp + 8% ¥ u(Fy )

By selecting

5~ (T"_Kllhulllﬁ )n—li—/s
u(Fe2) ’

one achieves
il )7"5;53
9’

tS "f"LP,K(W

thereby arriving at
plctp-n)
U(Fe2) < Npllp (¢ fllzos) e 1%,

Now, a combination of the preceding two steps gives

p(

K+p-n
U(EF) < MpllgCeHIf lppr) =@ " forall (x, 1, ) € R™ (0, 00) X (0, 00).

Since A < k, one gets

_pB+A-n) pB+x-n

K—ap ~  K—-ap =4

thereby implying

ENEN

1 1 1.1 1 op1 1 1
(W(F0)T = (R(F))7 (u(F)T ™5 = ()1’ T 2l g .
As a result, one establishes
U(Fe) < lullgt= 2" MfIY,. forall (x, 7, £) € R™ x (0, c0) x (0, 00),

as desired.

2.2 Proof of Theorem 1.2 (i)

On the one hand, since
l1gllgix = |11kl = v(K)  for all compact K ¢ R”,

one has

-1
sup Mafll arlflgie <00 = llplla,pa < 0o.
0#feH1x K

Conversely, assume [|pflla,8,4 < co. Without loss of generality, one may assume O < f € H Lx =

a function f can be written as f = limj_,«, fj (cf. [44, p. 88]), where

j2

forp > 1,

forp =1.

L. Then such

fiy) =) G-1271g,0) +jlgy), Kij={y e R":(i-1)27 <fy) <27}, Kj={y e R":f(y) > j}.

i=1
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Thus, applying the Minkowski inequality for Lz (B(x, r)) (all Lﬁ-integrable functions on a given ball B(x, r))
derives
j2 )
||Iafj||Lz(B(x,r)) < Z(] - 1)2_] ||Ia 1K1~,,~ "Lﬁ(B(x,r)) +j||Ia 1Kj”Lﬁ(B(x,r))
i=1

j2

n-i . —j .

<7 ( 2.6 = 127 Mol g + jlalx, ||L5,A)
i=1

j2

n-A . i .

Sra Illullla,;z,A< G- 127v(Ki ) +]V(KJ'))
i=1

<17 Nl palfll
Now, sending j to co leads to .
Mafligseeny <70 Mkllapalfl,
whence
IIIafIILZ,A < Mpalllapalf e = Mpllla,p A lf N g

On the other hand, an application of Lemma 2.1 withO <A<k =n,p=1landg=(B+A-n)/(n-a) =1
gives

-1
llullp < 00 & sup afll ar Ifl: < oo
0%fell woo

. A . . .
So, if lullg < co, thenI,: H Lx _, LZ,OO is continuous, and vice versa.

Remark 2.2. In the first equivalence of Theorem 1.2 (i), [lullla,,4 < co implies easily [[ullig < co (cf. the begin-
ning of the argument for the proof of Lemma 2.1). However, if A = n, u = v (ensuring 8 = n)and g = n/(n - a),
then
Mpllap.a = 1o 10,0 lzme-o (V(B(O, 1)) = co,
and hence I, L is not subset of Lia according to the first equivalence of Theorem 1.2 (i).
Moreover, as a key tool of verifying the second equivalence of Theorem 1.2 (i), Lemma 2.1 can be used,
along with the well-known layer-cake formula, to imply the following. If0 < a < n,0 <A<k < n,

15p< %, noap<pen, 12q<q=PEI oo, perry,
then
5 oo
j LSOV du(y) = < j ¥ j )y({y € BOGT) : ILf)] > ) el < ullp(rP67 + IF1%,. 6079,
B(x,r) 0O 6
and hence
3 4 )
j Laf)IE du(y) < lIpllglfI %P 7,
B(x,r)

through choosing § = (r"=*#| f ”zp,x)%- Consequently,

I,,(feLfﬂ’/1 Withﬁ:n—ﬁ+w <n
In other words,

-1
liullp <00 = sup afll aillflLpx < 00.
O%feLpx H

Naturally, if ¢ = p in the last implication, then

llullp <00 & sup Mafll picapoca If I px < 00,
L
0#feLpx n

whose speciality u = vrecovers the second imbedding of [8, Theorem 16 (i)] which in turn yields the following
new k-th order Morrey—Poincafe inequality:

Wflosto < |IV*fl|| e forall [IV*fl]|,. > O withkp < k < n.
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3 Demonstration of Theorem 1.2 (ii)

3.1 Alemma for Theorem 1.2 (ii)

To demonstrate Theorem 1.2(ii), one needs an equivalent characterisation of [||u|l.

Lemma 3.1. For (B,y) € [0, n] x [0, n], let

Wilgy = sup P [ -y due)
(x,y,r)eR"xR"%(0,00)
B(x,r)
be the (B, y)-order ball variation of u. If y < f3, then
Mzelllp < Mpelll g—y,y -
Moreover, if y < 3, then
Mzellp = Mpelll g=y,y-

But, if 0 < y = f3, then there exists a Radon measure Jq such that

llpollip < 00, lpolllg-y,y = 0.

Proof. On the one hand, one utilises the above definition to discover that if y < f8, then

lpllg=y,y = sup 7 [ lz-xVdu(z) >  sup  rPu(B(x,n) = llipllg-

(x,r)eR"x(0,00) (x,r)eR"%(0,00)

B(x,r)

On the other hand, if y < B, then [29, Lemma 1.27] is employed to estimate

r (o)

Mpellg-y,y = sup T(ﬁy)( I + J )H(B(x, r)NB(y,s))s? ds
(x,y,1)€eR"xXR"%(0,00) i
r 00
< llplllg sup r_(ﬁ_y)( Jsﬁ_y"l ds + J rPsy-1 ds) = lplllg-
(x,y,1)eR"xR"x(0,00) 5

Unfortunately, this last estimation is not valid for y = 8 = j (a natural number less than n). In fact, for the

origin {0}"7 of R"7, the Radon measure dj;j = 1gjx(ojn-idv satisfies

Malll; < 00, iyjlllo,j = oo.

3.2 Proof of Theorem 1.2 (ii)

The argument comprises two parts.

Part 1: Verify that I, maps HP"* to either Lz’/‘ or LZ’,/;O continuously if and only if [|ulllg < co.
Since Lg’/1 C Lﬁjﬁo, it is enough to check

-1 -1
sup [laflljer Ifligsx < 00 = llpllg <00 = sup |afll arllflgps < co.
0%feHP¥ Hoco 0#feHP-x "

To this end, recall that (cf. [6, Theorem 3.3]) if f € HP'X, then
Iflgpx = inf{Zlel : f= ijaj},
j j

where gj is a (p, n - k)-atom, that is, a; is supported on a ball B; ¢ R" and satisfies

lajlze < (v(B))™', wherep' = p—’_’ .

O
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So, for a given ball B(x, r), the function

fx r= (V(B(X, r))) ’ p 1B,

belongs to HP'*. Consequently,

a-n+
"fx,r"HPvK =1, r p

» < yeglf Lafx,r(y),  u(B(x,1) < u({y € B(x,n): ra—n+i, < Lafx,r(N)})-

Now, if

sup "Iaf"LM If . < 00,
0%fHPX

then lllafy,rllpa1 < 1, and hence

r/l—n+q(a—n+ﬁ) /I—n+q(a—n+ﬁ) a-n+

]l(B(X, T)) <r ﬁ < Itxfx,r()’)}) < "Iafx r”qq/\ >

u({y e Bx,r): r

This in turn validates [|ulllg < co.
Next, suppose |[[|ulllg < co. The desired continuity follows from a consideration of the forthcoming two
cases.

CaseA < n. Since0 <n-A< B <2n-A, Lemma 3.1 is utilised to ensure |||y|||n _AB—(n-a) < 00.Letf = Z] cjaj
belong to HP-¥, Given a ball B(x, r) and the conjugateindex q' = q/(q — 1), let Lq (B(x, 1)) be the u-measurable

functions g with
1

' a
”g”Lg'(mx,,)ﬁ( [ 1se dy) < co.

B(x,r)
Then, from duality and the Fubini theorem it follows that

1

q
( I IIafquy> = SUP I glafdy‘
B(x,r) IIgII B( ) st B(x,r)

- sup j 2) jf(y)lz—yl“‘” dv(y) du(z)

||g|| B(x r))<1 B(x,r) R
- sup j j g2z — Yo du(2)>f(y) dv(y)‘
||g|| <1
L B( n  R" "B(x,r)

< sup ZIC;IJ( IIg(Z)IIZ—yl"‘”du(2)>|a,-(y)|dV(y).

I I AN
Next, choose the parameter pair {a1, a,} such that
n-f<a;=2n-f-A<n, O<ay<n, agq=a;+(q-1a,.

Then the Holder inequality on the supporting ball B; of aj, with g < p, yields

j( j |g(z)||z—y|“"du(z))m,-(yndv(y)

B(x,r)
sj( j 8@)llz - yIoT dy(z))mj(yndv(y)
B; " B(x,r)
q
s(j( Jlg(Z)IIZ—yI“‘"du(Z)) dv(y)) ( |aj|qdv)
B; “B(x,r)
1 1 % q L’
s(v(B,-))q‘v(j|a,-|Pdv) (j( j 8@)llz - yl“du(2> dv(y)
B; B; B(x,r)

1 146 a
< (v(Bj)* P(j( j Ig(Z)Ilz—yI““du(Z)) dV(y))

B(x,r)
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Another application of the Holder inequality, along with [||p/lln-a,8-(n-1) < c0, gives

q' q q'-1
(] weneorrans) <( [ FEcama)( | £25)
B(x,n) B(x,r)

B(x,r)

Now, the foregoing two groups of estimates are put together, and using the Fubini theorem and [29, Lem-
ma 1.30], as well as the equalities

:M’ azzq’<a_2n_—ﬁ_A), l.’_ﬁ:l_L’
K-p(a+x-n) q q nq np'
gives
| ( | 1g@iz-yien du(Z)>Ia,-(y)I dv(y)
R"* " B(x,r)
’ 1
PR i 1g(2)|? a
< (V(B)) |||u|||;;_A,ﬁ_(n_A)< | P du@ dvy)
B; B(x,r)
1
1146 nod : dv(y) ' 7
- (v(By) |||u|||,‘i_A,,3_(n_A)< | < | m)lg(z)lq d}l(z))
B(x,r) B

1
T

PR S = i q a
< ) IR g [ 1@ duca)
B(x,r)

n-A 1 ’ i
~r' |||u|||;§A,ﬁ(M)( [ 1 du(2)> .

B(x,r)

This in turn yields

1

q n-A 1
| maprran) < PRI g Yol
B(x,7) j

and so by Lemma 3.1,
1 1
IIIafIILZ'A < |||}l|||nq_/1,ﬁ_(,,_,1) Ifll e < IIIHIIIE Iflgpx.
Case A = n. Under this situation, one has LZ”1 = LZ. So, a particular care is needed. However, the initial issue
is to take such a parameter pair (a1, a>) such that

n-f<ar<n, O<ar<n, ag=a;+(q-1as.

Fix a point x in the supporting ball B of a given (p, n—x)-atom a and select B(xo, r¢) so that v(B(xg, r¢)) = v(B)
and B < B(xg, 2rg). One can use [29, Lemma 1.30] to get

[y =21 dvea) < By ¥,
B

and then use the Fubini theorem, [29, Lemma 1.27] and the Holder inequality with g < p to compute

J ( J la(z)|ly — z|“7" dV(Z)> du(y) = J( J ly -z dy(y))la(z)lq dv(z)
B(x0,2r0) B B B(xo,2r0)

1

2rg (o)

( J + J u(B(xo, 2ro) N B(z, s))s™ "1 ds)la(z)lq dv(z)

0 219
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< |||u|||ﬁ( |alt dv)r’é*‘“‘"

< ||IH|II;;<

=~ llullp(v(B)) ™

q

|a|p dv)p (V(B))l—grgﬂxl—n

o — 5 —

ﬁ+a1 LS

T(-5)-q

Now, one utilises a = a1/q + (q — 1)a2/q, the Holder inequality and g = Bp/(p(n - a) — (p — 1)) to find the

following estimation:
-1
la(y)l9dv(y) dviy) '\’
q
(Iglah)? dp < j ( j y -z J ly - 2| du(z)
B(x0,2r0) B(x0,270)
_1 az(q 1)
< lpllp(v(B) -+ 5 Ay
= [llplllg-

Meanwhile, a combination of the Minkowski inequality, [29, Lemma 1.27], the H6lder inequality and the fact
that g = Bp/(p(n — a) — (p — k) > B/(n — a) yields

j <1a|a|>Qdu)qu( j |y—z|‘“‘">qdu(y))qm(zndv(z)

B(x0,2r9)¢ B " B(xo,2r0)¢
1

( J sl@-mg-1 u(B(xo, 21r9)° N B(z, s)) ds)qla(z)ldv(z)

gl
d

[iae dv> v(B))l‘%(v(B))“‘i?ﬁ‘lmmng
B

< (vB) W

~ Il -

Putting the integrals |, (xg.2r0y () dpand IB(XO argye () dju together implies

1
elally < il

Upon expressing f € HP* as f = }; cja;j, one uses the foregoing estimate and the Minkowski inequality to
establish the following inequality:

1
Maflly < Y lcjllalajlls < Ml Ylcjl.
] ]
Consequently, one finds

Maflie < a3 1 e

Part 2: Verify that I, maps H; " to either L Aor Lu s continuously if and only if [|[ulll < co.

Thanks to both H"* ¢ HP* and L} A LZ A, using Part 1, one has that ||| p < co implies that I, maps
HY'" to either L} A or LZ % continuously. So, it remains to check that if Io: Hy™ — Lq,f,o is continuous, then
ipllp < co. To this end, utilising [20, Lemma 3.1] one gets that f € Hp if and only if there exist a sequence
of numbers {c;} and a sequence of functions {a;} such that

f=2 ciaj withflg = }lcjl < oo,
] ]
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for which there exists a ball Bj containing the support of a; such that

(0]

(v(Bj))ﬁ j(v({x e R" : 1p,(X)|aj(x)| > t}))g dt < 1.
0

Upon choosing

x-n

frr = (VBOG ) 77 Lgey
for a given ball B(x, r), one gets
sl < 1.
Now, using the induced condition
Mafxrllon < Wfrlpp

and the calculation (with f,;) done at the beginning of Part 1, one can readily reach |ulllg < co.

Remark 3.2. If HP:? or HP'" is defined as the space of all v-measurable functions f with

Iflpx = inf{ Zlql i f = ZCjaj} < 00,
j j

and gj is a (p, n)-atom or a (p, 0)-atom, i.e., g; is supported on a ball B; ¢ R" and satisfies [|a;||;» < (v(Bj))_p

— 419

1
7

or |lgjllz» < 1, then the above argument is still valid for HP-% and HP'", and hence Theorem 1.2 can be extended
to HP-0<¥<n_Therefore, not only this extension gives a new approach to [1, Theorem 2], but also the limiting

case a — 0 of Theorem 1.2 (ii) for A = n and u = v actually gives (cf. [26, p.85])

pn

DK 14 wi SR b
HP* c L1 withgq Py

Furthermore, one has the following cases:
(a) If A =nandO < k < n, then Theorem 1.2 (ii) recovers [10, Theorem 2.4 (ii)].
(b) If u = v (forcing B = n) and A = k in Theorem 1.2 (ii), then

||Iaf||Lq=px/(x+p(n—n—’<))v’< < ||f||Hp,x for allf € Hp’K,

which may be regarded as a sort of the associate representation of the first embedding of [8, Theo-

rem 16 (ii)] (cf. [2, Theorem 3.1])
M Taf ll La=pxic-amx < |Ifllpc forall f € LPX,

dueto1/g+1/g+x/n=1.
(c) fp=gq=(B+A-n-x)/(n-a-x), then Theorem 1.2 (ii) is utilised to deduce

lipllp < 00 & Mafll picnex-pepo-ars < If g forall f € HPX,
u

which may be treated as a kind of the associate form of the last equivalence in Remark 2.2 thanks to

A=A)/(pn) +x/n = 1.

4 Demonstration of Theorem 1.2 (iii)

4.1 Alemma for Theorem 1.2 (iii)

In accordance with [6, Theorem 2.3], [36, Theorem 4.1] and [12, Theorem 2.7], if p € (1, c0) and y € [0, n),

then

p
Hp,yz{feLﬁm:||f||m-yx inf (J'f'p‘”l_pdv> <OO}’
weB"Y

R"
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where B(lnf") comprises all nonnegative functions w with

J wdAY) = j Ay e R" s w(y) > ) dt < 1,
R" 0

and, for E ¢ R", the symbol A;OE’)Z(E ) expresses the Hausdorff capacity of E with order n - §3, i.e.,

AS)(E) =inf ) 117,
j

where the infimum ranges over all countable coverings of E by open balls of radius r;.
To validate Theorem 1.2 (iii), it is required to push the above description of H?*Y to the limiting case
p = oo, that is, to characterise H**"Y by means of Aﬁ,‘f’; as seen below.

Lemma 4.1. Fory < (0, n), let LY be the Morrey space of all signed Radon (locally finite regular signed Borel)
measures u whose total variation measures || = ji obey |l|jtllg < oo, and set L}\;om be the class of all A§,°°)-quasi
continuous functions f on R" for which

i = [ 171485 < o,

IRH
Then

LY = {;u signed Radon measure : |ull{f}))+ = sup
4 ||g||L}\§/°°)sl

Igdu

R

_rr! *
< oo} = [LA<yoo)] .
Moreover, if Ly is the class of L*-functions with compact support in R", then

HOY = {f € L+ Ifluws = inf [fw i < oo} = HOY,
weB(I"’y)

1 .
Consequently, L ) exists as a subspace of H**,

Proof. The first identity immediately follows from [3, Proposition 1]. The second needs a demonstration.
Suppose f € H®Y. Then f € LY and |f|lyeor < co. Now for any g € L1* with ||g|l,1x < 1, one has (cf. [6,
Theorem 2.2])

Iy = sup Jlflwdvsl.

weB!"™

This in turn implies

Ifg dv| < J’lglwlflw*1 dv < |lgllpvlfw e forallw e B(ln_"),

R" R"

and so f € H®*Y, As a consequence, H®Y ¢ H*®Y,
Since LY is just the associate space of H*Y, in short, L1¥ = [H*¥]*, in order to prove H®Y c H®* itis
enough to check

[H® Y] = {f v-measurable function : |flljpeos = sup < oo} c LY.

IgllHoo.y <1

jfgdv

Rn

Now, if f lies in [H*-¥]*, then for a given ball B(xo, r¢) and any function g supported in B(xo, o) one has

; -1
[gllheor = inf lgw™ " llLeoB(xo,10)) -
weB(l"'y)

Since g vanishes in R" \ B(xq, ro), one can choose
- (n—p)
Wo = b "1pGury € BY' P,

and then get
Iglseor < IglLeo(Boxo,ron Ty -
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Upon taking
1B(xo,ro) FOOIf)™ for f(x) # 0,
go(x) =
0 for f(x) = 0,
one achieves
j Ifldv = j f8o dv| < If oo+ Igollueor < Iflpeosy g 7
B(xo,70) R"

thereby reaching f € LY, and thus [H®Y]* c L1, as desired.
To see that L}\;ogy) is contained in H*Y, suppose f € L,l\;og;. Then w = |f|||f IIZi(w) satisfies
n-y

o0
-1
j wdA) = JA;‘:";({y R fWIIfl L, > ) de<1,
n-y
R 0

ie.,we B(ln_y), and hence
-1
If o < W™z < "f"L,l\(ncf; ,

that is, f € H*Y, as desired. O

4.2 Proof of Theorem 1.2 (iii)

For a given nonnegative Radon measure y, according to Lemma 4.1 it is better to begin with proving that
Ip: Ly — LY

is continuous if and only if
1 q,A
Iy: LA;"E’} - Ly,oo

is continuous if and only if y € L1, As a matter of fact, it is enough to check
1
lzelllp < 00 = "Iaf"LgvA S Iflzjeo  forall f e Lye.

To this end, assume |[|ulllg < co. In accordance with [6, Remark 3.4], one has
IFleie) = inf{ Dl f = Zc]-a,-} < oo,
j j

where g;j is a (00, n — x)-atom, i.e., a; is supported on a ball B; ¢ R" and satisfies ||aj|;~ < (V(Bj))%.

Next, for the given parameter g = (8 +A - n)/(n— a —x) > 1 and a function f = Z]- cjaj € L}\;of;, one can
slightly modify the second part of the argument used for the proof of Theorem 1.2 (ii) (with not only putting
p' = 1 when p = co but also noticing that |||z < (v(B,-))KTT") to obtain

1
Maajlpar < Mkl

which, by using the Minkowski inequality, implies
1
Mafllpar < Z|Cj"1aaj"LZv/\ < lullig ZIC;I-
j j

Consequently, one finds
1
Mafllar < Mg 1f e

Finally, if I, : H®X — LZ’}t is continuous, then I, : H®¥ — LZ’,};O is continuous, and hence [||u[l < oo fol-
lows from choosing 1px,) as the test function in H**. Now, if [|u|llg < co, then the previous analysis ensures
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that I, : L[l\m) = LE’A is continuous. Hence, for a given ball B(x, r), any w € B({H‘) and any g € Lz’ (B(x, 1)),
one applies the Fubini theorem to compute

( j IIafquu>q= sup j (Iaf)gdu’
ligl

q <1
B(x,r) Li Bxn)~  B(x,r)

< sup j (j|f(y)||y—z|“-" dv(y)>|g(z)|du(z>

gl g <t
gL;Z B~ B(x,r) R"

= sup j( j 8@y - 21" du(Z))lf(y)ldV(y)
1

ligll o <
gL,‘ﬂ B~ R" CB(x,r)

<lfw e  sup I( J lg(2)lly - z|*™ du(Z)>W(y)dV(y)

’ <1
”g"L,‘i B~ R " B(x,r)

=yl sup j (Low)lg] du
g

q <1

1d B B(x,r)
-1

= [fw ||L°°||IaW||L;{(B(x,r))
-1 n-A

< fw ™ lpeor @ ||IaW||Lﬁ~A
-1 n-A %

S Iw™ lzor o Mullg IWlzye

L i
Sralfw e liudlg -

Therefore, one utilises Lemma 4.1 to achieve

1 1
IIIafIILZ,A < Mg 1 oo < Mpallg 1F Npzoos.
Thatis, I,: H®* — LZ’}t is continuous.

Remark 4.2. Perhaps, it is worth pointing out that x = 0 is suitably allowable in Theorem 1.2 (iii). To see this
nature more clearly, see [3, Proposition 5] which says, as Fefferman-Stein’s predual of BMO (John Nirenberg’s
space of functions of bounded mean oscillation on R"; see, e.g., [19, 25, 40]), that if H' stands for the real

1-Hardy space comprising all L!-functions f for which the {1, ..., n} 5 j-Riesz transform
) T n+ 1 _n+l . -n-1
y = Rifly) = lim F(T)n : j zjlzI™ fly - 2) dv(2)
B(0,¢e)

belongs to L1, then

n
Wefliiey < IFle = Iflz: + YIRfl forall f € HY,
j=1

and hence, by [3, Corollary],

< Mpllnallflg: forall (u, f) € LY x HY,

deu

Rn

where L1 consists of all nonnegative elements in L1"~%, Also, recall that (cf., e.g., [23, Theorem 6.6.10])

f € H' if and only if there exist a sequence of (co, n)-atoms {a;} with f]R" a dv = 0 and a sequence of numbers
{cj} such that

f=Y ¢aj, Ifla = )lcjl < co.
j j

So, this leads to an investigation of the endpoint x = 0 of Theorem 1.2 (iii) for g = (B + A - n)/(n - a) > 1.
On the one hand, if I,: H — LZ’A is continuous, then

IIaall a1 < lalg  foralla e H'.
u
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For B(x_, r) = B(x, r), B(x,, r) (whose distance to B(x, r) is 3r, i.e., |x — x,| = 5r) and

_ 1B(x,,r) - 1B(er,r)

1 .
VB 6ny ST withlalm <1,
via a simple geometric computation, one gets
-1 dv(z) dv(z) )
Ipa(y) = (v(B(x, 61))) ( J lz -yl I m) >r*" forally € B(x,r),
B )

Xyt

whence finding
12 laalll,; 2 11 Mu(B(x, 1) 2 rPu(B(x, 1) = il < co.
i

On the other hand, assume [|pllg < co. Upon writing f = Z;?fl cjaj e H 1 and observing that the argument
for the proof of Theorem 1.2 (iii) actually reveals

1
. q
Maajlor < lullg

one utilises the Minkowski inequality to achieve
1 1
Mafllga < Z|Cj|||laaj||sz/‘ < Mg ZIC,'I =~ Mpalllg 1f e
j j

Surprisingly, this last estimation for y = v, i.e., [,H! ¢ Lﬁ"‘, is an associate form of [26, Theorem 2],
which implies I,H! ¢ HP-P'%, since A = p’a amounts to p = A/(A — a). When A = n, both go back to the well-
known Stein-Weiss embedding I,H! ¢ Lz, see, e.g., [13, 37, 40, 41].

Funding: The author is in part supported by NSERC of Canada (202979463102000).
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