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Abstract: In this article,we consider a singularly perturbednonlinear reaction-diffusion equationwhose solu-
tions display thin boundary layers near the boundary of the domain.We fully analyse the singular behaviours
of the solutions at any given order with respect to the small parameter ε, with suitable asymptotic expansions
consisting of the outer solutions and of the boundary layer correctors. The systematic treatment of the non-
linear reaction terms at any given order is novel along the singular perturbation analysis. We believe that the
analysis can be suitably extended to other nonlinear problems.
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1 Introduction
Nonlinear reaction-diffusion equations arise in many areas in systems consisting of interacting components.
The equations describe, e.g., chemical reactions, pattern-formation, population dynamics, predator-prey
equations, and competition dynamics in biological systems (see, e.g., [7, 11, 12, 31–33, 39]). One can
consider a typical form of systems of reaction-diffusion equations in the form

ut = D∆u + g(u), (1.1)
where g = g(u) describes a change or a local reaction of the state u and D represents a diffusion coefficient
matrix. It is also possible that the reaction gmay depend on the spatial domain variable x and of a derivative
of u, i.e., g = g(x, u, ∇u).

In real applications like a fast reaction system, themagnitude of some coefficients in the diffusionmatrix
D is relatively small and hence the system can be singularly perturbed.

In this article, for the singular perturbation and boundary layer analysis aimed here, we consider the
steady state system of (1.1) and study the following scalar nonlinear singularly perturbed problem which
can serve as a guide for more general systems:

{
−ε∆uε + g(uε) = f in Ω,

uε = 0 at ∂Ω.
(1.2)

Here, 0 < ε ≪ 1, Ω is a general smooth domain, f = f(x, y) and g = g(u) are given smooth functions with
g(0) = 0, g�(u) ≥ λ > 0 for all u ∈ ℝ. (1.3)

For example, g(u) = u3 + λu.
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For small ε > 0, the solutions to (1.2) display thin sharp transition layers called boundary layers which
are formed due to the discrepancies between the limit solutions when ε = 0 (see (2.3) below) and the bound-
ary conditions in (1.2). The discrepancies are inevitable because the limit problem (see (2.2) below) loses
high order derivatives and hence in general its solutions cannot meet the boundary conditions. Then, the
small diffusion term −ε∆uε smoothes out the discrepancies, which leads to sharp transition boundary layers.

Another motivation of studying boundary layers is the vanishing viscosity problem in fluid dynamics,
see, e.g., [2, 5, 6, 8, 13, 23–25, 27, 28, 30, 35–37]. The typical question is on the behaviour of the Navier–
Stokes flows at small viscosity, i.e., the limit behaviour or convergence to Euler flows as the viscosity tends to
zero. The boundary layers play a crucial role for connecting the Navier–Stokes and Euler flows and they also
do so for the singular perturbation analysis in the nonlinear reaction-diffusion equations considered here.

An additional motivation comes from the computational aspects in numerical simulations. Due to the
thin boundary layers, the computationalmeshes are classically refined near the boundary ∂Ω and this causes
high cost in the simulations. Rather than refining meshes we propose to enrich with suitable boundary layer
correctors the Galerkin or finite element space (or finite volume space). Then,we are able to use a coarsemesh
and this reduces substantially the computational cost. See, e.g., [17, 18, 20–22, 38, 41] for the method of
spaces enriched with boundary layer correctors. For singular perturbations analysis, see [15, 26, 42, 44] and
also the recent review article [14]. See other perspectives in singular perturbations and boundary layers in
[3, 4, 9, 10, 16, 19, 29, 43].

In what follows, we discuss the problems posed on a channel domain in Section 2 which is relatively
easier to handle thanks to the simple geometry of the boundary. In Section 3, we cast the nonlinear reaction-
diffusion equations in a general domain. We need to take into account the geometrical properties, like curva-
ture, using the boundary fitted coordinates. Throughout this paper, we systematically handle the nonlinear
term g along the singular perturbation analysis at any orders. This nonlinear treatment can apply to other
nonlinear problems.

For the analysis below, we shall consider the Sobolev spaces Hs(Ω) and we define the weighted energy
norm,

‖u‖ε = (ε‖∇u‖2L2(Ω) + ‖u‖2L2(Ω))
1
2 .

An exponentially small term, denoted e.s.t., is a function whose norm in all Sobolev spaces Hs(Ω) is expo-
nentially small with, for each s, a bound of the form c1e−c2/ε

γ , c1, c2, γ > 0, with ci, γ depending possibly
on s.

2 Channel domains
For general domains, which will be studied in Section 3, we consider the domains with smooth boundaries.
Since the boundary layer correctors act locally in the inwarddirectionnormal to the boundaries, transforming
the Cartesian coordinate into the so-called boundary fitted one, the boundary layers can be described in
channel domains, which are relatively easy to analyse. We thus consider first the simpler case of channel
domains, which possess boundary layers only on one side at a flat boundary.

Let us consider the problem in a channel domain as follows:

{{{
{{{
{

−ε∆uε + g(uε) = f in Ω = (0, L1) × (0, L2),
uε = 0 at x = 0, L1,
uε(x, y) = uε(x, y + L2) in Ω∞ = (0, L1) × ℝ,

(2.1)

where f = f(x, y) is smooth and L2- periodic in y. Then, the limit problem reads

g(u0) = f in Ω. (2.2)

Since g is invertible, we write
u0 = g−1(f ). (2.3)
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To give an idea on how to construct the boundary layers, for now we assume

f = 0 at x = L1, (2.4)

which, as we will see, reduces the boundary layer at x = L1, so that only the boundary layer at x = 0 persists.
Thanks to (1.3) and (2.3), 0 ≤ λ(u0)2 ≤ (g(u0) − g(0))u0 = fu0, and hence

u0 = 0 at x = L1 and u0(x, y) = u0(x, y + L2). (2.5)

2.1 Boundary layer analysis at order ε0

Wenowconstruct a zeroth order corrector to account for thediscrepancybetween uε and u0 at x = 0. Formally,
substituting uε ∼ u0 + θ0 in (2.1) and subtracting (2.2) from (2.1), we find that

−ε∆(u0 + θ0) + g(u0 + θ0) − g(u0) = 0.

Using the stretched variable x̄ = x/√ε and dropping non-stiff small terms, we find the zeroth order corrector
equation for θ0:

−εθ0xx + g(u0 + θ0) − g(u0) = 0.

However, in general uε − u0 does not satisfy the boundary condition in (2.1), and hence at the boundary
x = 0, so we propose a boundary layer corrector θ0 satisfying

{{{
{{{
{

−εθ0xx + g(u0 + θ0) − g(u0) = 0 in Ω,
θ0 = −u0(0, y) at x = 0,
θ0 = 0 at x = L1.

(2.6)

Although θ0 is not known explicitly, unlike in many linear problems, we can derive pointwise estimates
for θ0.

Lemma 2.1. The corrector θ0 satisfies

|θ0(x, y)| ≤ |u0(0, y)| exp(−√ λε x). (2.7)

Proof. Setting ̄θ0 = |u0(0, y)| exp(−√λx/√ε), writing ̃θ0 = θ0 − ̄θ0 and then substituting in (2.6), we obtain
−ε ̃θ0xx + g(u0 + θ0) − g(u0) − λ ̄θ0 = 0. Since g�(η) − λ ≥ 0 for all η ∈ ℝ and thanks to the mean value theorem,
we find, for some η1 with |η1 − u0| < |θ0|, that

−ε ̃θ0xx + g�(η1) ̃θ0 = (−g�(η1) + λ) ̄θ0 ≤ 0. (2.8)

Multiplying (2.8) by ̃θ0+ = max{ ̃θ0, 0}, integrating over (0, L1) and noting that ̃θ0+ = 0 at x = 0, L1, we obtain

ε
L1

∫
0

(( ̃θ0+)x)
2 + λ

L1

∫
0

( ̃θ0+)2 ≤ 0.

This implies ̃θ0+ = 0 and thus θ0 − ̄θ0 = ̃θ0 ≤ 0. On the other hand, considering this time ̃θ0 = −θ0 − ̄θ0 we find
that −ε ̃θ0xx + g(u0) − g(u0 + θ0) − λ ̄θ0 = 0.We then similarly obtain (2.8) for this ̃θ0, and hence we deduce the
same conclusion, i.e., −θ0 − ̄θ0 = ̃θ0 ≤ 0. This proves the lemma.

We can also deduce some norm estimates.

Lemma 2.2. There exists a constant c > 0, independent of ε, such that

‖θ0( ⋅ , y)‖H1
x (0,L1) ≤ cε

− 1
4 , ‖θ0( ⋅ , y)‖L2x (0,L1) ≤ cε

1
4 . (2.9)
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Proof. The second estimate of (2.9) directly follows from (2.7). To obtain the first estimate, we introduce
̄θ = −u0(0, y)e−x/√εδ(x), where δ(x) is a smooth cut-off function with δ(x) = 1 for x ∈ [0, L1/4] and δ(x) = 0

for x ∈ [3L1/4,∞). We observe that for a.e. y ∈ ℝ,

ε
L1

∫
0

|(θ0 − ̄θ)x|2 dx = −ε
L1

∫
0

(θ0 − ̄θ)xx(θ0 − ̄θ)dx =
L1

∫
0

((−g(u0 + θ0) + g(u0)) + ε ̄θxx)(θ0 − ̄θ)dx ≤ cε
1
2 .

where the last inequality follows from the mean value theorem and the L2-estimate of ̄θxx, ̄θ, and θ0. This
implies the lemma.

Theorem 2.3. Assume that (2.4) holds. Then, there exists a constant c > 0 such that

‖uε − u0 − θ0‖ε ≤ cε. (2.10)

Proof. Let w = uε − u0 − θ0, then, thanks to (2.5), w = 0 on ∂Ω. Subtracting (2.2) and (3.14) from (2.1) we
find that

{
−ε∆w + g(uε) − g(u0 + θ0) = ε∆u0 + εθ0yy in Ω,

w = 0 on ∂Ω.
(2.11)

Multiplying by w and integrating over Ω we find that

ε∫
Ω

|∇w|2 dx dy + ∫
Ω

(g(uε) − g(u0 + θ0))w dx dy ≤ λ
2 ∫
Ω

|w|2 dx dy + cε2.

Here, the L2-norm of θ0yy is derived in Lemma 2.8 below. Thanks to the mean value theorem again and by
observing that (g(uε) − g(u0 + θ0))w ≥ λ|w|2, the theorem is proved.

We can also obtain the lower bound of |θ0(x, y)|.

Lemma 2.4. The corrector θ0 satisfies

|θ0(x, y)| ≥ |u0(0, y)| exp(−√ λ0ε x) + e.s.t., (2.12)

where λ0 = max|η−u0|≤|θ0| g�(η).

Proof. From Lemma 2.1 and (2.3), we note that u0, θ0 are bounded and hence λ0 > 0 is too. We write
̃θ0 = θ0 − ̄θ0, where ̄θ0 = |u0(0, y)|(exp(−√λ0x/√ε) − L−11 x exp(−√λ0L1/√ε)) ≥ 0.

Fixing y, we first prove (2.12) for the case u0(0, y) ≤ 0. We note that ̃θ0 = 0 at x = 0, L1. Following the
proof of Lemma 2.1, we similarly find that for some η1 with |η1 − u0| < |θ0|,

−ε ̃θ0xx + g�(η1) ̃θ0 ≥ (−g�(η1) + λ0) ̄θ0 ≥ 0.

Multiplying by − ̃θ0− = −max{− ̃θ0, 0} and integrating over (0, L1), we obtain

ε
L1

∫
0

(( ̃θ0−)x)
2 + λ

L1

∫
0

( ̃θ0−)2 ≤ 0.

This implies ̃θ0− = 0 and hence |θ0| ≥ θ0 ≥ ̄θ0, which proves (2.12) for the case u0(0, y) ≤ 0. For the case
u0(0, y) > 0, we write ̃θ0 = −θ0 − ̄θ0. Then, we similarly deduce that ̃θ0− = 0 and hence |θ0| ≥ −θ0 ≥ ̄θ0. This
proves the lemma.

Remark 2.5. Thanks to the estimate for θ0 in L2, established in Lemma 2.2 with (2.4), Theorem 2.3 implies
that

‖uε − u0‖L2(Ω) ≤ cε
1
4 . (2.13)

Furthermore, for u0(0, y) ̸= 0 at some y ∈ (0, L2) the L2-norm in (2.13) has a lower bound, i.e., for
some c0 > 0,

‖uε − u0‖L2(Ω) ≥ c0ε
1
4 .
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Indeed, from Lemma 2.4 and Theorem 2.3, we find that

‖uε − u0‖L2 ≥ ‖θ0‖L2 − ‖uε − u0 − θ0‖L2 ≥ c2ε
1
4 − cε ≥ c0ε

1
4 .

2.2 Boundary layer analysis at arbitrary order εn, n ≥ 0

Outer expansion. We now consider the higher order outer expansions uε ∼ ∑∞
j=0 εjuj. Substituting in (2.1)

and using (2.2), we formally write

−ε∆(
∞

∑
j=0
εjuj) + g(

∞

∑
j=0
εjuj) = f. (2.14)

Dropping O(εn+1) terms, we have

−ε∆(
n−1
∑
j=0
εjuj) + g(

n
∑
j=0
εjuj) ≃ f.

We identify at the order O(εj), j = 0, 1, . . . , n, and find

{{{
{{{
{

g(u0) = f,

−εj∆uj−1 + g(
j
∑
k=0

εkuk) − g(
j−1
∑
k=0

εkuk) = 0, j ≥ 1.
(2.15)

We then obtain, e.g.,

u0 = g−1(f ),
u1 = ε−1g−1(g(u0) + ε∆u0) − ε−1u0.

More generally, we recursively obtain

uj = ε−jg−1(g(
j−1
∑
k=0

εkuk) + εj∆uj−1) − ε−j
j−1
∑
k=0

εkuk for j ≥ 1. (2.16)

To construct the higher order correctors, we assume, for simplicity, that f is infinitely flat at x = L1, i.e.,

Dα f = ∂|α|f
∂xα1∂yα2

= 0 at x = L1, for all α ≥ 0, (2.17)

using the multi-index notation
α = (α1, α2) with |α| = α1 + α2. (2.18)

This implies that the uj, j ≥ 0, are infinitely flat at x = L1, that is

Dαuj = 0 at x = L1, for all j, α ≥ 0.

Thus, we only have boundary layers at x = 0 corresponding to uj.

Correctors. We now proceed with the determination of the correctors. Substituting uε ∼ ∑∞
j=0 εj(uj + θ j) in

(2.1), we have formally

−ε∆(
∞

∑
j=0
εj(uj + θ j)) + g(

∞

∑
j=0
εj(uj + θ j)) = f. (2.19)

We subtract (2.14) from (2.19) to obtain

−ε∆(
∞

∑
j=0
εjθ j) + g(

∞

∑
j=0
εj(uj + θ j)) − g(

∞

∑
j=0
εjuj) = 0. (2.20)

We first need to handle the nonlinear term to identify the quantities of order εj and this is discussed below.
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2.3 Treatment of the nonlinear term g(u)

In this section, we formally write the nonlinear term g(∑∞
j=0 εj(uj + θ j)) − g(∑

∞
j=0 εjuj) at each order εj. Thanks

to the Taylor expansion of g about u0, we have

g(
∞

∑
j=0
εjuj) = g(u0 +

∞

∑
j=1
εjuj) =

∞

∑
k=0

g(k)(u0)
k! (

∞

∑
j=1
εjuj)

k
.

Here, we formally consider∑∞
j=1 εjuj = O(ε). Similarly, expanding at u0 + θ0, we write

g(
∞

∑
j=0
εj(uj + θ j)) =

∞

∑
k=0

gk(u0 + θ0)
k! (

∞

∑
j=1
εj(uj + θ j))

k
.

We first observe that

(
∞

∑
j=1
εjuj)

k
= ∑

|α|=k
(
k
a)(

(ε1u1)α1 ⋅ ⋅ ⋅ (εlul)αl ⋅ ⋅ ⋅ )

= ∑
|α|=k

(
k
a)(

(u1)α1 ⋅ ⋅ ⋅ (ul)αl ⋅ ⋅ ⋅ )ε(α1+2α2+⋅⋅⋅+lαl+⋅⋅⋅ )

= ∑
|α|=k

(
k
a)
uαε(α1+2α2+⋅⋅⋅+lαl+⋅⋅⋅ ),

where
uα = (u1)α1 ⋅ ⋅ ⋅ (ul)αl ⋅ ⋅ ⋅ ,

using the multi-index notation

α = (α1, . . . , αl , . . .) with |α| = α1 + ⋅ ⋅ ⋅ + αl + ⋅ ⋅ ⋅ , (2.21)

and

(
k
α)

=
k!

α1! ⋅ ⋅ ⋅ αl! ⋅ ⋅ ⋅
.

We similarly find that

(
∞

∑
j=1
εj(uj + θ j))

k
= ∑

|α|=k
(
k
α)

(u + θ)αε(α1+2α2+⋅⋅⋅+lαl+⋅⋅⋅ ),

where

(u + θ)α = (u1 + θ1)α1 ⋅ ⋅ ⋅ (ul + θl)αl ⋅ ⋅ ⋅ .

Hence, we note that

g(
∞

∑
j=0
εj(uj + θ j)) − g(

∞

∑
j=0
εjuj) =

∞

∑
k=0

1
k![g

(k)(u0 + θ0)(
∞

∑
j=1
εj(uj + θ j))

k
− g(k)(u0)(

∞

∑
j=1
εjuj)

k
]

=
∞

∑
k=0

∑
|α|=k

(
k
α)

1
k! [g

(k)(u0 + θ0)(u + θ)α − g(k)(u0)uα]εα1+2α2+⋅⋅⋅+lαl+⋅⋅⋅, (2.22)

using the notation (2.21). To arrange the terms at each order εj, we set α1 + 2α2 + ⋅ ⋅ ⋅ + lαl + ⋅ ⋅ ⋅ = j. Since the
multi-index α satisfies |α| = k, we easily note that k = |α| ≤ α1 + 2α2 + ⋅ ⋅ ⋅ + lαl + ⋅ ⋅ ⋅ = j. If one of the αl with
l ≥ j + 1 is greater than or equal to 1, then α1 + 2α2 + ⋅ ⋅ ⋅ + lαl + ⋅ ⋅ ⋅ ≥ j + 1, and hence αj+1 = αj+2 = ⋅ ⋅ ⋅ = 0.
Thus, we may write the multi-index notations as

{
α = (α1, . . . , αj), |α| = α1 + ⋅ ⋅ ⋅ + αj ,

(u + θ)α = (u1 + θ1)α1 ⋅ ⋅ ⋅ (uj + θ j)αj , uα = (u1)α1 ⋅ ⋅ ⋅ (uj)αj .
(2.23)
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Hence, using the multi-index notations in (2.23), we formally write

g(
∞

∑
j=0
εj(uj + θ j)) − g(

∞

∑
j=0
εjuj)

=
∞

∑
j=0

{
j
∑
k=0

∑
|α|=k,

α1+2α2+⋅⋅⋅+jαj=j

(
k
α)

1
k! [g

(k)(u0 + θ0)(u + θ)α − g(k)(u0)uα]}εj . (2.24)

For the analysis below, we estimate the truncation error corresponding to the expansion (2.24).

Lemma 2.6. There exists a constant C > 0, independent of ε, such that

!!!!!!!
g(

n
∑
j=0
εj(uj + θ j)) − g(

n
∑
j=0
εjuj) − Gn

!!!!!!!
≤ Cεn+1,

where

Gn =
n
∑
j=0

{
j
∑
k=0

∑
|α|=k,

α1+2α2+⋅⋅⋅+jαj=j

(
k
α)

1
k! [g

(k)(u0 + θ0)(u + θ)α − g(k)(u0)uα]}εj ,

and the multi-index notations are given in (2.23).

Proof. We first note that the Gn given above can be written as

Gn =
n
∑
k=0

1
k!

n
∑
j=0

{ ∑
|α|=k,

α1+2α2+⋅⋅⋅+jαj=j

(
k
α)[

g(k)(u0 + θ0)(u + θ)α − g(k)(u0)uα]}εj .

Thanks to the multinomial theorem, we observe that

Hn,k := g(k)(u0 + θ0)(
n
∑
j=1
εj(uj + θ j))

k
− g(k)(u0)(

n
∑
j=1
εjuj)

k
(2.25)

=
n
∑
j=0

{ ∑
|α|=k,

α1+2α2+⋅⋅⋅+jαj=j

(
k
α)[

g(k)(u0 + θ0)(u + θ)α − g(k)(u0)uα]}εj + Jn,k , (2.26)

where
|Jn,k| ≤ Cεn+1. (2.27)

On the other hand, we find from Taylor’s theorem that

g(
n
∑
j=0
εj(uj + θ j)) − g(

n
∑
j=0
εjuj) =

n
∑
k=0

1
k!Hn,k + R0 = Gn +

n
∑
k=0

1
k! Jn,k + R0,

where
|R0| ≤

!!!!!!!
g(n+1)

(n + 1)! (ξ1)(
n
∑
j=1
εj(uj + θ j))

n+1!!!!!!!
+
!!!!!!!
g(n+1)

(n + 1)! (ξ2)(
n
∑
j=1
εjuj)

n+1!!!!!!!
.

Here, ξ1 is between (u0 + θ0) and ∑n
j=0 εj(uj + θ j) and ξ2 is between u0 and ∑n

j=0 εjuj. The lemma follows by
observing that |R0| ≤ Cεn+1.

We now define the boundary layer correctors θ j at order O(εj). From (2.20) and (2.24), using the stretched
variable x̄ = x/√ε at each order O(εj), j = 0, 1, . . . , we identify

{{{{{
{{{{{
{

−εθ0xx + g(u0 + θ0) − g(u0) = 0,

−εj+1θ jxx + {
j
∑
k=1

∑
|α|=k,

α1+2α2+⋅⋅⋅+jαj=j

(
k
α)

1
k! [g

(k)(u0 + θ0)(u + θ)α − g(k)(u0)uα]}εj = εjθ j−1yy , j ≥ 1. (2.28)
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Dividing by εj, rearranging terms in the latter equation at each order O(εj), and using the fact that

|α| = k = 1 and (α1 + 2α2 + ⋅ ⋅ ⋅ + jαj = j) ⇔ α1 = ⋅ ⋅ ⋅ = αj−1 = 0, αj = 1,

we rewrite (2.28) as

−εθ0xx + g(u0 + θ0) − g(u0) = 0,
−εθ1xx + g�(u0 + θ0)θ1 = −(g�(u0 + θ0) − g�(u0))u1 + θ0yy ,

and for j ≥ 2,

−εθ jxx + g�(u0 + θ0)θ j = −(g�(u0 + θ0) − g�(u0))uj

−
j
∑
k=2

∑
|α|=k,

α1+2α2+⋅⋅⋅+jαj=j

(
k
α)

1
k! [g

(k)(u0 + θ0)(u + θ)α − g(k)(u0)uα] + θ j−1yy . (2.29)

We supplement the boundary condition on θ j, for each j = 0, 1, . . . , by

{
θ j = −uj(0, y) at x = 0,
θ j = 0 at x = L1.

(2.30)

Remark 2.7. Wenote that the corrector equations for θ j, j ≥ 1, are all linear and this allowsus todirectly apply
the maximum principle. Differentiating the equations in y, the maximum principle also holds for ∂mθ j∂ym (x, y)
for m ≥ 1, j ≥ 0.

Lemma 2.8. The correctors θ j, j ≥ 0, satisfy

!!!!!!!
∂mθ j

∂ym
(x, y)

!!!!!!!
≤ C exp(−34

√ λ
ε
x), m ≥ 0. (2.31)

Proof. We use the maximum principle to prove the lemma. Let L be the linear operator given by

Lu := −εuxx + g�(u0 + θ0)u.

For j = 0, we have
−εθ0xx + g(u0 + θ0) − g(u0) = 0.

We introduce a barrier function Ψ = C01 exp(−3
4√

λ
ε x), where C01 will be chosen later. We use the mathemati-

cal induction onm starting from the case j = 0. By (2.7), we already have |θ0(x, y)| ≤ c exp(−3
4√

λ
ε x). We then

see that
|Lθ0y | = |−εθ0yxx + g�(u0 + θ0)θ0y | = |−g�(u0 + θ0)u0y + g�(u0)u0y | ≤ |g��(η)||θ0||u0y |,

by the mean value theorem, for some η between (u0 + θ0) and θ0. We also find

LΨ = (g�(u0 + θ0) − 9
16 λ)C01 exp(−

3
4
√ λ
ε
x).

Since g�(u0 + θ0) ≥ λ and |g��(η)||θ0||u0y | is bounded on Ω̄, we can find a positive constant C�01 such that

|Lθ0y | ≤ C�01 exp(−
3
4
√ λ
ε
x) in Ω.

By the boundary conditions of θ0, we obtain

|θ0y | ≤ |u0(0, y)| ≤ C01 exp(−
3
4
√ λ
ε
x) on ∂Ω,

where C01 = max(|u0(0, y)|, C�01). The maximum principle implies that

|θ0y (x, y)| ≤ Ψ in Ω̄.
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We suppose by induction that for k ≤ (m − 1), m ≥ 1, there exists a positive constant C0k satisfying

!!!!!!!
∂kθ0

∂yk
(x, y)

!!!!!!!
≤ C0k exp(−

3
4
√ λ
ε
x) in Ω̄.

We then find that

L(
∂m

∂ym
θ0) =

∂m−1

∂ym−1 (g
�(u0)u0y − g�(u0 + θ0)u0y )

=
m−1
∑
k=0

[hk0(g
�(u0), . . . , g(m)(u0), g�(u0 + θ0), . . . , g(m)(u0 + θ0), u0y , . . . ,

∂mu0

∂ym
,

g��(η1), . . . , g(m+1)(ηm))Pk(θ0)], (2.32)

where P0(θ0) = θ0 and Pk(θ0) = ∑α1+⋅⋅⋅+(m−1)αm−1=k∏
m−1
i=1 (∂iyθ0)αi for k ≥ 1 with some multivariate polynomi-

als hk0 and ηk between (u0 + θ0) and u0. Since g and u0 are smooth, there exists C�0m such that

L(
∂m

∂ym
θ0) ≤ C�0m exp(−34

√ λ
ε
x) in Ω.

We infer from the boundary conditions for θ0 that
!!!!!!!
∂m

∂ym
θ0

!!!!!!!
≤
!!!!!!!
∂m

∂ym
u0(0, y)

!!!!!!!
on ∂Ω,

and using the maximum principle we obtain that

!!!!!!!
∂m

∂ym
θ0

!!!!!!!
≤ C0m exp(−34

√ λ
ε
x) in Ω̄, (2.33)

where C0m = max(| ∂m∂ym u
0(0, y)|, C�0m). Similarly, for the case when j = 1, we see that for m ≥ 0,

L(
∂m

∂ym
θ1) =

∂m

∂ym
(g�(u0)u1 − g�(u0 + θ0)u1 + θ0yy)

=
m+2
∑
k=0

[hk1(g
�(u0), . . . , g(m+1)(u0), g�(u0 + θ0), . . . , g(m+1)(u0 + θ0), u0y , . . . ,

∂mu0

∂ym
,

u1, . . . , ∂
mu1

∂ym
, g��(η1), . . . , gm+2(ηm+1))Pk(θ0)], (2.34)

where P0(θ0) = θ0 and Pk(θ0) = ∑α1+⋅⋅⋅+(m+2)αm+2=k∏
m+2
i=1 (∂iyθ0)αi for k ≥ 1 with for somemultivariate polyno-

mial hk1 and ηk between (u0 + θ0) and u0. Since g and uj are smooth and hk1 are polynomials, we can find a
positive constant C�1m, by the result for θ0, such that

!!!!!!!
L(

∂m

∂ym
θ1)

!!!!!!!
≤ C�1m exp(−34

√ λ
ε
x) in Ω. (2.35)

By the boundary condition on θ1, we also have
!!!!!!!
∂m

∂ym
θ1

!!!!!!!
≤
!!!!!!!
∂m

∂ym
u1(0, y)

!!!!!!!
on ∂Ω. (2.36)

We find from (2.35) and (2.36) that for m ≥ 0,

!!!!!!!
∂m

∂ym
θ1

!!!!!!!
≤ C1m exp(−34

√ λ
ε
x) in Ω̄,

by the maximum principle where C1m = max(C�1m , | ∂
m

∂ym u
1(0, y)|). We now suppose by induction that for

k ≤ (j − 1), j ≥ 1, there exists a positive constant Cjm such that

!!!!!!!
∂mθk

∂ym
(x, y)

!!!!!!!
≤ Cjm exp(−34

√ λ
ε
x), m = 0, 1, . . . . (2.37)
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To prove (2.31) at order k = j, differentiating (2.29) in ywenote that the first and third terms of the right-hand
side of (2.29) are similarly estimated as for the case θ1 by (2.37). We thus estimate the second term there.
Observing that for k ≥ 2,

(|α| = k, α1 + 2α2 + ⋅ ⋅ ⋅ + jαj = j) ⇔ (|α| = k, α1 + 2α2 + ⋅ ⋅ ⋅ + (j − 1)α(j−1) = j), (2.38)

it suffices to show that for any m ≥ 0,

!!!!!!!
∂m

∂ym (
j
∑
k=2

∑
|α|=k,

α1+2α2+⋅⋅⋅+(j−1)α(j−1)=j

[g(k)(u0 + θ0)(u + θ)α − g(k)(u0)uα])
!!!!!!!
≤ Cjm exp(−34

√ λ
ε
x). (2.39)

To prove this, we note that

g(k)(u0 + θ0)(u + θ)α − g(k)(u0)uα = (g(k)(u0 + θ0) − g(k)(u0))(u + θ)α + g(k)(u0)((u + θ)α − uα), (2.40)

and using the factorization an − bn = (a − b) ∑n
i=1 an−ibi−1,

(u + θ)α − uα =
j−1
∑
l=1

[θl(
αl
∑
i=1

(ul)αl−i(θl)i−1)
l−1
∏
n=1

(un)αn
j−1
∏
n=l+1

(un + θn)αn],

where α = (α1, . . . , αj−1). Differentiating (2.40) in y, thanks to the mean value theorem, the left-hand side
of (2.39) can be written as the sum of the products of θk and their derivatives in y for k ≤ (j − 1). We then
conclude, by assumption (2.37), that (2.39) holds true.

We now estimate, for each n = 0, 1, . . . , the norm of wn, where wn = uε − ∑n
j=0 εj(uj + θ j). Summing (2.15)

for j = 0 to j = n, we find

−ε∆(
n−1
∑
j=0
εjuj) + g(

n
∑
j=0
εjuj) = f. (2.41)

Summing (2.28) for j = 0 to j = n, we find

−ε
n
∑
j=0
εjθ jxx +

n
∑
j=0

{
j
∑
k=0

∑
|α|=k,

α1+2α2+⋅⋅⋅+jαj=j

(
k
α)

1
k! [g

(k)(u0 + θ0)(u + θ)α − g(k)(u0)uα]}εj =
n
∑
j=0
εjθ j−1yy .

Thanks to Lemma 2.6, this can be written in the form

−ε∆(
n
∑
j=0
εjθ j) + g(

n
∑
j=0
εj(uj + θ j)) − g(

n
∑
j=0
εjuj) + R1 = −εn+1θnyy (2.42)

with
|R1| ≤ cεn+1. (2.43)

Adding the two above equations (2.41) and (2.42), we find

−ε∆(
n
∑
j=0
εj(uj + θ j)) + g(

n
∑
j=0
εj(uj + θ j)) = f − εn+1∆un − εn+1θnyy − R1. (2.44)

Subtracting (2.44) and from the first equation in (2.1), we find

−ε∆wn + g(uε) − g(
n
∑
j=0
εj(uj + θ j)) = εn+1∆un + εn+1θnyy + R1. (2.45)

We multiply (2.45) by wn and since g(u) − g(v) = g�(ξ )(u − v) and g�(ξ ) ≥ λ > 0, we obtain, by a priori esti-
mate, that

√ε‖wn‖H1 + ‖wn‖L2 ≤ cεn+1.
We hence proved the following convergence theorem.

Theorem 2.9. Assume that (2.17) holds. Let uε be the solution of (2.1) and uj and θ j be given as in (2.16) and
(2.29)–(2.30), respectively. Then, there exists a positive constant c > 0, independent of ε, such that

"""""""
uε −

n
∑
j=0
εj(uj + θ j)

"""""""ε
≤ c εn+1.
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2.4 Without the assumption (2.17)

If we consider a general smooth function f , i.e., if we remove the assumptions (2.17), we also expect similar
boundary layers at x = L1. Let us denote similar boundary layers θ j at x = 0 by θ jl , j ≥ 0, given in (2.29).
Similarly, we define the boundary layers at x = L1, denoted by θ jr, which satisfy equations (2.29) but with
different boundary conditions, i.e.,

{
{
{

θ jr = 0 at x = 0,

θ jr = −uj(L1, y) at x = L1.

Then, we define the boundary layers θ j, j ≥ 0,

θ j = θ jl + θ
j
r . (2.46)

Since the corrector equations for θ jl , θ
j
r, j ≥ 1, are linear, we infer from equation (2.42) that

−ε∆(
n
∑
j=0
εjθ j) + g(

n
∑
j=0
εj(uj + θ j)) − g(

n
∑
j=0
εjuj) + R̃1 = −εn+1θnyy . (2.47)

Here,
R̃1 = R1 + R2, (2.48)

where R1 is given in (2.42)–(2.43) and

R2 = g(u0 + θ0l ) + g(u
0 + θ0r ) − g(u0 + θ0) − g(u0).

We now note that R2 is exponentially small. Indeed, we find that, for all α ≥ 0,

‖DαR2‖L2(Ω) ≤ ‖DαR2‖L2((0,L1/2)×(0,L2)) + ‖DαR2‖L2((L1/2,L1)×(0,L2))
≤ """"D

α(g(u0 + θ0l ) + g(u
0 + e.s.t) − g(u0 + θ0l + e.s.t) − g(u0))""""L2((0,L1/2)×(0,L2))

+ """"D
α(g(u0 + e.s.t.) + g(u0 + θ0r ) − g(u0 + e.s.t + θ0r ) − g(u0))

""""L2((L1/2,L1)×(0,L2)),

which is an exponentially small term. Then, the convergence analysis similarly follows as in the above, from
which we infer the following theorem.

Theorem 2.10. Let f be a general smooth function periodic in y with period L2, let uε be the solution of (2.1),
and let uj and θ j be given as in (2.16) and (2.46), respectively. Then, there exists a positive constant c > 0,
independent of ε, such that

"""""""
uε −

n
∑
j=0
εj(uj + θ j)

"""""""ε
≤ cεn+1.

3 General domains
We now return to the case of a general smooth domain, where equation (1.2) is posed:

{
−ε∆uε + g(uε) = f in Ω,

uε = 0 at ∂Ω.
(3.1)

Here, Ω is a general smooth domain, f = f(x, y) and g(u) are given smooth functions with

g(0) = 0, g�(u) ≥ λ > 0 for all u ∈ ℝ. (3.2)

The outer solutions uj, j ≥ 0, are the same as in (2.16). That is, in Ω, we have

{{{{{{
{{{{{{
{

u0 = g−1(f ),

u1 = ε−1g−1(g(u0) + ε∆u0) − ε−1u0,

uj = ε−jg−1(g(
j−1
∑
k=0

εkuk) + εj∆uj−1) − ε−j
j−1
∑
k=0

εkuk for j ≥ 1.
(3.3)
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However, the boundary layers appear in the direction normal to the curved boundary. Thus, the boundary
fitted coordinates, i.e., the normal and tangential components along the boundary, are necessary to devise the
boundary layer correctors. Here, we consider smooth boundaries ∂Ω which are parametrised by an arclength
η and we assume that (X(η), Y(η)) ∈ ∂Ω is a regular curve, i.e., the tangent vector T = (X�, Y�) ̸= 0 for the
arclength 0 ≤ η < L0 is measured counterclockwise, where L0 is the length of the boundary ∂Ω. Hence, we
may assume that it has unit speed, i.e., (X�)2 + (Y�)2 = 1 (see [34]).

We then define the boundary fitted coordinates:

ΩBL = {(x, y) : x = X(η) − ξY�(η), y = Y(η) + ξX�(η), 0 ≤ η < L0, 0 ≤ ξ < ξ0}, (3.4)

where ξ0 is the minimum radius of curvature of ∂Ω, i.e., ξ0 = 1/max κ(η). Here we note that (−Y�(η), X�(η))
is the inward unit normal vector to the boundary ∂Ω.

3.1 Boundary fitted coordinates

We introduce the local orthogonal coordinate basis gk, i = 1, 2, on the subdomain ΩBL by setting

g1 =
∂x
∂ξ

e1 +
∂y
∂ξ

e2 = −Y�e1 + X�e2,

g2 =
∂x
∂η

e1 +
∂y
∂η

e2 = (X� − ξY��)e1 + (Y� + ξX��)e2,

where e1, e2 is the standard basis inℝ2 (see, e.g., [1, 40]). We can easily compute that

g1 ⋅ g1 = (X�)2 + (Y�)2 = 1, (3.5)
g1 ⋅ g2 = ξX�X�� + ξY�Y�� = 0, (3.6)
g2 ⋅ g2 = 1 + 2ξ(Y�X�� − X�Y��) + ξ2((X��)2 + (Y��)2).

Here, we note that differentiating (3.5) implies (3.6). The curvature κ(η) of ∂Ω is derived

κ(η) = X�Y�� − Y�X��

((X�)2 + (Y�)2)
3
2
= X�Y�� − Y�X��

and, by the Frenet–Serret relation, T� = (X��, Y��) = κ(η)N(η) where N(η) is the unit normal outward vector.
Hence, we obtain that

g2 ⋅ g2 = (1 − κ(η)ξ )2.

For the variables (ξ, η) in
Ωξ,η = {(ξ, η) : 0 ≤ η < L0, 0 ≤ ξ < ξ0},

since 0 ≤ ξ < ξ0 = 1/max κ(η), we find that 1 − κ(η)ξ > 0, and thus we have

h1 := √g1 ⋅ g1 = 1, h2 := √g2 ⋅ g2 = 1 − κ(η)ξ.

The gradient and Laplacian operators are then defined as follows:

∇ =
2
∑
i=1

gi
h2i

∂
∂ζ i

, ∆ =
1

h1h2

2
∑
i=1

∂
∂ζ i

(
h1h2
h2i

∂
∂ζ i

),

where (ζ 1, ζ 2) = (ξ, η). Hence, we find that

∇ = (−Y� ∂
∂ξ

+ (X� − ξY��)σ2(ξ, η) ∂
∂η
, X� ∂

∂ξ
+ (Y� + ξX��)σ2(ξ, η) ∂

∂η)
,

and

∆ =
∂2

∂ξ2
− κ(η)σ(ξ, η) ∂

∂ξ
+ σ2(ξ, η) ∂

2

∂η2
+ ξκ�(η)σ3(ξ, η) ∂

∂η
, (3.7)

where
σ(ξ, η) = 1

1 − κ(η)ξ
. (3.8)
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Then, the model equation in (3.1), can be written as

−ε ∂
2uε

∂ξ2
+ εκ(η)σ(ξ, η)∂u

ε

∂ξ
− εσ2(ξ, η)∂

2uε

∂η2
− εξκ�(η)σ3(ξ, η)∂u

ε

∂η
+ g(uε) = f. (3.9)

Remark 3.1. On the unit circle domain, using polar coordinates, we find X(η) = cos η, Y(η) = sin η and
σ(ξ ) = (1 − ξ )−1 (note κ(η) = 1). The operators ∇, ∆ are simplified to

∇ = (− cos η ∂∂ξ −
sin η
1 − ξ

∂
∂η
, − sin η ∂

∂ξ
+
cos η
1 − ξ

∂
∂η)

,

and

∆ =
1

(1 − ξ )2
∂2

∂η2
−

1
1 − ξ

∂
∂ξ

+
∂2

∂ξ2
.

3.2 Boundary layer analysis at orders ε0 and ε 1
2

Unlike the channel domain (2.1), wewill need to introduce a corrector θ 1
2 to settle the error from the curvature

κ(η).
In general, to find appropriate asymptotic expansions for the boundary layers, we preform the following

expansions near the boundary ξ = 0. Subtracting (2.41) from (3.9) and observing that√ε is the thickness of
the boundary layers, as indicated in previous sections, which suggests to use the stretched variable ̄ξ = ξ/√ε,
we find that

(−
∂2

∂ ̄ξ2
+ √εκ(η)σ(ξ, η) ∂

∂ ̄ξ
− εσ2(ξ, η) ∂

2

∂η2
− εξκ�(η)σ3(ξ, η) ∂

∂η)(
uε −

n
∑
j=0
εjuj)

+ g(uε) − g(
n
∑
j=0
εjuj) = εn+1∆un . (3.10)

To address the termsat all the orders of ε in theboundary layers,wehave to resolve the effect of curvature κ(η).
Here, κ(η) = 0 for the channel domain. We first observe that σ(ξ, η) = (1 − κ(η))−1 = ∑∞

l=0(κ(η) ̄ξ )lε l
2 and the

powers of σ(ξ, η) canbe similarly expressed (see also (3.38) below).We then take into account themean value
theorem for the first two terms in the second line of (3.10), i.e., g(uε) − g(∑n

j=0 εjuj) = g�(u)(uε − ∑n
j=0 εjuj) for

some u. In this way, we can balance the difference between uε and the outer expansion at order n by using
the inner expansion near ∂Ω in the form

uε −
n
∑
j=0
εjuj ≃

n
∑
j=0

(εθ j + εj+
1
2 θj+

1
2 ) near ∂Ω. (3.11)

By comparing the terms of the same order εj on ∂Ω,we deduce from (3.11) the following boundary conditions
for j ≥ 0:

{
{
{

θ j = −uj on ∂Ω,

θ j+
1
2 = 0 on ∂Ω.

(3.12)

We now find two leading order correctors θ0 and θ 1
2 satisfying

−ε(θ0ξξ + √εθ
1
2
ξξ ) + εκ(η)(θ

0
ξ + √εθ

1
2
ξ ) + g(u

0 + θ0 + √εθ
1
2 ) − g(u0) ≃ 0. (3.13)

By the Taylor expansion, dropping smaller terms and using the stretched variable ̄ξ = ξ/√ε, we obtain ̄θ0 at
order O(ε0), which is a solution of

− ̄θ0 ̄ξ ̄ξ + g(u
0 + ̄θ0) − g(u0) = 0, (3.14)

and from (3.13) at order O(ε 1
2 ), we again find ̄θ 1

2 such that

− ̄θ
1
2
̄ξ ̄ξ
+ g�(u0 + ̄θ0) ̄θ

1
2 = −κ(η) ̄θ0 ̄ξ . (3.15)
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These equations are supplemented with the respective boundary conditions, i.e.,

{
̄θ0 = −u0|ξ=0 = −u0(X(η), Y(η)) at ξ = 0,
̄θ0 = 0 at ξ = ξ0,

{
{
{

̄θ
1
2 = 0 at ξ = 0,
̄θ
1
2 = 0 at ξ = ξ0.

(3.16)

Then, we extend ̄θ0 and ̄θ 1
2 by zero for ξ > ξ0 and these extensions are still denoted by the same notations.

However, these extensions are not smooth. Thus, for the analysis below, let us define

θ0 = ̄θ0δ(ξ ), θ
1
2 = ̄θ

1
2 δ(ξ ),

where δ(ξ ) is a smooth cut-off function given by

δ(ξ ) =
{
{
{

1, ξ ∈ [0, ξ0/4],
0, ξ ∈ [3ξ0/4,∞).

(3.17)

Remark 3.2. We obtain θ0 bymultiplying ̄θ0 by the cut-off function. This allows us to use the same estimates
for θ0 as ̄θ0. We proceed similarly for θ 1

2 .

Lemma 3.3. The following pointwise estimate holds for ̄θ0:

| ̄θ0| ≤ |u0|ξ=0 exp(−√
λ
ε
ξ). (3.18)

Furthermore, the derivatives of ̄θ0 satisfy pointwise, for l,m, n ≥ 0, the following:

!!!!!!!
ξ n ∂

l+m ̄θ0

∂ξ l∂ηm
!!!!!!!
≤ cε

n−l
2 exp(−12

√ λ
ε
ξ). (3.19)

Proof. We first set ψ = |u0|ξ=0 exp(−√λ ̄ξ ). Writing ̃θ = ̄θ0 − ψ, we deduce from (3.14) that

− ̃θ ̄ξ ̄ξ + g(u
0 + ̄θ0) − g(u0) − λψ = 0,

which implies
− ̃θ ̄ξ ̄ξ + g

�(η) ̃θ ≤ 0. (3.20)

Thanks to (3.16), multiplying (3.20) by ̃θ+( ̄ξ , ⋅ ) ∈ H1
0(0,∞) and integrating over (0,∞), we find that

∞

∫
0

|( ̃θ+) ̄ξ |
2 d ̄ξ + λ

∞

∫
0

| ̃θ+|2 d ̄ξ ≤ 0.

This implies ̃θ+ = 0 for all ̄ξ ≥ 0 and thus ̄θ0 ≤ ψ. The other inequality − ̄θ0 ≤ ψ similarly follows.
We now find the estimates for the derivatives as in (3.19). For l = 0 and n = 0, it immediately follows,

from Lemma 2.8, that
!!!!!!!
∂m ̄θ0

∂ηm
!!!!!!!
≤ c exp(−34

√ λ
ε
ξ).

Multiplying by ξ n, the estimate (3.19) follows for l = 0 and n ≥ 0.
Then, at higher orders l, we use the multi-index α = (l − 2,m) with l ≥ 2 and Dα = ∂l−2̄ξ ∂mη . Applying the

operator Dα to (3.14), we have

∂l ̄ξ∂
m
η

̄θ0 = (Dα ̄θ0) ̄ξ ̄ξ = D
α(g(u0 + ̄θ0) − g(u0)).

Thanks to the mean value theorem, we observe that

Dα(g(u0 + ̄θ0) − g(u0)) = finite sum of products of Dβ ̄θ0 with β ≤ (l − 2,m), (3.21)

and we can thus inductively prove (3.19) for any l ≥ 0 as long as the case for l = 1 is proved.
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For l = 1, we let μ > 0, which will be determined. We infer from (3.14) that

( ̄θ0 ̄ξ e
μ ̄ξ ) ̄ξ = (g(u0 + ̄θ0) − g(u0))eμ ̄ξ + μ ̄θ0 ̄ξ e

μ ̄ξ = (g(u0 + ̄θ0) − g(u0))eμ ̄ξ + (μ ̄θ0eμ ̄ξ ) ̄ξ − μ
2 ̄θ0eμ ̄ξ .

Integrating over ( ̄ξ ,∞), we find

C − ̄θ0 ̄ξ e
μ ̄ξ = I1( ̄ξ ) − μ ̄θ0eμ ̄ξ ,

where

I1( ̄ξ ) =
∞

∫
̄ξ

(g(u0 + ̄θ0) − g(u0) − μ2 ̄θ0)(t, η)eμt dt.

Then,
̄θ0 ̄ξ = Ce

−μ ̄ξ − I1(ξ )e−μ
̄ξ + μ ̄θ0, (3.22)

and integrating over ( ̄ξ ,∞), we find that

− ̄θ0 = D + μ−1Ce−μ ̄ξ −
∞

∫
̄ξ

I1(s)e−μs ds + μ
∞

∫
̄ξ

̄θ0(s, η)ds. (3.23)

Let μ = p√λ, where p, a constant independent of ε, is to be determined. For 0 < p < 1, since (3.18) yields
| ̄θ0(t, η)| ≤ c exp(−√λt), we find that

|I1( ̄ξ )| ≤ c
∞

∫
̄ξ

e−√λ(1−p)t dt ≤ ce−√λ(1−p) ̄ξ ,

and
!!!!!!!!!

∞

∫
̄ξ

I1(s)e−μs ds
!!!!!!!!!
≤ c

∞

∫
̄ξ

e−√λs ds ≤ ce−√λ ̄ξ .

Let us choose p = 3
4 and thus μ = 3

4√λ. Applying the boundary conditions to (3.23), i.e., ̄θ0 → 0 as ̄ξ → ∞
and ̄θ0 = −u0|ξ=0 at ̄ξ = 0, we find that D = 0 and that

−u0(0, η) = ̄θ0(0, η) = −μ−1C +
∞

∫
0

I1(s)e−μs ds − μ
∞

∫
0

̄θ0(s, η)ds.

Thus,

C = μ[u0(0, η) +
∞

∫
0

I1(s)e−μs ds − μ
∞

∫
0

̄θ0(s, η)ds].

To estimate ∂mη ̄θ0 ̄ξ , we apply ∂
m
η to (3.22) and find that

|∂mη ̄θ0 ̄ξ | ≤ (|∂mη C| + |∂mη I1( ̄ξ )|) exp(−34
√ λ
ε
ξ) + c|∂mη ̄θ0|

≤ c exp(−34
√ λ
ε
ξ). (3.24)

Here, from (3.21) with α = (0,m), i.e., l = 2, and (3.19) with l = 0, we used the fact that

|∂mη C| + |∂mη I1( ̄ξ )| ≤ c.

We similarly derive the pointwise estimate for ̄θ 1
2 and the result appears in the following lemma.
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Lemma 3.4. The corrector ̄θ 1
2 satisfies pointwise, for l,m, n ≥ 0, the following:

!!!!!!!
ξ n ∂

l+m ̄θ 1
2

∂ξ l∂ηm
!!!!!!!
≤ cε

n−l
2 exp(−12

√ λ
ε
ξ). (3.25)

Proof. Let L be the linear operator given by

Lu = −u ̄ξ ̄ξ + g
�(u0 + ̄θ0)u.

We repeat the same argument as in the proof of Lemma 3.3. For l = 0, the estimates (3.25) hold true by the
maximum principle applied to L(∂mη ̄θ 1

2 ) with (3.15). For l = 1, we infer from (3.15) that

( ̄θ
1
2
̄ξ
eμ ̄ξ ) ̄ξ = g

�(u0 + ̄θ0) ̄θ
1
2 eμ ̄ξ + κ(η) ̄θ0 ̄ξ e

μ ̄ξ + (μ ̄θ
1
2 eμ ̄ξ ) ̄ξ − μ

2 ̄θ
1
2 eμ ̄ξ .

We integrate over ( ̄ξ ,∞), to find that

C − ̄θ
1
2
̄ξ
eμ ̄ξ = I2( ̄ξ ) − μ ̄θ

1
2 eμ ̄ξ ,

where

I2( ̄ξ ) =
∞

∫
̄ξ

(g�(u0 + ̄θ0) ̄θ
1
2 + κ(η) ̄θ0 ̄ξ − μ

2 ̄θ
1
2 )(t, η)eμt dt.

Let μ = p√λ, where p is a constant independent of ε to be chosen later. From estimates (3.19), we note that
| ̄θ0 ̄ξ (t, η)| ≤ c exp(−√λt/2). Using the same argument as in the proof of Lemma 3.3, we only need to show that
for 0 < p < 1,

|I2( ̄ξ )| ≤ c
∞

∫
̄ξ

e−√λ(1−p)t dt ≤ ce−√λ(1−p) ̄ξ . (3.26)

Following then the same procedure as in the proof of Lemma 3.3 with the boundary conditions (3.16), we
can obtain (3.24) for ̄θ 1

2 .
For l ≥ 2, differentiating (3.15) in ̄ξ and using estimates (3.19), the lemma is inductively proved.

We now find the norm estimate in L2 and H1 for ̄θ0 and ̄θ 1
2 in the next lemma.

Lemma 3.5. Let l,m, n ≥ 0. Then, there exists c > 0 such that
"""""""
ξ n ∂

l+m ̄θ0

∂ξ l∂ηm
"""""""L2ξ (Ω)

+
"""""""
ξ n ∂

l+m ̄θ 1
2

∂ξ l∂ηm
"""""""L2ξ (Ω)

≤ cε
n−l
2 + 1

4 . (3.27)

Proof. We infer from Lemma 3.3 and Lemma 3.4 that (3.27) holds.

We now introduce the analogue of Theorem 2.3.

Theorem 3.6. Assume f is a general smooth function and Ω is a general smooth domain. Then, there exists a
positive constant c > 0 such that

‖uε − u0 − θ0‖ε ≤ cε
3
4 .

Proof. We set w = uε − u0 − θ0. To avoid the singularity of σ(ξ, η) = (1 − κ(η)ξ )−1, we use the smooth cut-off
function ̃δ(ξ ) such that

̃δ(ξ ) =
{
{
{

1, ξ ∈ [0, ξ0/2],
0, ξ ∈ [3ξ0/4,∞).

(3.28)

Here, we recall that ξ0 = 1/max κ(η). Noting that θ0 = 0 for ξ ≥ ξ0/2 and denoting by ( ⋅ , ⋅ ) the scalar product
in the space L2(Ω), we can write

(ε∆θ0 − g(u0 + θ0) + g(u0), w) = (ε∆θ0 − g(u0 + θ0) + g(u0), ̃δ(ξ )w)
= (G0 + E0, ̃δ(ξ )w) + (ε∆ ̄θ0 − g(u0 + ̄θ0) + g(u0), ̃δ(ξ )w)
= ((G0 + E0) ̃δ(ξ ), w) + (R0 ̃δ(ξ ), w), (3.29)
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thanks to (3.14). Here,

E0 = ε∆(θ0 − ̄θ0),

G0 = g(u0 + ̄θ0) − g(u0 + θ0),

R0 = −εκ(η)σ(ξ, η)∂
̄θ0

∂ξ
+ εσ2(ξ, η)∂

2 ̄θ0

∂η2
+ εξκ�(η)σ3(ξ, η)∂

̄θ0

∂η
.

Since θ0 − ̄θ0 = ̄θ0(1 − δ(ξ )), it is very easy to prove that G0 and E0 are e.s.t. We also find that

‖R0 ̃δ(ξ )‖L2(Ω) ≤ cε
3
4 .

Taking the inner product of (3.3) and (3.1), respectively, with w, we write

(−ε∆uε + g(uε), w) = (f, w), (3.30)
(g(u0), w) = (f, w). (3.31)

From (3.29), (3.30) and (3.31), we find that

(−ε∆w + g(uε) − g(u0 + θ0), w)
= (−ε∆uε + g(uε), w) − (g(u0), w) + (ε∆u0, w) + (ε∆θ0 − g(u0 + θ0) + g(u0), w)
= (ε∆u0, w) + (G0 ̃δ(ξ ), w) + (R0 ̃δ(ξ ), w)
≤ cε

3
4 ‖w‖L2(Ω).

Thanks to (3.2), this completes the proof of Theorem 3.6.

Theorem 3.7. Assume that f is a general smooth function and Ω is a general smooth domain. Then, there exists
a positive constant c > 0 such that

‖uε − u0 − θ0 − ε
1
2 θ

1
2 ‖ε ≤ cε.

Proof. We define w 1
2 = uε − u0 − θ0 − √εθ 1

2 , then we find

(ε∆(θ0 + √εθ
1
2 ) − g(u0 + θ0 + √εθ

1
2 ) + g(u0), w

1
2 )

= (ε∆(θ0 + √εθ
1
2 ) − g(u0 + θ0 + √εθ

1
2 ) + g(u0), ̃δ(ξ )w

1
2 )

= (G 1
2
+ E 1

2
, ̃δ(ξ )w

1
2 ) + (ε∆( ̄θ0 + √ε ̄θ

1
2 ) − g(u0 + ̄θ0 + √ε ̄θ

1
2 ) + g(u0), ̃δ(ξ )w

1
2 )

= ((G 1
2
+ E 1

2
) ̃δ(ξ ), w

1
2 ) + (R 1

2
̃δ(ξ ), w

1
2 ), (3.32)

by (3.14) and by (3.15), where

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

E 1
2
= ε∆(θ0 + √εθ

1
2 − ̄θ0 − √ε ̄θ

1
2 ),

G 1
2
= g(u0 + ̄θ0 + √ε ̄θ

1
2 ) − g(u0 + θ0 + √εθ

1
2 ),

R 1
2
= −εκ(η)σ(ξ, η) ∂

∂ξ
( ̄θ0 + √ε ̄θ

1
2 ) + εκ(η) ∂

∂ξ
̄θ0

+ εσ2(ξ, η) ∂
2

∂η2
( ̄θ0 + √ε ̄θ

1
2 ) + εξκ�(η)σ3(ξ, η) ∂

∂η
( ̄θ0 + √ε ̄θ

1
2 )

+ g(u0 + ̄θ0) + g�(u0 + ̄θ0)√ε ̄θ
1
2 − g(u0 + ̄θ0 + √ε ̄θ

1
2 ).

(3.33)

We note that thanks to the Taylor expansion, we have

g(u0 + ̄θ0 + √ε ̄θ
1
2 ) − g(u0 + ̄θ0) = g�(u0 + ̄θ0)√ε ̄θ

1
2 + T 1

2
,

where
‖T 1

2
‖L2(Ω) ≤ c‖ε( ̄θ

1
2 )2‖L2(Ω) ≤ cε

5
4 . (3.34)
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On the other hand,
"""""""
−εκ(η)σ(ξ, η) ̃δ(ξ ) ∂

∂ξ
( ̄θ0 + √ε ̄θ

1
2 ) + εκ(η) ̃δ(ξ ) ∂

∂ξ
̄θ0
"""""""L2(Ω)

=
"""""""
−ε√εκ(η) ∂

∂ξ
̄θ
1
2 ̃δ(ξ ) − εκ(η)

∞

∑
j=1

(κ(η)√ε ̄ξ )j ̃δ(ξ ) ∂
∂ξ

( ̄θ0 + √ε ̄θ
1
2 )
"""""""L2(Ω)

≤ cε
5
4 , (3.35)

by Remark 3.2 and (3.27). We infer from Lemma 3.4, (3.34) and (3.35) that

‖R 1
2

̃δ(ξ )‖L2(Ω) ≤ cε
5
4 ,

while E 1
2
and G 1

2
are e.s.t. We now find from (3.32) that

(−ε∆w
1
2 + g(uε) − g(u0 + θ0 + √εθ

1
2 ), w

1
2 )

= (−ε∆uε + g(uε) − g(u0), w
1
2 ) + (ε∆u0, w

1
2 ) + (ε∆(θ0 + √εθ

1
2 ) − g(u0 + θ0 + √εθ

1
2 ) + g(u0), ̃δ(ξ )w

1
2 )

= (ε∆u0, w
1
2 ) + ((G 1

2
+ E 1

2
) ̃δ(ξ ), w

1
2 ) + (R 1

2
̃δ(ξ ), w

1
2 ). (3.36)

We then find from (3.36) and the mean value theorem that

(−ε∆w
1
2 + g�(ζ )w

1
2 , w

1
2 ) = (ε∆u0, w

1
2 ) + ((G 1

2
+ E 1

2
) ̃δ(ξ ), w

1
2 ) + (R 1

2
̃δ(ξ ), w

1
2 )

for some ζ between uε and (u0 + θ0 + √εθ 1
2 ). We then conclude

(−ε∆w
1
2 + g�(ζ )w

1
2 , w

1
2 ) ≤ cε‖w

1
2 ‖L2(Ω),

which implies
ε‖w

1
2 ‖2H1(Ω) + λ‖w

1
2 ‖2L2(Ω) ≤ c ε

2 +
λ
2 ‖w

1
2 ‖2L2(Ω).

3.3 Boundary layer analysis at arbitrary orders εn and εn+ 12 , n ≥ 0

Similarly as in (2.20), we formally write

−ε∆(
∞

∑
j=0
εj(θ j + √εθ j+

1
2 )) + g(

∞

∑
j=0
εj(uj + θ j + √εθ j+

1
2 )) − g(

∞

∑
j=0
εjuj) = 0. (3.37)

Because of the one-dimensional nature of these boundary layers near the boundary in the direction normal
to the boundary, we now introduce the boundary fitted coordinates. We transform the Laplacian ∆ as in (3.7)
and (3.8).

Using the geometric series expansions

(1 − r)−1 =
∞

∑
l=0
rl , (1 − r)−2 =

∞

∑
l=0

(l + 1)rl and (1 − r)−3 =
1
2

∞

∑
l=0

(l + 1)(l + 2)rl ,

we formally write, e.g.,

σ3(ξ, η) = (1 − κ(η)ξ )−3 =
1
2

∞

∑
l=0

(l + 1)(l + 2)(κ(η) ̄ξ )lε
l
2 . (3.38)

Then,

ε∆(
∞

∑
j=0

(εj ̄θ j + εj+
1
2 ̄θ j+

1
2 )) =

∂2

∂ ̄ξ2
(

∞

∑
j=0

(εj ̄θ j + εj+
1
2 ̄θ j+

1
2 )) − κ(η)(

∞

∑
l=0

(κ(η) ̄ξ )lε
l
2 )

∂
∂ ̄ξ

(
∞

∑
j=0

(εj+
1
2 ̄θ j + εj+1 ̄θ j+

1
2 ))

+ (
∞

∑
l=0

(l + 1)(κ(η) ̄ξ )lε
l
2 )

∂2

∂η2
(

∞

∑
j=0

(εj+1 ̄θ j + εj+
3
2 ̄θ j+

1
2 ))

+
̄ξ

2 κ
�(η)(

∞

∑
l=0

(l + 1)(l + 2)(κ(η) ̄ξ )lε
l
2 )

∂
∂η(

∞

∑
j=0

(εj+
3
2 ̄θ j + εj+2 ̄θ j+

1
2 ))

=
∂2

∂ ̄ξ2
(

∞

∑
j=0

(εj ̄θ j + εj+
1
2 ̄θ j+

1
2 )) + I∞1 + I∞2 + I∞3 . (3.39)
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Using
∞

∑
l=0

(κ(η) ̄ξ )lε
l
2 =

∞

∑
m=0

(κ(η) ̄ξ )2mεm +
∞

∑
m=0

(κ(η) ̄ξ )2m+1εm+ 1
2 ,

we rearrange the terms according to the order of ε and then we find the last expression in (3.39). The Ik are
defined and expanded as follows

{{{{{{{{{{{{
{{{{{{{{{{{{
{

In1 = −κ(η)
n
∑
j=0

(εjJ j1( ̄θ) + εj+
1
2 J j+

1
2

1 ( ̄θ)),

In2 =
n
∑
j=0

(εjJ j2( ̄θ) + εj+
1
2 J j+

1
2

2 ( ̄θ)),

In3 =
̄ξ

2 κ
�(η)

n
∑
j=0

(εjJ j3( ̄θ) + εj+
1
2 J j+

1
2

3 ( ̄θ)),

(3.40)

where

{{{{{{
{{{{{{
{

J j1( ̄θ) =
j−1
∑
k=0

(κ(η) ̄ξ )2(j−k)−1 ∂
̄θk

∂ ̄ξ
+
j−1
∑
k=0

(κ(η) ̄ξ )2(j−k)−2 ∂
̄θk+ 1

2

∂ ̄ξ
,

J j+
1
2

1 ( ̄θ) =
j
∑
k=0

(κ(η) ̄ξ )2(j−k) ∂
̄θk

∂ ̄ξ
+
j−1
∑
k=0

(κ(η) ̄ξ )2(j−k)−1 ∂
̄θk+ 1

2

∂ ̄ξ
,

(3.41)

{{{{{{
{{{{{{
{

J j2( ̄θ) =
j−1
∑
k=0

(2(j − k) − 1)(κ(η) ̄ξ )2(j−k)−2 ∂
2 ̄θk

∂η2
+
j−2
∑
k=0

(2(j − k) − 2)(κ(η) ̄ξ )2(j−k)−3 ∂
2 ̄θk+ 1

2

∂η2
,

J j+
1
2

2 ( ̄θ) =
j−1
∑
k=0

(2(j − k))(κ(η) ̄ξ )2(j−k)−1 ∂
2 ̄θk

∂η2
+
j−1
∑
k=0

(2(j − k) − 1)(κ(η) ̄ξ )2(j−k)−2 ∂
2 ̄θk+ 1

2

∂η2
,

(3.42)

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

J j3( ̄θ) =
j−2
∑
k=0

(2(j − k) − 2)(2(j − k) − 1)(κ(η) ̄ξ )2(j−k)−3 ∂
̄θk

∂η

+
j−2
∑
k=0

(2(j − k) − 3)(2(j − k) − 2)(κ(η) ̄ξ )2(j−k)−4 ∂
̄θk+ 1

2

∂η
,

J j+
1
2

3 ( ̄θ) =
j−1
∑
k=0

(2(j − k) − 1)(2(j − k))(κ(η) ̄ξ )2(j−k)−2 ∂
̄θk

∂η

+
j−2
∑
k=0

(2(j − k) − 2)(2(j − k) − 1)(κ(η) ̄ξ )2(j−k)−3 ∂
̄θk+ 1

2

∂η
.

(3.43)

We note that when the upper limit and exponents in the expressions of J jk and J
j+ 1

2
k are negative these terms

are set to be zero. To handle the nonlinear term g, we derive the analogue of Lemma 2.6. Replacing ε by√ε,
n by 2n + d (d = 0, 1), and then renaming u2j, θ2j, u2j+1, θ2j+1, respectively, as uj, θ j, uj+ 1

2 , θ j+ 1
2 and setting

uj+ 1
2 = 0, we obtain the following lemma.

Lemma 3.8. There exists a constant C > 0, independent of ε, such that

{{{{{{
{{{{{{
{

!!!!!!!
g(

n
∑
j=0

(εjuj + εjθ j) +
n−1
∑
j=0
εj+

1
2 θj+

1
2 ) − g(

n
∑
j=0
εjuj) − Gn

!!!!!!!
≤ C√ε2n+1,

!!!!!!!
g(

n
∑
j=0

(εjuj + εjθ j + εj+
1
2 θj+

1
2 )) − g(

n
∑
j=0
εjuj) − Gn+ 1

2

!!!!!!!
≤ C√ε2n+2,

(3.44)

where, for d = 0, 1,

Gn+ d
2
=

2n+d
∑
m=0

{
m
∑
k=0

∑
|α|=k,

α1+2α2+⋅⋅⋅+mαm=m

(
k
α)

1
k! [g

(k)(u0 + θ0)(u + θ)α − g(k)(u0)uα]}√εm , (3.45)
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and the multi-index notations are defined, for d = 0, 1, as follows

{
{
{

α = (α1, . . . , α2j+d), |α| = α1 + ⋅ ⋅ ⋅ + α2j+d ,

(u + θ)α = (u
1
2 + θ

1
2 )α1 . . . (uj+

d
2 + θj+

d
2 )α2j+d , uα = (u

1
2 )α1 . . . (uj+

d
2 )α2j+d ,

(3.46)

with uj+ 1
2 = (uj+ 1

2 )α2j+1 = 0 if α2j+1 ≥ 1 and (uj+ 1
2 )0 = 1 for j = 0, 1, 2, . . . .

We now construct high order boundary layers. From the formal sum (3.37) and Lemma 3.8 with n = ∞, we
can write

−ε∆(
∞

∑
j=0
εj(θ j + √εθ j+

1
2 ))

+
∞

∑
m=0

{
m
∑
k=0

∑
|α|=k,

α1+2α2+⋅⋅⋅+mαm=m

(
k
α)

1
k! [g

(k)(u0 + θ0)(u + θ)α − g(k)(u0)uα]}√εm = 0. (3.47)

We then observe that at order O(ε)

− ̄θ1 ̄ξ ̄ξ + g
�(u0 + ̄θ0) ̄θ1 = (g�(u0) − g�(u0 + ̄θ0))u1 − g

��(u0 + ̄θ0)
2 ( ̄θ

1
2 )2 − κ(η)((κ(η) ̄ξ ̄θ0 ̄ξ +

̄θ ̄ξ
1
2 ) + ̄θ0ηη .

Incorporating (3.39) and (3.40), and from (3.47) at m = 2j, we obtain at order O(εj) for j ≥ 1 that

− ̄θ j ̄ξ ̄ξ
+ g�(u0 + ̄θ0) ̄θj = −(g�(u0 + ̄θ0) − g�(u0))uj

−{
2j
∑
k=2

∑
|α|=k,

α1+2α2+⋅⋅⋅+2jα2j=2j

(
k
α)

1
k! [g

(k)(u0 + ̄θ0)(u + ̄θ)α − g(k)(u0)uα]}

−κ(η)J j1( ̄θ) + J j2( ̄θ) +
̄ξ

2 κ
�(η)J j3( ̄θ), (3.48)

where the multi-index notation is described in (3.46). On the other hand, at order O(εj+ 1
2 ) for j ≥ 1, from

(3.47) at m = 2j + 1 we similarly find that

− ̄θ j+
1
2

̄ξ ̄ξ
+ g�(u0 + ̄θ0) ̄θ j+

1
2 = −(g�(u0 + ̄θ0) − g�(u0))uj+

1
2

−{
2j+1
∑
k=2

∑
|α|=k,

α1+2α2+⋅⋅⋅+(2j+1)α2j+1=2j+1

(
k
α)

1
k! [g

(k)(u0 + ̄θ0)(u + ̄θ)α − g(k)(u0)uα]}

−κ(η)J j+
1
2

1 ( ̄θ) + J j+
1
2

2 ( ̄θ) +
̄ξ

2 κ
�(η)J j+

1
2

3 ( ̄θ). (3.49)

The two equations (3.48) and (3.49) are, respectively, supplemented with the boundary conditions

{
̄θ j = −uj|ξ=0 = −uj(X(η), Y(η)) at ξ = 0,
̄θ j = 0 at ξ = ξ0,

{
{
{

̄θ j+
1
2 = 0 at ξ = 0,

̄θ j+
1
2 = 0 at ξ = ξ0.

As before, we extend ̄θj and ̄θj+ 1
2 by zero for ξ > ξ0 and these extensions are still denoted by the same

notations.
Multiplying, respectively, (3.14) by ε0, (3.15) by ε 1

2 , (3.48) by εj and (3.49) by εj+ 1
2 , from j = 1 to j = n,

and adding these resulting equations we find that

−
n
∑
j=0
εj( ̄θ j ̄ξ ̄ξ

+ √ε ̄θ j+
1
2

̄ξ ̄ξ )

= −
2n+1
∑
m=0

{
m
∑
k=0

∑
|α|=k,

α1+2α2+⋅⋅⋅+mαm=m

(
k
α)

1
k! [g

(k)(u0 + ̄θ0)(u + ̄θ)α − g(k)(u0)uα]}√εm + In1 + In2 + In3 , (3.50)

where Ink are described as in (3.40).
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Lemma 3.9. For l,m, n ≥ 0 and j = 0, 1, 2, . . . , there exist c > 0 such that, pointwise,

!!!!!!!
ξ n ∂

l+m ̄θ j

∂ξ l∂ηm
!!!!!!!
+
!!!!!!!
ξ n ∂

l+m ̄θ j+ 1
2

∂ξ l∂ηm
!!!!!!!
≤ cε

n−l
2 exp(−12

√ λ
ε
ξ). (3.51)

Moreover, ̄θ j and ̄θ j+ 1
2 satisfy, for j = 0, 1, 2, . . . ,

"""""""
ξ n ∂

l+m ̄θ j

∂ξ l∂ηm
"""""""L2ξ (Ω)

+
"""""""
ξ n ∂

l+m ̄θ j+ 1
2

∂ξ l∂ηm
"""""""L2ξ (Ω)

≤ cε
n−l
2 + 1

4 . (3.52)

Proof. Using Lemma 3.3 and Lemma 3.4 and the induction on j, from (3.48) and (3.49), we obtain the es-
timates (3.19) and (3.25) for ̄θ j and ̄θ j+ 1

2 , j = 0, 1, 2, . . . . Here, as indicated in (2.38), for k ≥ 2 we used the
fact that the right-hand side of (3.48) and (3.49) involve only the preceding boundary layer correctors. From
the pointwise estimates (3.51), we readily obtain the L2- norm estimates (3.52).

Lemma 3.10. There exists c > 0 such that

"""""""
(ε∆(

n
∑
j=0

(εj ̄θ j + εj+
1
2 ̄θ j+

1
2 )) − In) ̃δ(ξ )

"""""""L2(Ω)
≤ cεn+

5
4 ,

where ̃δ(ξ ) is given in (3.28), and

In =
n
∑
j=0
εj( ̄θ j + √ε ̄θ j+

1
2 ) ̄ξ ̄ξ + I

n
1 + In2 + In3

with Ini given by (3.40).

Proof. Using the Laplacian (3.7) in terms of ξ, η, we write

ε∆(
n
∑
j=0

(εj ̄θ j + εj+
1
2 ̄θ j+

1
2 )) − ε

n
∑
j=0

(εj ̄θ j + εj+
1
2 ̄θ j+

1
2 )ξξ = Kn1 + Kn2 + Kn3 , (3.53)

where

Kn1 = −εκ(η)σ(ξ, η) ∂
∂ξ (

n
∑
j=0

(εj ̄θ j + εj+
1
2 ̄θ j+

1
2 )),

Kn2 = εσ2(ξ, η) ∂
2

∂η2
(

n
∑
j=0

(εj ̄θ j + εj+
1
2 ̄θ j+

1
2 )),

Kn3 = εξκ�(η)σ3(ξ, η) ∂
∂η(

n
∑
j=0

(εj ̄θ j + εj+
1
2 ̄θ j+

1
2 )).

We now only have to prove that

‖(Kni − I
n
i ) ̃δ(ξ )‖L2 ≤ κεn+

5
4 , i = 1, 2, 3. (3.54)

Noting that∑n
j=0∑

j
k=0 = ∑n

k=0∑
n
j=k and∑n

j=0∑
j−1
k=0 = ∑n

k=0∑
n
j=k+1, from (3.40) and (3.41) we write

In1 = −κ(η)
n
∑
k=0

(
n
∑
j=k+1

εj(κ(η) ̄ξ )2(j−k)−1 +
n
∑
j=k
εj+

1
2 (κ(η) ̄ξ )2(j−k))∂

̄θk

∂ ̄ξ

−κ(η)
n
∑
k=0

(
n
∑
j=k+1

εj(κ(η) ̄ξ )2(j−k)−2 +
n
∑
j=k+1

εj+
1
2 (κ(η) ̄ξ )2(j−k)−1)∂

̄θk+ 1
2

∂ ̄ξ

= −κ(η)
n
∑
k=0

(εk+1
2(n−k)
∑
m=0

(κ(η)ξ )m)∂
̄θk

∂ξ
− κ(η)

n
∑
k=0

(εk+
3
2

2(n−k)−1
∑
m=0

(κ(η)ξ )m)∂
̄θk+ 1

2

∂ξ
.
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Then, we find

‖(Kn1 − In1) ̃δ(ξ )‖L2 ≤
"""""""""
εκ(η)(

n
∑
j=0
εj(σ(ξ, η) −

2(n−j)
∑
m=0

(κ(η)ξ )m)∂
̄θ j

∂ξ ) ̃δ(ξ )
"""""""""L2

+
"""""""""
εκ(η)(

n
∑
j=0
εj+

1
2 (σ(ξ, η) −

2(n−j)−1
∑
m=0

(κ(η)ξ )m)∂
̄θ j+ 1

2

∂ξ ) ̃δ(ξ )
"""""""""L2

≤ cε
n
∑
j=0

(
"""""""
εj(κ(η)ξ )2(n−j)+1 ̃δ(ξ )∂

̄θ j

∂ξ
"""""""L2

+
"""""""
εj+

1
2 (κ(η)ξ )2(n−j) ̃δ(ξ )∂

̄θ j+ 1
2

∂ξ
"""""""L2

)

≤ cεn+
5
4 ,

where in the last inequality we used Lemma 3.9. Note that in (3.42) and (3.43) the sum∑j−2
k=0 can be replaced

by ∑j−1
k=0 because the terms there for k = j − 1 do not contribute. Then, permuting summations as above, we

can also prove (3.54) for i = 2, 3. The lemma thus follows.

We use Lemmas 3.8 and 3.10, and equation (3.50), to find that

− ε∆(
n
∑
j=0

(εj ̄θ j + εj+
1
2 ̄θ j+

1
2 )) + g(

n
∑
j=0

(εjuj + εj ̄θ j + εj+
1
2 ̄θ j+

1
2 )) − g(

n
∑
j=0
εjuj) = Rn + R, (3.55)

where
‖Rn ̃δ(ξ )‖L2 ≤ cεn+

5
4 , |R| ≤ c√ε2n+2.

As before, we define now θ j = ̄θjδ(ξ ) and θ j+ 1
2 = ̄θ j+ 1

2 δ(ξ ) for each j ≥ 0, where δ is defined as in (3.17).
Note that θ j , θ j+ 1

2 satisfy the boundary conditions as in (3.12).

Theorem 3.11. Assume that f is a smooth function,Ω is a general smooth domain and uε is solution of (2.1). Let
uj and θ j satisfy (3.3) and (3.48), respectively. Then, for every n ≥ 0, there exists a constant c > 0, independent
of ε, such that

"""""""
uε −

n
∑
j=0
εj(uj + θ j + √εθ j+

1
2 )
"""""""ε

≤ cεn+1, (3.56)

"""""""
uε −

n
∑
j=0
εj(uj + θ j) −

n−1
∑
j=0
εj+

1
2 θ j+

1
2
"""""""ε

≤ cεn+
3
4 . (3.57)

Proof. We set

wn+
1
2 = uε −

n
∑
j=0
εj(uj + θ j + √εθ j+

1
2 ).

We use the smooth cut-off function ̃δ(ξ ) to eliminate the singularity of σ(ξ, η) where ̃δ(ξ ) is given by (3.28).
Then, by a similar argument as before, we obtain that

(ε∆
n
∑
j=0
εj(θ j + √εθj+

1
2 ) − g(

n
∑
j=0
εj(uj + θ j + √εθ j+

1
2 )) + g(

n
∑
j=0
εjuj), wn+

1
2)

= ((Gn+ 1
2
+ En+ 1

2
) ̃δ(ξ ), wn+

1
2 ) + (Rn+ 1

2
̃δ(ξ ), wn+

1
2 ),

where

En+ 1
2
= ε∆(

n
∑
j=0
εj(θ j + √εθ j+

1
2 ) −

n
∑
j=0
εj( ̄θ j + √ε ̄θ j+

1
2 )),

Gn+ 1
2
= g(

n
∑
j=0
εj(uj + ̄θ j + √ε ̄θ j+

1
2 )) − g(

n
∑
j=0
εj(uj + θ j + √εθ j+

1
2 )),

Rn+ 1
2
= Rn + R,
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where Rn and R are given in (3.55). We note that En+ 1
2
and Gn+ 1

2
are e.s.t., and ‖Rn+ 1

2
̃δ(ξ )‖L2(Ω) ≤ εn+1. We

now find

(−ε∆wn+
1
2 + g(uε) − g(

n
∑
j=0
εj(uj + θ j + √εθ j+

1
2 )), wn+

1
2)

= (εn+1∆un , wn+
1
2 ) + ((Gn+ 1

2
+ En+ 1

2
) ̃δ(ξ ), wn+

1
2 ) + (Rn+ 1

2
̃δ(ξ ), wn+

1
2 ).

Here, we used (2.41) which is obtained from summing (3.3).
We finally obtain from themean value theorem that, for some ζ between uε and∑n

j=0 εj(uj + θ j + √εθ j+ 1
2 ),

(−ε∆wn+
1
2 + g�(ζ )wn+

1
2 , wn+

1
2 ) ≤ cεn+1‖wn+

1
2 ‖L2(Ω).

This proves (3.56). From Lemma 3.9, we note that ‖εn+ 1
2 θn+ 1

2 ‖ε ≤ cεn+
3
4 , and the estimate (3.57) follows

from (3.56).
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