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Abstract: In this article, we consider a singularly perturbed nonlinear reaction-diffusion equation whose solu-
tions display thin boundary layers near the boundary of the domain. We fully analyse the singular behaviours
of the solutions at any given order with respect to the small parameter €, with suitable asymptotic expansions
consisting of the outer solutions and of the boundary layer correctors. The systematic treatment of the non-
linear reaction terms at any given order is novel along the singular perturbation analysis. We believe that the
analysis can be suitably extended to other nonlinear problems.
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1 Introduction

Nonlinear reaction-diffusion equations arise in many areas in systems consisting of interacting components.
The equations describe, e.g., chemical reactions, pattern-formation, population dynamics, predator-prey
equations, and competition dynamics in biological systems (see, e.g., [7, 11, 12, 31-33, 39]). One can
consider a typical form of systems of reaction-diffusion equations in the form
u; = DAu + g(u), (1.1)

where g = g(u) describes a change or a local reaction of the state u and D represents a diffusion coefficient
matrix. It is also possible that the reaction g may depend on the spatial domain variable x and of a derivative
ofu,i.e., g =gx,u, Vu).

In real applications like a fast reaction system, the magnitude of some coefficients in the diffusion matrix
D is relatively small and hence the system can be singularly perturbed.

In this article, for the singular perturbation and boundary layer analysis aimed here, we consider the
steady state system of (1.1) and study the following scalar nonlinear singularly perturbed problem which
can serve as a guide for more general systems:

—eAuf + g(u) = in Q,
sw)=f (1.2)
uf® =0 atoQ.
Here, O < € < 1, Q is a general smooth domain, f = f(x, y) and g = g(u) are given smooth functions with
g(0) =0, g'w)=A>0 forallueR. (1.3)

For example, g(u) = u> + Au.
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For small € > 0, the solutions to (1.2) display thin sharp transition layers called boundary layers which
are formed due to the discrepancies between the limit solutions when & = 0 (see (2.3) below) and the bound-
ary conditions in (1.2). The discrepancies are inevitable because the limit problem (see (2.2) below) loses
high order derivatives and hence in general its solutions cannot meet the boundary conditions. Then, the
small diffusion term —eAu? smoothes out the discrepancies, which leads to sharp transition boundary layers.

Another motivation of studying boundary layers is the vanishing viscosity problem in fluid dynamics,
see, e.g., [2, 5, 6, 8, 13, 23-25, 27, 28, 30, 35-37]. The typical question is on the behaviour of the Navier—
Stokes flows at small viscosity, i.e., the limit behaviour or convergence to Euler flows as the viscosity tends to
zero. The boundary layers play a crucial role for connecting the Navier—Stokes and Euler flows and they also
do so for the singular perturbation analysis in the nonlinear reaction-diffusion equations considered here.

An additional motivation comes from the computational aspects in numerical simulations. Due to the
thin boundary layers, the computational meshes are classically refined near the boundary 0Q and this causes
high cost in the simulations. Rather than refining meshes we propose to enrich with suitable boundary layer
correctors the Galerkin or finite element space (or finite volume space). Then, we are able to use a coarse mesh
and this reduces substantially the computational cost. See, e.g., [17, 18, 20-22, 38, 41] for the method of
spaces enriched with boundary layer correctors. For singular perturbations analysis, see [15, 26, 42, 44] and
also the recent review article [14]. See other perspectives in singular perturbations and boundary layers in
[3, 4,9, 10, 16, 19, 29, 43].

In what follows, we discuss the problems posed on a channel domain in Section 2 which is relatively
easier to handle thanks to the simple geometry of the boundary. In Section 3, we cast the nonlinear reaction-
diffusion equations in a general domain. We need to take into account the geometrical properties, like curva-
ture, using the boundary fitted coordinates. Throughout this paper, we systematically handle the nonlinear
term g along the singular perturbation analysis at any orders. This nonlinear treatment can apply to other
nonlinear problems.

For the analysis below, we shall consider the Sobolev spaces H*(Q) and we define the weighted energy
norm,

1
lulle = (€1VUl}, g, + Nullf2 i)

An exponentially small term, denoted e.s.t., is a function whose norm in all Sobolev spaces H%(Q) is expo-
nentially small with, for each s, a bound of the form c; e~/ 1. ¢y, y > 0, with ¢;, y depending possibly
ons.

2 Channel domains

For general domains, which will be studied in Section 3, we consider the domains with smooth boundaries.
Since the boundary layer correctors act locally in the inward direction normal to the boundaries, transforming
the Cartesian coordinate into the so-called boundary fitted one, the boundary layers can be described in
channel domains, which are relatively easy to analyse. We thus consider first the simpler case of channel
domains, which possess boundary layers only on one side at a flat boundary.

Let us consider the problem in a channel domain as follows:

—eAuf +gué) =f inQ=(0,L;)x(0,L>),
ut=0 atx=0,Lq, (2.1)
ut(x,y) =uf(x,y+Ly) inQq =(0,L1) xR,

where f = f(x, y) is smooth and L;- periodic in y. Then, the limit problem reads
gu® =f inQ. (2.2)

Since g is invertible, we write
u® = g7 1(f). (2.3)
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To give an idea on how to construct the boundary layers, for now we assume
f=0 atx=1Lq, (2.4)

which, as we will see, reduces the boundary layer at x = L1, so that only the boundary layer at x = O persists.
Thanks to (1.3) and (2.3), 0 < A(u®)? < (g(u®) - g(0))u® = fu®, and hence

u®=0 atx=L; and u°(x,y)=u(x,y+L,). (2.5)

2.1 Boundary layer analysis at order £°

We now construct a zeroth order corrector to account for the discrepancy between uf and u® at x = 0. Formally,
substituting u¢ ~ u® + 6° in (2.1) and subtracting (2.2) from (2.1), we find that

—eAu® + 6% + gu® + 6°) - gw®) = 0.

Using the stretched variable x = x/+/¢ and dropping non-stiff small terms, we find the zeroth order corrector
equation for 6°:
-6, +gu® +0° - gw® =o.

However, in general u® — u® does not satisfy the boundary condition in (2.1), and hence at the boundary
x = 0, so we propose a boundary layer corrector 6° satisfying

6% +gw®+0°% -gw’ =0 inQ,
6° = —u%0, y) atx =0, (2.6)
g% =0 atx =1L1.

Although 6° is not known explicitly, unlike in many linear problems, we can derive pointwise estimates
for 6°.

Lemma 2.1. The corrector 8° satisfies

N
0 0
16°(x, )] < lu <o,y>|exp(—\j5x). @.7)

Proof. Setting 6° = |u°(0, y)| exp(- VAx/e), writing 8° = 6° — §° and then substituting in (2.6), we obtain
-£69, + g(u® + 6°) — g(u®) — A8° = 0. Since g’ () - A = O for all n € R and thanks to the mean value theorem,
we find, for some n; with |1 — u°| < |8°|, that

6%, +g'(n)6° = (-g'(n1) + H@° < 0. 2.8)

Multiplying (2.8) by 8 = max{6°, 0}, integrating over (0, L1) and noting that 8% = 0 at x = 0, L1, we obtain

L1 Ll
e [((@0),) +1 [(8%)? <o0.
J@n]

This implies 82 = 0 and thus 8° — 8% = 8° < 0. On the other hand, considering this time % = —-6° — ° we find
that €09, + g(u®) - g(u® + 6°) — A8° = 0. We then similarly obtain (2.8) for this §°, and hence we deduce the
same conclusion, i.e., —6° — 6° = 8° < 0. This proves the lemma. O

We can also deduce some norm estimates.

Lemma 2.2. There exists a constant ¢ > 0, independent of €, such that

1 1
||90('a)’)||H}(o,Ll) <ces, "90("1’)”L§(O,L1) < ces. (2.9)



280 —— C.Jung, E.ParkandR. Temam, Boundary layer analysis for nonlinear reaction-diffusion DE GRUYTER

Proof. The second estimate of (2.9) directly follows from (2.7). To obtain the first estimate, we introduce
6 = -u°(0, y)e’x/‘rf&(x), where 6(x) is a smooth cut-off function with §(x) = 1 for x € [0, L1/4] and 6(x) = 0
for x € [3L1/4, co). We observe that for a.e. y € R,

L, Ly Ly
P j|(9° 0P dx = —¢ J(@O — ) (6° — 0) dx = j((—g(u0 1+ 6%) + g(u) + £0)(6° — B) dx < ce?.
0 0 0

where the last inequality follows from the mean value theorem and the L?-estimate of 0.y, 0, and 6°. This
implies the lemma. O

Theorem 2.3. Assume that (2.4) holds. Then, there exists a constant ¢ > 0 such that
lué —u® - 6% < ce. (2.10)

Proof. Let w = uf — u® - 6°, then, thanks to (2.5), w = 0 on 0Q. Subtracting (2.2) and (3.14) from (2.1) we
find that

{ —eAw + g(u®) - gu® + 6°) = eAu® + €6), inQ, 2.11)

w=0 on 0Q.
Multiplying by w and integrating over Q we find that

€ j|VW|2 dxdy + J(g(ue) —g® +6%)wdxdy < % j|w|2 dxdy + ce?.
Q Q Q

Here, the L?-norm of G(Y’y is derived in Lemma 2.8 below. Thanks to the mean value theorem again and by
observing that (g(u?) - g(u® + 8°))w > A|w|?, the theorem is proved. O

We can also obtain the lower bound of |8°(x, y)|.

Lemma 2.4. The corrector 8° satisfies

16°(x, y)| = [u°(0, y)| exp(—\/%ox) +es.t., (2.12)

where Ao = maxj,_,oj</e0| 8' (7).

Proof. From Lemma 2.1 and (2.3), we note that u®, 8° are bounded and hence Ao > 0 is too. We write
6° = 6° - 6°, where 6° = |u°(0, y)|(exp(-vVAox/VE) — LT x exp(-+AoL1/E)) = O.

Fixing y, we first prove (2.12) for the case u°(0, y) < 0. We note that °=0atx=0,L;. Following the
proof of Lemma 2.1, we similarly find that for some n; with [, — u°| < |6°,

-£0%, +g'(n1)0° = (g’ (n1) + 10)8° > 0.

Multiplying by -8° = — max{-6°, 0} and integrating over (0, L), we obtain
L L
e J((é?)x)2 ‘A J(é‘i)z <o.
0 0
This implies 6% = 0 and hence 6°| > 68° > §°, which proves (2.12) for the case u°(0, y) < 0. For the case
u°(0, y) > 0, we write 6° = —6° — §°. Then, we similarly deduce that #° = 0 and hence [6°| > -6° > §°. This
proves the lemma. O

Remark 2.5. Thanks to the estimate for 6° in L2, established in Lemma 2.2 with (2.4), Theorem 2.3 implies
that
||u‘g - MOHLZ(Q) < CS% . (213)

Furthermore, for u°(0,y) # 0 at some y € (0, L,) the L?>-norm in (2.13) has a lower bound, i.e., for
some cq > O,
uf - u®llr2q) = CoEh.
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Indeed, from Lemma 2.4 and Theorem 2.3, we find that

1 1
luf = ullz2 > 16022 — uf — u® - 6°ll2 = c267 — ce = coet.

2.2 Boundary layer analysis at arbitrary order ", n > 0

Outer expansion. We now consider the higher order outer expansions u ~ Z]‘-fo g/, Substituting in (2.1)
and using (2.2), we formally write

—eA(io:sjuj)+g(OZo:sjuj> =f. (2.14)

j=0 j=0

n—
—sA(
j=0

Dropping O(¢"*1) terms, we have
1

sjuj) +g(isjuj> =f.
j=0

We identify at the order O(¢/),j = 0,1, ..., n, and find

—.

gw®) =1,
o j j-1 (2.15)
_el Ayt +g< z ekuk> —g( Z £kuk) _0, jx1.
k=0 k=0
We then obtain, e.g.,
u’ =g (f),
ul = e 1g7(gw®) + eAu®) - e 1uO.
More generally, we recursively obtain
. . j-1 o j-1
W= e‘Jg‘1<g< Z skuk> + s’Au"1> —g7 Z ekuk forj> 1. (2.16)
k=0 k=0

To construct the higher order correctors, we assume, for simplicity, that f is infinitely flat at x = L4, i.e.,

olalf
af _ — —
D%f = X oy =0 atx=Lq,foralla>0, (2.17)
using the multi-index notation
a=(ay,ay) with|a| = a1 +as. (2.18)

This implies that the v/, j = 0, are infinitely flat at x = L1, that is
DW =0 atx=L,forallj,a>0.
Thus, we only have boundary layers at x = O corresponding to u/.

Correctors. We now proceed with the determination of the correctors. Substituting u® ~ Z;’fo gl + 0 in
(2.1), we have formally

—eA(ie"(uj+9i)>+g(is"(u}#G")):f. (2.19)

j=0 j=0

We subtract (2.14) from (2.19) to obtain

—eA(}z ejef) + g( io: d + Hj)) - g(}i ejuj> =0. (2.20)

j=0

We first need to handle the nonlinear term to identify the quantities of order ¢/ and this is discussed below.
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2.3 Treatment of the nonlinear term g(u)

In this section, we formally write the nonlinear term g(35, dgd +0)) - {02 &) at each order &/. Thanks
to the Taylor expansion of g about u°, we have

© © (o) (k) © k
(o) =a(u+ Jow) - 5 E5( e
j=0 j=1 j=1

k=0

Here, we formally consider Z}fl dul = O(e). Similarly, expanding at u® + 6°, we write

o) 0 Sk © k
g( Y s 9;')> -y #( Y i + ei)> .
k=0 : =1

j=0
We first observe that
O k
( Z 8}u}) - z ( )((81u1)a1 (el )
j=1 lalek \ 4
— <k>((u1)a1 . (ul)al . )8(a1+2a2+--~+la1+~~~)
|al=k a
_ (k>ua£(a1+2a2+---+lm+~~~)’
|a|=k a
where

u® = (uhH)n ...(ul)al... ,

using the multi-index notation

a=(ay,...,a;,...) with|la|=a1+---+a;+---, (2.21)
and
kY k!
a _all...all...'
We similarly find that
© NS k
(zgj(u] + 9])) _ z ( )(u +e)ag(a1+2az+-~+lal+~~~),
: a
j=1 la|=k
where

wW+0)%=w' +0HM ...l +oHn... .

Hence, we note that

c co © 1 o  \k © Kk
g( Y I+ 9])> —g( > e’u’) =y P[g(")(uO + 60)( Y gl + 9’)) —g(k)(u0)< > s’u’) ]
j=0 j=0 k=0 "° j=1 j=1
N k\1 k) ¢,,0 0 a (k) (,,0Y,,Q] 01 +202++laj++
=ZZ o H[g Ww®+0")(u+0)*-gwHule , (2.22)

k=0 |a|=k

using the notation (2.21). To arrange the terms at each order &/, we set ay + 2@, + - -- + lag + - - - = j. Since the

multi-index a satisfies |a| = k, we easily note that k = |a| < a1 + 2a3 +--- + la; + - - - = j. If one of the a; with

[ >j+1is greater than or equal to 1, then a; + 2a; +--- +la; +--- > j+ 1, and hence aj.1 = @j.o =---=0.

Thus, we may write the multi-index notations as

{ a=(ay,...,aq), lal = ag + -+ + aj, (2.23)

U+0)* =@+ .. (W +0)%, u*=uhHM... W)Y,
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Hence, using the multi-index notations in (2.23), we formally write
(S o-o)-o( )
o
= Z{ > > (k> ,1, [0 +6%)(u + 6)* - (")(uo)u“]}ef.
lal=k

j=0 L k=0
a1 +2a;+-+jaj=j

For the analysis below, we estimate the truncation error corresponding to the expansion (2.24).
Lemma 2.6. There exists a constant C > 0, independent of €, such that
n . . . n . .
|g< Y + 9’)) —g( > e’uf) - Gn| < Ce™t,
j=0 Jj=0

where

nd K\ 1 .
Gn = Z{ Y oy ( )F[g(k)(uo +6%)(u+0)% - g(k)(uo)u“]}el,
jolico =k, ajke

a1 +20++jaj=j

and the multi-index notations are given in (2.23).

Proof. We first note that the G, given above can be written as

1 ¢ k .
Gn=) a Z{ | |Zk (a>[g(")(u° +60%)(u+6)" - g(k)(uo)u“]}ef.
a1+2a(§;»;-ja,«=j

Thanks to the multinomial theorem, we observe that
oo Ak no \k
Hyo:= g0l + 9°)< Y + 0])> —g(k)(u°)< > e’u’)
j=1

j=1
n
- Z{ <k>[g(k)(u0 +6%)(u+6)" - g(k)(uo)ua]}gj +n ke
j=0 |al=k, .
a1 +20+-+jaj=j

where
[Jn,kl < ce™tl,

On the other hand, we find from Taylor’s theorem that

n . . . n PR
g(ZsJ(u’+91))—g<Z£’u1) Z an+R0—Gn+z ]nk+R0,
j=0 j=0

where
(n+1)

§
Rl = | =, (51)( Z o+ )"

(n+1)

a, (i’u)!(gz)(]égiui)nﬂ‘.

— 283

(2.24)

(2.25)

(2.26)

(2.27)

Here, &; is between (u° + 6°) and Yo g + 0) and &, is between u°® and Yito &/, The lemma follows by

observing that |Rg| < Ce™*1,

O

We now define the boundary layer correctors 6/ at order O(¢/). From (2.20) and (2.24), using the stretched

variable X = x/+/€ at each order O(¢/),j =0, 1, ..., we identify

0%, +gw® + 6% -gw® =0

. J )
-0, + { Z Z (k>’1|[ © @O + %) (u +6)* g(k)(uo)u”‘]}ej = s"O{,}l, j>1. (2.28)

k=1 la|=k,
Qi +20p++jaj=j
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Dividing by &, rearranging terms in the latter equation at each order O(¢/), and using the fact that
laf=k=1 and (a;+2a,+---+jaj=j) © a1 =---=0aj-1 =0, aj =1,
we rewrite (2.28) as
-£69, + g’ + 6% - gw®) =0,
—£05, + &' (0 +6°)6" = —(g'(w® + 6°) - g’ WO)Hu' + 6),,
and forj > 2,
~£0) +8' (U0 + 690 = ~(g' (u° + 6°) - g' (O
k\ 1 i
- Z Z <a)F[g(k)(u0 +0%)(u+6)* - g(k)(uo)u“] + ijyl. (2.29)
k=2 |a|=k, :
a1 +20;++jaj=j
We supplement the boundary condition on ¢/, foreachj=0,1,..., by
o = —uj(O, ) atx=0,
‘ Y (2.30)
=0 atx = L1.

Remark 2.7. Wenote that the corrector equations for @/, j > 1, are all linear and this allows us to directly apply
the maximum principle. Differentiating the equations in y, the maximum principle also holds for %(X, y)
form=>1,j>0.

Lemma 2.8. The correctors 0/, j > 0, satisfy

mQj n
%(x, y)’ < Cexp(—%\]§x>, m = 0. (2.31)

Proof. We use the maximum principle to prove the lemma. Let £ be the linear operator given by
Lu = -y + 8" (W + 6%)u.

For j = 0, we have
0%, +gw® + 6% - gw®) =o0.

We introduce a barrier function ¥ = Co exp(—% \/g x), where Co1 will be chosen later. We use the mathemati-
cal induction on m starting from the case j = 0. By (2.7), we already have |6°(x, y)| < ¢ exp(—% \/gx). We then
see that

1£0)] = |=€0) + 8" (u° + 0907 = |=g' (u® + 6%)uy + 8" (w)uyl < Ig" () 16°uyl,

by the mean value theorem, for some 1 between (u° + 6°) and 6°. We also find

LY = (g’(uo +0% - %/\)Cm exp(—%\jgx)
Since g’ (u® + 6°) > A and |g" (1)]16°||u)| is bounded on Q, we can find a positive constant Cf, such that
1£69] < Chy exp(—%\jgx) in Q.
By the boundary conditions of 8°, we obtain
1091 < [u°(0, Y)| < Cor exp(—é\//—lx> on 00,
4 Ye

where Co; = max(|u®(0, y)|, C61)- The maximum principle implies that

0 A
16,0 ) <P inQ.
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We suppose by induction that for k < (m — 1), m > 1, there exists a positive constant Cox satisfying

ok 3 [A s
|a—y,((x, y)| < Cok eXp<_Z\/EX) in Q.

We then find that
am am 1
L(ay—m9°> = 5y - (8" uO)u) - g'(u® + 6%)uy)
LS 0 0 0, p0 0 omu®
=) [ho(g’(u ) oo 8™, g' w0+ 6%, ..., 8™ +6°), uf a_m
k=0 y
g, .., g™ V™ )Pk, (2.32)

where P°(6°) = 6° and PX(6°) = ¥4, . (m-1)a,_,=k [ 111 (9,6°)% for k > 1 with some multivariate polynomi-
als hk and n* between (u° + 6°) and u°. Since g and u° are smooth, there exists C}  such that

3 [A

0 .
(a me ) < Cémexp(—z\jgx) in Q.
We infer from the boundary conditions for 6° that

om
|ay—mG l 5 ~—u(0, y)l on 0Q,

and using the maximum principle we obtain that

mo 3 Ay . -
a—m9|<C0mexp<—Z EX) inQ, (2.33)

where Co;, = max(la—'fnuo(o, i, C m)- Similarly, for the case when j = 1, we see that for m > 0,

(—01) 5y (g Wu' - g' W’ + 6%u' + 6)))

oym
m+2 amuo
- Z[h’l‘(g’(uo),...,g(’"+1)(u0),g'(u0+90),. 8™+ 0w
k=0 amul
s S €1 "2 )R, (2.34)

where PO(6°) = 6° and PX(6°) = ¥, ... ms2)anmk [T (956°)% for k > 1 with for some multivariate polyno-
mial h" and n* between (u° + 6°) and u°. Since g and w/ are smooth and hk are polynomials, we can find a
positive constant C! _, by the result for 8%, such that

im>
o(26)| < o2\ ) o 239
By the boundary condition on 6, we also have
o "o
3y |g lay—mu (O,y)| on 3Q. (2.36)

We find from (2.35) and (2.36) that for m > 0,

by the maximum principle where Cy,, = max(C},,, |22 aym u'(0, y)|). We now suppose by induction that for
k< (j-1),j =1, there exists a positive constant Cj, such that

mpgk
a 0 (X, y)|<C]mexp<—%\j%x> m=0,1,.... (2.37)
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To prove (2.31) at order k = j, differentiating (2.29) in y we note that the first and third terms of the right-hand
side of (2.29) are similarly estimated as for the case 6! by (2.37). We thus estimate the second term there.
Observing that for k > 2,

(lal =k, a1+2a2+---+jaj=j) © (lal=k, ar1+2a+-+(-Dag-1=j), (2.38)
it suffices to show that for any m > 0,
om 1 *) (1,0 . A0 a _ (k) 7,0y, ENE
ay_’"< Z z [g"W® + %) (u+6)*-g"w®u ]>| < Cjm exp(—z\/gx>. (2.39)

k=2 lal=k,
a1 +2ay++(-1)a-1)=j

To prove this, we note that
g + 6% (u+0)% - g™ WO)u® = (g0 + 6°) - g W)+ 0)* + gP WO (u+ O - u®),  (2.40)

and using the factorization a" - b" = (a - b) Y1, a® b,
j-1

(U+0)%-u®= z [91( i (ul)al_i(el)i_l) ﬁ(u")a" ﬁ ™+ 0”)“"],
n=1

=1 i=1 n=I+1
where a = (a1, ..., aj_1). Differentiating (2.40) in y, thanks to the mean value theorem, the left-hand side
of (2.39) can be written as the sum of the products of 6% and their derivatives in y for k < (j — 1). We then
conclude, by assumption (2.37), that (2.39) holds true. O

We now estimate, for each n=0, 1, ..., the norm of wy, where w, = u® - Y, & + 0). Summing (2.15)
forj=0toj =n, we find
n-1 no
—8A( Z s’u’) +g< Z e’uj) =f. (2.41)
=0 =0
Summing (2.28) for j = 0 to j = n, we find

nooooon(J K\ 1 N Lo
e &0+ Z{ D) (a>p[g<k>(u° +6%)(u +6)" - g O] }8’ XL
j=0 j=0 L k=0 la|=k, : j=0
a1 +20;++joy=j
Thanks to Lemma 2.6, this can be written in the form
n n n
—sA( Z £’9’) +g( Z g+ 9’)) - g( Z £’u’> +Ry =-£"6), (2.42)
j=0 j=0 j=0
with
IRy| < ce™t. (2.43)
Adding the two above equations (2.41) and (2.42), we find
n n
—£A( z gl + 6’)) + g( Z gl + Gj)) =f-e"Au" - "0}, - R;. (2.44)
j=0 j=0
Subtracting (2.44) and from the first equation in (2.1), we find
n
—eAwy, + g(uf) - g( z gl + Gj)> =™ IAu" + £"+19'y1y +R;. (2.45)

j=0
We multiply (2.45) by w, and since g(u) — g(v) = g'(£)(u — v) and g'(£) = A > 0, we obtain, by a priori esti-
mate, that
Velwnllm + IWallz2 < ce™?.

We hence proved the following convergence theorem.

Theorem 2.9. Assume that (2.17) holds. Let u¢ be the solution of (2.1) and w and 6’ be given as in (2.16) and
(2.29)-(2.30), respectively. Then, there exists a positive constant ¢ > 0, independent of €, such that

<ce™t,
&

n
u® - Z g+ )
j=0
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2.4 Without the assumption (2.17)

If we consider a general smooth function f, i.e., if we remove the assumptions (2.17), we also expect similar
boundary layers at x = L;. Let us denote similar boundary layers 6 at x =0 by 6], j > 0, given in (2.29).
Similarly, we define the boundary layers at x = L1, denoted by 6}, which satisfy equations (2.29) but with
different boundary conditions, i.e.,

GJ; =0 atx =0,
GJ; = —uj(Ll,y) atx=1,.
Then, we define the boundary layers 6/, j > 0,
0 =6]+0). (2.46)
Since the corrector equations for 0{ R 6’,', j = 1, are linear, we infer from equation (2.42) that
n . . n . . . n . . —~
—sA( Z e’@f) + g( Z gl + 9’)) - g( Z e’u’) +Ry = -6}, (2.47)
j=0 j=0 Jj=0
Here,
Ri=Ri+Ry, (2.48)

where R is given in (2.42)-(2.43) and
Ry =g’ + 67) + g + 67) - g(u® + 6°) - g(u°).
We now note that R; is exponentially small. Indeed, we find that, for all a > 0,

ID*Rallz2(0) < ID“RallL2((0,11/2)x(0,L2)) + ID*Rall2(r,/2,11)x(0,L,))
<[|ID%(g(u® + 69) + g(u® + e.s.t) - g(u® + 67 + es.t) - g(uo))||L2((O,L1/2)><(0,L2))
+|D*(gu® +est.) + g + 69) - g(u® + est+ 6°) - g(uo))||Lz((L1/2,L1)X(O’LZ)),
which is an exponentially small term. Then, the convergence analysis similarly follows as in the above, from

which we infer the following theorem.

Theorem 2.10. Let f be a general smooth function periodic in y with period L, let u® be the solution of (2.1),
and let W and @ be given as in (2.16) and (2.46), respectively. Then, there exists a positive constant ¢ > 0,
independent of €, such that

n
ut -y & +0)

j=0

< cel,
&

3 General domains

We now return to the case of a general smooth domain, where equation (1.2) is posed:

-eMuf +guf)=f inQ,
| »
Here, Q is a general smooth domain, f = f(x, y) and g(u) are given smooth functions with
g(0) =0, g'w)y=A>0 forallueR. (3.2)
The outer solutions v/, j = 0, are the same as in (2.16). That is, in Q, we have
u’ =g,
ut = e‘lg‘l(g(u.O) +ehu®) -0, (3.3)

S U o 1
w = s"g‘l(g( y sku") + s’Au"1> -7 Y ek forj=1.
k=0 k=0
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However, the boundary layers appear in the direction normal to the curved boundary. Thus, the boundary
fitted coordinates, i.e., the normal and tangential components along the boundary, are necessary to devise the
boundary layer correctors. Here, we consider smooth boundaries 0Q which are parametrised by an arclength
n and we assume that (X(n7), Y(n)) € 0Q is a regular curve, i.e., the tangent vector T = (X', Y') # O for the
arclength O < n < Lo is measured counterclockwise, where L is the length of the boundary 0Q. Hence, we
may assume that it has unit speed, i.e., (X')2 + (Y")? = 1 (see [34]).

We then define the boundary fitted coordinates:

QgL ={(x,y) : x=X(n) - &Y' (n), y = Y(n) + éX' (1)), 0 < < Lo, 0 < & < &}, (3.4)

where &, is the minimum radius of curvature of 9Q, i.e., & = 1/ max k(n). Here we note that (-Y'(n), X'(n))
is the inward unit normal vector to the boundary 0Q.

3.1 Boundary fitted coordinates

We introduce the local orthogonal coordinate basis g, i = 1, 2, on the subdomain Qg by setting

o0x oy
- _7 — _YI XI
g1 a{el+ aé,ez e +4Aey,
g = g—;el + g—il/ez = (X' -&Y")er + (Y +¢&X")e,,
where e, e, is the standard basis in R? (see, e.g., [1, 40]). We can easily compute that
g81-81 =X+ =1, (3.5)
g1 -5 =¢X'X"+&Y'Y" =0, (3.6)

88 = 1+ 28Y'X" - X'Y") + £((X")* + (Y")?).
Here, we note that differentiating (3.5) implies (3.6). The curvature k(1) of 0Q is derived
1y _ yryn
S s i ¢
(X2 +(Y")?)2
and, by the Frenet-Serret relation, T’ = (X", Y"') = k()N(n) where N(n) is the unit normal outward vector.
Hence, we obtain that
g8 =1 -kmd)’.

For the variables (¢, 17) in

Qen={&n):0<n<Lo, 0<&< &},

since 0 < & < &, = 1/ max x(n7), we find that 1 — k()¢ > 0, and thus we have
hi:=vg1-81=1, hy:=+8 -8 =1-kn)4.
The gradient and Laplacian operators are then defined as follows:

2
g o 1 0 (hlhz 0 )
V= — T A= vy 0 |
Zhl? ot hihy & o(t hl.2 ol

M~

where ({1, {?) = (£, n). Hence, we find that

_ 1 0 2 0 ! 0 ! "y ~2 0
V= (—Y P (X' - &Y% (¢, n)E,X 5" (Y +8X") 0" (4, n)ﬁ),
and
02 o 02 , o
A= Sg XG5 + 0%, Mg 4 (Mo’ (&, Mo 3.7)
where 1
0(5:1) = T vE XDE" (3.8)
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Then, the model equation in (3.1), can be written as
o%ut out
o5z * ex(n)o(§, ")a_.f

Remark 3.1. On the unit circle domain, using polar coordinates, we find X(n) = cosn, Y(n) = sinn and
0(&) = (1 - &1 (note k(1) = 1). The operators V, A are simplified to

a &€

u e _
s = +guf) = f. (3.9)

2 dzug ' 3
—e0?(é, n)a—n2 - eéx'(mo’ (&, n)

and
1 9 1 9 o
S (1-&2on2 1-&0¢ 0%

3.2 Boundary layer analysis at orders £° and &

Unlike the channel domain (2.1), we will need to introduce a corrector 67 to settle the error from the curvature
Kk(1).

In general, to find appropriate asymptotic expansions for the boundary layers, we preform the following
expansions near the boundary ¢ = 0. Subtracting (2.41) from (3.9) and observing that /¢ is the thickness of
the boundary layers, as indicated in previous sections, which suggests to use the stretched variable & = &/,
we find that

(—a—z + VEK(O(E, 1) - £02(¢ 2 &’ ()0’ (& )i)(us - i siuj)
Nz n ”Iag ’ﬂanz n i on &

n

+g(uf) - g( Z sjuj> =™ 1Aut, (3.10)

j=0
To address the terms at all the orders of € in the boundary layers, we have to resolve the effect of curvature x (7).
Here, k(1) = O for the channel domain. We first observe that o(&, n) = (1 - k())™! = Z?SO(K(I])E)IS% and the
powers of d(¢, ) can be similarly expressed (see also (3.38) below). We then take into account the mean value
theorem for the first two terms in the second line of (3.10), i.e., g(u®) - (Y., gul) = g'(u)(uf - Yio ) for
some u. In this way, we can balance the difference between u® and the outer expansion at order n by using
the inner expansion near 0Q in the form

n n
ué - Z Ju = Z(s@’ + s’*%e“%) near 0Q. (3.11)
j=0 j=0

By comparing the terms of the same order ¢/ on 0Q, we deduce from (3.11) the following boundary conditions
forj>o0:

0= onoQ,
- (3.12)
@2 =0 onoQ.
We now find two leading order correctors 8° and 62 satisfying
1 1
—8(9?5 + \/59&) + ex(n)(eg + \/59(;3) +gu’ +0° + Veh?) - gu®) = 0. (3.13)

By the Taylor expansion, dropping smaller terms and using the stretched variable & = &/+/€, we obtain 8° at
order O(), which is a solution of
—9?5 +gw®+6%-gw® =o0, (3.14)
and from (3.13) at order O(s% ), we again find 7 such that
-0

; +g'(u® +6°)07 = ~K(n)63- (3.15)
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These equations are supplemented with the respective boundary conditions, i.e.,

[N

=0 até=0,
0 at-f':fo.

-0:_ 0 = 0 = é
{9 Ulz=0 = —u~(X(n), Y(n)) até& =0, { (3.16)

90:0 até’:{O) é

Nl=
Il

Then, we extend 6° and 62 by zero for & > &, and these extensions are still denoted by the same notations.
However, these extensions are not smooth. Thus, for the analysis below, let us define

0° = 8°6(&), 67 =626,

where §(&) is a smooth cut-off function given by

56) - {1, £ € [0, &/4], 517

0, ¢e[3&/4,00).

Remark 3.2. We obtain §° by multiplying 8° by the cut-off function. This allows us to use the same estimates
for 6° as A°. We proceed similarly for 6.

Lemma 3.3. The following pointwise estimate holds for 6°:

_ i
16%) < [u]e-0 exp(—\jz£>. (3.18)
Furthermore, the derivatives of 8° satisfy pointwise, for [, m, n > 0, the following:
otmgo 1 [2
n— 2 _— —
'3 aglanm| <ce? exp( 5 \je.f). (3.19)

Proof. We first set i = |u®|¢— exp(-VAE). Writing § = 6° — b, we deduce from (3.14) that
~0gz + g +6%) - gu®) - A = 0,

which implies
~0g¢ +g' (M6 < 0. (3.20)

Thanks to (3.16), multiplying (3.20) by 8,.(£,-) € Hé(O, o) and integrating over (0, co), we find that
1@ aZ 2 [18.12 ¢ <.
0 0

This implies 8, = 0 for all £ > 0 and thus 8° < 1. The other inequality —8° <  similarly follows.

We now find the estimates for the derivatives as in (3.19). For [ = 0 and n = 0, it immediately follows,
from Lemma 2.8, that

0 < cen (-3\/45)
onm |~ PUa\es)
Multiplying by ", the estimate (3.19) follows for I = 0 and n > 0.

Then, at higher orders I, we use the multi-index a = (I - 2, m) with [ > 2 and D* = ai;za,’f. Applying the
operator D% to (3.14), we have

a’gag’éo = (D“6%)g¢ = D*(g(u® + 6°) - g(u®)).
Thanks to the mean value theorem, we observe that
D%(g(u® + 6°) — g(u®)) = finite sum of products of DP6° with g < (I -2, m), (3.21)

and we can thus inductively prove (3.19) for any [ > 0 as long as the case for [ = 1 is proved.
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For [ = 1, we let u > 0, which will be determined. We infer from (3.14) that
(82" = (5u” + 6°) - g + uble = (g(u® + 6°) - gu”)eH + (uB ), — 2%,
Integrating over (&, 0o), we find

C- égeuf =I5 —Iléoeyf,

where
L(§) = I(g(uO +6°) — g®) - u?8°)(t, p)et* dt.
3
Then, _ )
ég = Ce ™™ — I;(&)e ™™ + b, (3.22)

and integrating over (.,f , 00), we find that

0°=D+utce™ - Jll(s)e’“s ds+pu J 6°(s, n) ds. (3.23)
3 1

I

Let u = pVA, where p, a constant independent of &, is to be determined. For 0 < p < 1, since (3.18) yields
16°(t, n)| < cexp(-VAt), we find that

(0]
L)l <c J e VAP gt < co VAP

3

and
(o) o0

I JIl(s)e"‘S ds|<c J e VA ds < ce VR,

Let us choose p = 2 and thus u = 2 VA. Applying the boundary conditions to (3.23), i.e., 8° — 0 as £ — co
and 6° = —u®|¢_o at & = 0, we find that D = 0 and that

-u%(0,1) = 6°(0,n) = —p'C+ jll(S)e"‘S ds-u J 6°(s, n) ds.
0 0

Thus,

(o0}

(o)
C= y[uo(o, n) + JIl(s)e"‘S ds—pu J 8°(s, ) ds].
0 0
To estimate a,’;’ég, we apply 0} to (3.22) and find that

_ _ 3 (1 _
05821 < oycl + |ag"11(£)|)exp(—z\j;£) +clome°|

< cexp(—%\/gf). (3.24)

Here, from (3.21) with a = (0, m), i.e., [ = 2, and (3.19) with I = 0, we used the fact that
Ml +10M11(8)] < c. O

We similarly derive the pointwise estimate for 67 and the result appears in the following lemma.
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Lemma 3.4. The corrector 93 satisfies pointwise, for I, m, n > 0, the following:

<ce'’T exp(—%\jgé’). (3.25)

| , al+mé%
afla)]m

Proof. Let £ be the linear operator given by

Lu = —ug +g' W + 8%u.

We repeat the same argument as in the proof of Lemma 3.3. For | = 0, the estimates (3.25) hold true by the
maximum principle applied to L(a,’;lé%) with (3.15). For [ = 1, we infer from (3.15) that

(B2eH); = g' (O + 8°)03 e + k()0%H + (ub2 M), — p203 e,
¢ I3 ¢

EA NIt

We integrate over (é,’ , 00), to find that

C- égeﬂf = L&) - ubreks,
where
o0
L&) = J(g'(uo +0%03 + K(n)@g - yzé%)(t, n)ektdt.
¢

Let u = pVA, where p is a constant independent of € to be chosen later. From estimates (3.19), we note that
Ié‘g(t, n)| < cexp(- VAt/2). Using the same argument as in the proof of Lemma 3.3, we only need to show that
for0<p<1,

(o0}

L@l <c J e AP gt < cemVAIDIE, (3.26)

3
Following then the same procedure as in the proof of Lemma 3.3 with the boundary conditions (3.16), we
can obtain (3.24) for 3.
For I > 2, differentiating (3.15) in & and using estimates (3.19), the lemma is inductively proved. O

We now find the norm estimate in L2 and H' for 8° and 87 in the next lemma.

Lemma 3.5. Letl, m, n > 0. Then, there exists ¢ > 0 such that

l+m 30 l+mpl
f"a o + 5"6 o <ce'T i, (3.27)
o&lonm LA o&lonm L2(Q)
Proof. We infer from Lemma 3.3 and Lemma 3.4 that (3.27) holds. O

We now introduce the analogue of Theorem 2.3.

Theorem 3.6. Assume f is a general smooth function and Q is a general smooth domain. Then, there exists a
positive constant ¢ > 0 such that
uf - u® - 6°), < cet.

Proof. We set w = uf — u® — 8°. To avoid the singularity of 6(&, n) = (1 — x(17)¢)~", we use the smooth cut-off
function §(¢) such that
~ 1, 0, 2],
6(8) = § €10, 40/2] (3.28)
0, &¢e[3&/4,00).
Here, we recall that &, = 1/ max x(1). Noting that 8° = 0 for £ > &,/2 and denoting by (-, - ) the scalar product
in the space L%(Q), we can write
(e06° - g + 6°) + g(u®), w) = (eA6° - g(u® + 8°) + g(u®), (&)w)
= (Go + Eo, 6(&)w) + (eA8° — g(u® + 0°) + g(u®), 6(&)w)
= ((Go + E0)8(£), w) + (Rob(£), w), (3.29)
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thanks to (3.14). Here,
Eo =eA(6° - 0°),
Go = g(u® + 8°) — g(u® + 6°),
Ro = —ex(n)o(é, n)%—? +e0%(&, n)%z—:zo +e&x! ()0’ (&, n)%—ej.
Since 8° — 8° = 8°(1 - §(¢)), it is very easy to prove that G, and E are e.s.t. We also find that
IRo8(§)ll2(o < ce?.
Taking the inner product of (3.3) and (3.1), respectively, with w, we write
(-ehu® + g(u®), w) = (f, w),
(W), w) = (f, w).
From (3.29), (3.30) and (3.31), we find that
(—eAw + g(uf) — gw® + 6°), w)
= (—eAuf + g(uf), w) — (g(u°), w) + (eAu®, w) + (eA8° — g(u® + 6°) + g(u®), w)
= (€Au’, w) + (Go8(8), w) + (Rob(£), w)

3
< cev|wllr2 ().

Thanks to (3.2), this completes the proof of Theorem 3.6.

— 293

(3.30)
(3.31)

O

Theorem 3.7. Assume that f is a general smooth function and Q is a general smooth domain. Then, there exists

a positive constant ¢ > 0 such that

(0]

1 1
lué —u® - 0° —e262|, < ce.

Proof. We define w? = u¢ — u® — ° — y£60?, then we find
(eA(6° + VEO?) — g(u° + 6° + VEO?) + g(u°), w?)
= (eN(6° + Veb?) — g(u® + 60 + Veb?) + g(u®), §(H)w?)
=(Gy +Ey, 5(&)w2) + (eA(B° + Veb?) — g(u® + 8° + Veh?) + g(u®), §(&)w?)
= ((G1 +EE(§), w?) + (R16(8), w?),

by (3.14) and by (3.15), where

() = eA(6° + VE0} - 80 - VEbY),
Gy = g’ +6°+ Veb?) - gu® + 6° + Veb?),
Y 5
{ Ry = —ex(o(§, ) 556" + Veb2) + ext) 56°

62 = ~1 a _ 4
2 —~ _(@° 3 ! 3 0 1
+e0°(¢, n)anz(e +Vel?) + &k’ ()0’ (¢, n)—an(e + Veh?)

+ 8+ 0% + g’ (WO + 0°)Ved? — g(u® + 6° + Ved1).
We note that thanks to the Taylor expansion, we have
gu® + 0%+ vehz) — gu® + 6°) = g’ (U + 8°)Ved? + Ty,

where
A1 5
IT1llz2() < clle@2)?[l12q) < cen.

(3.32)

(3.33)

(3.34)
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On the other hand,

|-extmots, rz)5(€)—{(9° + VEOH) + exd§) 550°]

- |evextn 50566 - sx(n)i(x(n)vzafé({)%(éo + VEG)
< cet, (3.35)
). We infer from Lemma 3.4, (3.34) and (3.35) that
||R%6(§)"LZ(Q) < cet,

while E 1 and G% are e.s.t. We now find from (3.32) that
(—eAw? + g(u®) - g(u® + 6° + VEO7), w?)

= (—eAuf + g(uf) — gO), w2) + (Au®, wi) + (en(6° + Ved?) — g(u® + 6° + Veb?) + g(u°), 5({)w%)

= (e0u®, wi) + (Gy +E1)B(&), w?) + (R 8(£), wh). (3.36)

L2(Q)

L2(Q)

by Remark 3.2 and (3.27

We then find from (3.36) and the mean value theorem that
(—edw? +g'(()w?, w?) = (eAu®, w?) + (G + E1)8(8), w?) + (R16(8), w)
for some { between u¢ and (u° + 6° + v£02). We then conclude
(~eAw? +g'(Ow?, w?) < celw? 20,
which implies

1 1 A1
ellw?z "%Il(g) + A"WZ "]%2(0) < C82 + E"WZ ”%Z(Q)' O

3.3 Boundary layer analysis at arbitrary orders £" and £"*z, n > 0

Similarly as in (2.20), we formally write
oo o o ) . ©
—£A< z g + \/50’+5)> +g< Z g +0 + \/50”?)) - g( Z e’u’) =0. (3.37)
j=0 j=0 j=0

Because of the one-dimensional nature of these boundary layers near the boundary in the direction normal
to the boundary, we now introduce the boundary fitted coordinates. We transform the Laplacian A as in (3.7)
and (3.8).

Using the geometric series expansions

1-nt= Zr, 1-n?= Z(l+1)r and (1-17= OZO:(I+1)(I+2)rl,
1:0

1=0
we formally write, e.g.,

Z(l+ 1)1+ 2)(xmde?. (3.38)

=0

Nlr—t

&) =1-xmé3 =
Then,
2

sA( OZO:(siéi + gi+%éi+%)) = %( OZO:(gféi + gi+%éi+%)) x(q)( Z(K(n)f) 82) ( Z(SHZ o+ £1+191+2))

j=0 j=0

+ i L+ 1)(k()& )aarlzz ( Z(s’”@’ +e*3 9’+Z)>

* —" ") Y+ DA+ 2)x(md)'e? (730 + 7203
2 ( Z ) (}ZO ))
) aa;z (2(8161 8]+29’+2)) IR IR I (3.39)
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Using

— S 1 & _ 00 ) 1

D mE)ez = Y (kmEPME™ + Y (k&) ez,
=0 m=0 m=0

we rearrange the terms according to the order of € and then we find the last expression in (3.39). The I} are
defined and expanded as follows

1 = —x(p) Y (67,0) + 3152 9)),
j=0
L1 = Y (@150 + 44152 ), (3.40)
j=0
I = g 'Y)Z(:) e’]3(6 )+ et 2(9))
)=
where
iz aek+*
11(6) = Z(K(n)s”)z(’ w199, Z(x(n){)zv K)-2
66 of
) (3.41)
i+l 6k 3
776 = 3 wepd2i 2L LY p@2o-0-1 902
' kzo ars Z oE
jh 2(j-k)- 2a ) 2(j-k)- 3azék+%
J5(6) = Z(zo k) - D)) v Z(zo k) - 2)(k(m)é) T
k=0 n? n
] i ) (3.42)
+3 5 A 926k+2
J5 2 (0) = Z(zo K Z 5+ Z(zo 0= DY =5,
1@ = S @26 -10- 220~ 1 - 1)(x<rz)é)2<f-k>-3%
k=0 j=2 aek+%
+ X (20 -0 =320 - k) - 2)d)*0 ==,
] L k=0 N (3.43)
*3 Ay _ N . £\ 2(-k)-2 90"
J5 (9)—20(2(] k) - DG - k) o
- j-2 ék+%

+ Y 26~k -2)26 -k - 1)(K(n)5)2<i—k>—saW

We note that when the upper limit and exponents in the expressions of ];; and ]?% are negative these terms
are set to be zero. To handle the nonlinear term g, we derive the analogue of Lemma 2.6. Replacing € by +,
nby2n+d(d =0, 1), and then renaming u?, 6%, u2*1, 62+1, respectively, as u/, &/, u/*2, §/*: and setting
W*3 = 0, we obtain the following lemma.

Lemma 3.8. There exists a constant C > 0, independent of €, such that

1 n-1 n
’§< Z(eiui +&0)+ Z g3 i+%) _g< z e’u1> _ Gn‘ < cvErt,
= & pa

. . (3.44)
lg( Z(e’u’ + 60 + g3 9’*2)) ( z sjuj> ~Gp1| < cve™?,
j=0 j=0
where, ford =0, 1,
B & kN1 9,0 p0 200y
Gn+§ = {Z Z F[g W +0%(u+0)" - g®wlu ]} s (3.45)
m=0 " k=0 |al=k, a .

A1 +20++MAyp=m
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and the multi-index notations are defined, for d = 0, 1, as follows

a=(a1,...,%j5d), la| = ay +--- + Azjiq,
(3.46)

(U+0)% = (uz +02)0 (W 4 @y, & = (y2)a ()%
with w*? = (W*2)% = 0if ayj1 > 1and W*2)° = 1forj=0,1,2,....

We now construct high order boundary layers. From the formal sum (3.37) and Lemma 3.8 with n = co, we
can write

—EA( OZO: g+ \/5914%))
=0
" mz=o{ ,;) | le (ﬁ)%[g“"w" +6%)(u+06)" —g""(u")u“]}x/?" = 0. (3.47)

a1+20++map=m
We then observe that at order O(e)

gll(uO + 90)

O +8' W+ 070" = (8" W) - g' W + OOPu' - =——

(8%)2 = k() (k)G + 6 ) + 65,
Incorporating (3.39) and (3.40), and from (3.47) at m = 2j, we obtain at order O(¢/) for j > 1 that
O+ 860+ 090) = 5" + 67— g
‘{kz]z mgk, (E)%[g“%ﬂ +00)(u+0)° - g0 Ou)}

ap+20p++2jaz=2]j

—k(J(0) + T(0) + gk’(n)l’;(é), (3.48)

where the multi-index notation is described in (3.46). On the other hand, at order O(e”%) for j > 1, from
(3.47) at m = 2j + 1 we similarly find that

-égf +g' W0+ 89873 = —(g' (u® + 8°) - g' (WOt

2j+1 K\ 1 _ _
1Y 2 ( )—u[g""<u° + 8+ 0)" - gV e
k=2 |a|=k, a) k!
ap+20p++(2j+1)azj41=2j+1
kI O) + 157 (0) + gk’(n)f;f(é)- (3.49)
The two equations (3.48) and (3.49) are, respectively, supplemented with the boundary conditions
{ B = w0 = W (X(n), Ya) at£ =0, =0 atg=0,
g -0 até = &, 62 =0 até=4&

As before, we extend & and 62 by zero for & > &, and these extensions are still denoted by the same
notations.

Multiplying, respectively, (3.14) by €°, (3.15) by €2, (3.48) by & and (3.49) by &2, fromj=1toj = n,
and adding these resulting equations we find that

i(al 7+3
€ (9&; + \/59&; )

=

Il
(=}

J

2l S k\1 k) ¢,,0 no N\ & (k) 74,0y, m n n n
== {Z > alsw + ) (u+0)" - gPuu ]}\/E +I7+15 +15, (3.50)
m=0 ' k=0 lal=k, ajie

a1+20;++may=m

where I} are described as in (3.40).
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Lemma3.9. Forl,m,n>0andj=0,1,2,...,thereexist c > O such that, pointwise,

<ce'r exp(—%\/gi).

é’n

Jl+mpi i | nal+méi+%
o&lonm o&lonm

Moreover, & and 0*% satisfy, forj=0,1,2, ...,

al+m61+
L2(©Q) ”€ 6{161’[’"

n-l1

<cezt

al+m6]
" o&lonm

1
4-

Ly (@)
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(3.51)

(3.52)

Proof. Using Lemma 3.3 and Lemma 3.4 and the induction on j, from (3.48) and (3.49), we obtain the es-
timates (3.19) and (3.25) for & and #/*3,j =0, 1, 2, .. .. Here, as indicated in (2.38), for k > 2 we used the
fact that the right-hand side of (3.48) and (3.49) involve only the preceding boundary layer correctors. From

the pointwise estimates (3.51), we readily obtain the L?- norm estimates (3.52).

Lemma 3.10. There exists ¢ > O such that

-

n
||<£A( Z(ejéj +&t0) ) I")(S({)“ < ce™i
j=0
where 6(¢) is given in (3.28), and
1 o 1
I = Z g + \/50“5)&; +I7+ 1+ 15
j=0
with I?! given by (3.40).
Proof. Using the Laplacian (3.7) in terms of ¢, n, we write
noo_ sl =1 n P sl =1
sA( Z(e’@’ +e*2 6’+f)> -€ 2(819] +&%2079) g = KT + K5 + K5,
j=0 j=0

where

n

K" = —ex(m)o (€, n)—( Z &0 + e"*%é"*%)),

2 n PR . _
K'21 = 80‘2(;"." n)aa_)]z( Z(elel + £1+%0)+%)>,

j=0

K} = &' (0)0° &, n)—n<2(8191 reriorh).

j=0

We now only have to prove that
IKY - INB(&)lLe < k™, i=1,2,3.

Noting that ¥, Yo=Y, Yikand ¥, Y=Y, Yjtks1> from (3.40) and (3.41) we write

= Y (3 0 Y e emgin )2
k=0 " j=k+1 =k 0
2( k)— 2 . j+1 2\2(j—k)-1 aék+%
—K(n)Z( Y FEI Y e E e
k=0 " j=k+1 j=k+1 af

2(n-k) , 2n-k-1 9k+1

n ) m m) 9072
:_K(n)go( Y k() ) K(n)Z( > kK" oF

m=0 m=0

O

(3.53)

(3.54)
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Then, we find

IKY - D)2 <

n 2(n—j)
SK(U)<ZS (o(sr n - Z (K(n)€)’") 5,)
j=0

; 1< 2(n-j)-1 ) %
+ ex(n)( gila(é, n) - (k(m&™ )
$ot(ogn-"5 ner) %

%7 (i) €)X -”5(5)

)

) Cg]go(||€"(x(n>£)2‘"""”5(5)%_?|| ‘| s

C£n+

IN

where in the last inequality we used Lemma 3.9. Note that in (3.42) and (3.43) the sum Z’,;ZO can be replaced
by Z’k;lo because the terms there for k = j — 1 do not contribute. Then, permuting summations as above, we
can also prove (3.54) for i = 2, 3. The lemma thus follows. O

We use Lemmas 3.8 and 3.10, and equation (3.50), to find that
1 PR sl =1 1 PR PR 21 =1 1 PR
- sA( 2(819’ +e*2 9’*7)) + g( Z(s’u’ +&0 +¢*2 9“?)) - g( Z s’u’) =R"+R, (3.55)
j=0 j=0 j=0

where
IR"6(E)ll> < ce™7, IR <cVE .

As before, we define now @/ = §5(¢) and 62 = §/*2 §(¢) for each j > 0, where § is defined as in (3.17).
Note that 6/, 0/*2 satisfy the boundary conditions as in (3.12).

Theorem 3.11. Assume that f is a smooth function, Q is a general smooth domain and u€ is solution of (2.1). Let
W and @’ satisfy (3.3) and (3.48), respectively. Then, for every n > 0, there exists a constant ¢ > 0, independent
of &, such that

n
ué — Z g+ 0 + Vedt7)| < ce™l, (3.56)
j=0 €
n . n-1 5
ut - Z Jgw+0) - Z grigta|| < ce™a, (3.57)
j=0 j=0 ¢

Proof. We set

1 P : i1
W =uf =Y F + 0+ VEDT?).
j=0

We use the smooth cut-off function §(¢) to eliminate the singularity of o(¢, n) where 5(¢) is given by (3.28).
Then, by a similar argument as before, we obtain that

L : . 21 1 s ; s i1 u ;g 1
(SA z &0 + Vedta) —g< z JW+0 + \/59“7)) +g( z s’u’), w"+2>
=0

j=0 j=0

= ((Gn+% + En+%)8(€)’ Wn+%) + (Rn+%8({)’ Wn+%)’

where
En1=¢ <Z£’(9’+\/_9“ zn:Sj(éj+\/Eéj+%)),
Guiy =8 (ZS’(u’+9]+\/_9’+2)) (is"(uueu\/zef*%)),
j=0
Ry1 =R"+R,

(ST
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where R" and R are given in (3.55). We note that E,H% and G,H% are e.s.t., and ||Rn+%5(£)||Lz(Q) < el We
now find

n
<_8Awn+§ +g(uf) —g( Y+ 0+ \/59“%)), WM%)
=0
= (" AU, W) + (G + By 1)B(8), W™ 2) + (Ry, 1 8(8), w2,

Here, we used (2.41) which is obtained from summing (3.3).
We finally obtain from the mean value theorem that, for some { between u and Z;;O W + 0 + VEOItD),

1 1 1 1
(—8AW"+7 +g'(()w"+?, Wn+5) < C€n+1||Wn+7||L2(Q).

This proves (3.56). From Lemma 3.9, we note that ||.9"+%6”+%||€ < ce"*g, and the estimate (3.57) follows
from (3.56). O
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