Abstract
This paper focuses on establishing the existence of a capacity solution for the following anisotropic elliptic-parabolic system with variable exponent:
where Ω is an open bounded subset of
References
[1] R. A. Adams, Anisotropic Sobolev inequalities, Časopis Pěst. Mat. 113 (1988), no. 3, 267–279. 10.21136/CPM.1988.108786Search in Google Scholar
[2] S. N. Antontsev and M. Chipot, The thermistor problem: Existence, smoothness uniqueness, blowup, SIAM J. Math. Anal. 25 (1994), no. 4, 1128–1156. 10.1137/S0036141092233482Search in Google Scholar
[3] M. Bahari, R. El Arabi and M. Rhoudaf, Capacity solution for a perturbed nonlinear coupled system, Ric. Mat. 69 (2020), no. 1, 215–233. 10.1007/s11587-019-00459-7Search in Google Scholar
[4]
M. Bendahmane, P. Wittbold and A. Zimmermann,
Renormalized solutions for a nonlinear parabolic equation with variable exponents and
[5] M. Chipot and G. Cimatti, A uniqueness result for the thermistor problem, European J. Appl. Math. 2 (1991), no. 2, 97–103. 10.1017/S0956792500000425Search in Google Scholar
[6]
M. Chrif, S. El Manouni and F. Mokhtari,
Strongly anisotropic elliptic problems with regular and
[7] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math. 2017, Springer, Heidelberg, 2011. 10.1007/978-3-642-18363-8Search in Google Scholar
[8] F. G. Düzgün, S. Mosconi and V. Vespri, Anisotropic Sobolev embeddings and the speed of propagation for parabolic equations, J. Evol. Equ. 19 (2019), no. 3, 845–882. 10.1007/s00028-019-00493-wSearch in Google Scholar
[9] G. Emanuel and C. G. Rodrigo, Chebyshev wavelet analysis, J. Funct. Spaces 2022 (2022), Article ID 5542054. 10.1155/2022/5542054Search in Google Scholar
[10]
X. Fan,
Anisotropic variable exponent Sobolev spaces and
[11]
X. Fan, J. Shen and D. Zhao,
Sobolev embedding theorems for spaces
[12] F. O. Gallego, H. Ouyahya and M. Rhoudaf, Existence of a capacity solution to a nonlinear parabolic-elliptic coupled system in anisotropic Orlicz–Sobolev spaces, Results Appl. Math. 18 (2023), Article ID 100376. 10.1016/j.rinam.2023.100376Search in Google Scholar
[13] M. T. González Montesinos and F. Ortegón Gallego, The evolution thermistor problem with degenerate thermal conductivity, Commun. Pure Appl. Anal. 1 (2002), no. 3, 313–325. 10.3934/cpaa.2002.1.313Search in Google Scholar
[14] M. T. González Montesinos and F. Ortegón Gallego, Existence of a capacity solution to a coupled nonlinear parabolic-elliptic system, Commun. Pure Appl. Anal. 6 (2007), no. 1, 23–42. 10.3934/cpaa.2007.6.23Search in Google Scholar
[15] M. T. González Montesinos and F. Ortegón Gallego, The thermistor problem with degenerate thermal conductivity and metallic conduction, Discrete Contin. Dyn. Syst. 2007 (2007), 446–455. Search in Google Scholar
[16]
E. Guariglia and S. Silvestrov,
Fractional-wavelet analysis of positive definite distributions and wavelets on
[17] V. S. Guliyev, M. N. Omarova and M. A. Ragusa, Characterizations for the genuine Calderón–Zygmund operators and commutators on generalized Orlicz–Morrey spaces, Adv. Nonlinear Anal. 12 (2023), no. 1, Article ID 20220307. 10.1515/anona-2022-0307Search in Google Scholar
[18] H. Khelifi, Existence and regularity for a degenerate problem with singular gradient lower order term, Morocc. J. Pure Appl. Anal. 8 (2022), no. 3, 310–327. 10.2478/mjpaa-2022-0022Search in Google Scholar
[19]
H. Khelifi,
The obstacle problem for nonlinear degenerate elliptic equations with variable exponents and
[20] H. Khelifi, Application of the Stampacchia lemma to anisotropic degenerate elliptic equations, J. Innov. Appl. Math. Comput. Sci. 3 (2023), 75–82. Search in Google Scholar
[21] H. Khelifi, Anisotropic degenerate elliptic problem with singular gradient lower order term, Boll. Unione Mat. Ital. 17 (2024), no. 1, 149–174. 10.1007/s40574-023-00395-3Search in Google Scholar
[22] H. Khelifi, Anisotropic parabolic-elliptic systems with degenerate thermal conductivity, Appl. Anal. 103 (2024), no. 12, 2069–2101. 10.1080/00036811.2023.2282140Search in Google Scholar
[23]
H. Khelifi,
Capacity solutions for a degenerate
[24]
H. Khelifi and F. Mokhtari,
Nonlinear degenerate anisotropic elliptic equations with variable exponents and
[25]
H. Khelifi and M. A. Zouatini,
Nonlinear degenerate
[26]
O. Kováčik and J. Rákosník,
On spaces
[27] S. N. Kruzhkov and I. M. Kolodii, On the theory of embedding of anisotropic Sobolev spaces, Russ. Math. Surv. 38 (1983), 188–189. 10.1070/RM1983v038n02ABEH003476Search in Google Scholar
[28] R. Landes, On the existence of weak solutions for quasilinear parabolic initial-boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), no. 3–4, 217–237. 10.1017/S0308210500020242Search in Google Scholar
[29] H. Le Dret, Équations aux dérivées partielles elliptiques non linéaires, Math. Appl. (Berlin) 72, Springer, Heidelberg, 2013. 10.1007/978-3-642-36175-3Search in Google Scholar
[30] G. Li, G. Wang and L. Zhang, A capacity associated with the weighted Lebesgue space and its applications, J. Funct. Spaces 2022 (2022), Article ID 1257963. 10.1155/2022/1257963Search in Google Scholar
[31] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. Search in Google Scholar
[32] A. R. Maria, Parabolic Herz spaces and their applications, Appl. Math. Lett. 25 (2012), 1270–1273. 10.1016/j.aml.2011.11.022Search in Google Scholar
[33] B. Maurizio, On the existence of periodic solutions in the thermistor problem with degenerate thermal conductivity, Ann. Univ. Ferrara 52 (2006), 53–64. 10.1007/s11565-006-0005-6Search in Google Scholar
[34]
N. Mokhtar,
Anisotropic nonlinear elliptic systems with variable exponents, degenerate coercivity and
[35] F. Mokhtari, Anisotropic parabolic problems with measures data, Differ. Equ. Appl. 2 (2010), no. 1, 123–150. 10.7153/dea-02-09Search in Google Scholar
[36] M. T. G. Montesinos and F. O. Gallego, The evolution thermistor problem under the Wiedemann–Franz law with metallic conduction, DCDS-B 8 (2007), no. 4, 901–923. 10.3934/dcdsb.2007.8.901Search in Google Scholar
[37] H. Moussa, F. Ortegón Gallego and M. Rhoudaf, Capacity solution to a coupled system of parabolic-elliptic equations in Orlicz–Sobolev spaces, NoDEA Nonlinear Differential Equations Appl. 25 (2018), no. 2, Paper No. 14. 10.1007/s00030-018-0505-ySearch in Google Scholar
[38] R. Nesraoui and H. Khelifi, Anisotropic elliptic problem involving a singularity and a Radon measure, Filomat 38 (2024), no. 27, 9435–9451. 10.2298/FIL2427435NSearch in Google Scholar
[39] B. Noureddine, A. Hocine and M. Fares, The anisotropic thermistor problem with degenerate thermal and electric conductivities, J. Elliptic Parabol. Equ. 9 (2023), 901–918. 10.1007/s41808-023-00229-5Search in Google Scholar
[40] F. Ortegón Gallego, M. Rhoudaf and H. Talbi, Capacity solution and numerical approximation to a nonlinear coupled elliptic system in anisotropic Sobolev spaces, J. Appl. Anal. Comput. 12 (2022), no. 6, 2184–2207. 10.11948/20210208Search in Google Scholar
[41] G. Ping and F. Jishan, Global existence, uniqueness and asymptotic behavior of the solutions of the thermistor problem, Nanjing Univ. J. Math. Biquaterly 13 (1996), 156–167. Search in Google Scholar
[42] A. Porretta, Regularity for entropy solutions of a class of parabolic equations with nonregular initial datum, Dynam. Systems Appl. 7 (1998), no. 1, 53–71. Search in Google Scholar
[43] A. Porretta, Existence results for nonlinear parabolic equations via strong convergence of truncations, Ann. Mat. Pura Appl. (4) 177 (1999), 143–172. 10.1007/BF02505907Search in Google Scholar
[44] H. Rafeiro and S. Samko, Riesz potential operator in continual variable exponents Herz spaces, Math. Nachr. 288 (2015), no. 4, 465–475. 10.1002/mana.201300270Search in Google Scholar
[45] J. Rákosník, Some remarks to anisotropic Sobolev spaces. I, Beiträge Anal. 13 (1979), 55–68. Search in Google Scholar
[46] J. Rákosník, Some remarks to anisotropic Sobolev spaces. II, Beiträge Anal. 15 (1980), 127–140. Search in Google Scholar
[47]
J. Simon,
Compact sets in the space
[48] M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ric. Mat. 18 (1969), 3–24. Search in Google Scholar
[49] W. Q. Xie, On the existence and uniqueness for the thermistor problem, Adv. Math. Sci. Appl. 2 (1993), no. 1, 63–73. Search in Google Scholar
[50] X. Xu, A degenerate Stefan-like problem with Joule’s heating, SIAM J. Math. Anal. 23 (1992), no. 6, 1417–1438. 10.1137/0523081Search in Google Scholar
[51] X. Xu, A strongly degenerate system involving an equation of parabolic type and an equation of elliptic type, Comm. Partial Differential Equations 18 (1993), no. 1–2, 199–213. 10.1080/03605309308820927Search in Google Scholar
[52] X. Xu, On the existence of bounded temperature in the thermistor problem with degeneracy, Nonlinear Anal. 42 (2000), no. 2, 199–213. 10.1016/S0362-546X(98)00340-XSearch in Google Scholar
[53]
G. W. Yuan and Z. H. Liu,
Existence and uniqueness of the
[54]
C. Zhang and S. Zhou,
Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and
[55] X. Zhang and Y. Fu, Solutions for nonlinear elliptic equations with variable growth and degenerate coercivity, Ann. Mat. Pura Appl. (4) 193 (2014), no. 1, 133–161. 10.1007/s10231-012-0270-1Search in Google Scholar
[56] M. A. Zouatini, H. Khelifi and F. Mokhtari, Anisotropic degenerate elliptic problem with a singular nonlinearity, Adv. Oper. Theory 8 (2023), no. 1, Paper No. 13. 10.1007/s43036-022-00240-ySearch in Google Scholar
[57] M. A. Zouatini, F. Mokhtari and H. Khelifi, Degenerate elliptic problem with singular gradient lower order term and variable exponents, Math. Model. Comput. 10 (2023), 133–146. 10.23939/mmc2023.01.133Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston