Abstract
In this paper, we investigate the matrix analogues of the Ψ-beta and Ψ-gamma functions, as well as their properties. With the help of the Ψ-beta matrix function (BMF), we introduce the Ψ-Gauss hypergeometric matrix function (GHMF) and the Ψ-Kummer hypergeometric matrix function (KHMF) and derive certain properties for these matrix functions. Finally, the Ψ-Appell and the Ψ-Lauricella matrix functions are defined by applications of the Ψ-BMF, and their integral representations are also given.
Funding statement: The second author is grateful to the University Grants Commission of India for financial assistance in the form of a Junior Research Fellowship.
Acknowledgements
The authors would like to thank the anonymous referee for helpful comments that improved the contents of the manuscript.
References
[1] M. Abdalla and A. Bakhet, Extension of Beta matrix function, Asian J. Math. Comput. Res. 9 (2016), 253–264. Search in Google Scholar
[2] M. Abdalla and A. Bakhet, Extended Gauss hypergeometric matrix functions, Iran. J. Sci. Technol. Trans. A Sci. 42 (2018), no. 3, 1465–1470. 10.1007/s40995-017-0183-3Search in Google Scholar
[3] M. Ali Özarslan and E. Özergin, Some generating relations for extended hypergeometric functions via generalized fractional derivative operator, Math. Comput. Modelling 52 (2010), no. 9–10, 1825–1833. 10.1016/j.mcm.2010.07.011Search in Google Scholar
[4] G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia Math. Appl. 71, Cambridge University, Cambridge, 1999. 10.1017/CBO9781107325937Search in Google Scholar
[5] E. Ata, Generalized beta function defined by Wright function, preprint (2018), https://arxiv.org/abs/1803.03121. Search in Google Scholar
[6] M. A. Chaudhry, A. Qadir, M. Rafique and S. M. Zubair, Extension of Euler’s beta function, J. Comput. Appl. Math. 78 (1997), no. 1, 19–32. 10.1016/S0377-0427(96)00102-1Search in Google Scholar
[7] M. A. Chaudhry, A. Qadir, H. M. Srivastava and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput. 159 (2004), no. 2, 589–602. 10.1016/j.amc.2003.09.017Search in Google Scholar
[8] M. A. Chaudhry and S. M. Zubair, Generalized incomplete gamma functions with applications, J. Comput. Appl. Math. 55 (1994), no. 1, 99–124. 10.1016/0377-0427(94)90187-2Search in Google Scholar
[9] J. Choi, A. K. Rathie and R. K. Parmar, Extension of extended beta, hypergeometric and confluent hypergeometric functions, Honam Math. J. 36 (2014), no. 2, 357–385. 10.5831/HMJ.2014.36.2.357Search in Google Scholar
[10] A. G. Constantine and R. J. Muirhead, Partial differential equations for hypergeometric functions of two argument matrices, J. Multivariate Anal. 2 (1972), 332–338. 10.1016/0047-259X(72)90020-6Search in Google Scholar
[11] N. Dunford and J. Schwartz, Linear Operators. Vol. 1, Interscience, New York, 1957. Search in Google Scholar
[12] R. Dwivedi and V. Sahai, On the hypergeometric matrix functions of several variables, J. Math. Phys. 59 (2018), no. 2, Article ID 023505. 10.1063/1.5019334Search in Google Scholar
[13] R. Dwivedi and V. Sahai, On the hypergeometric matrix functions of two variables, Linear Multilinear Algebra 66 (2018), no. 9, 1819–1837. 10.1080/03081087.2017.1373732Search in Google Scholar
[14] R. Dwivedi and V. Sahai, A note on the Appell matrix functions, Quaest. Math. 43 (2020), no. 3, 321–334. 10.2989/16073606.2019.1577309Search in Google Scholar
[15]
R. Dwivedi and R. Sanjhira,
On the matrix function
[16] G. B. Folland, Fourier Analysis and its Applications, Wadsworth & Brooks, Pacific Grove, 1992. Search in Google Scholar
[17] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University, Baltimore, 1996. Search in Google Scholar
[18] J. Greene, Hypergeometric functions over finite fields, Trans. Amer. Math. Soc. 301 (1987), no. 1, 77–101. 10.1090/S0002-9947-1987-0879564-8Search in Google Scholar
[19] S. Jain, R. Goyal, G. I. Oros, P. Agarwal and S. Momani, A study of generalized hypergeometric Matrix functions via two-parameter Mittag-Leffler matrix function, Open Phys. 20 (2022), 730–739. 10.1515/phys-2022-0068Search in Google Scholar
[20] A. T. James, Special functions of matrix and single argument in statistics, Theory and Application of Special Functions, Academic Press, New York (1975), 497–520. 10.1016/B978-0-12-064850-4.50016-1Search in Google Scholar
[21] L. Jódar and J. C. Cortés, On the hypergeometric matrix function, J. Comput. Appl. Math. 99 (1998), 205–217. 10.1016/S0377-0427(98)00158-7Search in Google Scholar
[22] L. Jódar and J. C. Cortés, Some properties of gamma and beta matrix functions, Appl. Math. Lett. 11 (1998), no. 1, 89–93. 10.1016/S0893-9659(97)00139-0Search in Google Scholar
[23] A. M. Mathai, A Handbook of Generalized Special Functions for Statistical and Physical Sciences, Oxford University, New York, 1993. Search in Google Scholar
[24] A. M. Mathai, Jacobians of Matrix Transformations and Functions of Matrix Argument, World Scientific, River Edge, 1997. 10.1142/3438Search in Google Scholar
[25] M. Singhal and E. Mittal, On a Ψ-generalized fractional derivative operator of Riemann–Liouville with some applications, Int. J. Appl. Comput. Math. 6 (2020), no. 5, Paper No. 143. 10.1007/s40819-020-00892-5Search in Google Scholar
[26] H. M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox–Wright and related higher transcendental functions, J. Adv. Engrg. Comput. 5 (2021), 135–166. 10.55579/jaec.202153.340Search in Google Scholar
[27] H. M. Srivastava, A survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics, Symmetry 13 (2021), Article ID 2294. 10.3390/sym13122294Search in Google Scholar
[28] H. M. Srivastava, Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal. 22 (2021), no. 8, 1501–1520. Search in Google Scholar
[29] H. M. Srivastava, Some families of generating functions associated with orthogonal polynomials and other higher transcendental functions, Mathematics 10 (2022), Article ID 3730. 10.3390/math10203730Search in Google Scholar
[30] H. M. Srivastava, Some general families of integral transformations and related results, Appl. Math. Comput. Sci. 6 (2022), 27–41. Search in Google Scholar
[31] H. M. Srivastava, P. Agarwal and S. Jain, Generating functions for the generalized Gauss hypergeometric functions, Appl. Math. Comput. 247 (2014), 348–352. 10.1016/j.amc.2014.08.105Search in Google Scholar
[32] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood, Chichester, 1984. Search in Google Scholar
[33] J. A. Tirao, The matrix-valued hypergeometric equation, Proc. Natl. Acad. Sci. USA 100 (2003), no. 14, 8138–8141. 10.1073/pnas.1337650100Search in Google Scholar PubMed PubMed Central
[34] A. Verma, On the incomplete Srivastava’s triple hypergeometric matrix functions, Quaest. Math. 44 (2021), no. 7, 881–904. Search in Google Scholar
[35] A. Verma, Some results on Srivastava’s triple hypergeometric matrix functions, Asian-Eur. J. Math. 14 (2021), no. 4, Paper No. 2150056. 10.1142/S179355712150056XSearch in Google Scholar
[36] A. Verma, S. Bajpai and K. S. Yadav, Some results of new extended beta, hypergeometric, Appell and Lauricella matrix functions, Res. Math. 9 (2022), no. 1, Paper No. 2151555. 10.1080/27684830.2022.2151555Search in Google Scholar
[37] A. Verma and R. Dwivedi, On the matrix version of new extended Gauss, Appell and Lauricella hypergeometric functions, preprint (2018), https://arxiv.org/abs/2108.11310. Search in Google Scholar
[38] A. Verma and S. Yadav, On the incomplete second Appell hypergeometric matrix functions, Linear Multilinear Algebra 69 (2021), no. 9, 1747–1760. 10.1080/03081087.2019.1640178Search in Google Scholar
[39] Y. Vyas, A. V. Bhatnagar, K. Fatawat, D. L. Suthar and S. D. Purohit, Discrete analogues of the Erdélyi type integrals for hypergeometric functions, J. Math. 2022 (2022), Article ID 1568632. 10.1155/2022/1568632Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Gronwall type inequality on generalized fractional conformable integral operators
- Asymptotic modelling of viscoelastic von Kármán membrane shells
- Global sharp gradient estimates for a nonlinear parabolic equation on Riemannian manifolds
- Scattering of an inhomogeneous coupled Schrödinger system in the conformal space
- Existence of non-negative periodic solutions for a degenerate anisotropic parabolic equation with strongly nonlinear source
- Fractional integral inequalities for the s-(κ,H)-convex function
- Some properties of Ψ-gamma, Ψ-beta and Ψ-hypergeometric matrix functions
- On the fractional q-integral operators involving q-analogue of Mittag-Leffler function
Articles in the same Issue
- Frontmatter
- Gronwall type inequality on generalized fractional conformable integral operators
- Asymptotic modelling of viscoelastic von Kármán membrane shells
- Global sharp gradient estimates for a nonlinear parabolic equation on Riemannian manifolds
- Scattering of an inhomogeneous coupled Schrödinger system in the conformal space
- Existence of non-negative periodic solutions for a degenerate anisotropic parabolic equation with strongly nonlinear source
- Fractional integral inequalities for the s-(κ,H)-convex function
- Some properties of Ψ-gamma, Ψ-beta and Ψ-hypergeometric matrix functions
- On the fractional q-integral operators involving q-analogue of Mittag-Leffler function