Home Monotonicity results for CFC nabla fractional differences with negative lower bound
Article
Licensed
Unlicensed Requires Authentication

Monotonicity results for CFC nabla fractional differences with negative lower bound

  • Christopher S. Goodrich ORCID logo EMAIL logo and Jagan M. Jonnalagadda
Published/Copyright: July 1, 2021

Abstract

We consider the sequential CFC-type nabla fractional difference ( CFC a + 1 ν a μ CFC u ) ( t ) and show that one can derive monotonicity-type results even in the case where this difference satisfies a strictly negative lower bound. This illustrates some dissimilarities between the integer-order and fractional-order cases.

References

[1] T. Abdeljawad, Q. M. Al-Mdallal and M. A. Hajji, Arbitrary order fractional difference operators with discrete exponential kernels and applications, Discrete Dyn. Nat. Soc. 2017 (2017), Article ID 4149320. 10.1155/2017/4149320Search in Google Scholar

[2] T. Abdeljawad and B. Abdalla, Monotonicity results for delta and nabla Caputo and Riemann fractional differences via dual identities, Filomat 31 (2017), no. 12, 3671–3683. 10.2298/FIL1712671ASearch in Google Scholar

[3] G. A. Anastassiou, Nabla discrete fractional calculus and nabla inequalities, Math. Comput. Modelling 51 (2010), no. 5–6, 562–571. 10.1016/j.mcm.2009.11.006Search in Google Scholar

[4] F. M. Atıcı, M. Atıcı, M. Belcher and D. Marshall, A new approach for modeling with discrete fractional equations, Fund. Inform. 151 (2017), no. 1–4, 313–324. 10.3233/FI-2017-1494Search in Google Scholar

[5] F. M. Atıcı, M. Atıcı, N. Nguyen, T. Zhoroev and G. Koch, A study on discrete and discrete fractional pharmacokinetics-pharmacodynamics models for tumor growth and anti-cancer effects, Comput. Math. Biophys. 7 (2019), 10–24. 10.1515/cmb-2019-0002Search in Google Scholar

[6] F. M. Atici and P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Difference Equ. 2 (2007), no. 2, 165–176. Search in Google Scholar

[7] F. M. Atıcı and P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ. 2009 (2009), Paper No. 3. 10.14232/ejqtde.2009.4.3Search in Google Scholar

[8] F. M. Atici and P. W. Eloe, Initial value problems in discrete fractional calculus, Proc. Amer. Math. Soc. 137 (2009), no. 3, 981–989. 10.1090/S0002-9939-08-09626-3Search in Google Scholar

[9] F. M. Atıcı and P. W. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Difference Equ. Appl. 17 (2011), no. 4, 445–456. 10.1080/10236190903029241Search in Google Scholar

[10] F. M. Atıcı, N. Nguyen, K. Dadashova, S. E. Pedersen and G. Koch, Pharmacokinetics and pharmacodynamics models of tumor growth and anticancer effects in discrete time, Comput. Math. Biophys. 8 (2020), 114–125. 10.1515/cmb-2020-0105Search in Google Scholar

[11] F. M. Atıcı and S. Şengül, Modeling with fractional difference equations, J. Math. Anal. Appl. 369 (2010), no. 1, 1–9. 10.1016/j.jmaa.2010.02.009Search in Google Scholar

[12] F. M. Atıcı and M. Uyanik, Analysis of discrete fractional operators, Appl. Anal. Discrete Math. 9 (2015), no. 1, 139–149. 10.2298/AADM150218007ASearch in Google Scholar

[13] J. Baoguo, L. Erbe and A. Peterson, Convexity for nabla and delta fractional differences, J. Difference Equ. Appl. 21 (2015), no. 4, 360–373. 10.1080/10236198.2015.1011630Search in Google Scholar

[14] J. Baoguo, L. Erbe and A. Peterson, Monotonicity and convexity for nabla fractional q-differences, Dynam. Systems Appl. 25 (2016), no. 1–2, 47–60. Search in Google Scholar

[15] R. Dahal and C. S. Goodrich, A monotonicity result for discrete fractional difference operators, Arch. Math. (Basel) 102 (2014), no. 3, 293–299. 10.1007/s00013-014-0620-xSearch in Google Scholar

[16] R. Dahal and C. S. Goodrich, An almost sharp monotonicity result for discrete sequential fractional delta differences, J. Difference Equ. Appl. 23 (2017), no. 7 1190–1203. 10.1080/10236198.2017.1307351Search in Google Scholar

[17] R. Dahal and C. S. Goodrich, Theoretical and numerical analysis of monotonicity results for fractional difference operators, Appl. Math. Lett. 117 (2021), Article ID 107104. 10.1016/j.aml.2021.107104Search in Google Scholar

[18] F. Du, B. Jia, L. Erbe and A. Peterson, Monotonicity and convexity for nabla fractional ( q , h ) -differences, J. Difference Equ. Appl. 22 (2016), no. 9, 1224–1243. 10.1080/10236198.2016.1188089Search in Google Scholar

[19] R. A. C. Ferreira, A discrete fractional Gronwall inequality, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1605–1612. 10.1090/S0002-9939-2012-11533-3Search in Google Scholar

[20] C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl. 385 (2012), no. 1, 111–124. 10.1016/j.jmaa.2011.06.022Search in Google Scholar

[21] C. S. Goodrich, A convexity result for fractional differences, Appl. Math. Lett. 35 (2014), 58–62. 10.1016/j.aml.2014.04.013Search in Google Scholar

[22] C. S. Goodrich, A note on convexity, concavity, and growth conditions in discrete fractional calculus with delta difference, Math. Inequal. Appl. 19 (2016), no. 2, 769–779. 10.7153/mia-19-57Search in Google Scholar

[23] C. S. Goodrich, A uniformly sharp monotonicity result for discrete fractional sequential differences, Arch. Math. (Basel) 110 (2018), no. 2, 145–154. 10.1007/s00013-017-1106-4Search in Google Scholar

[24] C. S. Goodrich, Sharp monotonicity results for fractional nabla sequential differences, J. Difference Equ. Appl. 25 (2019), no. 6, 801–814. 10.1080/10236198.2018.1542431Search in Google Scholar

[25] C. S. Goodrich, J. M. Jonnalagadda and B. Lyons, Convexity, monotonicity and positivity results for sequential fractional nabla difference operators with discrete exponential kernels, Math. Methods Appl. Sci. 44 (2021), no. 8, 7099–7120. 10.1002/mma.7247Search in Google Scholar

[26] C. S. Goodrich and C. Lizama, A transference principle for nonlocal operators using a convolutional approach: Fractional monotonicity and convexity, Israel J. Math. 236 (2020), no. 2, 533–589. 10.1007/s11856-020-1991-2Search in Google Scholar

[27] C. S. Goodrich and C. Lizama, Positivity, monotonicity, and convexity for convolution operators, Discrete Contin. Dyn. Syst. 40 (2020), no. 8, 4961–4983. 10.3934/dcds.2020207Search in Google Scholar

[28] C. S. Goodrich, B. Lyons, A. Scapellato and M. T. Velcsov, Analytical and numerical convexity results for discrete fractional sequential differences with negative lower bound, J. Difference Equ. Appl. 27 (2021), no. 3, 317–341. 10.1080/10236198.2021.1894142Search in Google Scholar

[29] C. S. Goodrich, B. Lyons and M. T. Velcsov, Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound, Commun. Pure Appl. Anal. 20 (2021), no. 1, 339–358. 10.3934/cpaa.2020269Search in Google Scholar

[30] C. S. Goodrich and M. Muellner, An analysis of the sharpness of monotonicity results via homotopy for sequential fractional operators, Appl. Math. Lett. 98 (2019), 446–452. 10.1016/j.aml.2019.07.003Search in Google Scholar

[31] C. S. Goodrich and A. C. Peterson, Discrete Fractional Calculus, Springer, Cham, 2015. 10.1007/978-3-319-25562-0Search in Google Scholar

[32] B. Jia, L. Erbe and A. Peterson, Two monotonicity results for nabla and delta fractional differences, Arch. Math. (Basel) 104 (2015), no. 6, 589–597. 10.1007/s00013-015-0765-2Search in Google Scholar

[33] X. Liu, F. Du, D. Anderson and B. Jia, Monotonicity results for nabla fractional h-difference operators, Math. Methods Appl. Sci. 44 (2021), no. 2, 1207–1218. 10.1002/mma.6823Search in Google Scholar

[34] C. Lizama and M. Murillo-Arcila, p -maximal regularity for a class of fractional difference equations on UMD spaces: The case 1 & l t ; α 2 , Banach J. Math. Anal. 11 (2017), no. 1, 188–206. 10.1215/17358787-3784616Search in Google Scholar

[35] C. Lizama and M. Murillo-Arcila, Well posedness for semidiscrete fractional Cauchy problems with finite delay, J. Comput. Appl. Math. 339 (2018), 356–366. 10.1016/j.cam.2017.07.027Search in Google Scholar

[36] I. Suwan, S. Owies and T. Abdeljawad, Monotonicity results for h-discrete fractional operators and application, Adv. Difference Equ. 2018 (2018), Paper No. 207. 10.1186/s13662-018-1660-5Search in Google Scholar

[37] I. Suwan, S. Owies and T. Abdeljawad, Fractional h-differences with exponential kernels and their monotonicity properties, Math. Methods Appl. Sci. (2020), 10.1002/mma.6213. 10.1002/mma.6213Search in Google Scholar

[38] Z. Wang, B. Shiri and D. Baleanu, Discrete fractional watermark technique, Front. Inform. Technol. Electron. Eng. 21 (2020), 880–883. 10.1631/FITEE.2000133Search in Google Scholar

Received: 2021-03-12
Accepted: 2021-05-02
Published Online: 2021-07-01
Published in Print: 2021-11-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/anly-2021-0011/html
Scroll to top button