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Abstract: Prescribed mean curvature problems on the torus have been considered in one dimension. In this
paper, we prove the existence of a graph on the n-dimensional torus𝕋n, the mean curvature vector of which
equals the normal component of a given vector field satisfying suitable conditions for a Sobolev norm, the
integrated value, and monotonicity.
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1 Introduction
In this paper, we consider the following prescribed mean curvature problem on the torus 𝕋n := ℝn/ℤn:

− div( ∇u
√1 + |∇u|2

) = ν(∇u) ⋅ g(x, u(x)) on 𝕋n , (1.1)

where ν is the unit normal vector of u, that is,

ν(z) = 1
√1 + |z|2

(−z, 1).

The vector field g(x, xn+1) : 𝕋n × ℝ → ℝn+1 is given, and we seek a solution u satisfying (1.1). The left-hand
side of (1.1) represents themean curvature of the graphof u, and the right-hand side is the normal component
of the vector field g on the graph.

In the case of Dirichlet conditions of a bounded domain Ω ⊂ ℝn, prescribed mean curvature problems
have been studied by numerous researchers. Bergner [3] solved the Dirichlet problem in the case where the
right-hand side of (1.1) is H = H(x, u, ν(∇u)) under the assumptions of boundedness (|H| < ∞), monotonic-
ity (∂n+1H ≥ 0), and convexity of Ω. Under the same conditions for the function H, Marquardt [9] imposed
a condition on ∂Ω depending on H that guarantees the existence of solutions even for a domain Ω that is not
necessarily convex. In [13], we proved the existence of a solution only under the condition that the Sobolev
norm of H is sufficiently small. In the case of a compact Riemannian manifold, Aubin [2] solved the linear
elliptic problem −∂i[aij(x)∂ju] = H(x) if the integrated value of H is zero. The assumption of the integrated
value plays an important role in the existence of solutions to elliptic equations on a compact Riemannian
manifold. Denny [4] solved the quasilinear elliptic problem −div(a(u(x))∇u) = H(x) on the torus 𝕋n with
n = 2, 3. Prescribed mean curvature problems on the one-dimensional torus

(
u󸀠

√1 + (u󸀠)2
)
󸀠
= H(x, u, u󸀠)

have been investigated for a wide variety of conditions H (we refer to, for example, [5, 7, 8, 10, 11, 14]).
As we noted in [13], the motivation for the present study comes from a singular perturbation problem,

and we proved the following in [12]. Suppose a constant ε > 0 and functions ϕε ∈ W1,2 and gε ∈ W1,p,
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with p > n+12 , satisfy

−ε∆ϕε +
W󸀠(ϕε)
ε
= ε∇ϕε ⋅ gε ,

∫(
ε|∇ϕε|2

2 +
W(ϕε)
ε )

dx + ‖gε‖W1,p(Ω̃) ≤ C,

where W is a double-well potential such as W(ϕ) = (1 − ϕ2)2. Then the interface {ϕε = 0} converges locally
in the Hausdorff distance to a surface having amean curvature given by ν ⋅ g as ε → 0. Here, ν is the unit nor-
mal vector of the surface, and g is the weak W1,p limit of gε. If the surface is represented locally as a graph
of a function u on 𝕋n, we can observe that u satisfies (1.1). In this paper, we prove the existence of solu-
tions to (1.1) assuming that the Sobolev norm of g is sufficiently small, gn+1 for the (n + 1)-st component is
monotonous, and the integrated value of gn+1 is zero. The following theorem is the main result.

Theorem 1.1. Fix n+1
2 < p < n + 1 and q = np

n+1−p . Then there exists a constant ε1 = ε1(n, p) > 0 with the fol-
lowing property: If ε < ε1, and

g = (g1, . . . , gn , gn+1) = (g󸀠, gn+1) ∈ W1,p(𝕋n × (−1, 1);ℝn+1)

satisfies the relations

‖g‖W1,p(𝕋n×(−1,1)) < ε
2
3 , (1.2)

∂n+1gn+1(x, xn+1) > ε + ε
1
2 |∂n+1g󸀠(x, xn+1)|, (1.3)

∫
𝕋n

gn+1(x, 0) = 0, (1.4)

then there exists a function u ∈ W2,q(𝕋n) such that

− div( ∇u
√1 + |∇u|2

) = ν(∇u) ⋅ g(x, u(x)) on 𝕋n . (1.5)

Moreover, the following inequality holds:
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
u − ∫
𝕋n

u(y) dy
󵄩󵄩󵄩󵄩󵄩󵄩󵄩W2,q(𝕋n)

≤ ε
1
2 .

Assumptions (1.2) and (1.3) guarantee the existence and uniqueness of solutions to the linearized problem
of (1.1) where a given function depends on ∇u. Equation (1.4) is necessary for the existence of solutions to
elliptic equations on the torus. To the best of our knowledge, prescribed mean curvature problems on the
torus in the general dimension have been insufficiently studied. However, we have proved the existence of
the solution under natural assumptions.

The following is themethod of proof. First, we find the conditions ofH for the linearized problemof (1.1),
i.e.

−div( ∇u
√1 + |∇v|2

) = H,

to have a unique solution. If we add a suitable constant term for any v, the function ν(∇v) ⋅ g(x, v(x)) satisfies
the conditions. By estimating the norm of this solution with g, the mapping T(v) = u has a fixed point using
a fixed-point theorem, and Theorem 1.1 follows.

2 Proof of Theorem 1.1
A theorem that holds in the Euclidean space also holds on a torus, as we consider a function on a torus to be
a periodic function in the Euclidean space.

Let X(𝕋n) be a function space on 𝕋n. We define a subspace Xave(𝕋n) ⊂ X(𝕋n) as

Xave := {w ∈ X : ∫
𝕋n

w = 0}.
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Theorem 2.1. Suppose v ∈ C1(𝕋n) and H ∈ L2ave(𝕋n). Then there exists a unique function u ∈ W1,2
ave (𝕋n) such

that
∫
𝕋n

∇u ⋅ ∇ϕ
√1 + |∇v|2

= ∫
𝕋n

Hϕ

for all ϕ ∈ W1,2(𝕋n).

Proof. We define a function B : W1,2
ave (𝕋n) ×W

1,2
ave (𝕋n) → ℝ by

B[w1, w2, v] := ∫
𝕋n

∇w1 ⋅ ∇w2

√1 + |∇v|2
.

By the Hölder inequality, we obtain

|B[w1, w2, v]| ≤ ∫
𝕋n

|∇w1||∇w2|

≤ ‖∇w1‖L2(𝕋n)‖∇w2‖L2(𝕋n)

≤ ‖w1‖W1,2(𝕋n)‖w2‖W1,2(𝕋n). (2.1)

Using the Poincaré inequality, we have

|B[w, w, v]| ≥ 1

√1 + ‖v‖2C1(𝕋n)
‖∇w‖2L2(𝕋n)

≥
1

√1 + ‖v‖2C1(𝕋n)
‖∇w‖2W1,2(𝕋n). (2.2)

By (2.1), (2.2), and the Lax–Milgram theorem, for any H ∈ L2ave(𝕋n), there exists a unique function

u ∈ W1,2
ave (𝕋n)

such that
∫
𝕋n

∇u ⋅ ∇ψ
√1 + |∇v|2

= ∫
𝕋n

Hψ (2.3)

for all ψ ∈ W1,2
ave (𝕋n). For any ϕ ∈ W1,2(𝕋n), we define cϕ := ∫𝕋n ϕ and ϕ̃ := ϕ − cϕ ∈ W1,2

ave (𝕋n). By (2.3) and
H ∈ L2ave(𝕋n), we obtain

∫
𝕋n

∇u ⋅ ∇ϕ
√1 + |∇v|2

= ∫
𝕋n

∇u ⋅ ∇ϕ̃
√1 + |∇v|2

= ∫
𝕋n

Hϕ̃ = ∫
𝕋n

Hϕ.

Thus, Theorem 2.1 follows.

We define a mollifier as follows:

η(x) :=
{{
{{
{

C exp( 1
|x|2 − 1

) for |x| < 1,

0 for |x| ≥ 1,

where the constant C > 0 is selected such that ∫ℝn+1 η = 1. We define

ηλ(x) :=
1
λn
η( xλ )

.

For any f ∈ L2(𝕋n × (−1, 1)) and xn+1 ∈ (−1 + λ, 1 − λ),

fλ(x, xn+1) := ∫
𝕋n×(−1,1)

ηλ(x − y, xn+1 − yn+1)f(y, yn+1) dy

= ∫
Bn+1(0,λ)

ηλ(y, yn+1)f(x − y, xn+1 − yn+1) dy,
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where Bn+1(x, λ) is an open ball with center x and radius λ in 𝕋n × ℝ. Moreover, for any

g ∈ W1,p(𝕋n × (−1, 1);ℝn+1),

we define gλ := (g1λ , . . . , g
n
λ , g

n+1
λ ) = (g

󸀠
λ , g

n+1
λ ).

Lemma 2.2. Fix β1 > 0 and 0 < λ < 1. Suppose v ∈ C1(𝕋n) satisfies ‖v‖C1(𝕋n) < β1, and

g ∈ W1,p(𝕋n × (−1, 1);ℝn+1)

satisfies
∂n+1gn+1(x, xn+1) > β1|∂n+1g󸀠(x, xn+1)|.

For any positive constant c0 > 0, if v(𝕋n) + c0 ⊂ (−1 + λ, 1 − λ), then

∫
𝕋n

ν(∇v) ⋅ gλ(x, v) < ∫
𝕋n

ν(∇v) ⋅ gλ(x, v + c0).

Proof. From the assumptions, we compute

∫
𝕋n

ν(∇v) ⋅ (gλ(x, v + c0) − gλ(x, v))

= ∫
𝕋n

1
√1 + |∇v|2

v+c0

∫
v

−∇v ⋅ ∂n+1g󸀠λ(x, t) + ∂n+1g
n+1
λ (x, t) dt

≥ ∫
𝕋n

1
√1 + |∇v|2

v+c0

∫
v

−β1|∂n+1g󸀠λ(x, t)| + ∂n+1g
n+1
λ (x, t) dt

≥ ∫
𝕋n

1
√1 + |∇v|2

v+c0

∫
v

∫
𝕋n×(−1,1)

ηλ(x − y, t − yn+1){−β1|∂n+1g󸀠(y, yn+1)| + ∂n+1gn+1(y, yn+1)} dt

> 0.

Lemma 2.2 follows.

Lemma 2.3. Suppose g ∈ W1,p(𝕋n × (−1, 1) and v ∈ C1(𝕋n) with ‖v‖C1(𝕋n) ≤ 7
16 . Let q =

np
n+1−p . Then there

exists a constant c1 = c1(n, p) > 0 such that, if λ < 1
8 ,

‖gλ( ⋅ , v( ⋅ ))‖Lq(𝕋n) ≤ c1‖g‖W1,p(𝕋n×(−1,1)).

Proof. By the same proof as in [13, Lemma 2.3], we obtain

‖gλ( ⋅ , v( ⋅ ))‖Lq(𝕋n) ≤ c2‖gλ‖W1,p(𝕋n×(− 78 ,
7
8 ))
, (2.4)

where c2 = c2(n, p) > 0. Using the Hölder inequality, we obtain

∫

𝕋n×(− 78 ,
7
8 )

|gλ|p dx ≤ ∫
𝕋n×(− 78 ,

7
8 )

( ∫
Bn+1(x,λ)

η
1− 1p +

1
p

λ (x − y, xn+1 − yn+1)|g(y, yn+1)| dy)
p
dx

≤ ∫

𝕋n×(− 78 ,
7
8 )

( ∫
Bn+1(x,λ)

ηλ(x − y, xn+1 − yn+1)|g(y, yn+1)|p dy) dx

≤ ∫
𝕋n×(−1,1)

|g(y, yn+1)|p( ∫
Bn+1(y,λ)

ηλ(x − y, xn+1 − yn+1) dx) dy

= ∫
𝕋n×(−1,1)

|g(y, yn+1)|p dy. (2.5)

We can show that
‖∇gλ‖Lp(𝕋n×(− 78 , 78 )) ≤ ‖∇g‖Lp(𝕋n×(−1,1))

in the exact same manner, and Lemma 2.3 follows by (2.4) and (2.5).
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Theorem 2.4. Suppose v ∈ C1(𝕋n) and

g ∈ W1,p(𝕋n × (−1, 1);ℝn+1).

Then there exist constants ε2 = ε2(n, p) > 0 such that, if λ < 1
8 , ε < ε2, and ‖v‖C1(𝕋n) ≤ ε

1/2, then g satisfies
(1.2)–(1.4). Then there exist a unique function u ∈ W1,2

ave (𝕋n) and a unique constant −14 < cv <
1
4 such that

∫
𝕋n

∇u ⋅ ∇ϕ
√1 + |∇v|2

= ∫
𝕋n

ν(∇v) ⋅ gλ(x, v + cv)ϕ (2.6)

for all ϕ ∈ W1,2(𝕋n).

Proof. We define
F(t) := ∫

𝕋n

ν(∇v) ⋅ gλ(x, v + t).

The function F is continuous. Suppose that ε < 1
162 . We will consider that the domain of F is [−14 ,

1
4 ]. By the

mean value theorem, there exists a constant c3 = c3(n, p) > 0 such that

F(14) = ∫
𝕋n

(ν(∇v) − ν(0) + ν(0)) ⋅ gλ(x, v +
1
4)

≥ −c3‖v‖C1(𝕋n)
󵄩󵄩󵄩󵄩󵄩󵄩gλ( ⋅ , v( ⋅ ) +

1
4)
󵄩󵄩󵄩󵄩󵄩󵄩Lq(𝕋n)
+ ∫
𝕋n

gn+1λ (x, v +
1
4). (2.7)

By Lemma 2.3 and ‖v + 1
4 ‖C1(𝕋n) ≤

5
16 , we obtain
󵄩󵄩󵄩󵄩󵄩󵄩gλ( ⋅ , v( ⋅ ) +

1
4)
󵄩󵄩󵄩󵄩󵄩󵄩Lq(𝕋n)
≤ c1‖g‖W1,p(𝕋n×(−1,1)).

By (1.3) and (1.4), there exists a constant c4 = c4(n) > 0 such that

∫
𝕋n

gn+1λ (x, v +
1
4) = ∫
𝕋n

∫
Bn+1(0,λ)

ηλ(y, yn+1)gn+1(x − y, v +
1
4 − y

n+1) dy dx

> ∫
𝕋n

∫
Bn+1(0,λ)

ηλ(y, yn+1)gn+1(x − y,
1
16) dy dx

> ∫
𝕋n

∫
Bn+1(0,λ)

ηλ(y, yn+1)(gn+1(x − y, 0) +
ε
16) dy dx

>
c4
16 ε. (2.8)

By (1.2), (2.7)–(2.8), and ‖v‖C1(𝕋n) < ε1/2, if

ε < ( c4
16c1c3

)
6
=: ε2(n, p),

then

F(14) > −c1c3‖v‖C
1(𝕋n)‖gλ‖W1,p(𝕋n×(−1,1)) +

c4
16 ε

> −c1c3ε
7
6 +

c4
16 ε

> ε(−c1c3ε
1
6 +

c4
16)

> 0.

Similarly, we can show that F(−14 ) < 0. By Lemma 2.2 and the mean value theorem, there exists a unique
constant −14 < cv <

1
4 that satisfies F(cv) = 0. By using Theorem 2.1, Theorem 2.4 follows.

Let us define anoperator T : A(s) → W1,2
ave (𝕋n) × [−14 ,

1
4 ]by T(v) = (T1(v), T2(v)) := (u, cv) that satisfies (2.6),

where
A(s) := {w ∈ W2,q

ave (𝕋n) : ‖w‖W2,q(𝕋n) ≤ s}.
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Theorem 2.5. There exist constants ε3 = ε3(n, p) > 0and c5 = c5(n, p) > 0 such that, if λ < 1
8 , ε < min{ε2, ε3},

v ∈ A(ε1/2), and g ∈ W1,p(𝕋n × (−1, 1);ℝn+1) satisfies (1.2)–(1.4), then

‖T1(v)‖W2,q(𝕋n) ≤ c5‖g‖W1,p(𝕋n×(−1,1)).

Proof. Wefirst assume that v ∈ C∞(𝕋n) ∩A(ε1/2). Using [6, Corollary 8.11], we obtain T1(v) ∈ C∞(𝕋n). Thus,
we can rewrite (2.6) as

∆T1(v)
√1 + |∇v|2

+ ∇T1(v) ⋅ ∇(
1

√1 + |∇v|2
) = −ν(∇v) ⋅ gλ(x, v + T2(v)).

Using [6, Theorem 9.11], we find that there exists a constant c6 = c6(n, p) > 0 such that

‖T1(v)‖W2,q(𝕋n) ≤ c6(‖T1(v)‖Lq(𝕋n) + ‖ν(∇v) ⋅ gλ(x, v + T2(v))‖Lq(𝕋n)

+
󵄩󵄩󵄩󵄩󵄩󵄩∇T1(v) ⋅ ∇(

1
√1 + |∇v|2

)
󵄩󵄩󵄩󵄩󵄩󵄩Lq(𝕋n)
). (2.9)

Using Lemma 2.3, we obtain

‖ν(∇v) ⋅ gλ(x, v + T2(v))‖Lq(𝕋n) ≤ c1‖g‖W1,p(𝕋n×(−1,1)). (2.10)

Using the Sobolev inequality, we find that there exists a constant c7 = c7(n, p) > 0 such that

󵄩󵄩󵄩󵄩󵄩󵄩∇T1(v) ⋅ ∇(
1

√1 + |∇v|2
)
󵄩󵄩󵄩󵄩󵄩󵄩Lq(𝕋n)
≤ ‖T1(v)‖C1(𝕋n)

󵄩󵄩󵄩󵄩󵄩󵄩∇(
1

√1 + |∇v|2
)
󵄩󵄩󵄩󵄩󵄩󵄩Lq(𝕋n)

≤ c7‖T1(v)‖W2,q(𝕋n)‖v‖W2,q(𝕋n). (2.11)

Next, we estimate the term ‖T1(v)‖Lq(𝕋n). If q ≤ 2, then, by (2.2) and Lemma 2.3, we obtain

‖T1(v)‖Lq(𝕋n) ≤ c8(n, p)‖T1(v)‖L2(𝕋n)
≤ c9(n, p)B[T1(v), T1(v), v]

1
2 .

= c9( ∫
𝕋n

∇T1(v) ⋅ ∇T1(v)
√1 + |∇v|2

)
1
2

= c9( ∫
𝕋n

ν(∇v) ⋅ gλ(x, v + T2(v))T1(v))
1
2

≤ c10(n, p)‖g‖
1
2
W1,p(𝕋n)‖T1(v)‖

1
2
L∞(𝕋n)

≤ c11(n, p)‖g‖W1,p(𝕋n) +
1
4c6
‖T1(v)‖W2,q(𝕋n). (2.12)

If q > 2, by (2.12) and the Riesz–Thorin theorem, we obtain

‖T1(v)‖Lq(𝕋n) ≤ ‖T1(v)‖
1
q
L2(𝕋n)‖T1(v)‖

1− 1q
L2(𝕋n)

≤ c12(n, p)‖g‖
1
2q
W1,p(𝕋n)‖T1(v)‖

1
2q +1−

1
q

L∞(𝕋n)

≤ c13(n, p)‖g‖W1,p(𝕋n) +
1
4c6
‖T1(v)‖W2,q(𝕋n). (2.13)

By (2.9)–(2.13), there exists a constant c14 = c14(n, p) > 0 such that

‖T1(v)‖W2,q(𝕋n) ≤ c14(‖g‖W1,p(𝕋n×(−1,1)) + ‖T1(v)‖W2,q(𝕋n)‖v‖W2,q(𝕋n)) +
1
4 ‖T1(v)‖W

2,q(𝕋n).

If ε < 1
16c214

, we obtain
‖T1(v)‖W2,q(𝕋n) ≤ 2c14‖g‖W1,p(𝕋n×(−1,1)). (2.14)
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For the general case of v ∈ W2,q(𝕋n), suppose that {vm}m∈ℕ ∈ C∞(𝕋n) converges to v in the sense of C1(𝕋n).
By (2.14), there exists a subsequence

{vmk }k∈ℕ ⊂ {vm}m∈ℕ
such that T1(vmk ) converges to a function w∞ ∈ W2,q(𝕋n) in the sense of C1(𝕋n), and T2(vmk ) converges to
a constant d∞ ∈ [−14 ,

1
4 ]. For any ϕ ∈ W

1,2(𝕋n), we obtain

∫
𝕋n

ν(∇v) ⋅ gλ(x, v + d∞)ϕ − ν(∇vmk ) ⋅ gλ(x, vmk + T2(vmk ))ϕ

≤ ∫
𝕋n

|ϕ||ν(∇v) − ν(∇vmk )||gλ(x, vmk + T2(vmk ))| + ∫
𝕋n

|ϕ|
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

v+d∞

∫
vmk+T2(vmk )

∂n+1gλ(x, s)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→ 0 (k →∞) (2.15)

and

∫
𝕋n

∇w∞ ⋅ ∇ϕ
√1 + |∇v|2

−
∇T1(vmk ) ⋅ ∇ϕ

√1 + |∇vmk |2

≤ ∫
𝕋n

(∇w∞ − ∇T1(vmk )) ⋅ ∇ϕ
√1 + |∇v|2

+ ∫
𝕋n

(∇T1(vmk ) ⋅ ∇ϕ)(
1

√1 + |∇v|2
−

1

√1 + |∇vmk |2
)

→ 0 (k →∞). (2.16)

By (2.15) and (2.16), we obtain

∫
𝕋n

∇w∞ ⋅ ∇ϕ
√1 + |∇v|2

− ν(∇v) ⋅ gλ(x, v + d∞)ϕ

= lim
k→∞
∫
𝕋n

∇T1(vmk ) ⋅ ∇ϕ

√1 + |∇vmk |2
− ν(∇vmk ) ⋅ gλ(x, vmk + T2(vmk ))ϕ

= 0, (2.17)

that is, T(v) = (w∞, d∞). By (2.14) and (2.17), Theorem 2.5 follows.

Next, we provide the fixed-point theorem, which is needed later ([1, Theorem 1]). An operator T : X → A
is considered weakly sequentially continuous if, for every sequence {xm}m∈ℕ ⊂ X and x∞ ∈ X such that xm
weakly converges to x∞, T(xm) weakly converges to T(x∞).

Theorem 2.6. Let X be a metrizable, locally convex topological vector space and let Ω be a weakly compact
convex subset of X. Then any weakly sequentially continuous map T : Ω → Ω has a fixed point.

We first prove Theorem 1.1 in the case of gλ.

Theorem 2.7. There exists a constant ε4 = ε4(n, p) > 0 such that, if λ < 1
8 and ε < ε4, then

g ∈ W1,p(𝕋n × (−1, 1);ℝn+1)

satisfies (1.2)–(1.4). Then there exists a function uλ ∈ W2,q(𝕋n) such that

− div( ∇uλ
√1 + |∇uλ|2

) = ν(∇uλ) ⋅ gλ(x, uλ(x)) on 𝕋n . (2.18)

Proof. The set W2,q(𝕋n) is a metrizable, locally convex topological vector space, and the set A(ε1/2) is
aweakly compact convex subset ofW2,q(𝕋n). By (1.2) and Theorem2.5, if ε < min{ε2, ε3, c−65 } =: ε4, we have

‖T1(v)‖W2,q(𝕋n) ≤ c5‖g‖W1,p(𝕋n×(−1,1))

≤ c5ε
1
6 ε

1
2

≤ ε
1
2 for any v ∈ A(ε

1
2 ), (2.19)
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that is, T1(A(ε1/2)) ⊂ A(ε1/2). Suppose that {vm}m∈ℕweakly converges to v∞ in the senseofW2,q(𝕋n). Accord-
ing to Theorem 2.5, there exists a subsequence {vmk }k∈ℕ ⊂ {vm}m∈ℕ such that T1(vmk ) weakly converges to
a function w∞ ∈ W2,q(𝕋n) in the sense of W2,q(𝕋n), and T2(vmk ) converges to a constant d∞ ∈ [−14 ,

1
4 ]. By

the same argument (2.15)–(2.17), for any ϕ ∈ W2,q(𝕋n),

∫
𝕋n

∇w∞ ⋅ ∇ϕ
√1 + |∇v∞|2

− ν(∇v∞) ⋅ gλ(x, v∞ + d∞)ϕ = 0,

that is, we obtain limk→∞ T1(vmk ) = T1(v∞) by the uniqueness of solution of Theorem 2.4. Therefore, every
convergent subsequence of {T1(vm)} converges to T1(v∞), and T1 is a weakly sequentially continuous map.
Using Theorem 2.6, we obtain a function vλ ∈ W2,q

ave (𝕋n) satisfying

−div( ∇vλ
√1 + |∇vλ|2

) = ν(∇vλ) ⋅ gλ(x, vλ(x) + T2(vλ)) on 𝕋n ,

that is, uλ := vλ + T2(vλ) ∈ W2,q(𝕋n) satisfying (2.18).

Proof of Theorem 1.1. Suppose uλ ∈ W2,q(𝕋n) satisfies (2.18). By Theorem2.5, there exists a convergent sub-
sequence

{uλk }k∈ℕ ⊂ {uλ}0<λ< 18
with a limit u∞ ∈ W2,q(𝕋n) in the sense of C1(𝕋n) and λk → 0. We show that u∞ satisfies (1.5). For any
ϕ ∈ W1,2(𝕋n), we obtain

∫
𝕋n

−div(
∇uλk

√1 + |∇uλk |2
−
∇u∞

√1 + |∇u∞|2
)ϕ = ∫
𝕋n

(
∇uλk

√1 + |∇uλk |2
−
∇u∞

√1 + |∇u∞|2
) ⋅ ∇ϕ

→ 0. (2.20)

Using Lemma 2.3, we have

∫
𝕋n

ν(∇uλk ) ⋅ gλk (x, uλk ) − ν(∇u∞) ⋅ g(x, u∞)

= ∫
𝕋n

(ν(∇uλk ) − ν(∇u∞)) ⋅ gλk (x, uλk ) + ∫
𝕋n

ν(∇u∞) ⋅ (gλk (x, uλk ) − g(x, uλk ))

+ ∫
𝕋n

ν(∇u∞) ⋅ (g(x, uλk ) − 7g(x, u∞))

= c1‖ν(∇uλk ) − ν(∇u∞)‖C0(𝕋n)‖gλk‖W1,p(𝕋n×(−1,1)) + c1‖gλk − g∞‖W1,p(𝕋n×(−1,1)) + ∫
𝕋n

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

uλk

∫
u∞

∂n+1g(x, s)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

→ 0. (2.21)

By (2.20) and (2.21), we obtain

∫
𝕋n

−div( ∇u∞
√1 + |∇u∞|2

)ϕ − ν(∇u∞) ⋅ g(x, u∞)ϕ

= lim
k→∞
∫
𝕋n

−div(
∇uλk

√1 + |∇uλk |2
)ϕ − ν(∇uλk ) ⋅ gλk (x, uλk )ϕ

→ 0.

Thus, u∞ satisfies (1.5) using the fundamental lemma of the calculus of variations. By (2.19), we obtain
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
u∞ − ∫
𝕋n

u∞(y) dy
󵄩󵄩󵄩󵄩󵄩󵄩󵄩W2,q(𝕋n)

≤ ε
1
2 ,

and Theorem 1.1 follows.
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