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Abstract: Prescribed mean curvature problems on the torus have been considered in one dimension. In this
paper, we prove the existence of a graph on the n-dimensional torus T", the mean curvature vector of which
equals the normal component of a given vector field satisfying suitable conditions for a Sobolev norm, the
integrated value, and monotonicity.
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1 Introduction

In this paper, we consider the following prescribed mean curvature problem on the torus T" := R"/Z":

Vu
—div( ——) = v(Vu) - g(x, u(x)) onT", (1.1)
( V1 + |Vu|? )
where v is the unit normal vector of u, that is,
1
V(z) = ———(-2z, 1).

The vector field g(x, x™1) : T" x R — R™! is given, and we seek a solution u satisfying (1.1). The left-hand
side of (1.1) represents the mean curvature of the graph of u, and the right-hand side is the normal component
of the vector field g on the graph.

In the case of Dirichlet conditions of a bounded domain Q ¢ R", prescribed mean curvature problems
have been studied by numerous researchers. Bergner [3] solved the Dirichlet problem in the case where the
right-hand side of (1.1) is H = H(x, u, v(Vu)) under the assumptions of boundedness (|H| < co), monotonic-
ity (0n+1H = 0), and convexity of Q. Under the same conditions for the function H, Marquardt [9] imposed
a condition on 0Q depending on H that guarantees the existence of solutions even for a domain Q that is not
necessarily convex. In [13], we proved the existence of a solution only under the condition that the Sobolev
norm of H is sufficiently small. In the case of a compact Riemannian manifold, Aubin [2] solved the linear
elliptic problem —0;[a;j(x)oju] = H(x) if the integrated value of H is zero. The assumption of the integrated
value plays an important role in the existence of solutions to elliptic equations on a compact Riemannian
manifold. Denny [4] solved the quasilinear elliptic problem - div(a(u(x))Vu) = H(x) on the torus T" with
n = 2, 3. Prescribed mean curvature problems on the one-dimensional torus

(u—’)' =H(x,u,u’)
have been investigated for a wide variety of conditions H (we refer to, for example, [5, 7, 8, 10, 11, 14]).

As we noted in [13], the motivation for the present study comes from a singular perturbation problem,

and we proved the following in [12]. Suppose a constant £ > 0 and functions ¢, € W2 and g, € W2,
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with p > 1 satisfy

W' (¢e)

-eApe + .

= eV - ge,

j(€|v¢s|2 + W(gpe)

2 £
where W is a double-well potential such as W(¢) = (1 — ¢p?)2. Then the interface {¢p. = 0} converges locally
in the Hausdorff distance to a surface having a mean curvature given by v - g as € — 0. Here, v is the unit nor-
mal vector of the surface, and g is the weak WP limit of g.. If the surface is represented locally as a graph
of a function u on T", we can observe that u satisfies (1.1). In this paper, we prove the existence of solu-
tions to (1.1) assuming that the Sobolev norm of g is sufficiently small, g"*! for the (n + 1)-st component is
monotonous, and the integrated value of g"*! is zero. The following theorem is the main result.

) dx + lgellwng < C;

np

Theorem 1.1. Fix "T” <p<n+landq-= g Then there exists a constant €1 = €1(n, p) > 0 with the fol-

lowing property: If € < €1, and
§= (gl’ . e ’gn’ngl) = (glr ngl) € Wl’p(Tn X (_19 1);1Rn+1)

satisfies the relations

2
Igllwir(rrx-1,1)) < €3, (1.2)
One18™ 106G XYY > £+ £7|0ns1 8 (X, X, (1.3)
j g™1(x,0) =0, (1.4)
’I["l

then there exists a function u € W%49(T™) such that

- div(L) — v(Vu) - g(x, u(x)) onT™". (1.5)

V1 + |Vu|?

Moreover, the following inequality holds:

o [ua

Tn

NI

<€
W24(T")

Assumptions (1.2) and (1.3) guarantee the existence and uniqueness of solutions to the linearized problem
of (1.1) where a given function depends on Vu. Equation (1.4) is necessary for the existence of solutions to
elliptic equations on the torus. To the best of our knowledge, prescribed mean curvature problems on the
torus in the general dimension have been insufficiently studied. However, we have proved the existence of
the solution under natural assumptions.

The following is the method of proof. First, we find the conditions of H for the linearized problem of (1.1),

ie.
. Vu
le( m) H
to have a unique solution. If we add a suitable constant term for any v, the function v(Vv) - g(x, v(x)) satisfies
the conditions. By estimating the norm of this solution with g, the mapping T(v) = u has a fixed point using
a fixed-point theorem, and Theorem 1.1 follows.

2 Proof of Theorem 1.1

A theorem that holds in the Euclidean space also holds on a torus, as we consider a function on a torus to be
a periodic function in the Euclidean space.
Let X(T™) be a function space on T". We define a subspace Xy (T") c X(T™) as

Xave :={weX: Jw:O}.
Tn
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Theorem 2.1. Suppose v € CY(T") and H € L2, (T™). Then there exists a unique function u € Wal\’,ﬁ(T") such

that V.o
u.
Y _ | H
T—[ V1 +|Vy|? T[ ¢

forall p € WH2(T™).
Proof. We define a function B : Wé\;é(ir") X Wal‘;g("lr") — Rby

Vw; - Vw,

V1 + |VV|2.

Blwy, wy, V] := J
']I‘n

By the Holder inequality, we obtain

IBlwi, wa, V]| < j|vW1||sz|
']I‘H
< NIVwillzcem IVW2ll L2 ¢

< willwrz ey lwallwez erny . (2.1)

Using the Poincaré inequality, we have

1
IBlw, W, V]| 2~ [ VWII s

’ 2
1 + ||V||C1(']rn)
1
2 S ——
VLIV )

By (2.1), (2.2), and the Lax—Milgram theorem, for any H € L2, (T™), there exists a unique function

VW12 ny - (2.2)

U € Waye (T

Vu-vyp
T[ o _T[ Hy 2.3)

forall p € WayZ(T"). For any ¢ € W2(T™), we define Cp = an pandp:=¢d-cgy € wl2(Tm). By (2.3) and
H € L2, (T"), we obtain

such that

TJH \/V1u+- |Z(f|2 :T[ \/Zu; |Z(f|2 B TI He :T[ Hp.

Thus, Theorem 2.1 follows. O

We define a mollifier as follows:

exp(lxlz;_l) for x| < 1,

0 for |x| > 1,

n(x) :=

where the constant C > 0 is selected such that j‘]R,H1 n = 1. We define

1 X
me = n(3):
Foranyf € L2(T" x (-1, 1)) and x™1 € (-1 + 1,1 - A),

n+1) .

=y, x™ —y"™Hfy, y™ dy
Trx(-1,1)

= j mQy, Yy -y, X" -yt ay,
B"*l(O,/\)

falx, x
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where B"™1(x, A) is an open ball with center x and radius A in T" x R. Moreover, for any
g e WHP(T" x (-1, 1); R™1),

we define gy := (g3, ..., 8%, &1 = (g}, &i*).

Lemma 2.2. Fix 1 > 0and 0 < A < 1. Suppose v € C*(T™) satisfies Ivicterny < B1, and
g e WHP(T" x (-1, 1); R™)

satisfies

On+18™ 06, XY > B1lOns1g (x, x|

For any positive constant co > 0, if v(T™) + co € (-1 + A, 1 = A), then

J v(Vv) - ga(x, v) < j v(Vv) - ga(x, v + co).
’]I‘Yl ’]I‘rl

Proof. From the assumptions, we compute

J v(Vv) - (ga(x, v + co) — 8alx, v))

Tn
V+Co
J J -Vv. an+1g:1(x, t) + an+lg;11+1 (x, t)dt
1+ |Vv|2
V+Co
j — |VV|2 j 11018, (% )] + Oner gL (x, £) dt
V+Co
j J J M =y, t = Yne){=B110ne18’ ¥V, Yne )| + 018" 1y, ynar)} dt
1+ |Vv|2
VooTnx(t1,1)
> 0.
Lemma 2.2 follows. O

Lemma 2.3. Suppose g € WHP(T" x (-1, 1) and v e CH(T™) with |Vl < 5. Let g = n+1_p Then there
exists a constant c1 = c¢1(n, p) > 0 such that, if A < 8,

IgaC- s v(-DlLaery < callgllwrernx-1,1)-
Proof. By the same proof as in [13, Lemma 2.3], we obtain

IgaC-, vEDlzacrny < c2llgallwrprnx-2,2))5 (2.4)

where ¢, = ¢2(n, p) > 0. Using the Holder inequality, we obtain

1-141 p
I Igal? dx < I ( J 7P -y, x y"“)lg(y,y"”)ldy) dx

T'x(-3,3) T'x(-3,5) BN

< J ( J m(x—y,xn“—y““)lg(y,y"”)lpdy)dx
_%’%) B’”l(X,/\)

< J gy, y"”)lp( J Ml =y, X" -y dX) d
Tnx(-1,1) B™*1(y,A)
= j lg(y, y" P dy. (2.5)
Trx(=1,1)
We can show that
IV8AllLe (-2, 7)) < IV8llLp(rnx(-1,1))

in the exact same manner, and Lemma 2.3 follows by (2.4) and (2.5). O

7
’8
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Theorem 2.4. Suppose v € C*(T™) and
g e WHP(T" x (-1, 1); R™1),

Then there exist constants €, = €,(n, p) > 0 such that, if A < %, £ < &, and ||vlcierny < €12, then g satisfies
(1.2)-(1.4). Then there exist a unique function u € WxZ2(T™) and a unique constant —% <cy < % such that

J % = J v(Vv) - ga(x, v+ ¢y)¢ (2.6)
Tn Tn

forall p € WH2(T™).
Proof. We define
E(t) := I v(Vv) - galx, v +t).
’I[‘Yl

The function F is continuous. Suppose that € < 1—é2. We will consider that the domain of F is [—%, %]. By the
mean value theorem, there exists a constant c3 = c3(n, p) > 0 such that

F(7) = [0 =v0) +vO) - ga(x v+ 7)
2

v+ )

By Lemma 2.3 and ||v + 7| c1(rm) < 7%, e obtain

1
> —csllvicierm . J g}f“(x, v+ Z)' 2.7)

Tn

gal - v()+ : < callgllwrr(rnx(-1,1))-
Jea( v+

By (1.3) and (1.4), there exists a constant ¢, = c4(n) > 0 such that

1 1

1 1y n+l 1

Jg,’{* (x,v+ Z): J J my,y™ g™ (x—y,v+Z—y"+ )dydx
T T B"*l(O,/\)

La(Tn)

1
n+1y,n+1
>J J my,y" g (X—y,—16)dydx
THB"H(O,A)

n+1 n+1 )
> J J na(y, y )(g (x-y, 0)+R)dydx
T B"*l(O,A)
Cy

e 2.8
> 1¢€ (2.8

By (1.2), (2.7)—(2.8), and |Vl ci(r < €'/2, if

£< (16263 )6 =: &2(n, p),

then

1 Cy
F(Z) > —c1c3lvliciermlgallwre (rrx-1,1y) + 16¢

> —C1C3€% + C—4£
16
> 8(—61638% + ﬁ)
16
> 0.

Similarly, we can show that F (—%) < 0. By Lemma 2.2 and the mean value theorem, there exists a unique
constant —; < ¢, <  that satisfies F(c,) = 0. By using Theorem 2.1, Theorem 2.4 follows. O

Let us define an operator T : A(s) — Wk (T") x (-4, 21by T(v) = (T1(v), T2(v)) := (u, c,) that satisfies (2.6),
where
A(s) = {w € Wd(T") : [Wlwzacrn) < s}
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Theorem 2.5. There exist constants €3 = €3(n, p) > 0and c5 = ¢s5(n, p) > Osuchthat,ifA < %,e < min{e,, €3},
v e A(V?), and g € WHP(T" x (-1, 1); R™*1) satisfies (1.2)-(1.4), then

IT1Wllwzacrny < cslglwrrrnx-1,1))-

Proof. We firstassume thatv € C®°(T") n A(e!/2). Using [6, Corollary 8.11], we obtain T (v) € C®(T™). Thus,
we can rewrite (2.6) as

AT o) V() = vy ga (v + Ta(v).
V1 +|Vy|? V1 +|Vy|?

Using [6, Theorem 9.11], we find that there exists a constant c¢ = cg(n, p) > 0 such that
1T (V) llw2aqrny < C6(" T1(W)lzacrmy + Iv(VY) - 8a(x, v + T2 (V))llLa(rm)

+vrw)- v(—1 ) (2.9)

V1 +|Vy|?

Lq(irn))'
Using Lemma 2.3, we obtain
v(Vv) - galx, v+ To(V)liLacrny < callgllwrrrnx-1,1))- (2.10)

Using the Sobolev inequality, we find that there exists a constant c; = c7(n, p) > 0 such that

1
[v10)- V(—m)

<||T n
= IT1()llcrerm La(Tn)

V(;)
V1 +[VvZ

< 71 TiWlwacrm IVIiwzacrny. (2.11)

La(Tn

Next, we estimate the term || T1 (V)llzs(m). If ¢ < 2, then, by (2.2) and Lemma 2.3, we obtain

IT1(V)llzacrny < ca(n, PIIT1 (V)22 (rny
< co(n, p)BIT1(v), T1(v), v]>.
_ VT1(v) - VT1(v)\?
'09” VI+ VP )

1

= os( [ vvn)-gate v+ NI )
)

1 1
< Clo(n’ p)"g";l/lp(']rn)" Tl (v)"Lzoo('H‘n)

1
< cui(n, pliglhwrecrny + 4_C6" T1()llw2acrn)- (2.12)

If g > 2, by (2.12) and the Riesz-Thorin theorem, we obtain

1 1-1

1T W) aceny < T3 oy IT2 ) iy
5 4+1-3

< €12, PIEl s I T V) Py

1
< ci3(n, plglwrr e + 4_(:6" T1()llw2.acrn. (2.13)
By (2.9)-(2.13), there exists a constant c14 = ¢14(n, p) > 0 such that

1
IT1 (W lwzacrny < crallgllwrecrnx-1,1)) + 1Tt wzacrmllviwzacrny) + Z” T llw2acrny-

1

——, wWe obtain
16¢3,’

Ife <

ITL (V) lw2acrny < 2¢1allgllwrrrnx(-1,1))- (2.14)
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For the general case of v € W24(T"), suppose that {v,;}men € C®(T") converges to v in the sense of C1(T").
By (2.14), there exists a subsequence

Vit kew € {Vimlmen
such that T (v, ) converges to a function wy, € W*9(T") in the sense of C1(T"), and T>(vy,, ) converges to
a constant do, € [-7, 7). Forany ¢ € W-2(T"), we obtain

J V(VV) - gA(X, v+ doo) P — v(Vviny) - 820X, Vi + To (Vi )@

’]I‘n
V+de,
< j|¢||v(w)—v(vak>||gA(x, Vi + Ta(Vm)| + j|¢|| j dne18A(X, )
™ i mG+T2(mG)
-0 (k— o0) (2.15)
and
J VWeo - V@ VT1(Vim,) -V
e V1+ VY2 \/1 + |V, 12
(VWeo = VT1(Vim,)) -V 1 1
< + | (VT1(Vm,) - V) -
T[ V1 +|Vy|2 T[ ' ( V1+|Vv|? \/1 v |ka|z)
-0 (k— o). (2.16)

By (2.15) and (2.16), we obtain

VW - Vb
— - V(W) - gA(X, V + do)
Tjn V1 +|Vy|? «)$
. VT1(vm,) -V
= khm j M - V(VmG) 'g/\(X’ mG + TZ(mG))¢
T 1+ Vv, |?
=0, (2.17)
thatis, T(v) = (W, do)- By (2.14) and (2.17), Theorem 2.5 follows. O

Next, we provide the fixed-point theorem, which is needed later ([1, Theorem 1]). An operator T: X — A
is considered weakly sequentially continuous if, for every sequence {X;}men € X and xo, € X such that x,,
weakly converges to X, T(xp,) weakly converges to T(Xoo).

Theorem 2.6. Let X be a metrizable, locally convex topological vector space and let Q be a weakly compact
convex subset of X. Then any weakly sequentially continuous map T : Q — Q has a fixed point.

We first prove Theorem 1.1 in the case of g;.
Theorem 2.7. There exists a constant €, = £4(n, p) > 0 such that, if A < % and € < &4, then
g e WHP(T™" x (-1, 1); R™)
satisfies (1.2)—(1.4). Then there exists a function uy € W»9(T") such that
. Vu,

- le( —W
Proof. The set W29(T") is a metrizable, locally convex topological vector space, and the set A(e'/?) is
a weakly compact convex subset of W2-4(T™). By (1.2) and Theorem 2.5, if ¢ < min{e,, €3, c;s} =: &4, we have

) =v(Vuy) - galx, up(x)) onT". (2.18)

IT1 (W llwzacrny < Csllgllwrerax-1,1))

1 1
< csesE?

—

<¢g2 foranyve A(e%), (2.19)
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thatis, T1(A(g!/?)) c A(e'/?). Suppose that {v;}men Weakly converges to v, in the sense of W2-9(T™). Accord-
ing to Theorem 2.5, there exists a subsequence {vm, }ken € {Vm}men such that T1(vm,) weakly converges to
a function we, € W>4(T") in the sense of W*4(T™), and T,(vp,) converges to a constant de, € [-7, 7]. By
the same argument (2.15)-(2.17), for any ¢ ¢ W24(T"),

J VW - VO
s V1 + Vg2
that is, we obtain limy—,co T1(Vim,) = T1(Veo) by the uniqueness of solution of Theorem 2.4. Therefore, every

convergent subsequence of {T1(vy,)} converges to T1(v,), and T, is a weakly sequentially continuous map.
Using Theorem 2.6, we obtain a function v, € W;;,Z (T™) satisfying

—V(VVeo) - 82X, Voo + doo)P = 0,

. Vv)
—div[ ———=) = v(VV)) - ga(x, va(x) + T>(vy)) onT",
( V1+ |VV/1|2)
that is, uy := vy + To(v)) € W4(T") satisfying (2.18). O

Proof of Theorem 1.1. Suppose u; € W29(T") satisfies (2.18). By Theorem 2.5, there exists a convergent sub-
sequence

{unden < {uakoer<t
with a limit us, € W4(T") in the sense of C1(T™) and Ay — 0. We show that u,, satisfies (1.5). For any
¢ € WH2(T"), we obtain

J’ div Vuy, B Vi )¢ _ J’ Vuy, B Vi )-V
s \/1+|VuAk|2 V1 + [V |? s \/1+|VUAk|2 V1 + [Vugl?
- 0. (2.20)

Using Lemma 2.3, we have
J v(Vup,) - 8a, (%, up) = v(Vie) - 8(X, Uco)
']I‘Yl

- j(v(VuAk) (Vo)) - g1, (6 ) + j U(Viteo) - (81, (%, a,) — 80X, u,))
™ ™

+ j V(Vueo) - (8(x, up,) — 78(X, Uso))

’]I‘n
U}[k
= 1 V() — v(Viteo)ll o I e o1,y + C1lIgh, — Zoollwimerrcr 1y + jl j Onn1g(x,9)
Tn uOO
— 0. (2.21)

By (2.20) and (2.21), we obtain

. Voo
T[ - dlv(myp —V(Vleo) - 8(X, Ueo) P

. . Vuj,
= lim J —le(—k)(;b -v(Vuy,) - 8, (X, up, )P
koo ) 1+ [Vuy, 2

— 0.
Thus, u,, satisfies (1.5) using the fundamental lemma of the calculus of variations. By (2.19), we obtain

1
<eg?
W24(T")

>

o [

Tn

and Theorem 1.1 follows. O
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